1 /* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1998, 1999, 2000 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 /*- 35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 36 * 37 * Permission to use, copy, modify, and distribute this software for any 38 * purpose with or without fee is hereby granted, provided that the above 39 * copyright notice and this permission notice appear in all copies. 40 * 41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* 54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 55 * the SK-984x series adapters, both single port and dual port. 56 * References: 57 * The XaQti XMAC II datasheet, 58 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 59 * The SysKonnect GEnesis manual, http://www.syskonnect.com 60 * 61 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the 62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 63 * convenience to others until Vitesse corrects this problem: 64 * 65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 66 * 67 * Written by Bill Paul <wpaul@ee.columbia.edu> 68 * Department of Electrical Engineering 69 * Columbia University, New York City 70 */ 71 /* 72 * The SysKonnect gigabit ethernet adapters consist of two main 73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 75 * components and a PHY while the GEnesis controller provides a PCI 76 * interface with DMA support. Each card may have between 512K and 77 * 2MB of SRAM on board depending on the configuration. 78 * 79 * The SysKonnect GEnesis controller can have either one or two XMAC 80 * chips connected to it, allowing single or dual port NIC configurations. 81 * SysKonnect has the distinction of being the only vendor on the market 82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 84 * XMAC registers. This driver takes advantage of these features to allow 85 * both XMACs to operate as independent interfaces. 86 */ 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/bus.h> 91 #include <sys/endian.h> 92 #include <sys/mbuf.h> 93 #include <sys/malloc.h> 94 #include <sys/kernel.h> 95 #include <sys/module.h> 96 #include <sys/socket.h> 97 #include <sys/sockio.h> 98 #include <sys/queue.h> 99 #include <sys/sysctl.h> 100 101 #include <net/bpf.h> 102 #include <net/ethernet.h> 103 #include <net/if.h> 104 #include <net/if_arp.h> 105 #include <net/if_dl.h> 106 #include <net/if_media.h> 107 #include <net/if_types.h> 108 #include <net/if_vlan_var.h> 109 110 #include <netinet/in.h> 111 #include <netinet/in_systm.h> 112 #include <netinet/ip.h> 113 114 #include <machine/bus.h> 115 #include <machine/in_cksum.h> 116 #include <machine/resource.h> 117 #include <sys/rman.h> 118 119 #include <dev/mii/mii.h> 120 #include <dev/mii/miivar.h> 121 #include <dev/mii/brgphyreg.h> 122 123 #include <dev/pci/pcireg.h> 124 #include <dev/pci/pcivar.h> 125 126 #if 0 127 #define SK_USEIOSPACE 128 #endif 129 130 #include <dev/sk/if_skreg.h> 131 #include <dev/sk/xmaciireg.h> 132 #include <dev/sk/yukonreg.h> 133 134 MODULE_DEPEND(sk, pci, 1, 1, 1); 135 MODULE_DEPEND(sk, ether, 1, 1, 1); 136 MODULE_DEPEND(sk, miibus, 1, 1, 1); 137 138 /* "device miibus" required. See GENERIC if you get errors here. */ 139 #include "miibus_if.h" 140 141 #ifndef lint 142 static const char rcsid[] = 143 "$FreeBSD$"; 144 #endif 145 146 static struct sk_type sk_devs[] = { 147 { 148 VENDORID_SK, 149 DEVICEID_SK_V1, 150 "SysKonnect Gigabit Ethernet (V1.0)" 151 }, 152 { 153 VENDORID_SK, 154 DEVICEID_SK_V2, 155 "SysKonnect Gigabit Ethernet (V2.0)" 156 }, 157 { 158 VENDORID_MARVELL, 159 DEVICEID_SK_V2, 160 "Marvell Gigabit Ethernet" 161 }, 162 { 163 VENDORID_MARVELL, 164 DEVICEID_BELKIN_5005, 165 "Belkin F5D5005 Gigabit Ethernet" 166 }, 167 { 168 VENDORID_3COM, 169 DEVICEID_3COM_3C940, 170 "3Com 3C940 Gigabit Ethernet" 171 }, 172 { 173 VENDORID_LINKSYS, 174 DEVICEID_LINKSYS_EG1032, 175 "Linksys EG1032 Gigabit Ethernet" 176 }, 177 { 178 VENDORID_DLINK, 179 DEVICEID_DLINK_DGE530T_A1, 180 "D-Link DGE-530T Gigabit Ethernet" 181 }, 182 { 183 VENDORID_DLINK, 184 DEVICEID_DLINK_DGE530T_B1, 185 "D-Link DGE-530T Gigabit Ethernet" 186 }, 187 { 0, 0, NULL } 188 }; 189 190 static int skc_probe(device_t); 191 static int skc_attach(device_t); 192 static int skc_detach(device_t); 193 static int skc_shutdown(device_t); 194 static int skc_suspend(device_t); 195 static int skc_resume(device_t); 196 static int sk_detach(device_t); 197 static int sk_probe(device_t); 198 static int sk_attach(device_t); 199 static void sk_tick(void *); 200 static void sk_yukon_tick(void *); 201 static void sk_intr(void *); 202 static void sk_intr_xmac(struct sk_if_softc *); 203 static void sk_intr_bcom(struct sk_if_softc *); 204 static void sk_intr_yukon(struct sk_if_softc *); 205 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t); 206 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t); 207 static void sk_rxeof(struct sk_if_softc *); 208 static void sk_jumbo_rxeof(struct sk_if_softc *); 209 static void sk_txeof(struct sk_if_softc *); 210 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *); 211 static int sk_encap(struct sk_if_softc *, struct mbuf **); 212 static void sk_start(struct ifnet *); 213 static void sk_start_locked(struct ifnet *); 214 static int sk_ioctl(struct ifnet *, u_long, caddr_t); 215 static void sk_init(void *); 216 static void sk_init_locked(struct sk_if_softc *); 217 static void sk_init_xmac(struct sk_if_softc *); 218 static void sk_init_yukon(struct sk_if_softc *); 219 static void sk_stop(struct sk_if_softc *); 220 static void sk_watchdog(void *); 221 static int sk_ifmedia_upd(struct ifnet *); 222 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *); 223 static void sk_reset(struct sk_softc *); 224 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int); 225 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int); 226 static int sk_newbuf(struct sk_if_softc *, int); 227 static int sk_jumbo_newbuf(struct sk_if_softc *, int); 228 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int); 229 static int sk_dma_alloc(struct sk_if_softc *); 230 static int sk_dma_jumbo_alloc(struct sk_if_softc *); 231 static void sk_dma_free(struct sk_if_softc *); 232 static void sk_dma_jumbo_free(struct sk_if_softc *); 233 static int sk_init_rx_ring(struct sk_if_softc *); 234 static int sk_init_jumbo_rx_ring(struct sk_if_softc *); 235 static void sk_init_tx_ring(struct sk_if_softc *); 236 static u_int32_t sk_win_read_4(struct sk_softc *, int); 237 static u_int16_t sk_win_read_2(struct sk_softc *, int); 238 static u_int8_t sk_win_read_1(struct sk_softc *, int); 239 static void sk_win_write_4(struct sk_softc *, int, u_int32_t); 240 static void sk_win_write_2(struct sk_softc *, int, u_int32_t); 241 static void sk_win_write_1(struct sk_softc *, int, u_int32_t); 242 243 static int sk_miibus_readreg(device_t, int, int); 244 static int sk_miibus_writereg(device_t, int, int, int); 245 static void sk_miibus_statchg(device_t); 246 247 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int); 248 