xref: /freebsd/sys/dev/sk/if_sk.c (revision 52ec752989b2e6d4e9a59a8ff25d8ff596d85e62)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/queue.h>
96 
97 #include <net/if.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 
103 #include <net/bpf.h>
104 
105 #include <vm/vm.h>              /* for vtophys */
106 #include <vm/pmap.h>            /* for vtophys */
107 #include <machine/bus_pio.h>
108 #include <machine/bus_memio.h>
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/brgphyreg.h>
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #if 0
122 #define SK_USEIOSPACE
123 #endif
124 
125 #include <pci/if_skreg.h>
126 #include <pci/xmaciireg.h>
127 #include <pci/yukonreg.h>
128 
129 MODULE_DEPEND(sk, pci, 1, 1, 1);
130 MODULE_DEPEND(sk, ether, 1, 1, 1);
131 MODULE_DEPEND(sk, miibus, 1, 1, 1);
132 
133 /* "controller miibus0" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 #ifndef lint
137 static const char rcsid[] =
138   "$FreeBSD$";
139 #endif
140 
141 static struct sk_type sk_devs[] = {
142 	{
143 		VENDORID_SK,
144 		DEVICEID_SK_V1,
145 		"SysKonnect Gigabit Ethernet (V1.0)"
146 	},
147 	{
148 		VENDORID_SK,
149 		DEVICEID_SK_V2,
150 		"SysKonnect Gigabit Ethernet (V2.0)"
151 	},
152 	{
153 		VENDORID_MARVELL,
154 		DEVICEID_SK_V2,
155 		"Marvell Gigabit Ethernet"
156 	},
157 	{
158 		VENDORID_3COM,
159 		DEVICEID_3COM_3C940,
160 		"3Com 3C940 Gigabit Ethernet"
161 	},
162 	{
163 		VENDORID_LINKSYS,
164 		DEVICEID_LINKSYS_EG1032,
165 		"Linksys EG1032 Gigabit Ethernet"
166 	},
167 	{ 0, 0, NULL }
168 };
169 
170 static int skc_probe		(device_t);
171 static int skc_attach		(device_t);
172 static int skc_detach		(device_t);
173 static void skc_shutdown	(device_t);
174 static int sk_detach		(device_t);
175 static int sk_probe		(device_t);
176 static int sk_attach		(device_t);
177 static void sk_tick		(void *);
178 static void sk_intr		(void *);
179 static void sk_intr_xmac	(struct sk_if_softc *);
180 static void sk_intr_bcom	(struct sk_if_softc *);
181 static void sk_intr_yukon	(struct sk_if_softc *);
182 static void sk_rxeof		(struct sk_if_softc *);
183 static void sk_txeof		(struct sk_if_softc *);
184 static int sk_encap		(struct sk_if_softc *, struct mbuf *,
185 					u_int32_t *);
186 static void sk_start		(struct ifnet *);
187 static int sk_ioctl		(struct ifnet *, u_long, caddr_t);
188 static void sk_init		(void *);
189 static void sk_init_xmac	(struct sk_if_softc *);
190 static void sk_init_yukon	(struct sk_if_softc *);
191 static void sk_stop		(struct sk_if_softc *);
192 static void sk_watchdog		(struct ifnet *);
193 static int sk_ifmedia_upd	(struct ifnet *);
194 static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
195 static void sk_reset		(struct sk_softc *);
196 static int sk_newbuf		(struct sk_if_softc *,
197 					struct sk_chain *, struct mbuf *);
198 static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
199 static void *sk_jalloc		(struct sk_if_softc *);
200 static void sk_jfree		(void *, void *);
201 static int sk_init_rx_ring	(struct sk_if_softc *);
202 static void sk_init_tx_ring	(struct sk_if_softc *);
203 static u_int32_t sk_win_read_4	(struct sk_softc *, int);
204 static u_int16_t sk_win_read_2	(struct sk_softc *, int);
205 static u_int8_t sk_win_read_1	(struct sk_softc *, int);
206 static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
207 static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
208 static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
209 static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
210 static void sk_vpd_read_res	(struct sk_softc *, struct vpd_res *, int);
211 static void sk_vpd_read		(struct sk_softc *);
212 
213 static int sk_miibus_readreg	(device_t, int, int);
214 static int sk_miibus_writereg	(device_t, int, int, int);
215 static void sk_miibus_statchg	(device_t);
216 
217 static int sk_xmac_miibus_readreg	(struct sk_if_softc *, int, int);
218 static int sk_xmac_miibus_writereg	(struct sk_if_softc *, int, int,
219 						int);
220 static void sk_xmac_miibus_statchg	(struct sk_if_softc *);
221 
222 static int sk_marv_miibus_readreg	(struct sk_if_softc *, int, int);
223 static int sk_marv_miibus_writereg	(struct sk_if_softc *, int, int,
224 						int);
225 static void sk_marv_miibus_statchg	(struct sk_if_softc *);
226 
227 static uint32_t sk_mchash	(const uint8_t *);
228 static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
229 static void sk_setmulti		(struct sk_if_softc *);
230 
231 #ifdef SK_USEIOSPACE
232 #define SK_RES		SYS_RES_IOPORT
233 #define SK_RID		SK_PCI_LOIO
234 #else
235 #define SK_RES		SYS_RES_MEMORY
236 #define SK_RID		SK_PCI_LOMEM
237 #endif
238 
239 /*
240  * Note that we have newbus methods for both the GEnesis controller
241  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
242  * the miibus code is a child of the XMACs. We need to do it this way
243  * so that the miibus drivers can access the PHY registers on the
244  * right PHY. It's not quite what I had in mind, but it's the only
245  * design that achieves the desired effect.
246  */
247 static device_method_t skc_methods[] = {
248 	/* Device interface */
249 	DEVMETHOD(device_probe,		skc_probe),
250 	DEVMETHOD(device_attach,	skc_attach),
251 	DEVMETHOD(device_detach,	skc_detach),
252 	DEVMETHOD(device_shutdown,	skc_shutdown),
253 
254 	/* bus interface */
255 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
256 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
257 
258 	{ 0, 0 }
259 };
260 
261 static driver_t skc_driver = {
262 	"skc",
263 	skc_methods,
264 	sizeof(struct sk_softc)
265 };
266 
267 static devclass_t skc_devclass;
268 
269 static device_method_t sk_methods[] = {
270 	/* Device interface */
271 	DEVMETHOD(device_probe,		sk_probe),
272 	DEVMETHOD(device_attach,	sk_attach),
273 	DEVMETHOD(device_detach,	sk_detach),
274 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
275 
276 	/* bus interface */
277 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
278 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
279 
280 	/* MII interface */
281 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
282 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
283 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
284 
285 	{ 0, 0 }
286 };
287 
288 static driver_t sk_driver = {
289 	"sk",
290 	sk_methods,
291 	sizeof(struct sk_if_softc)
292 };
293 
294 static devclass_t sk_devclass;
295 
296 DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
297 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
298 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
299 
300 #define SK_SETBIT(sc, reg, x)		\
301 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
302 
303 #define SK_CLRBIT(sc, reg, x)		\
304 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
305 
306 #define SK_WIN_SETBIT_4(sc, reg, x)	\
307 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
308 
309 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
310 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
311 
312 #define SK_WIN_SETBIT_2(sc, reg, x)	\
313 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
314 
315 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
316 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
317 
318 static u_int32_t
319 sk_win_read_4(sc, reg)
320 	struct sk_softc		*sc;
321 	int			reg;
322 {
323 #ifdef SK_USEIOSPACE
324 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
325 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
326 #else
327 	return(CSR_READ_4(sc, reg));
328 #endif
329 }
330 
331 static u_int16_t
332 sk_win_read_2(sc, reg)
333 	struct sk_softc		*sc;
334 	int			reg;
335 {
336 #ifdef SK_USEIOSPACE
337 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
338 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
339 #else
340 	return(CSR_READ_2(sc, reg));
341 #endif
342 }
343 
344 static u_int8_t
345 sk_win_read_1(sc, reg)
346 	struct sk_softc		*sc;
347 	int			reg;
348 {
349 #ifdef SK_USEIOSPACE
350 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
351 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
352 #else
353 	return(CSR_READ_1(sc, reg));
354 #endif
355 }
356 
357 static void
358 sk_win_write_4(sc, reg, val)
359 	struct sk_softc		*sc;
360 	int			reg;
361 	u_int32_t		val;
362 {
363 #ifdef SK_USEIOSPACE
364 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
365 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
366 #else
367 	CSR_WRITE_4(sc, reg, val);
368 #endif
369 	return;
370 }
371 
372 static void
373 sk_win_write_2(sc, reg, val)
374 	struct sk_softc		*sc;
375 	int			reg;
376 	u_int32_t		val;
377 {
378 #ifdef SK_USEIOSPACE
379 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
380 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
381 #else
382 	CSR_WRITE_2(sc, reg, val);
383 #endif
384 	return;
385 }
386 
387 static void
388 sk_win_write_1(sc, reg, val)
389 	struct sk_softc		*sc;
390 	int			reg;
391 	u_int32_t		val;
392 {
393 #ifdef SK_USEIOSPACE
394 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
395 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
396 #else
397 	CSR_WRITE_1(sc, reg, val);
398 #endif
399 	return;
400 }
401 
402 /*
403  * The VPD EEPROM contains Vital Product Data, as suggested in
404  * the PCI 2.1 specification. The VPD data is separared into areas
405  * denoted by resource IDs. The SysKonnect VPD contains an ID string
406  * resource (the name of the adapter), a read-only area resource
407  * containing various key/data fields and a read/write area which
408  * can be used to store asset management information or log messages.