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, 249 int); 250 static void sk_xmac_miibus_statchg(struct sk_if_softc *); 251 252 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int); 253 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int, 254 int); 255 static void sk_marv_miibus_statchg(struct sk_if_softc *); 256 257 static uint32_t sk_xmchash(const uint8_t *); 258 static uint32_t sk_gmchash(const uint8_t *); 259 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int); 260 static void sk_setmulti(struct sk_if_softc *); 261 static void sk_setpromisc(struct sk_if_softc *); 262 263 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high); 264 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS); 265 266 /* Tunables. */ 267 static int jumbo_disable = 0; 268 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable); 269 270 /* 271 * It seems that SK-NET GENESIS supports very simple checksum offload 272 * capability for Tx and I believe it can generate 0 checksum value for 273 * UDP packets in Tx as the hardware can't differenciate UDP packets from 274 * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it 275 * means sender didn't perforam checksum computation. For the safety I 276 * disabled UDP checksum offload capability at the moment. Alternatively 277 * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum 278 * offload routine. 279 */ 280 #define SK_CSUM_FEATURES (CSUM_TCP) 281 282 /* 283 * Note that we have newbus methods for both the GEnesis controller 284 * itself and the XMAC(s). The XMACs are children of the GEnesis, and 285 * the miibus code is a child of the XMACs. We need to do it this way 286 * so that the miibus drivers can access the PHY registers on the 287 * right PHY. It's not quite what I had in mind, but it's the only 288 * design that achieves the desired effect. 289 */ 290 static device_method_t skc_methods[] = { 291 /* Device interface */ 292 DEVMETHOD(device_probe, skc_probe), 293 DEVMETHOD(device_attach, skc_attach), 294 DEVMETHOD(device_detach, skc_detach), 295 DEVMETHOD(device_suspend, skc_suspend), 296 DEVMETHOD(device_resume, skc_resume), 297 DEVMETHOD(device_shutdown, skc_shutdown), 298 299 /* bus interface */ 300 DEVMETHOD(bus_print_child, bus_generic_print_child), 301 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 302 303 { 0, 0 } 304 }; 305 306 static driver_t skc_driver = { 307 "skc", 308 skc_methods, 309 sizeof(struct sk_softc) 310 }; 311 312 static devclass_t skc_devclass; 313 314 static device_method_t sk_methods[] = { 315 /* Device interface */ 316 DEVMETHOD(device_probe, sk_probe), 317 DEVMETHOD(device_attach, sk_attach), 318 DEVMETHOD(device_detach, sk_detach), 319 DEVMETHOD(device_shutdown, bus_generic_shutdown), 320 321 /* bus interface */ 322 DEVMETHOD(bus_print_child, bus_generic_print_child), 323 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 324 325 /* MII interface */ 326 DEVMETHOD(miibus_readreg, sk_miibus_readreg), 327 DEVMETHOD(miibus_writereg, sk_miibus_writereg), 328 DEVMETHOD(miibus_statchg, sk_miibus_statchg), 329 330 { 0, 0 } 331 }; 332 333 static driver_t sk_driver = { 334 "sk", 335 sk_methods, 336 sizeof(struct sk_if_softc) 337 }; 338 339 static devclass_t sk_devclass; 340 341 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0); 342 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0); 343 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0); 344 345 static struct resource_spec sk_res_spec_io[] = { 346 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, 347 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 348 { -1, 0, 0 } 349 }; 350 351 static struct resource_spec sk_res_spec_mem[] = { 352 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 353 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 354 { -1, 0, 0 } 355 }; 356 357 #define SK_SETBIT(sc, reg, x) \ 358 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) 359 360 #define SK_CLRBIT(sc, reg, x) \ 361 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) 362 363 #define SK_WIN_SETBIT_4(sc, reg, x) \ 364 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) 365 366 #define SK_WIN_CLRBIT_4(sc, reg, x) \ 367 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) 368 369 #define SK_WIN_SETBIT_2(sc, reg, x) \ 370 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) 371 372 #define SK_WIN_CLRBIT_2(sc, reg, x) \ 373 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) 374 375 static u_int32_t 376 sk_win_read_4(sc, reg) 377 struct sk_softc *sc; 378 int reg; 379 { 380 #ifdef SK_USEIOSPACE 381 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 382 return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); 383 #else 384 return(CSR_READ_4(sc, reg)); 385 #endif 386 } 387 388 static u_int16_t 389 sk_win_read_2(sc, reg) 390 struct sk_softc *sc; 391 int reg; 392 { 393 #ifdef SK_USEIOSPACE 394 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 395 return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); 396 #else 397 return(CSR_READ_2(sc, reg)); 398 #endif 399 } 400 401 static u_int8_t 402 sk_win_read_1(sc, reg) 403 struct sk_softc *sc; 404 int reg; 405 { 406 #ifdef SK_USEIOSPACE 407 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 408 return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); 409 #else 410 return(CSR_READ_1(sc, reg)); 411 #endif 412 } 413 414 static void 415 sk_win_write_4(sc, reg, val) 416 struct sk_softc *sc; 417 int reg; 418 u_int32_t val; 419 { 420 #ifdef SK_USEIOSPACE 421 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 422 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); 423 #else 424 CSR_WRITE_4(sc, reg, val); 425 #endif 426 return; 427 } 428 429 static void 430 sk_win_write_2(sc, reg, val) 431 struct sk_softc *sc; 432 int reg; 433 u_int32_t val; 434 { 435 #ifdef SK_USEIOSPACE 436 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 437 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val); 438 #else 439 CSR_WRITE_2(sc, reg, val); 440 #endif 441 return; 442 } 443 444 static void 445 sk_win_write_1(sc, reg, val) 446 struct sk_softc *sc; 447 int reg; 448 u_int32_t val; 449 { 450 #ifdef SK_USEIOSPACE 451 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 452 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); 453 #else 454 CSR_WRITE_1(sc, reg, val); 455 #endif 456 return; 457 } 458 459 static int 460 sk_miibus_readreg(dev, phy, reg) 461 device_t dev; 462 int phy, reg; 463 { 464 struct sk_if_softc *sc_if; 465 int v; 466 467 sc_if = device_get_softc(dev); 468 469 SK_IF_MII_LOCK(sc_if); 470 switch(sc_if->sk_softc->sk_type) { 471 case SK_GENESIS: 472 v = sk_xmac_miibus_readreg(sc_if, phy, reg); 473 break; 474 case SK_YUKON: 475 case SK_YUKON_LITE: 476 case SK_YUKON_LP: 477 v = sk_marv_miibus_readreg(sc_if, phy, reg); 478 break; 479 default: 480 v = 0; 481 break; 482 } 483 SK_IF_MII_UNLOCK(sc_if); 484 485 return (v); 486 } 487 488 static int 489 sk_miibus_writereg(dev, phy, reg, val) 490 device_t dev; 491 int phy, reg, val; 492 { 493 struct sk_if_softc *sc_if; 494 int v; 495 496 sc_if = device_get_softc(dev); 497 498 SK_IF_MII_LOCK(sc_if); 499 switch(sc_if->sk_softc->sk_type) { 500 case SK_GENESIS: 501 v = sk_xmac_miibus_writereg(sc_if, phy, reg, val); 502 break; 503 case SK_YUKON: 504 case SK_YUKON_LITE: 505 case SK_YUKON_LP: 506 v = sk_marv_miibus_writereg(sc_if, phy, reg, val); 507 break; 508 default: 509 v = 0; 510 break; 511 } 512 SK_IF_MII_UNLOCK(sc_if); 513 514 return (v); 515 } 516 517 static void 518 sk_miibus_statchg(dev) 519 device_t dev; 520 { 521 struct sk_if_softc *sc_if; 522 523 sc_if = device_get_softc(dev); 524 525 SK_IF_MII_LOCK(sc_if); 526 switch(sc_if->sk_softc->sk_type) { 527 case SK_GENESIS: 528 sk_xmac_miibus_statchg(sc_if); 529 break; 530 case SK_YUKON: 531 case SK_YUKON_LITE: 532 case SK_YUKON_LP: 533 sk_marv_miibus_statchg(sc_if); 534 break; 535 } 536 SK_IF_MII_UNLOCK(sc_if); 537 538 return; 539 } 540 541 static int 542 sk_xmac_miibus_readreg(sc_if, phy, reg) 543 struct sk_if_softc *sc_if; 544 int phy, reg; 545 { 546 int i; 547 548 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) 549 return(0); 550 551 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 552 SK_XM_READ_2(sc_if, XM_PHY_DATA); 553 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 554 for (i = 0; i < SK_TIMEOUT; i++) { 555 DELAY(1); 556 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 557 XM_MMUCMD_PHYDATARDY) 558 break; 559 } 560 561 if (i == SK_TIMEOUT) { 562 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 563 return(0); 564 } 565 } 566 DELAY(1); 567 i = SK_XM_READ_2(sc_if, XM_PHY_DATA); 568 569 return(i); 570 } 571 572 static int 573 sk_xmac_miibus_writereg(sc_if, phy, reg, val) 574 struct sk_if_softc *sc_if; 575 int phy, reg, val; 576 { 577 int i; 578 579 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 580 for (i = 0; i < SK_TIMEOUT; i++) { 581 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 582 break; 583 } 584 585 if (i == SK_TIMEOUT) { 586 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 587 return (ETIMEDOUT); 588 } 589 590 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 591 for (i = 0; i < SK_TIMEOUT; i++) { 592 DELAY(1); 593 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 594 break; 595 } 596 if (i == SK_TIMEOUT) 597 if_printf(sc_if->sk_ifp, "phy write timed out\n"); 598 599 return(0); 600 } 601 602 static void 603 sk_xmac_miibus_statchg(sc_if) 604 struct sk_if_softc *sc_if; 605 { 606 struct mii_data *mii; 607 608 mii = device_get_softc(sc_if->sk_miibus); 609 610 /* 611 * If this is a GMII PHY, manually set the XMAC's 612 * duplex mode accordingly. 613 */ 614 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 615 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 616 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 617 } else { 618 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 619 } 620 } 621 } 622 623 static int 624 sk_marv_miibus_readreg(sc_if, phy, reg) 625 struct sk_if_softc *sc_if; 626 int phy, reg; 627 { 628 u_int16_t val; 629 int i; 630 631 if (phy != 0 || 632 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && 633 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) { 634 return(0); 635 } 636 637 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 638 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 639 640 for (i = 0; i < SK_TIMEOUT; i++) { 641 DELAY(1); 642 val = SK_YU_READ_2(sc_if, YUKON_SMICR); 643 if (val & YU_SMICR_READ_VALID) 644 break; 645 } 646 647 if (i == SK_TIMEOUT) { 648 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 649 return(0); 650 } 651 652 val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 653 654 return(val); 655 } 656 657 static int 658 sk_marv_miibus_writereg(sc_if, phy, reg, val) 659 struct sk_if_softc *sc_if; 660 int phy, reg, val; 661 { 662 int i; 663 664 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 665 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 666 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 667 668 for (i = 0; i < SK_TIMEOUT; i++) { 669 DELAY(1); 670 if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0) 671 break; 672 } 673 if (i == SK_TIMEOUT) 674 if_printf(sc_if->sk_ifp, "phy write timeout\n"); 675 676 return(0); 677 } 678 679 static void 680 sk_marv_miibus_statchg(sc_if) 681 struct sk_if_softc *sc_if; 682 { 683 return; 684 } 685 686 #define HASH_BITS 6 687 688 static u_int32_t 689 sk_xmchash(addr) 690 const uint8_t *addr; 691 { 692 uint32_t crc; 693 694 /* Compute CRC for the address value. */ 695 crc = ether_crc32_le(addr, ETHER_ADDR_LEN); 696 697 return (~crc & ((1 << HASH_BITS) - 1)); 698 } 699 700 /* gmchash is just a big endian crc */ 701 static u_int32_t 702 sk_gmchash(addr) 703 const uint8_t *addr; 704 { 705 uint32_t crc; 706 707 /* Compute CRC for the address value. */ 708 crc = ether_crc32_be(addr, ETHER_ADDR_LEN); 709 710 return (crc & ((1 << HASH_BITS) - 1)); 711 } 712 713 static void 714 sk_setfilt(sc_if, addr, slot) 715 struct sk_if_softc *sc_if; 716 u_int16_t *addr; 717 int slot; 718 { 719 int base; 720 721 base = XM_RXFILT_ENTRY(slot); 722 723 SK_XM_WRITE_2(sc_if, base, addr[0]); 724 SK_XM_WRITE_2(sc_if, base + 2, addr[1]); 725 SK_XM_WRITE_2(sc_if, base + 4, addr[2]); 726 727 return; 728 } 729 730 static void 731 sk_setmulti(sc_if) 732 struct sk_if_softc *sc_if; 733 { 734 struct sk_softc *sc = sc_if->sk_softc; 735 struct ifnet *ifp = sc_if->sk_ifp; 736 u_int32_t hashes[2] = { 0, 0 }; 737 int h = 0, i; 738 struct ifmultiaddr *ifma; 739 u_int16_t dummy[] = { 0, 0, 0 }; 740 u_int16_t maddr[(ETHER_ADDR_LEN+1)/2]; 741 742 SK_IF_LOCK_ASSERT(sc_if); 743 744 /* First, zot all the existing filters. */ 745 switch(sc->sk_type) { 746 case SK_GENESIS: 747 for (i = 1; i < XM_RXFILT_MAX; i++) 748 sk_setfilt(sc_if, dummy, i); 749 750 SK_XM_WRITE_4(sc_if, XM_MAR0, 0); 751 SK_XM_WRITE_4(sc_if, XM_MAR2, 0); 752 break; 753 case SK_YUKON: 754 case SK_YUKON_LITE: 755 case SK_YUKON_LP: 756 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0); 757 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0); 758 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0); 759 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0); 760 break; 761 } 762 763 /* Now program new ones. */ 764 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 765 hashes[0] = 0xFFFFFFFF; 766 hashes[1] = 0xFFFFFFFF; 767 } else { 768 i = 1; 769 IF_ADDR_LOCK(ifp); 770 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) { 771 if (ifma->ifma_addr->sa_family != AF_LINK) 772 continue; 773 /* 774 * Program the first XM_RXFILT_MAX multicast groups 775 * into the perfect filter. For all others, 776 * use the hash table. 