409  * We read the ID string and read-only into buffers attached to
410  * the controller softc structure for later use. At the moment,
411  * we only use the ID string during skc_attach().
412  */
413 static u_int8_t
414 sk_vpd_readbyte(sc, addr)
415 	struct sk_softc		*sc;
416 	int			addr;
417 {
418 	int			i;
419 
420 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
421 	for (i = 0; i < SK_TIMEOUT; i++) {
422 		DELAY(1);
423 		if (sk_win_read_2(sc,
424 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
425 			break;
426 	}
427 
428 	if (i == SK_TIMEOUT)
429 		return(0);
430 
431 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
432 }
433 
434 static void
435 sk_vpd_read_res(sc, res, addr)
436 	struct sk_softc		*sc;
437 	struct vpd_res		*res;
438 	int			addr;
439 {
440 	int			i;
441 	u_int8_t		*ptr;
442 
443 	ptr = (u_int8_t *)res;
444 	for (i = 0; i < sizeof(struct vpd_res); i++)
445 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
446 
447 	return;
448 }
449 
450 static void
451 sk_vpd_read(sc)
452 	struct sk_softc		*sc;
453 {
454 	int			pos = 0, i;
455 	struct vpd_res		res;
456 
457 	if (sc->sk_vpd_prodname != NULL)
458 		free(sc->sk_vpd_prodname, M_DEVBUF);
459 	if (sc->sk_vpd_readonly != NULL)
460 		free(sc->sk_vpd_readonly, M_DEVBUF);
461 	sc->sk_vpd_prodname = NULL;
462 	sc->sk_vpd_readonly = NULL;
463 
464 	sk_vpd_read_res(sc, &res, pos);
465 
466 	if (res.vr_id != VPD_RES_ID) {
467 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
468 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
469 		return;
470 	}
471 
472 	pos += sizeof(res);
473 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
474 	for (i = 0; i < res.vr_len; i++)
475 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
476 	sc->sk_vpd_prodname[i] = '\0';
477 	pos += i;
478 
479 	sk_vpd_read_res(sc, &res, pos);
480 
481 	if (res.vr_id != VPD_RES_READ) {
482 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
483 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
484 		return;
485 	}
486 
487 	pos += sizeof(res);
488 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
489 	for (i = 0; i < res.vr_len + 1; i++)
490 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
491 
492 	return;
493 }
494 
495 static int
496 sk_miibus_readreg(dev, phy, reg)
497 	device_t		dev;
498 	int			phy, reg;
499 {
500 	struct sk_if_softc	*sc_if;
501 
502 	sc_if = device_get_softc(dev);
503 
504 	switch(sc_if->sk_softc->sk_type) {
505 	case SK_GENESIS:
506 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
507 	case SK_YUKON:
508 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
509 	}
510 
511 	return(0);
512 }
513 
514 static int
515 sk_miibus_writereg(dev, phy, reg, val)
516 	device_t		dev;
517 	int			phy, reg, val;
518 {
519 	struct sk_if_softc	*sc_if;
520 
521 	sc_if = device_get_softc(dev);
522 
523 	switch(sc_if->sk_softc->sk_type) {
524 	case SK_GENESIS:
525 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
526 	case SK_YUKON:
527 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
528 	}
529 
530 	return(0);
531 }
532 
533 static void
534 sk_miibus_statchg(dev)
535 	device_t		dev;
536 {
537 	struct sk_if_softc	*sc_if;
538 
539 	sc_if = device_get_softc(dev);
540 
541 	switch(sc_if->sk_softc->sk_type) {
542 	case SK_GENESIS:
543 		sk_xmac_miibus_statchg(sc_if);
544 		break;
545 	case SK_YUKON:
546 		sk_marv_miibus_statchg(sc_if);
547 		break;
548 	}
549 
550 	return;
551 }
552 
553 static int
554 sk_xmac_miibus_readreg(sc_if, phy, reg)
555 	struct sk_if_softc	*sc_if;
556 	int			phy, reg;
557 {
558 	int			i;
559 
560 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
561 		return(0);
562 
563 	SK_IF_LOCK(sc_if);
564 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
565 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
566 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
567 		for (i = 0; i < SK_TIMEOUT; i++) {
568 			DELAY(1);
569 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
570 			    XM_MMUCMD_PHYDATARDY)
571 				break;
572 		}
573 
574 		if (i == SK_TIMEOUT) {
575 			printf("sk%d: phy failed to come ready\n",
576 			    sc_if->sk_unit);
577 			SK_IF_UNLOCK(sc_if);
578 			return(0);
579 		}
580 	}
581 	DELAY(1);
582 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
583 	SK_IF_UNLOCK(sc_if);
584 	return(i);
585 }
586 
587 static int
588 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
589 	struct sk_if_softc	*sc_if;
590 	int			phy, reg, val;
591 {
592 	int			i;
593 
594 	SK_IF_LOCK(sc_if);
595 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
596 	for (i = 0; i < SK_TIMEOUT; i++) {
597 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
598 			break;
599 	}
600 
601 	if (i == SK_TIMEOUT) {
602 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
603 		SK_IF_UNLOCK(sc_if);
604 		return(ETIMEDOUT);
605 	}
606 
607 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
608 	for (i = 0; i < SK_TIMEOUT; i++) {
609 		DELAY(1);
610 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
611 			break;
612 	}
613 	SK_IF_UNLOCK(sc_if);
614 	if (i == SK_TIMEOUT)
615 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
616 
617 	return(0);
618 }
619 
620 static void
621 sk_xmac_miibus_statchg(sc_if)
622 	struct sk_if_softc	*sc_if;
623 {
624 	struct mii_data		*mii;
625 
626 	mii = device_get_softc(sc_if->sk_miibus);
627 
628 	SK_IF_LOCK(sc_if);
629 	/*
630 	 * If this is a GMII PHY, manually set the XMAC's
631 	 * duplex mode accordingly.
632 	 */
633 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
634 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
635 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
636 		} else {
637 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
638 		}
639 	}
640 	SK_IF_UNLOCK(sc_if);
641 
642 	return;
643 }
644 
645 static int
646 sk_marv_miibus_readreg(sc_if, phy, reg)
647 	struct sk_if_softc	*sc_if;
648 	int			phy, reg;
649 {
650 	u_int16_t		val;
651 	int			i;
652 
653 	if (phy != 0 ||
654 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
655 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
656 		return(0);
657 	}
658 
659 	SK_IF_LOCK(sc_if);
660         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
661 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
662 
663 	for (i = 0; i < SK_TIMEOUT; i++) {
664 		DELAY(1);
665 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
666 		if (val & YU_SMICR_READ_VALID)
667 			break;
668 	}
669 
670 	if (i == SK_TIMEOUT) {
671 		printf("sk%d: phy failed to come ready\n",
672 		    sc_if->sk_unit);
673 		SK_IF_UNLOCK(sc_if);
674 		return(0);
675 	}
676 
677 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
678 	SK_IF_UNLOCK(sc_if);
679 
680 	return(val);
681 }
682 
683 static int
684 sk_marv_miibus_writereg(sc_if, phy, reg, val)
685 	struct sk_if_softc	*sc_if;
686 	int			phy, reg, val;
687 {
688 	int			i;
689 
690 	SK_IF_LOCK(sc_if);
691 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
692 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
693 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
694 
695 	for (i = 0; i < SK_TIMEOUT; i++) {
696 		DELAY(1);
697 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
698 			break;
699 	}
700 	SK_IF_UNLOCK(sc_if);
701 
702 	return(0);
703 }
704 
705 static void
706 sk_marv_miibus_statchg(sc_if)
707 	struct sk_if_softc	*sc_if;
708 {
709 	return;
710 }
711 
712 #define SK_POLY		0xEDB88320
713 #define SK_BITS		6
714 
715 static u_int32_t
716 sk_mchash(addr)
717 	const uint8_t *addr;
718 {
719 	uint32_t crc;
720 	int idx, bit;
721 	uint8_t data;
722 
723 	/* Compute CRC for the address value. */
724 	crc = 0xFFFFFFFF; /* initial value */
725 
726 	for (idx = 0; idx < 6; idx++) {
727 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
728 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
729 	}
730 
731 	return (~crc & ((1 << SK_BITS) - 1));
732 }
733 
734 static void
735 sk_setfilt(sc_if, addr, slot)
736 	struct sk_if_softc	*sc_if;
737 	caddr_t			addr;
738 	int			slot;
739 {
740 	int			base;
741 
742 	base = XM_RXFILT_ENTRY(slot);
743 
744 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
745 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
746 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
747 
748 	return;
749 }
750 
751 static void
752 sk_setmulti(sc_if)
753 	struct sk_if_softc	*sc_if;
754 {
755 	struct sk_softc		*sc = sc_if->sk_softc;
756 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
757 	u_int32_t		hashes[2] = { 0, 0 };
758 	int			h, i;
759 	struct ifmultiaddr	*ifma;
760 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
761 
762 
763 	/* First, zot all the existing filters. */
764 	switch(sc->sk_type) {
765 	case SK_GENESIS:
766 		for (i = 1; i < XM_RXFILT_MAX; i++)
767 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
768 
769 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
770 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
771 		break;
772 	case SK_YUKON:
773 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
774 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
775 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
776 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
777 		break;
778 	}
779 
780 	/* Now program new ones. */
781 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
782 		hashes[0] = 0xFFFFFFFF;
783 		hashes[1] = 0xFFFFFFFF;
784 	} else {
785 		i = 1;
786 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
787 			if (ifma->ifma_addr->sa_family != AF_LINK)
788 				continue;
789 			/*
790 			 * Program the first XM_RXFILT_MAX multicast groups
791 			 * into the perfect filter. For all others,
792 			 * use the hash table.
793 			 */
794 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
795 				sk_setfilt(sc_if,
796 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
797 				i++;
798 				continue;
799 			}
800 
801 			h = sk_mchash(
802 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
803 			if (h < 32)
804 				hashes[0] |= (1 << h);
805 			else
806 				hashes[1] |= (1 << (h - 32));
807 		}
808 	}
809 
810 	switch(sc->sk_type) {
811 	case SK_GENESIS:
812 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
813 			       XM_MODE_RX_USE_PERFECT);
814 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
815 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
816 		break;
817 	case SK_YUKON:
818 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
819 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
820 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
821 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
822 		break;
823 	}
824 
825 	return;
826 }
827 
828 static int
829 sk_init_rx_ring(sc_if)
830 	struct sk_if_softc	*sc_if;
831 {
832 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
833 	struct sk_ring_data	*rd = sc_if->sk_rdata;
834 	int			i;
835 
836 	bzero((char *)rd->sk_rx_ring,
837 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
838 
839 	for (i = 0; i < SK_RX_RING_CNT; i++) {
840 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
841 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
842 			return(ENOBUFS);
843 		if (i == (SK_RX_RING_CNT - 1)) {
844 			cd->sk_rx_chain[i].sk_next =
845 			    &cd->sk_rx_chain[0];
846 			rd->sk_rx_ring[i].sk_next =
847 			    vtophys(&rd->sk_rx_ring[0]);
848 		} else {
849 			cd->sk_rx_chain[i].sk_next =
850 			    &cd->sk_rx_chain[i + 1];
851 			rd->sk_rx_ring[i].sk_next =
852 			    vtophys(&rd->sk_rx_ring[i + 1]);
853 		}
854 	}
855 
856 	sc_if->sk_cdata.sk_rx_prod = 0;
857 	sc_if->sk_cdata.sk_rx_cons = 0;
858 
859 	return(0);
860 }
861 
862 static void
863 sk_init_tx_ring(sc_if)
864 	struct sk_if_softc	*sc_if;
865 {
866 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
867 	struct sk_ring_data	*rd = sc_if->sk_rdata;
868 	int			i;
869 
870 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
871 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
872 
873 	for (i = 0; i < SK_TX_RING_CNT; i++) {
874 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
875 		if (i == (SK_TX_RING_CNT - 1)) {
876 			cd->sk_tx_chain[i].sk_next =
877 			    &cd->sk_tx_chain[0];
878 			rd->sk_tx_ring[i].sk_next =
879 			    vtophys(&rd->sk_tx_ring[0]);
880 		} else {
881 			cd->sk_tx_chain[i].sk_next =
882 			    &cd->sk_tx_chain[i + 1];
883 			rd->sk_tx_ring[i].sk_next =
884 			    vtophys(&rd->sk_tx_ring[i + 1]);
885 		}
886 	}
887 
888 	sc_if->sk_cdata.sk_tx_prod = 0;
889 	sc_if->sk_cdata.sk_tx_cons = 0;
890 	sc_if->sk_cdata.sk_tx_cnt = 0;
891 
892 	return;
893 }
894 
895 static int
896 sk_newbuf(sc_if, c, m)
897 	struct sk_if_softc	*sc_if;
898 	struct sk_chain		*c;
899 	struct mbuf		*m;
900 {
901 	struct mbuf		*m_new = NULL;
902 	struct sk_rx_desc	*r;
903 
904 	if (m == NULL) {
905 		caddr_t			*buf = NULL;
906 
907 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
908 		if (m_new == NULL)
909 			return(ENOBUFS);
910 
911 		/* Allocate the jumbo buffer */
912 		buf = sk_jalloc(sc_if);
913 		if (buf == NULL) {
914 			m_freem(m_new);
915 #ifdef SK_VERBOSE
916 			printf("sk%d: jumbo allocation failed "
917 			    "-- packet dropped!\n", sc_if->sk_unit);
918 #endif
919 			return(ENOBUFS);
920 		}
921 
922 		/* Attach the buffer to the mbuf */
923 		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
924 		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
925 		m_new->m_data = (void *)buf;
926 		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
927 	} else {
928 		/*
929 	 	 * We're re-using a previously allocated mbuf;
930 		 * be sure to re-init pointers and lengths to
931 		 * default values.
932 		 */
933 		m_new = m;
934 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
935 		m_new->m_data = m_new->m_ext.ext_buf;
936 	}
937 
938 	/*
939 	 * Adjust alignment so packet payload begins on a
940 	 * longword boundary. Mandatory for Alpha, useful on
941 	 * x86 too.
942 	 */
943 	m_adj(m_new, ETHER_ALIGN);
944 
945 	r = c->sk_desc;
946 	c->sk_mbuf = m_new;
947 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
948 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
949 
950 	return(0);
951 }
952 
953 /*
954  * Allocate jumbo buffer storage. The SysKonnect adapters support
955  * "jumbograms" (9K frames), although SysKonnect doesn't currently
956  * use them in their drivers. In order for us to use them, we need
957  * large 9K receive buffers, however standard mbuf clusters are only
958  * 2048 bytes in size. Consequently, we need to allocate and manage
959  * our own jumbo buffer pool. Fortunately, this does not require an
960  * excessive amount of additional code.
961  */
962 static int
963 sk_alloc_jumbo_mem(sc_if)
964 	struct sk_if_softc	*sc_if;
965 {
966 	caddr_t			ptr;
967 	register int		i;
968 	struct sk_jpool_entry   *entry;
969 
970 	/* Grab a big chunk o' storage. */
971 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
972 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
973 
974 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
975 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
976 		return(ENOBUFS);
977 	}
978 
979 	SLIST_INIT(&sc_if->sk_jfree_listhead);
980 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
981 
982 	/*
983 	 * Now divide it up into 9K pieces and save the addresses
984 	 * in an array.
985 	 */
986 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
987 	for (i = 0; i < SK_JSLOTS; i++) {
988 		sc_if->sk_cdata.sk_jslots[i] = ptr;
989 		ptr += SK_JLEN;
990 		entry = malloc(sizeof(struct sk_jpool_entry),
991 		    M_DEVBUF, M_NOWAIT);
992 		if (entry == NULL) {
993 			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
994 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
995 			printf("sk%d: no memory for jumbo "
996 			    "buffer queue!\n", sc_if->sk_unit);
997 			return(ENOBUFS);
998 		}
999 		entry->slot = i;
1000 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1001 		    entry, jpool_entries);
1002 	}
1003 
1004 	return(0);
1005 }
1006 
1007 /*
1008  * Allocate a jumbo buffer.
1009  */
1010 static void *
1011 sk_jalloc(sc_if)
1012 	struct sk_if_softc	*sc_if;
1013 {
1014 	struct sk_jpool_entry   *entry;
1015 
1016 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1017 
1018 	if (entry == NULL) {
1019 #ifdef SK_VERBOSE
1020 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1021 #endif
1022 		return(NULL);
1023 	}
1024 
1025 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1026 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1027 	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
1028 }
1029 
1030 /*
1031  * Release a jumbo buffer.
1032  */
1033 static void
1034 sk_jfree(buf, args)
1035 	void			*buf;
1036 	void			*args;
1037 {
1038 	struct sk_if_softc	*sc_if;
1039 	int		        i;
1040 	struct sk_jpool_entry   *entry;
1041 
1042 	/* Extract the softc struct pointer. */
1043 	sc_if = (struct sk_if_softc *)args;
1044 
1045 	if (sc_if == NULL)
1046 		panic("sk_jfree: didn't get softc pointer!");
1047 
1048 	/* calculate the slot this buffer belongs to */
1049 	i = ((vm_offset_t)buf
1050 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1051 
1052 	if ((i < 0) || (i >= SK_JSLOTS))
1053 		panic("sk_jfree: asked to free buffer that we don't manage!");
1054 
1055 	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1056 	if (entry == NULL)
1057 		panic("sk_jfree: buffer not in use!");
1058 	entry->slot = i;
1059 	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
1060 	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
1061 
1062 	return;
1063 }
1064 
1065 /*
1066  * Set media options.
1067  */
1068 static int
1069 sk_ifmedia_upd(ifp)
1070 	struct ifnet		*ifp;
1071 {
1072 	struct sk_if_softc	*sc_if = ifp->if_softc;
1073 	struct mii_data		*mii;
1074 
1075 	mii = device_get_softc(sc_if->sk_miibus);
1076 	sk_init(sc_if);
1077 	mii_mediachg(mii);
1078 
1079 	return(0);
1080 }
1081 
1082 /*
1083  * Report current media status.