777 */ 778 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) { 779 bcopy(LLADDR( 780 (struct sockaddr_dl *)ifma->ifma_addr), 781 maddr, ETHER_ADDR_LEN); 782 sk_setfilt(sc_if, maddr, i); 783 i++; 784 continue; 785 } 786 787 switch(sc->sk_type) { 788 case SK_GENESIS: 789 bcopy(LLADDR( 790 (struct sockaddr_dl *)ifma->ifma_addr), 791 maddr, ETHER_ADDR_LEN); 792 h = sk_xmchash((const uint8_t *)maddr); 793 break; 794 case SK_YUKON: 795 case SK_YUKON_LITE: 796 case SK_YUKON_LP: 797 bcopy(LLADDR( 798 (struct sockaddr_dl *)ifma->ifma_addr), 799 maddr, ETHER_ADDR_LEN); 800 h = sk_gmchash((const uint8_t *)maddr); 801 break; 802 } 803 if (h < 32) 804 hashes[0] |= (1 << h); 805 else 806 hashes[1] |= (1 << (h - 32)); 807 } 808 IF_ADDR_UNLOCK(ifp); 809 } 810 811 switch(sc->sk_type) { 812 case SK_GENESIS: 813 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| 814 XM_MODE_RX_USE_PERFECT); 815 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 816 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 817 break; 818 case SK_YUKON: 819 case SK_YUKON_LITE: 820 case SK_YUKON_LP: 821 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 822 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 823 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 824 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 825 break; 826 } 827 828 return; 829 } 830 831 static void 832 sk_setpromisc(sc_if) 833 struct sk_if_softc *sc_if; 834 { 835 struct sk_softc *sc = sc_if->sk_softc; 836 struct ifnet *ifp = sc_if->sk_ifp; 837 838 SK_IF_LOCK_ASSERT(sc_if); 839 840 switch(sc->sk_type) { 841 case SK_GENESIS: 842 if (ifp->if_flags & IFF_PROMISC) { 843 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 844 } else { 845 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 846 } 847 break; 848 case SK_YUKON: 849 case SK_YUKON_LITE: 850 case SK_YUKON_LP: 851 if (ifp->if_flags & IFF_PROMISC) { 852 SK_YU_CLRBIT_2(sc_if, YUKON_RCR, 853 YU_RCR_UFLEN | YU_RCR_MUFLEN); 854 } else { 855 SK_YU_SETBIT_2(sc_if, YUKON_RCR, 856 YU_RCR_UFLEN | YU_RCR_MUFLEN); 857 } 858 break; 859 } 860 861 return; 862 } 863 864 static int 865 sk_init_rx_ring(sc_if) 866 struct sk_if_softc *sc_if; 867 { 868 struct sk_ring_data *rd; 869 bus_addr_t addr; 870 u_int32_t csum_start; 871 int i; 872 873 sc_if->sk_cdata.sk_rx_cons = 0; 874 875 csum_start = (ETHER_HDR_LEN + sizeof(struct ip)) << 16 | 876 ETHER_HDR_LEN; 877 rd = &sc_if->sk_rdata; 878 bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 879 for (i = 0; i < SK_RX_RING_CNT; i++) { 880 if (sk_newbuf(sc_if, i) != 0) 881 return (ENOBUFS); 882 if (i == (SK_RX_RING_CNT - 1)) 883 addr = SK_RX_RING_ADDR(sc_if, 0); 884 else 885 addr = SK_RX_RING_ADDR(sc_if, i + 1); 886 rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 887 rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start); 888 } 889 890 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 891 sc_if->sk_cdata.sk_rx_ring_map, 892 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 893 894 return(0); 895 } 896 897 static int 898 sk_init_jumbo_rx_ring(sc_if) 899 struct sk_if_softc *sc_if; 900 { 901 struct sk_ring_data *rd; 902 bus_addr_t addr; 903 u_int32_t csum_start; 904 int i; 905 906 sc_if->sk_cdata.sk_jumbo_rx_cons = 0; 907 908 csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) | 909 ETHER_HDR_LEN; 910 rd = &sc_if->sk_rdata; 911 bzero(rd->sk_jumbo_rx_ring, 912 sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT); 913 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 914 if (sk_jumbo_newbuf(sc_if, i) != 0) 915 return (ENOBUFS); 916 if (i == (SK_JUMBO_RX_RING_CNT - 1)) 917 addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0); 918 else 919 addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1); 920 rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 921 rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start); 922 } 923 924 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 925 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 926 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 927 928 return (0); 929 } 930 931 static void 932 sk_init_tx_ring(sc_if) 933 struct sk_if_softc *sc_if; 934 { 935 struct sk_ring_data *rd; 936 struct sk_txdesc *txd; 937 bus_addr_t addr; 938 int i; 939 940 STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq); 941 STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq); 942 943 sc_if->sk_cdata.sk_tx_prod = 0; 944 sc_if->sk_cdata.sk_tx_cons = 0; 945 sc_if->sk_cdata.sk_tx_cnt = 0; 946 947 rd = &sc_if->sk_rdata; 948 bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 949 for (i = 0; i < SK_TX_RING_CNT; i++) { 950 if (i == (SK_TX_RING_CNT - 1)) 951 addr = SK_TX_RING_ADDR(sc_if, 0); 952 else 953 addr = SK_TX_RING_ADDR(sc_if, i + 1); 954 rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 955 txd = &sc_if->sk_cdata.sk_txdesc[i]; 956 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); 957 } 958 959 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 960 sc_if->sk_cdata.sk_tx_ring_map, 961 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 962 } 963 964 static __inline void 965 sk_discard_rxbuf(sc_if, idx) 966 struct sk_if_softc *sc_if; 967 int idx; 968 { 969 struct sk_rx_desc *r; 970 struct sk_rxdesc *rxd; 971 struct mbuf *m; 972 973 974 r = &sc_if->sk_rdata.sk_rx_ring[idx]; 975 rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; 976 m = rxd->rx_m; 977 r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); 978 } 979 980 static __inline void 981 sk_discard_jumbo_rxbuf(sc_if, idx) 982 struct sk_if_softc *sc_if; 983 int idx; 984 { 985 struct sk_rx_desc *r; 986 struct sk_rxdesc *rxd; 987 struct mbuf *m; 988 989 r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; 990 rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; 991 m = rxd->rx_m; 992 r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); 993 } 994 995 static int 996 sk_newbuf(sc_if, idx) 997 struct sk_if_softc *sc_if; 998 int idx; 999 { 1000 struct sk_rx_desc *r; 1001 struct sk_rxdesc *rxd; 1002 struct mbuf *m; 1003 bus_dma_segment_t segs[1]; 1004 bus_dmamap_t map; 1005 int nsegs; 1006 1007 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1008 if (m == NULL) 1009 return (ENOBUFS); 1010 m->m_len = m->m_pkthdr.len = MCLBYTES; 1011 m_adj(m, ETHER_ALIGN); 1012 1013 if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag, 1014 sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) { 1015 m_freem(m); 1016 return (ENOBUFS); 1017 } 1018 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1019 1020 rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; 1021 if (rxd->rx_m != NULL) { 1022 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, 1023 BUS_DMASYNC_POSTREAD); 1024 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap); 1025 } 1026 map = rxd->rx_dmamap; 1027 rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap; 1028 sc_if->sk_cdata.sk_rx_sparemap = map; 1029 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, 1030 BUS_DMASYNC_PREREAD); 1031 rxd->rx_m = m; 1032 r = &sc_if->sk_rdata.sk_rx_ring[idx]; 1033 r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); 1034 r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); 1035 r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); 1036 1037 return (0); 1038 } 1039 1040 static int 1041 sk_jumbo_newbuf(sc_if, idx) 1042 struct