1084  */
1085 static void
1086 sk_ifmedia_sts(ifp, ifmr)
1087 	struct ifnet		*ifp;
1088 	struct ifmediareq	*ifmr;
1089 {
1090 	struct sk_if_softc	*sc_if;
1091 	struct mii_data		*mii;
1092 
1093 	sc_if = ifp->if_softc;
1094 	mii = device_get_softc(sc_if->sk_miibus);
1095 
1096 	mii_pollstat(mii);
1097 	ifmr->ifm_active = mii->mii_media_active;
1098 	ifmr->ifm_status = mii->mii_media_status;
1099 
1100 	return;
1101 }
1102 
1103 static int
1104 sk_ioctl(ifp, command, data)
1105 	struct ifnet		*ifp;
1106 	u_long			command;
1107 	caddr_t			data;
1108 {
1109 	struct sk_if_softc	*sc_if = ifp->if_softc;
1110 	struct sk_softc		*sc = sc_if->sk_softc;
1111 	struct ifreq		*ifr = (struct ifreq *) data;
1112 	int			error = 0;
1113 	struct mii_data		*mii;
1114 
1115 	SK_IF_LOCK(sc_if);
1116 
1117 	switch(command) {
1118 	case SIOCSIFMTU:
1119 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1120 			error = EINVAL;
1121 		else {
1122 			ifp->if_mtu = ifr->ifr_mtu;
1123 			sk_init(sc_if);
1124 		}
1125 		break;
1126 	case SIOCSIFFLAGS:
1127 		if (ifp->if_flags & IFF_UP) {
1128 			if (ifp->if_flags & IFF_RUNNING &&
1129 			    ifp->if_flags & IFF_PROMISC &&
1130 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1131 				switch(sc->sk_type) {
1132 				case SK_GENESIS:
1133 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1134 					    XM_MODE_RX_PROMISC);
1135 					break;
1136 				case SK_YUKON:
1137 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1138 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1139 					break;
1140 				}
1141 				sk_setmulti(sc_if);
1142 			} else if (ifp->if_flags & IFF_RUNNING &&
1143 			    !(ifp->if_flags & IFF_PROMISC) &&
1144 			    sc_if->sk_if_flags & IFF_PROMISC) {
1145 				switch(sc->sk_type) {
1146 				case SK_GENESIS:
1147 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1148 					    XM_MODE_RX_PROMISC);
1149 					break;
1150 				case SK_YUKON:
1151 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1152 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1153 					break;
1154 				}
1155 				sk_setmulti(sc_if);
1156 			} else
1157 				sk_init(sc_if);
1158 		} else {
1159 			if (ifp->if_flags & IFF_RUNNING)
1160 				sk_stop(sc_if);
1161 		}
1162 		sc_if->sk_if_flags = ifp->if_flags;
1163 		error = 0;
1164 		break;
1165 	case SIOCADDMULTI:
1166 	case SIOCDELMULTI:
1167 		sk_setmulti(sc_if);
1168 		error = 0;
1169 		break;
1170 	case SIOCGIFMEDIA:
1171 	case SIOCSIFMEDIA:
1172 		mii = device_get_softc(sc_if->sk_miibus);
1173 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1174 		break;
1175 	default:
1176 		error = ether_ioctl(ifp, command, data);
1177 		break;
1178 	}
1179 
1180 	SK_IF_UNLOCK(sc_if);
1181 
1182 	return(error);
1183 }
1184 
1185 /*
1186  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1187  * IDs against our list and return a device name if we find a match.
1188  */
1189 static int
1190 skc_probe(dev)
1191 	device_t		dev;
1192 {
1193 	struct sk_softc		*sc;
1194 	struct sk_type		*t = sk_devs;
1195 
1196 	sc = device_get_softc(dev);
1197 
1198 	while(t->sk_name != NULL) {
1199 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1200 		    (pci_get_device(dev) == t->sk_did)) {
1201 			device_set_desc(dev, t->sk_name);
1202 			return(0);
1203 		}
1204 		t++;
1205 	}
1206 
1207 	return(ENXIO);
1208 }
1209 
1210 /*
1211  * Force the GEnesis into reset, then bring it out of reset.
1212  */
1213 static void
1214 sk_reset(sc)
1215 	struct sk_softc		*sc;
1216 {
1217 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1218 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1219 	if (sc->sk_type == SK_YUKON)
1220 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1221 
1222 	DELAY(1000);
1223 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1224 	DELAY(2);
1225 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1226 	if (sc->sk_type == SK_YUKON)
1227 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1228 
1229 	if (sc->sk_type == SK_GENESIS) {
1230 		/* Configure packet arbiter */
1231 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1232 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1233 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1234 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1235 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1236 	}
1237 
1238 	/* Enable RAM interface */
1239 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1240 
1241 	/*
1242          * Configure interrupt moderation. The moderation timer
1243 	 * defers interrupts specified in the interrupt moderation
1244 	 * timer mask based on the timeout specified in the interrupt
1245 	 * moderation timer init register. Each bit in the timer
1246 	 * register represents 18.825ns, so to specify a timeout in
1247 	 * microseconds, we have to multiply by 54.
1248 	 */
1249 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1250 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1251 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1252 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1253 
1254 	return;
1255 }
1256 
1257 static int
1258 sk_probe(dev)
1259 	device_t		dev;
1260 {
1261 	struct sk_softc		*sc;
1262 
1263 	sc = device_get_softc(device_get_parent(dev));
1264 
1265 	/*
1266 	 * Not much to do here. We always know there will be
1267 	 * at least one XMAC present, and if there are two,
1268 	 * skc_attach() will create a second device instance
1269 	 * for us.
1270 	 */
1271 	switch (sc->sk_type) {
1272 	case SK_GENESIS:
1273 		device_set_desc(dev, "XaQti Corp. XMAC II");
1274 		break;
1275 	case SK_YUKON:
1276 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1277 		break;
1278 	}
1279 
1280 	return(0);
1281 }
1282 
1283 /*
1284  * Each XMAC chip is attached as a separate logical IP interface.
1285  * Single port cards will have only one logical interface of course.
1286  */
1287 static int
1288 sk_attach(dev)
1289 	device_t		dev;
1290 {
1291 	struct sk_softc		*sc;
1292 	struct sk_if_softc	*sc_if;
1293 	struct ifnet		*ifp;
1294 	int			i, port, error;
1295 
1296 	if (dev == NULL)
1297 		return(EINVAL);
1298 
1299 	error = 0;
1300 	sc_if = device_get_softc(dev);
1301 	sc = device_get_softc(device_get_parent(dev));
1302 	SK_LOCK(sc);
1303 	port = *(int *)device_get_ivars(dev);
1304 	free(device_get_ivars(dev), M_DEVBUF);
1305 	device_set_ivars(dev, NULL);
1306 
1307 	sc_if->sk_dev = dev;
1308 	sc_if->sk_unit = device_get_unit(dev);
1309 	sc_if->sk_port = port;
1310 	sc_if->sk_softc = sc;
1311 	sc->sk_if[port] = sc_if;
1312 	if (port == SK_PORT_A)
1313 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1314 	if (port == SK_PORT_B)
1315 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1316 
1317 	/*
1318 	 * Get station address for this interface. Note that
1319 	 * dual port cards actually come with three station
1320 	 * addresses: one for each port, plus an extra. The
1321 	 * extra one is used by the SysKonnect driver software
1322 	 * as a 'virtual' station address for when both ports
1323 	 * are operating in failover mode. Currently we don't
1324 	 * use this extra address.
1325 	 */
1326 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1327 		sc_if->arpcom.ac_enaddr[i] =
1328 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1329 
1330 	printf("sk%d: Ethernet address: %6D\n",
1331 	    sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
1332 
1333 	/*
1334 	 * Set up RAM buffer addresses. The NIC will have a certain
1335 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1336 	 * need to divide this up a) between the transmitter and
1337  	 * receiver and b) between the two XMACs, if this is a
1338 	 * dual port NIC. Our algotithm is to divide up the memory
1339 	 * evenly so that everyone gets a fair share.