sk_if_softc *sc_if; 1043 int idx; 1044 { 1045 struct sk_rx_desc *r; 1046 struct sk_rxdesc *rxd; 1047 struct mbuf *m; 1048 bus_dma_segment_t segs[1]; 1049 bus_dmamap_t map; 1050 int nsegs; 1051 1052 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1053 if (m == NULL) 1054 return (ENOBUFS); 1055 if ((m->m_flags & M_EXT) == 0) { 1056 m_freem(m); 1057 return (ENOBUFS); 1058 } 1059 m->m_pkthdr.len = m->m_len = MJUM9BYTES; 1060 /* 1061 * Adjust alignment so packet payload begins on a 1062 * longword boundary. Mandatory for Alpha, useful on 1063 * x86 too. 1064 */ 1065 m_adj(m, ETHER_ALIGN); 1066 1067 if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag, 1068 sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) { 1069 m_freem(m); 1070 return (ENOBUFS); 1071 } 1072 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1073 1074 rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; 1075 if (rxd->rx_m != NULL) { 1076 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, 1077 BUS_DMASYNC_POSTREAD); 1078 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, 1079 rxd->rx_dmamap); 1080 } 1081 map = rxd->rx_dmamap; 1082 rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap; 1083 sc_if->sk_cdata.sk_jumbo_rx_sparemap = map; 1084 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, 1085 BUS_DMASYNC_PREREAD); 1086 rxd->rx_m = m; 1087 r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; 1088 r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); 1089 r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); 1090 r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); 1091 1092 return (0); 1093 } 1094 1095 /* 1096 * Set media options. 1097 */ 1098 static int 1099 sk_ifmedia_upd(ifp) 1100 struct ifnet *ifp; 1101 { 1102 struct sk_if_softc *sc_if = ifp->if_softc; 1103 struct mii_data *mii; 1104 1105 mii = device_get_softc(sc_if->sk_miibus); 1106 sk_init(sc_if); 1107 mii_mediachg(mii); 1108 1109 return(0); 1110 } 1111 1112 /* 1113 * Report current media status. 1114 */ 1115 static void 1116 sk_ifmedia_sts(ifp, ifmr) 1117 struct ifnet *ifp; 1118 struct ifmediareq *ifmr; 1119 { 1120 struct sk_if_softc *sc_if; 1121 struct mii_data *mii; 1122 1123 sc_if = ifp->if_softc; 1124 mii = device_get_softc(sc_if->sk_miibus); 1125 1126 mii_pollstat(mii); 1127 ifmr->ifm_active = mii->mii_media_active; 1128 ifmr->ifm_status = mii->mii_media_status; 1129 1130 return; 1131 } 1132 1133 static int 1134 sk_ioctl(ifp, command, data) 1135 struct ifnet *ifp; 1136 u_long command; 1137 caddr_t data; 1138 { 1139 struct sk_if_softc *sc_if = ifp->if_softc; 1140 struct ifreq *ifr = (struct ifreq *) data; 1141 int error, mask; 1142 struct mii_data *mii; 1143 1144 error = 0; 1145 switch(command) { 1146 case SIOCSIFMTU: 1147 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU) 1148 error = EINVAL; 1149 else if (ifp->if_mtu != ifr->ifr_mtu) { 1150 if (sc_if->sk_jumbo_disable != 0 && 1151 ifr->ifr_mtu > SK_MAX_FRAMELEN) 1152 error = EINVAL; 1153 else { 1154 SK_IF_LOCK(sc_if); 1155 ifp->if_mtu = ifr->ifr_mtu; 1156 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1157 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1158 sk_init_locked(sc_if); 1159 } 1160 SK_IF_UNLOCK(sc_if); 1161 } 1162 } 1163 break; 1164 case SIOCSIFFLAGS: 1165 SK_IF_LOCK(sc_if); 1166 if (ifp->if_flags & IFF_UP) { 1167 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1168 if ((ifp->if_flags ^ sc_if->sk_if_flags) 1169 & IFF_PROMISC) { 1170 sk_setpromisc(sc_if); 1171 sk_setmulti(sc_if); 1172 } 1173 } else 1174 sk_init_locked(sc_if); 1175 } else { 1176 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1177 sk_stop(sc_if); 1178 } 1179 sc_if->sk_if_flags = ifp->if_flags; 1180 SK_IF_UNLOCK(sc_if); 1181 break; 1182 case SIOCADDMULTI: 1183 case SIOCDELMULTI: 1184 SK_IF_LOCK(sc_if); 1185 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1186 sk_setmulti(sc_if); 1187 SK_IF_UNLOCK(sc_if); 1188 break; 1189 case SIOCGIFMEDIA: 1190 case SIOCSIFMEDIA: 1191 mii = device_get_softc(sc_if->sk_miibus); 1192 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1193 break; 1194 case SIOCSIFCAP: 1195 SK_IF_LOCK(sc_if); 1196 if (sc_if->sk_softc->sk_type == SK_GENESIS) { 1197 SK_IF_UNLOCK(sc_if); 1198 break; 1199 } 1200 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1201 if (mask & IFCAP_HWCSUM) { 1202 ifp->if_capenable ^= IFCAP_HWCSUM; 1203 if (IFCAP_HWCSUM & ifp->if_capenable && 1204 IFCAP_HWCSUM & ifp->if_capabilities) 1205 ifp->if_hwassist = SK_CSUM_FEATURES; 1206 else 1207 ifp->if_hwassist = 0; 1208 } 1209 SK_IF_UNLOCK(sc_if); 1210 break; 1211 default: 1212 error = ether_ioctl(ifp, command, data); 1213 break; 1214 } 1215 1216 return (error); 1217 } 1218 1219 /* 1220 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 1221 * IDs against our list and return a device name if we find a match. 1222 */ 1223 static int 1224 skc_probe(dev) 1225 device_t dev; 1226 { 1227 struct sk_type *t = sk_devs; 1228 1229 while(t->sk_name != NULL) { 1230 if ((pci_get_vendor(dev) == t->sk_vid) && 1231 (pci_get_device(dev) == t->sk_did)) { 1232 /* 1233 * Only attach to rev. 2 of the Linksys EG1032 adapter. 1234 * Rev. 3 is supported by re(4). 1235 */ 1236 if ((t->sk_vid == VENDORID_LINKSYS) && 1237 (t->sk_did == DEVICEID_LINKSYS_EG1032) && 1238 (pci_get_subdevice(dev) != 1239 SUBDEVICEID_LINKSYS_EG1032_REV2)) { 1240 t++; 1241 continue; 1242 } 1243 device_set_desc(dev, t->sk_name); 1244 return (BUS_PROBE_DEFAULT); 1245 } 1246 t++; 1247 } 1248 1249 return(ENXIO); 1250 } 1251 1252 /* 1253 * Force the GEnesis into reset, then bring it out of reset. 1254 */ 1255 static void 1256 sk_reset(sc) 1257 struct sk_softc *sc; 1258 { 1259 1260 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); 1261 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); 1262 if (SK_YUKON_FAMILY(sc->sk_type)) 1263 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1264 1265 DELAY(1000); 1266 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); 1267 DELAY(2); 1268 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 1269 if (SK_YUKON_FAMILY(sc->sk_type)) 1270 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1271 1272 if (sc->sk_type == SK_GENESIS) { 1273 /* Configure packet arbiter */ 1274 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 1275 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 1276 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 1277 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 1278 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 1279 } 1280 1281 /* Enable RAM interface */ 1282 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1283 1284 /* 1285 * Configure interrupt moderation. The moderation timer 1286 * defers interrupts specified in the interrupt moderation 1287 * timer mask based on the timeout specified in the interrupt 1288 * moderation timer init register. Each bit in the timer 1289 * register represents one tick, so to specify a timeout in 1290 * microseconds, we have to multiply by the correct number of 1291 * ticks-per-microsecond. 1292 */ 1293 switch (sc->sk_type) { 1294 case SK_GENESIS: 1295 sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS; 1296 break; 1297 default: 1298 sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON; 1299 break; 1300 } 1301 if (bootverbose) 1302 device_printf(sc->sk_dev, "interrupt moderation is %d us\n", 1303 sc->sk_int_mod); 1304 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, 1305 sc->sk_int_ticks)); 1306 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| 1307 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); 1308 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1309 1310 return; 1311 } 1312 1313 static int 1314 sk_probe(dev) 1315 device_t dev; 1316 { 1317 struct sk_softc *sc; 1318 1319 sc = device_get_softc(device_get_parent(dev)); 1320 1321 /* 1322 * Not much to do here. We always know there will be 1323 * at least one XMAC present, and if there are two, 1324 * skc_attach() will create a second device instance 1325 * for us. 1326 */ 1327 switch (sc->sk_type) { 1328 case SK_GENESIS: 1329 device_set_desc(dev, "XaQti Corp. XMAC II"); 1330 break; 1331 case SK_YUKON: 1332 case SK_YUKON_LITE: 1333 case SK_YUKON_LP: 1334 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon"); 1335 break; 1336 } 1337 1338 return (BUS_PROBE_DEFAULT); 1339 } 1340 1341 /* 1342 * Each XMAC chip is attached as a separate logical IP interface. 1343 * Single port cards will have only one logical interface of course. 1344 */ 1345 static int 1346 sk_attach(dev) 1347 device_t dev; 1348 { 1349 struct sk_softc *sc; 1350 struct sk_if_softc *sc_if; 1351 struct ifnet *ifp; 1352 int i, port, error; 1353 u_char eaddr[6]; 1354 1355 if (dev == NULL) 1356 return(EINVAL); 1357 1358 error = 0; 1359 sc_if = device_get_softc(dev); 1360 sc = device_get_softc(device_get_parent(dev)); 1361 port = *(int *)device_get_ivars(dev); 1362 1363 sc_if->sk_if_dev = dev; 1364 sc_if->sk_port = port; 1365 sc_if->sk_softc = sc; 1366 sc->sk_if[port] = sc_if; 1367 if (port == SK_PORT_A) 1368 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1369 if (port == SK_PORT_B) 1370 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1371 1372 callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0); 1373 callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0); 1374 1375 if (sk_dma_alloc(sc_if) != 0) { 1376 error = ENOMEM; 1377 goto fail; 1378 } 1379 sk_dma_jumbo_alloc(sc_if); 1380 1381 ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER); 1382 if (ifp == NULL) { 1383 device_printf(sc_if->sk_if_dev, "can not if_alloc()\n"); 1384 error = ENOSPC; 1385 goto fail; 1386 } 1387 ifp->if_softc = sc_if; 1388 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1389 ifp->if_mtu = ETHERMTU; 1390 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1391 /* 1392 * SK_GENESIS has a bug in checksum offload - From linux. 1393 */ 1394 if (sc_if->sk_softc->sk_type != SK_GENESIS) { 1395 ifp->if_capabilities = IFCAP_HWCSUM; 1396 ifp->if_hwassist = SK_CSUM_FEATURES; 1397 } else { 1398 ifp->if_capabilities = 0; 1399 ifp->if_hwassist = 0; 1400 } 1401 ifp->if_capenable = ifp->if_capabilities; 1402 ifp->if_ioctl = sk_ioctl; 1403 ifp->if_start = sk_start; 1404 ifp->if_timer = 0; 1405 ifp->if_watchdog = NULL; 1406 ifp->if_init = sk_init; 1407 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1); 1408 ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1; 1409 IFQ_SET_READY(&ifp->if_snd); 1410 1411 /* 1412 * Get station address for this interface. Note that 1413 * dual port cards actually come with three station 1414 * addresses: one for each port, plus an extra. The 1415 * extra one is used by the SysKonnect driver software 1416 * as a 'virtual' station address for when both ports 1417 * are operating in failover mode. Currently we don't 1418 * use this extra address. 1419 */ 1420 SK_IF_LOCK(sc_if); 1421 for (i = 0; i < ETHER_ADDR_LEN; i++) 1422 eaddr[i] = 1423 sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); 1424 1425 /* 1426 * Set up RAM buffer addresses. The NIC will have a certain 1427 * amount of SRAM on it, somewhere between 512K and 2MB. We 1428 * need to divide this up a) between the transmitter and 1429 * receiver and b) between the two XMACs, if this is a 1430 * dual port NIC. Our algotithm is to divide up the memory 1431 * evenly so that everyone gets a fair share. 1432 * 1433 * Just to be contrary, Yukon2 appears to have separate memory 1434 * for each MAC. 1435 */ 1436 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1437 u_int32_t chunk, val; 1438 1439 chunk = sc->sk_ramsize / 2; 1440 val = sc->sk_rboff / sizeof(u_int64_t); 1441 sc_if->sk_rx_ramstart = val; 1442 val += (chunk / sizeof(u_int64_t)); 1443 sc_if->sk_rx_ramend = val - 1; 1444 sc_if->sk_tx_ramstart = val; 1445 val += (chunk / sizeof(u_int64_t)); 1446 sc_if->sk_tx_ramend = val - 1; 1447 } else { 1448 u_int32_t chunk, val; 1449 1450 chunk = sc->sk_ramsize / 4; 1451 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1452 sizeof(u_int64_t); 1453 sc_if->sk_rx_ramstart = val; 1454 val += (chunk / sizeof(u_int64_t)); 1455 sc_if->sk_rx_ramend = val - 1; 1456 sc_if->sk_tx_ramstart = val; 1457 val += (chunk / sizeof(u_int64_t)); 1458 sc_if->sk_tx_ramend = val - 1; 1459 } 1460 1461 /* Read and save PHY type and set PHY address */ 1462 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1463 if (!SK_YUKON_FAMILY(sc->sk_type)) { 1464 switch(sc_if->sk_phytype) { 1465 case SK_PHYTYPE_XMAC: 1466 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1467 break; 1468 case SK_PHYTYPE_BCOM: 1469 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1470 break; 1471 default: 1472 device_printf(sc->sk_dev, "unsupported PHY type: %d\n", 1473 sc_if->sk_phytype); 1474 error = ENODEV; 1475 SK_IF_UNLOCK(sc_if); 1476 goto fail; 1477 } 1478 } else { 1479 if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER && 1480 sc->sk_pmd != 'S') { 1481 /* not initialized, punt */ 1482 sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER; 1483 sc->sk_coppertype = 1; 1484 } 1485 1486 sc_if->sk_phyaddr = SK_PHYADDR_MARV; 1487 1488 if (!(sc->sk_coppertype)) 1489 sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER; 1490 } 1491 1492 /* 1493 * Call MI attach routine. Can't hold locks when calling into ether_*. 1494 */ 1495 SK_IF_UNLOCK(sc_if); 1496 ether_ifattach(ifp, eaddr); 1497 SK_IF_LOCK(sc_if); 1498 1499 /* 1500 * The hardware should be ready for VLAN_MTU by default: 1501 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially; 1502 * YU_SMR_MFL_VLAN is set by this driver in Yukon. 1503 * 1504 */ 1505 ifp->if_capabilities |= IFCAP_VLAN_MTU; 1506 ifp->if_capenable |= IFCAP_VLAN_MTU; 1507 /* 1508 * Tell the upper layer(s) we support long frames. 1509 * Must appear after the call to ether_ifattach() because 1510 * ether_ifattach() sets ifi_hdrlen to the default value. 1511 */ 1512 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1513 1514 /* 1515 * Do miibus setup. 