1340 	 */
1341 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1342 		u_int32_t		chunk, val;
1343 
1344 		chunk = sc->sk_ramsize / 2;
1345 		val = sc->sk_rboff / sizeof(u_int64_t);
1346 		sc_if->sk_rx_ramstart = val;
1347 		val += (chunk / sizeof(u_int64_t));
1348 		sc_if->sk_rx_ramend = val - 1;
1349 		sc_if->sk_tx_ramstart = val;
1350 		val += (chunk / sizeof(u_int64_t));
1351 		sc_if->sk_tx_ramend = val - 1;
1352 	} else {
1353 		u_int32_t		chunk, val;
1354 
1355 		chunk = sc->sk_ramsize / 4;
1356 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1357 		    sizeof(u_int64_t);
1358 		sc_if->sk_rx_ramstart = val;
1359 		val += (chunk / sizeof(u_int64_t));
1360 		sc_if->sk_rx_ramend = val - 1;
1361 		sc_if->sk_tx_ramstart = val;
1362 		val += (chunk / sizeof(u_int64_t));
1363 		sc_if->sk_tx_ramend = val - 1;
1364 	}
1365 
1366 	/* Read and save PHY type and set PHY address */
1367 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1368 	switch(sc_if->sk_phytype) {
1369 	case SK_PHYTYPE_XMAC:
1370 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1371 		break;
1372 	case SK_PHYTYPE_BCOM:
1373 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1374 		break;
1375 	case SK_PHYTYPE_MARV_COPPER:
1376 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1377 		break;
1378 	default:
1379 		printf("skc%d: unsupported PHY type: %d\n",
1380 		    sc->sk_unit, sc_if->sk_phytype);
1381 		error = ENODEV;
1382 		goto fail;
1383 	}
1384 
1385 	/* Allocate the descriptor queues. */
1386 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1387 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1388 
1389 	if (sc_if->sk_rdata == NULL) {
1390 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1391 		error = ENOMEM;
1392 		goto fail;
1393 	}
1394 
1395 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1396 
1397 	/* Try to allocate memory for jumbo buffers. */
1398 	if (sk_alloc_jumbo_mem(sc_if)) {
1399 		printf("sk%d: jumbo buffer allocation failed\n",
1400 		    sc_if->sk_unit);
1401 		error = ENOMEM;
1402 		goto fail;
1403 	}
1404 
1405 	ifp = &sc_if->arpcom.ac_if;
1406 	ifp->if_softc = sc_if;
1407 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1408 	ifp->if_mtu = ETHERMTU;
1409 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1410 	ifp->if_ioctl = sk_ioctl;
1411 	ifp->if_output = ether_output;
1412 	ifp->if_start = sk_start;
1413 	ifp->if_watchdog = sk_watchdog;
1414 	ifp->if_init = sk_init;
1415 	ifp->if_baudrate = 1000000000;
1416 	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1417 
1418 	callout_handle_init(&sc_if->sk_tick_ch);
1419 
1420 	/*
1421 	 * Call MI attach routine.
1422 	 */
1423 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1424 
1425 	/*
1426 	 * Do miibus setup.
1427 	 */
1428 	switch (sc->sk_type) {
1429 	case SK_GENESIS:
1430 		sk_init_xmac(sc_if);
1431 		break;
1432 	case SK_YUKON:
1433 		sk_init_yukon(sc_if);
1434 		break;
1435 	}
1436 
1437 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1438 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1439 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1440 		ether_ifdetach(ifp);
1441 		error = ENXIO;
1442 		goto fail;
1443 	}
1444 
1445 fail:
1446 	SK_UNLOCK(sc);
1447 	if (error) {
1448 		/* Access should be ok even though lock has been dropped */
1449 		sc->sk_if[port] = NULL;
1450 		sk_detach(dev);
1451 	}
1452 
1453 	return(error);
1454 }
1455 
1456 /*
1457  * Attach the interface. Allocate softc structures, do ifmedia
1458  * setup and ethernet/BPF attach.
1459  */
1460 static int
1461 skc_attach(dev)
1462 	device_t		dev;
1463 {
1464 	struct sk_softc		*sc;
1465 	int			unit, error = 0, rid, *port;
1466 
1467 	sc = device_get_softc(dev);
1468 	unit = device_get_unit(dev);
1469 
1470 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1471 	    MTX_DEF | MTX_RECURSE);
1472 #ifndef BURN_BRIDGES
1473 	/*
1474 	 * Handle power management nonsense.
1475 	 */
1476 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1477 		u_int32_t		iobase, membase, irq;
1478 
1479 		/* Save important PCI config data. */
1480 		iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1481 		membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1482 		irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1483 
1484 		/* Reset the power state. */
1485 		printf("skc%d: chip is in D%d power mode "
1486 		    "-- setting to D0\n", unit,
1487 		    pci_get_powerstate(dev));
1488 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1489 
1490 		/* Restore PCI config data. */
1491 		pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1492 		pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1493 		pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1494 	}
1495 #endif
1496 	/*
1497 	 * Map control/status registers.
1498 	 */
1499 	pci_enable_busmaster(dev);
1500 
1501 	rid = SK_RID;
1502 	sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1503 	    0, ~0, 1, RF_ACTIVE);
1504 
1505 	if (sc->sk_res == NULL) {
1506 		printf("sk%d: couldn't map ports/memory\n", unit);
1507 		error = ENXIO;
1508 		goto fail;
1509 	}
1510 
1511 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1512 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1513 
1514 	/* Allocate interrupt */
1515 	rid = 0;
1516 	sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1517 	    RF_SHAREABLE | RF_ACTIVE);
1518 
1519 	if (sc->sk_irq == NULL) {
1520 		printf("skc%d: couldn't map interrupt\n", unit);
1521 		error = ENXIO;
1522 		goto fail;
1523 	}
1524 
1525 	/* Set adapter type */
1526 	switch (pci_get_device(dev)) {
1527 	case DEVICEID_SK_V1:
1528 		sc->sk_type = SK_GENESIS;
1529 		break;
1530 	case DEVICEID_SK_V2:
1531 	case DEVICEID_3COM_3C940:
1532 	case DEVICEID_LINKSYS_EG1032:
1533 		sc->sk_type = SK_YUKON;
1534 		break;
1535 	}
1536 
1537 	/* Reset the adapter. */
1538 	sk_reset(sc);
1539 
1540 	sc->sk_unit = unit;
1541 
1542 	/* Read and save vital product data from EEPROM. */
1543 	sk_vpd_read(sc);
1544 
1545 	if (sc->sk_type == SK_GENESIS) {
1546 		/* Read and save RAM size and RAMbuffer offset */
1547 		switch(sk_win_read_1(sc, SK_EPROM0)) {
1548 		case SK_RAMSIZE_512K_64:
1549 			sc->sk_ramsize = 0x80000;
1550 			sc->sk_rboff = SK_RBOFF_0;
1551 			break;
1552 		case SK_RAMSIZE_1024K_64:
1553 			sc->sk_ramsize = 0x100000;
1554 			sc->sk_rboff = SK_RBOFF_80000;
1555 			break;
1556 		case SK_RAMSIZE_1024K_128:
1557 			sc->sk_ramsize = 0x100000;
1558 			sc->sk_rboff = SK_RBOFF_0;
1559 			break;
1560 		case SK_RAMSIZE_2048K_128:
1561 			sc->sk_ramsize = 0x200000;
1562 			sc->sk_rboff = SK_RBOFF_0;
1563 			break;
1564 		default:
1565 			printf("skc%d: unknown ram size: %d\n",
1566 			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1567 			error = ENXIO;
1568 			goto fail;
1569 		}
1570 	} else {
1571 		sc->sk_ramsize = 0x20000;
1572 		sc->sk_rboff = SK_RBOFF_0;
1573 	}
1574 
1575 	/* Read and save physical media type */
1576 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1577 	case SK_PMD_1000BASESX:
1578 		sc->sk_pmd = IFM_1000_SX;
1579 		break;
1580 	case SK_PMD_1000BASELX:
1581 		sc->sk_pmd = IFM_1000_LX;
1582 		break;
1583 	case SK_PMD_1000BASECX:
1584 		sc->sk_pmd = IFM_1000_CX;
1585 		break;
1586 	case SK_PMD_1000BASETX:
1587 		sc->sk_pmd = IFM_1000_T;
1588 		break;
1589 	default:
1590 		printf("skc%d: unknown media type: 0x%x\n",
1591 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1592 		error = ENXIO;
1593 		goto fail;
1594 	}
1595 
1596 	/* Announce the product name. */
1597 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1598 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1599 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1600 	*port = SK_PORT_A;
1601 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1602 
1603 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1604 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1605 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1606 		*port = SK_PORT_B;
1607 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1608 	}
1609 
1610 	/* Turn on the 'driver is loaded' LED. */
1611 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1612 
1613 	bus_generic_attach(dev);
1614 
1615 	/* Hook interrupt last to avoid having to lock softc */
1616 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1617 	    sk_intr, sc, &sc->sk_intrhand);
1618 
1619 	if (error) {
1620 		printf("skc%d: couldn't set up irq\n", unit);
1621 		goto fail;
1622 	}
1623 
1624 fail:
1625 	if (error)
1626 		skc_detach(dev);
1627 
1628 	return(error);
1629 }
1630 
1631 /*
1632  * Shutdown hardware and free up resources. This can be called any
1633  * time after the mutex has been initialized. It is called in both
1634  * the error case in attach and the normal detach case so it needs
1635  * to be careful about only freeing resources that have actually been
1636  * allocated.