1516 */ 1517 switch (sc->sk_type) { 1518 case SK_GENESIS: 1519 sk_init_xmac(sc_if); 1520 break; 1521 case SK_YUKON: 1522 case SK_YUKON_LITE: 1523 case SK_YUKON_LP: 1524 sk_init_yukon(sc_if); 1525 break; 1526 } 1527 1528 SK_IF_UNLOCK(sc_if); 1529 if (mii_phy_probe(dev, &sc_if->sk_miibus, 1530 sk_ifmedia_upd, sk_ifmedia_sts)) { 1531 device_printf(sc_if->sk_if_dev, "no PHY found!\n"); 1532 ether_ifdetach(ifp); 1533 error = ENXIO; 1534 goto fail; 1535 } 1536 1537 fail: 1538 if (error) { 1539 /* Access should be ok even though lock has been dropped */ 1540 sc->sk_if[port] = NULL; 1541 sk_detach(dev); 1542 } 1543 1544 return(error); 1545 } 1546 1547 /* 1548 * Attach the interface. Allocate softc structures, do ifmedia 1549 * setup and ethernet/BPF attach. 1550 */ 1551 static int 1552 skc_attach(dev) 1553 device_t dev; 1554 { 1555 struct sk_softc *sc; 1556 int error = 0, *port; 1557 uint8_t skrs; 1558 const char *pname = NULL; 1559 char *revstr; 1560 1561 sc = device_get_softc(dev); 1562 sc->sk_dev = dev; 1563 1564 mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1565 MTX_DEF); 1566 mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF); 1567 /* 1568 * Map control/status registers. 1569 */ 1570 pci_enable_busmaster(dev); 1571 1572 /* Allocate resources */ 1573 #ifdef SK_USEIOSPACE 1574 sc->sk_res_spec = sk_res_spec_io; 1575 #else 1576 sc->sk_res_spec = sk_res_spec_mem; 1577 #endif 1578 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); 1579 if (error) { 1580 if (sc->sk_res_spec == sk_res_spec_mem) 1581 sc->sk_res_spec = sk_res_spec_io; 1582 else 1583 sc->sk_res_spec = sk_res_spec_mem; 1584 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); 1585 if (error) { 1586 device_printf(dev, "couldn't allocate %s resources\n", 1587 sc->sk_res_spec == sk_res_spec_mem ? "memory" : 1588 "I/O"); 1589 goto fail; 1590 } 1591 } 1592 1593 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); 1594 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf; 1595 1596 /* Bail out if chip is not recognized. */ 1597 if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) { 1598 device_printf(dev, "unknown device: chipver=%02x, rev=%x\n", 1599 sc->sk_type, sc->sk_rev); 1600 error = ENXIO; 1601 goto fail; 1602 } 1603 1604 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1605 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1606 OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW, 1607 &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I", 1608 "SK interrupt moderation"); 1609 1610 /* Pull in device tunables. */ 1611 sc->sk_int_mod = SK_IM_DEFAULT; 1612 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 1613 "int_mod", &sc->sk_int_mod); 1614 if (error == 0) { 1615 if (sc->sk_int_mod < SK_IM_MIN || 1616 sc->sk_int_mod > SK_IM_MAX) { 1617 device_printf(dev, "int_mod value out of range; " 1618 "using default: %d\n", SK_IM_DEFAULT); 1619 sc->sk_int_mod = SK_IM_DEFAULT; 1620 } 1621 } 1622 1623 /* Reset the adapter. */ 1624 sk_reset(sc); 1625 1626 skrs = sk_win_read_1(sc, SK_EPROM0); 1627 if (sc->sk_type == SK_GENESIS) { 1628 /* Read and save RAM size and RAMbuffer offset */ 1629 switch(skrs) { 1630 case SK_RAMSIZE_512K_64: 1631 sc->sk_ramsize = 0x80000; 1632 sc->sk_rboff = SK_RBOFF_0; 1633 break; 1634 case SK_RAMSIZE_1024K_64: 1635 sc->sk_ramsize = 0x100000; 1636 sc->sk_rboff = SK_RBOFF_80000; 1637 break; 1638 case SK_RAMSIZE_1024K_128: 1639 sc->sk_ramsize = 0x100000; 1640 sc->sk_rboff = SK_RBOFF_0; 1641 break; 1642 case SK_RAMSIZE_2048K_128: 1643 sc->sk_ramsize = 0x200000; 1644 sc->sk_rboff = SK_RBOFF_0; 1645 break; 1646 default: 1647 device_printf(dev, "unknown ram size: %d\n", skrs); 1648 error = ENXIO; 1649 goto fail; 1650 } 1651 } else { /* SK_YUKON_FAMILY */ 1652 if (skrs == 0x00) 1653 sc->sk_ramsize = 0x20000; 1654 else 1655 sc->sk_ramsize = skrs * (1<<12); 1656 sc->sk_rboff = SK_RBOFF_0; 1657 } 1658 1659 /* Read and save physical media type */ 1660 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE); 1661 1662 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1') 1663 sc->sk_coppertype = 1; 1664 else 1665 sc->sk_coppertype = 0; 1666 1667 /* Determine whether to name it with VPD PN or just make it up. 1668 * Marvell Yukon VPD PN seems to freqently be bogus. */ 1669 switch (pci_get_device(dev)) { 1670 case DEVICEID_SK_V1: 1671 case DEVICEID_BELKIN_5005: 1672 case DEVICEID_3COM_3C940: 1673 case DEVICEID_LINKSYS_EG1032: 1674 case DEVICEID_DLINK_DGE530T_A1: 1675 case DEVICEID_DLINK_DGE530T_B1: 1676 /* Stay with VPD PN. */ 1677 (void) pci_get_vpd_ident(dev, &pname); 1678 break; 1679 case DEVICEID_SK_V2: 1680 /* YUKON VPD PN might bear no resemblance to reality. */ 1681 switch (sc->sk_type) { 1682 case SK_GENESIS: 1683 /* Stay with VPD PN. */ 1684 (void) pci_get_vpd_ident(dev, &pname); 1685 break; 1686 case SK_YUKON: 1687 pname = "Marvell Yukon Gigabit Ethernet"; 1688 break; 1689 case SK_YUKON_LITE: 1690 pname = "Marvell Yukon Lite Gigabit Ethernet"; 1691 break; 1692 case SK_YUKON_LP: 1693 pname = "Marvell Yukon LP Gigabit Ethernet"; 1694 break; 1695 default: 1696 pname = "Marvell Yukon (Unknown) Gigabit Ethernet"; 1697 break; 1698 } 1699 1700 /* Yukon Lite Rev. A0 needs special test. */ 1701 if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) { 1702 u_int32_t far; 1703 u_int8_t testbyte; 1704 1705 /* Save flash address register before testing. */ 1706 far = sk_win_read_4(sc, SK_EP_ADDR); 1707 1708 sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff); 1709 testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03); 1710 1711 if (testbyte != 0x00) { 1712 /* Yukon Lite Rev. A0 detected. */ 1713 sc->sk_type = SK_YUKON_LITE; 1714 sc->sk_rev = SK_YUKON_LITE_REV_A0; 1715 /* Restore flash address register. */ 1716 sk_win_write_4(sc, SK_EP_ADDR, far); 1717 } 1718 } 1719 break; 1720 default: 1721 device_printf(dev, "unknown device: vendor=%04x, device=%04x, " 1722 "chipver=%02x, rev=%x\n", 1723 pci_get_vendor(dev), pci_get_device(dev), 1724 sc->sk_type, sc->sk_rev); 1725 error = ENXIO; 1726 goto fail; 1727 } 1728 1729 if (sc->sk_type == SK_YUKON_LITE) { 1730 switch (sc->sk_rev) { 1731 case SK_YUKON_LITE_REV_A0: 1732 revstr = "A0"; 1733 break; 1734 case SK_YUKON_LITE_REV_A1: 1735 revstr = "A1"; 1736 break; 1737 case SK_YUKON_LITE_REV_A3: 1738 revstr = "A3"; 1739 break; 1740 default: 1741 revstr = ""; 1742 break; 1743 } 1744 } else { 1745 revstr = ""; 1746 } 1747 1748 /* Announce the product name and more VPD data if there. */ 1749 if (pname != NULL) 1750 device_printf(dev, "%s rev. %s(0x%x)\n", 1751 pname, revstr, sc->sk_rev); 1752 1753 if (bootverbose) { 1754 device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type); 1755 device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev); 1756 device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs); 1757 device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize); 1758 } 1759 1760 sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); 1761 if (sc->sk_devs[SK_PORT_A] == NULL) { 1762 device_printf(dev, "failed to add child for PORT_A\n"); 