1637  */
1638 static int
1639 sk_detach(dev)
1640 	device_t		dev;
1641 {
1642 	struct sk_if_softc	*sc_if;
1643 	struct ifnet		*ifp;
1644 
1645 	sc_if = device_get_softc(dev);
1646 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1647 	    ("sk mutex not initialized in sk_detach"));
1648 	SK_IF_LOCK(sc_if);
1649 
1650 	ifp = &sc_if->arpcom.ac_if;
1651 	/* These should only be active if attach_xmac succeeded */
1652 	if (device_is_attached(dev)) {
1653 		sk_stop(sc_if);
1654 		ether_ifdetach(ifp);
1655 	}
1656 	if (sc_if->sk_miibus)
1657 		device_delete_child(dev, sc_if->sk_miibus);
1658 	bus_generic_detach(dev);
1659 	if (sc_if->sk_cdata.sk_jumbo_buf)
1660 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1661 	if (sc_if->sk_rdata) {
1662 		contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
1663 		    M_DEVBUF);
1664 	}
1665 	SK_IF_UNLOCK(sc_if);
1666 
1667 	return(0);
1668 }
1669 
1670 static int
1671 skc_detach(dev)
1672 	device_t		dev;
1673 {
1674 	struct sk_softc		*sc;
1675 
1676 	sc = device_get_softc(dev);
1677 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1678 	SK_LOCK(sc);
1679 
1680 	if (device_is_alive(dev)) {
1681 		if (sc->sk_devs[SK_PORT_A] != NULL)
1682 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1683 		if (sc->sk_devs[SK_PORT_B] != NULL)
1684 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1685 		bus_generic_detach(dev);
1686 	}
1687 
1688 	if (sc->sk_intrhand)
1689 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1690 	if (sc->sk_irq)
1691 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1692 	if (sc->sk_res)
1693 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1694 
1695 	SK_UNLOCK(sc);
1696 	mtx_destroy(&sc->sk_mtx);
1697 
1698 	return(0);
1699 }
1700 
1701 static int
1702 sk_encap(sc_if, m_head, txidx)
1703         struct sk_if_softc	*sc_if;
1704         struct mbuf		*m_head;
1705         u_int32_t		*txidx;
1706 {
1707 	struct sk_tx_desc	*f = NULL;
1708 	struct mbuf		*m;
1709 	u_int32_t		frag, cur, cnt = 0;
1710 
1711 	m = m_head;
1712 	cur = frag = *txidx;
1713 
1714 	/*
1715 	 * Start packing the mbufs in this chain into
1716 	 * the fragment pointers. Stop when we run out
1717 	 * of fragments or hit the end of the mbuf chain.
1718 	 */
1719 	for (m = m_head; m != NULL; m = m->m_next) {
1720 		if (m->m_len != 0) {
1721 			if ((SK_TX_RING_CNT -
1722 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1723 				return(ENOBUFS);
1724 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1725 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1726 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1727 			if (cnt == 0)
1728 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1729 			else
1730 				f->sk_ctl |= SK_TXCTL_OWN;
1731 			cur = frag;
1732 			SK_INC(frag, SK_TX_RING_CNT);
1733 			cnt++;
1734 		}
1735 	}
1736 
1737 	if (m != NULL)
1738 		return(ENOBUFS);
1739 
1740 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1741 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1742 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1743 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1744 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1745 
1746 	*txidx = frag;
1747 
1748 	return(0);
1749 }
1750 
1751 static void
1752 sk_start(ifp)
1753 	struct ifnet		*ifp;
1754 {
1755         struct sk_softc		*sc;
1756         struct sk_if_softc	*sc_if;
1757         struct mbuf		*m_head = NULL;
1758         u_int32_t		idx;
1759 
1760 	sc_if = ifp->if_softc;
1761 	sc = sc_if->sk_softc;
1762 
1763 	SK_IF_LOCK(sc_if);
1764 
1765 	idx = sc_if->sk_cdata.sk_tx_prod;
1766 
1767 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1768 		IF_DEQUEUE(&ifp->if_snd, m_head);
1769 		if (m_head == NULL)
1770 			break;
1771 
1772 		/*
1773 		 * Pack the data into the transmit ring. If we
1774 		 * don't have room, set the OACTIVE flag and wait
1775 		 * for the NIC to drain the ring.
1776 		 */
1777 		if (sk_encap(sc_if, m_head, &idx)) {
1778 			IF_PREPEND(&ifp->if_snd, m_head);
1779 			ifp->if_flags |= IFF_OACTIVE;
1780 			break;
1781 		}
1782 
1783 		/*
1784 		 * If there's a BPF listener, bounce a copy of this frame
1785 		 * to him.
1786 		 */
1787 		BPF_MTAP(ifp, m_head);
1788 	}
1789 
1790 	/* Transmit */
1791 	sc_if->sk_cdata.sk_tx_prod = idx;
1792 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1793 
1794 	/* Set a timeout in case the chip goes out to lunch. */
1795 	ifp->if_timer = 5;
1796 	SK_IF_UNLOCK(sc_if);
1797 
1798 	return;
1799 }
1800 
1801 
1802 static void
1803 sk_watchdog(ifp)
1804 	struct ifnet		*ifp;
1805 {
1806 	struct sk_if_softc	*sc_if;
1807 
1808 	sc_if = ifp->if_softc;
1809 
1810 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1811 	sk_init(sc_if);
1812 
1813 	return;
1814 }
1815 
1816 static void
1817 skc_shutdown(dev)
1818 	device_t		dev;
1819 {
1820 	struct sk_softc		*sc;
1821 
1822 	sc = device_get_softc(dev);
1823 	SK_LOCK(sc);
1824 
1825 	/* Turn off the 'driver is loaded' LED. */
1826 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1827 
1828 	/*
1829 	 * Reset the GEnesis controller. Doing this should also
1830 	 * assert the resets on the attached XMAC(s).
1831 	 */
1832 	sk_reset(sc);
1833 	SK_UNLOCK(sc);
1834 
1835 	return;
1836 }
1837 
1838 static void
1839 sk_rxeof(sc_if)
1840 	struct sk_if_softc	*sc_if;
1841 {
1842 	struct sk_softc		*sc;
1843 	struct mbuf		*m;
1844 	struct ifnet		*ifp;
1845 	struct sk_chain		*cur_rx;
1846 	int			total_len = 0;
1847 	int			i;
1848 	u_int32_t		rxstat;
1849 
1850 	sc = sc_if->sk_softc;
1851 	ifp = &sc_if->arpcom.ac_if;
1852 	i = sc_if->sk_cdata.sk_rx_prod;
1853 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1854 
1855 	SK_LOCK_ASSERT(sc);
1856 
1857 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1858 
1859 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1860 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1861 		m = cur_rx->sk_mbuf;
1862 		cur_rx->sk_mbuf = NULL;
1863 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1864 		SK_INC(i, SK_RX_RING_CNT);
1865 
1866 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1867 			ifp->if_ierrors++;
1868 			sk_newbuf(sc_if, cur_rx, m);
1869 			continue;
1870 		}
1871 
1872 		/*
1873 		 * Try to allocate a new jumbo buffer. If that
1874 		 * fails, copy the packet to mbufs and put the
1875 		 * jumbo buffer back in the ring so it can be
1876 		 * re-used. If allocating mbufs fails, then we
1877 		 * have to drop the packet.
1878 		 */
1879 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1880 			struct mbuf		*m0;
1881 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
1882 			    ifp, NULL);
1883 			sk_newbuf(sc_if, cur_rx, m);
1884 			if (m0 == NULL) {
1885 				printf("sk%d: no receive buffers "
1886 				    "available -- packet dropped!\n",
1887 				    sc_if->sk_unit);
1888 				ifp->if_ierrors++;
1889 				continue;
1890 			}
1891 			m = m0;
1892 		} else {
1893 			m->m_pkthdr.rcvif = ifp;
1894 			m->m_pkthdr.len = m->m_len = total_len;
1895 		}
1896 
1897 		ifp->if_ipackets++;
1898 		SK_UNLOCK(sc);
1899 		(*ifp->if_input)(ifp, m);
1900 		SK_LOCK(sc);
1901 	}
1902 
1903 	sc_if->sk_cdata.sk_rx_prod = i;
1904 
1905 	return;
1906 }
1907 
1908 static void
1909 sk_txeof(sc_if)
1910 	struct sk_if_softc	*sc_if;
1911 {
1912 	struct sk_tx_desc	*cur_tx = NULL;
1913 	struct ifnet		*ifp;
1914 	u_int32_t		idx;
1915 
1916 	ifp = &sc_if->arpcom.ac_if;
1917 
1918 	/*
1919 	 * Go through our tx ring and free mbufs for those
1920 	 * frames that have been sent.
1921 	 */
1922 	idx = sc_if->sk_cdata.sk_tx_cons;
1923 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1924 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1925 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1926 			break;
1927 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1928 			ifp->if_opackets++;
1929 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1930 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1931 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1932 		}
1933 		sc_if->sk_cdata.sk_tx_cnt--;
1934 		SK_INC(idx, SK_TX_RING_CNT);
1935 		ifp->if_timer = 0;
1936 	}
1937 
1938 	sc_if->sk_cdata.sk_tx_cons = idx;
1939 
1940 	if (cur_tx != NULL)
1941 		ifp->if_flags &= ~IFF_OACTIVE;
1942 
1943 	return;
1944 }
1945 
1946 static void
1947 sk_tick(xsc_if)
1948 	void			*xsc_if;
1949 {
1950 	struct sk_if_softc	*sc_if;
1951 	struct mii_data		*mii;
1952 	struct ifnet		*ifp;
1953 	int			i;
1954 
1955 	sc_if = xsc_if;
1956 	SK_IF_LOCK(sc_if);
1957 	ifp = &sc_if->arpcom.ac_if;
1958 	mii = device_get_softc(sc_if->sk_miibus);
1959 
1960 	if (!(ifp->if_flags & IFF_UP)) {
1961 		SK_IF_UNLOCK(sc_if);
1962 		return;
1963 	}
1964 
1965 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1966 		sk_intr_bcom(sc_if);
1967 		SK_IF_UNLOCK(sc_if);
1968 		return;
1969 	}
1970 
1971 	/*
1972 	 * According to SysKonnect, the correct way to verify that
1973 	 * the link has come back up is to poll bit 0 of the GPIO
1974 	 * register three times. This pin has the signal from the
1975 	 * link_sync pin connected to it; if we read the same link
1976 	 * state 3 times in a row, we know the link is up.
1977 	 */
1978 	for (i = 0; i < 3; i++) {
1979 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1980 			break;
1981 	}
1982 
1983 	if (i != 3) {
1984 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1985 		SK_IF_UNLOCK(sc_if);
1986 		return;
1987 	}
1988 
1989 	/* Turn the GP0 interrupt back on. */
1990 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1991 	SK_XM_READ_2(sc_if, XM_ISR);
1992 	mii_tick(mii);
1993 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
1994 
1995 	SK_IF_UNLOCK(sc_if);
1996 	return;
1997 }
1998 
1999 static void
2000 sk_intr_bcom(sc_if)
2001 	struct sk_if_softc	*sc_if;
2002 {
2003 	struct mii_data		*mii;
2004 	struct ifnet		*ifp;
2005 	int			status;
2006 	mii = device_get_softc(sc_if->sk_miibus);
2007 	ifp = &sc_if->arpcom.ac_if;
2008 
2009 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2010 
2011 	/*
2012 	 * Read the PHY interrupt register to make sure
2013 	 * we clear any pending interrupts.
2014 	 */
2015 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2016 
2017 	if (!(ifp->if_flags & IFF_RUNNING)) {
2018 		sk_init_xmac(sc_if);
2019 		return;
2020 	}
2021 
2022 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2023 		int			lstat;
2024 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2025 		    BRGPHY_MII_AUXSTS);
2026 
2027 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2028 			mii_mediachg(mii);
2029 			/* Turn off the link LED. */
2030 			SK_IF_WRITE_1(sc_if, 0,
2031 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2032 			sc_if->sk_link = 0;
2033 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2034 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2035 	    		    BRGPHY_MII_IMR, 0xFF00);
2036 			mii_tick(mii);
2037 			sc_if->sk_link = 1;
2038 			/* Turn on the link LED. */
2039 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2040 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2041 			    SK_LINKLED_BLINK_OFF);
2042 		} else {
2043 			mii_tick(mii);
2044 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2045 		}
2046 	}
2047 
2048 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2049 
2050 	return;
2051 }
2052 
2053 static void
2054 sk_intr_xmac(sc_if)
2055 	struct sk_if_softc	*sc_if;
2056 {
2057 	struct sk_softc		*sc;
2058 	u_int16_t		status;
2059 
2060 	sc = sc_if->sk_softc;
2061 	status = SK_XM_READ_2(sc_if, XM_ISR);
2062 
2063 	/*
2064 	 * Link has gone down. Start MII tick timeout to
2065 	 * watch for link resync.
2066 	 */
2067 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2068 		if (status & XM_ISR_GP0_SET) {
2069 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2070 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2071 		}
2072 
2073 		if (status & XM_ISR_AUTONEG_DONE) {
2074 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2075 		}
2076 	}
2077 
2078 	if (status & XM_IMR_TX_UNDERRUN)
2079 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2080 
2081 	if (status & XM_IMR_RX_OVERRUN)
2082 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2083 
2084 	status = SK_XM_READ_2(sc_if, XM_ISR);
2085 
2086 	return;
2087 }
2088 
2089 static void
2090 sk_intr_yukon(sc_if)
2091 	struct sk_if_softc	*sc_if;
2092 {
2093 	int status;
2094 
2095 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2096 
2097 	return;
2098 }
2099 
2100 static void
2101 sk_intr(xsc)
2102 	void			*xsc;
2103 {
2104 	struct sk_softc		*sc = xsc;
2105 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2106 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2107 	u_int32_t		status;
2108 
2109 	SK_LOCK(sc);
2110 
2111 	sc_if0 = sc->sk_if[SK_PORT_A];
2112 	sc_if1 = sc->sk_if[SK_PORT_B];
2113 
2114 	if (sc_if0 != NULL)
2115 		ifp0 = &sc_if0->arpcom.ac_if;
2116 	if (sc_if1 != NULL)
2117 		ifp1 = &sc_if1->arpcom.ac_if;
2118 
2119 	for (;;) {
2120 		status = CSR_READ_4(sc, SK_ISSR);
2121 		if (!(status & sc->sk_intrmask))
2122 			break;
2123 
2124 		/* Handle receive interrupts first. */
2125 		if (status & SK_ISR_RX1_EOF) {
2126 			sk_rxeof(sc_if0);
2127 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2128 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2129 		}
2130 		if (status & SK_ISR_RX2_EOF) {
2131 			sk_rxeof(sc_if1);
2132 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2133 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2134 		}
2135 
2136 		/* Then transmit interrupts. */
2137 		if (status & SK_ISR_TX1_S_EOF) {
2138 			sk_txeof(sc_if0);
2139 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2140 			    SK_TXBMU_CLR_IRQ_EOF);
2141 		}
2142 		if (status & SK_ISR_TX2_S_EOF) {
2143 			sk_txeof(sc_if1);
2144 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2145 			    SK_TXBMU_CLR_IRQ_EOF);
2146 		}
2147 
2148 		/* Then MAC interrupts. */
2149 		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2150 			if (sc->sk_type == SK_GENESIS)
2151 				sk_intr_xmac(sc_if0);
2152 			else
2153 				sk_intr_yukon(sc_if0);
2154 		}
2155 
2156 		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2157 			if (sc->sk_type == SK_GENESIS)
2158 				sk_intr_xmac(sc_if1);
2159 			else
2160 				sk_intr_yukon(sc_if1);
2161 		}
2162 
2163 		if (status & SK_ISR_EXTERNAL_REG) {
2164 			if (ifp0 != NULL &&
2165 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2166 				sk_intr_bcom(sc_if0);
2167 			if (ifp1 != NULL &&
2168 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2169 				sk_intr_bcom(sc_if1);
2170 		}
2171 	}
2172 
2173 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2174 
2175 	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
2176 		sk_start(ifp0);
2177 	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
2178 		sk_start(ifp1);
2179 
2180 	SK_UNLOCK(sc);
2181 
2182 	return;
2183 }
2184 
2185 static void
2186 sk_init_xmac(sc_if)
2187 	struct sk_if_softc	*sc_if;
2188 {
2189 	struct sk_softc		*sc;
2190 	struct ifnet		*ifp;
2191 	struct sk_bcom_hack	bhack[] = {
2192 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2193 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2194 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2195 	{ 0, 0 } };
2196 
2197 	sc = sc_if->sk_softc;
2198 	ifp = &sc_if->arpcom.ac_if;
2199 
2200 	/* Unreset the XMAC. */
2201 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2202 	DELAY(1000);
2203 
2204 	/* Reset the XMAC's internal state. */
2205 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2206 
2207 	/* Save the XMAC II revision */
2208 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2209 
2210 	/*
2211 	 * Perform additional initialization for external PHYs,
2212 	 * namely for the 1000baseTX cards that use the XMAC's
2213 	 * GMII mode.
2214 	 */
2215 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2216 		int			i = 0;
2217 		u_int32_t		val;
2218 
2219 		/* Take PHY out of reset. */
2220 		val = sk_win_read_4(sc, SK_GPIO);
2221 		if (sc_if->sk_port == SK_PORT_A)
2222 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2223 		else
2224 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2225 		sk_win_write_4(sc, SK_GPIO, val);
2226 
2227 		/* Enable GMII mode on the XMAC. */
2228 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2229 
2230 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2231 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2232 		DELAY(10000);
2233 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2234 		    BRGPHY_MII_IMR, 0xFFF0);
2235 
2236 		/*
2237 		 * Early versions of the BCM5400 apparently have
2238 		 * a bug that requires them to have their reserved
2239 		 * registers initialized to some magic values. I don't
2240 		 * know what the numbers do, I'm just the messenger.
2241 		 */
2242 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2243 		    == 0x6041) {
2244 			while(bhack[i].reg) {
2245 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2246 				    bhack[i].reg, bhack[i].val);
2247 				i++;
2248 			}
2249 		}
2250 	}
2251 
2252 	/* Set station address */
2253 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2254 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2255 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2256 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2257 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2258 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2259 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2260 
2261 	if (ifp->if_flags & IFF_PROMISC) {
2262 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2263 	} else {
2264 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2265 	}
2266 
2267 	if (ifp->if_flags & IFF_BROADCAST) {
2268 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2269 	} else {
2270 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2271 	}
2272 
2273 	/* We don't need the FCS appended to the packet. */
2274 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2275 
2276 	/* We want short frames padded to 60 bytes. */
2277 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2278 
2279 	/*
2280 	 * Enable the reception of all error frames. This is is
2281 	 * a necessary evil due to the design of the XMAC. The
2282 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2283 	 * frames can be up to 9000 bytes in length. When bad
2284 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2285 	 * in 'store and forward' mode. For this to work, the
2286 	 * entire frame has to fit into the FIFO, but that means
2287 	 * that jumbo frames larger than 8192 bytes will be
2288 	 * truncated. Disabling all bad frame filtering causes
2289 	 * the RX FIFO to operate in streaming mode, in which
2290 	 * case the XMAC will start transfering frames out of the
2291 	 * RX FIFO as soon as the FIFO threshold is reached.
2292 	 */
2293 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2294 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2295 	    XM_MODE_RX_INRANGELEN);
2296 
2297 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2298 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2299 	else
2300 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2301 
2302 	/*
2303 	 * Bump up the transmit threshold. This helps hold off transmit
2304 	 * underruns when we're blasting traffic from both ports at once.
2305 	 */
2306 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2307 
2308 	/* Set multicast filter */
2309 	sk_setmulti(sc_if);
2310 
2311 	/* Clear and enable interrupts */
2312 	SK_XM_READ_2(sc_if, XM_ISR);
2313 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2314 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2315 	else
2316 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2317 
2318 	/* Configure MAC arbiter */
2319 	switch(sc_if->sk_xmac_rev) {
2320 	case XM_XMAC_REV_B2:
2321 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2322 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2323 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2324 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2325 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2326 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2327 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2328 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2329 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2330 		break;
2331 	case XM_XMAC_REV_C1:
2332 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2333 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2334 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2335 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2336 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2337 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2338 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2339 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2340 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2341 		break;
2342 	default:
2343 		break;
2344 	}
2345 	sk_win_write_2(sc, SK_MACARB_CTL,
2346 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2347 
2348 	sc_if->sk_link = 1;
2349 
2350 	return;
2351 }
2352 
2353 static void sk_init_yukon(sc_if)
2354 	struct sk_if_softc	*sc_if;
2355 {
2356 	u_int32_t		phy;
2357 	u_int16_t		reg;
2358 	int			i;
2359 
2360 	/* GMAC and GPHY Reset */
2361 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2362 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2363 	DELAY(1000);
2364 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2365 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2366 	DELAY(1000);
2367 
2368 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2369 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2370 
2371 	switch(sc_if->sk_softc->sk_pmd) {
2372 	case IFM_1000_SX:
2373 	case IFM_1000_LX:
2374 		phy |= SK_GPHY_FIBER;
2375 		break;
2376 
2377 	case IFM_1000_CX:
2378 	case IFM_1000_T:
2379 		phy |= SK_GPHY_COPPER;
2380 		break;
2381 	}
2382 
2383 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2384 	DELAY(1000);
2385 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2386 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2387 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2388 
2389 	/* unused read of the interrupt source register */
2390 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2391 
2392 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2393 
2394 	/* MIB Counter Clear Mode set */
2395 	reg |= YU_PAR_MIB_CLR;
2396 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2397 
2398 	/* MIB Counter Clear Mode clear */
2399 	reg &= ~YU_PAR_MIB_CLR;
2400 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2401 
2402 	/* receive control reg */
2403 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2404 		      YU_RCR_CRCR);
2405 
2406 	/* transmit parameter register */
2407 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2408 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2409 
2410 	/* serial mode register */
2411 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2412 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2413 
2414 	/* Setup Yukon's address */
2415 	for (i = 0; i < 3; i++) {
2416 		/* Write Source Address 1 (unicast filter) */
2417 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2418 			      sc_if->arpcom.ac_enaddr[i * 2] |
2419 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2420 	}
2421 
2422 	for (i = 0; i < 3; i++) {
2423 		reg = sk_win_read_2(sc_if->sk_softc,
2424 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2425 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2426 	}
2427 
2428 	/* clear all Multicast filter hash registers */
2429 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
2430 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
2431 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
2432 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
2433 
2434 	/* enable interrupt mask for counter overflows */
2435 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2436 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2437 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2438 
2439 	/* Configure RX MAC FIFO */
2440 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2441 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2442 
2443 	/* Configure TX MAC FIFO */
2444 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2445 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2446 }
2447 
2448 /*
2449  * Note that to properly initialize any part of the GEnesis chip,
2450  * you first have to take it out of reset mode.
2451  */
2452 static void
2453 sk_init(xsc)
2454 	void			*xsc;
2455 {
2456 	struct sk_if_softc	*sc_if = xsc;
2457 	struct sk_softc		*sc;
2458 	struct ifnet		*ifp;
2459 	struct mii_data		*mii;
2460 	u_int16_t		reg;
2461 
2462 	SK_IF_LOCK(sc_if);
2463 
2464 	ifp = &sc_if->arpcom.ac_if;
2465 	sc = sc_if->sk_softc;
2466 	mii = device_get_softc(sc_if->sk_miibus);
2467 
2468 	/* Cancel pending I/O and free all RX/TX buffers. */
2469 	sk_stop(sc_if);
2470 
2471 	if (sc->sk_type == SK_GENESIS) {
2472 		/* Configure LINK_SYNC LED */
2473 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2474 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2475 			SK_LINKLED_LINKSYNC_ON);
2476 
2477 		/* Configure RX LED */
2478 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2479 			SK_RXLEDCTL_COUNTER_START);
2480 
2481 		/* Configure TX LED */
2482 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2483 			SK_TXLEDCTL_COUNTER_START);
2484 	}
2485 
2486 	/* Configure I2C registers */
2487 
2488 	/* Configure XMAC(s) */
2489 	switch (sc->sk_type) {
2490 	case SK_GENESIS:
2491 		sk_init_xmac(sc_if);
2492 		break;
2493 	case SK_YUKON:
2494 		sk_init_yukon(sc_if);
2495 		break;
2496 	}
2497 	mii_mediachg(mii);
2498 
2499 	if (sc->sk_type == SK_GENESIS) {
2500 		/* Configure MAC FIFOs */
2501 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2502 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2503 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2504 
2505 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2506 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2507 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2508 	}
2509 
2510 	/* Configure transmit arbiter(s) */
2511 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2512 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2513 
2514 	/* Configure RAMbuffers */
2515 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2516 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2517 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2518 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2519 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2520 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2521 
2522 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2523 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2524 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2525 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2526 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2527 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2528 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2529 
2530 	/* Configure BMUs */
2531 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2532 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2533 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2534 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2535 
2536 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2537 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2538 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2539 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2540 
2541 	/* Init descriptors */
2542 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2543 		printf("sk%d: initialization failed: no "
2544 		    "memory for rx buffers\n", sc_if->sk_unit);
2545 		sk_stop(sc_if);
2546 		SK_IF_UNLOCK(sc_if);
2547 		return;
2548 	}
2549 	sk_init_tx_ring(sc_if);
2550 
2551 	/* Configure interrupt handling */
2552 	CSR_READ_4(sc, SK_ISSR);
2553 	if (sc_if->sk_port == SK_PORT_A)
2554 		sc->sk_intrmask |= SK_INTRS1;
2555 	else
2556 		sc->sk_intrmask |= SK_INTRS2;
2557 
2558 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2559 
2560 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2561 
2562 	/* Start BMUs. */
2563 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2564 
2565 	switch(sc->sk_type) {
2566 	case SK_GENESIS:
2567 		/* Enable XMACs TX and RX state machines */
2568 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2569 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2570 		break;
2571 	case SK_YUKON:
2572 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2573 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2574 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2575 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2576 	}
2577 
2578 	ifp->if_flags |= IFF_RUNNING;
2579 	ifp->if_flags &= ~IFF_OACTIVE;
2580 
2581 	SK_IF_UNLOCK(sc_if);
2582 
2583 	return;
2584 }
2585 
2586 static void
2587 sk_stop(sc_if)
2588 	struct sk_if_softc	*sc_if;
2589 {
2590 	int			i;
2591 	struct sk_softc		*sc;
2592 	struct ifnet		*ifp;
2593 
2594 	SK_IF_LOCK(sc_if);
2595 	sc = sc_if->sk_softc;
2596 	ifp = &sc_if->arpcom.ac_if;
2597 
2598 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2599 
2600 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2601 		u_int32_t		val;
2602 
2603 		/* Put PHY back into reset. */
2604 		val = sk_win_read_4(sc, SK_GPIO);
2605 		if (sc_if->sk_port == SK_PORT_A) {
2606 			val |= SK_GPIO_DIR0;
2607 			val &= ~SK_GPIO_DAT0;
2608 		} else {
2609 			val |= SK_GPIO_DIR2;
2610 			val &= ~SK_GPIO_DAT2;
2611 		}
2612 		sk_win_write_4(sc, SK_GPIO, val);
2613 	}
2614 
2615 	/* Turn off various components of this interface. */
2616 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2617 	switch (sc->sk_type) {
2618 	case SK_GENESIS:
2619 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2620 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2621 		break;
2622 	case SK_YUKON:
2623 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2624 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2625 		break;
2626 	}
2627 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2628 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2629 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2630 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2631 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2632 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2633 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2634 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2635 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2636 
2637 	/* Disable interrupts */
2638 	if (sc_if->sk_port == SK_PORT_A)
2639 		sc->sk_intrmask &= ~SK_INTRS1;
2640 	else
2641 		sc->sk_intrmask &= ~SK_INTRS2;
2642 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2643 
2644 	SK_XM_READ_2(sc_if, XM_ISR);
2645 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2646 
2647 	/* Free RX and TX mbufs still in the queues. */
2648 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2649 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2650 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2651 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2652 		}
2653 	}
2654 
2655 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2656 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2657 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2658 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2659 		}
2660 	}
2661 
2662 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2663 	SK_IF_UNLOCK(sc_if);
2664 	return;
2665 }
2666