1763 error = ENXIO; 1764 goto fail; 1765 } 1766 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1767 if (port == NULL) { 1768 device_printf(dev, "failed to allocate memory for " 1769 "ivars of PORT_A\n"); 1770 error = ENXIO; 1771 goto fail; 1772 } 1773 *port = SK_PORT_A; 1774 device_set_ivars(sc->sk_devs[SK_PORT_A], port); 1775 1776 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1777 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); 1778 if (sc->sk_devs[SK_PORT_B] == NULL) { 1779 device_printf(dev, "failed to add child for PORT_B\n"); 1780 error = ENXIO; 1781 goto fail; 1782 } 1783 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1784 if (port == NULL) { 1785 device_printf(dev, "failed to allocate memory for " 1786 "ivars of PORT_B\n"); 1787 error = ENXIO; 1788 goto fail; 1789 } 1790 *port = SK_PORT_B; 1791 device_set_ivars(sc->sk_devs[SK_PORT_B], port); 1792 } 1793 1794 /* Turn on the 'driver is loaded' LED. */ 1795 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1796 1797 error = bus_generic_attach(dev); 1798 if (error) { 1799 device_printf(dev, "failed to attach port(s)\n"); 1800 goto fail; 1801 } 1802 1803 /* Hook interrupt last to avoid having to lock softc */ 1804 error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE, 1805 NULL, sk_intr, sc, &sc->sk_intrhand); 1806 1807 if (error) { 1808 device_printf(dev, "couldn't set up irq\n"); 1809 goto fail; 1810 } 1811 1812 fail: 1813 if (error) 1814 skc_detach(dev); 1815 1816 return(error); 1817 } 1818 1819 /* 1820 * Shutdown hardware and free up resources. This can be called any 1821 * time after the mutex has been initialized. It is called in both 1822 * the error case in attach and the normal detach case so it needs 1823 * to be careful about only freeing resources that have actually been 1824 * allocated. 1825 */ 1826 static int 1827 sk_detach(dev) 1828 device_t dev; 1829 { 1830 struct sk_if_softc *sc_if; 1831 struct ifnet *ifp; 1832 1833 sc_if = device_get_softc(dev); 1834 KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx), 1835 ("sk mutex not initialized in sk_detach")); 1836 SK_IF_LOCK(sc_if); 1837 1838 ifp = sc_if->sk_ifp; 1839 /* These should only be active if attach_xmac succeeded */ 1840 if (device_is_attached(dev)) { 1841 sk_stop(sc_if); 1842 /* Can't hold locks while calling detach */ 1843 SK_IF_UNLOCK(sc_if); 1844 callout_drain(&sc_if->sk_tick_ch); 1845 callout_drain(&sc_if->sk_watchdog_ch); 1846 ether_ifdetach(ifp); 1847 SK_IF_LOCK(sc_if); 1848 } 1849 if (ifp) 1850 if_free(ifp); 1851 /* 1852 * We're generally called from skc_detach() which is using 1853 * device_delete_child() to get to here. It's already trashed 1854 * miibus for us, so don't do it here or we'll panic. 1855 */ 1856 /* 1857 if (sc_if->sk_miibus != NULL) 1858 device_delete_child(dev, sc_if->sk_miibus); 1859 */ 1860 bus_generic_detach(dev); 1861 sk_dma_jumbo_free(sc_if); 1862 sk_dma_free(sc_if); 1863 SK_IF_UNLOCK(sc_if); 1864 1865 return(0); 1866 } 1867 1868 static int 1869 skc_detach(dev) 1870 device_t dev; 1871 { 1872 struct sk_softc *sc; 1873 1874 sc = device_get_softc(dev); 1875 KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized")); 1876 1877 if (device_is_alive(dev)) { 1878 if (sc->sk_devs[SK_PORT_A] != NULL) { 1879 free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF); 1880 device_delete_child(dev, sc->sk_devs[SK_PORT_A]); 1881 } 1882 if (sc->sk_devs[SK_PORT_B] != NULL) { 1883 free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF); 1884 device_delete_child(dev, sc->sk_devs[SK_PORT_B]); 1885 } 1886 bus_generic_detach(dev); 1887 } 1888 1889 if (sc->sk_intrhand) 1890 bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand); 1891 bus_release_resources(dev, sc->sk_res_spec, sc->sk_res); 1892 1893 mtx_destroy(&sc->sk_mii_mtx); 1894 mtx_destroy(&sc->sk_mtx); 1895 1896 return(0); 1897 } 1898 1899 struct sk_dmamap_arg { 1900 bus_addr_t sk_busaddr; 1901 }; 1902 1903 static void 1904 sk_dmamap_cb(arg, segs, nseg, error) 1905 void *arg; 1906 bus_dma_segment_t *segs; 1907 int nseg; 1908 int error; 1909 { 1910 struct sk_dmamap_arg *ctx; 1911 1912 if (error != 0) 1913 return; 1914 1915 ctx = arg; 1916 ctx->sk_busaddr = segs[0].ds_addr; 1917 } 1918 1919 /* 1920 * Allocate jumbo buffer storage. The SysKonnect adapters support 1921 * "jumbograms" (9K frames), although SysKonnect doesn't currently 1922 * use them in their drivers. In order for us to use them, we need 1923 * large 9K receive buffers, however standard mbuf clusters are only 1924 * 2048 bytes in size. Consequently, we need to allocate and manage 1925 * our own jumbo buffer pool. Fortunately, this does not require an 1926 * excessive amount of additional code. 1927 */ 1928 static int 1929 sk_dma_alloc(sc_if) 1930 struct sk_if_softc *sc_if; 1931 { 1932 struct sk_dmamap_arg ctx; 1933 struct sk_txdesc *txd; 1934 struct sk_rxdesc *rxd; 1935 int error, i; 1936 1937 /* create parent tag */ 1938 /* 1939 * XXX 1940 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument 1941 * in bus_dma_tag_create(9) as the NIC would support DAC mode. 1942 * However bz@ reported that it does not work on amd64 with > 4GB 1943 * RAM. Until we have more clues of the breakage, disable DAC mode 1944 * by limiting DMA address to be in 32bit address space. 1945 */ 1946 error = bus_dma_tag_create( 1947 bus_get_dma_tag(sc_if->sk_if_dev),/* parent */ 1948 1, 0, /* algnmnt, boundary */ 1949 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1950 BUS_SPACE_MAXADDR, /* highaddr */ 1951 NULL, NULL, /* filter, filterarg */ 1952 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1953 0, /* nsegments */ 1954 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1955 0, /* flags */ 1956 NULL, NULL, /* lockfunc, lockarg */ 1957 &sc_if->sk_cdata.sk_parent_tag); 1958 if (error != 0) { 1959 device_printf(sc_if->sk_if_dev, 1960 "failed to create parent DMA tag\n"); 1961 goto fail; 1962 } 1963 1964 /* create tag for Tx ring */ 1965 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1966 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 1967 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1968 BUS_SPACE_MAXADDR, /* highaddr */ 1969 NULL, NULL, /* filter, filterarg */ 1970 SK_TX_RING_SZ, /* maxsize */ 1971 1, /* nsegments */ 1972 SK_TX_RING_SZ, /* maxsegsize */ 1973 0, /* flags */ 1974 NULL, NULL, /* lockfunc, lockarg */ 1975 &sc_if->sk_cdata.sk_tx_ring_tag); 1976 if (error != 0) { 1977 device_printf(sc_if->sk_if_dev, 1978 "failed to allocate Tx ring DMA tag\n"); 1979 goto fail; 1980 } 1981 1982 /* create tag for Rx ring */ 1983 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1984 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 1985 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1986 BUS_SPACE_MAXADDR, /* highaddr */ 1987 NULL, NULL, /* filter, filterarg */ 1988 SK_RX_RING_SZ, /* maxsize */ 1989 1, /* nsegments */ 1990 SK_RX_RING_SZ, /* maxsegsize */ 1991 0, /* flags */ 1992 NULL, NULL, /* lockfunc, lockarg */ 1993 &sc_if->sk_cdata.sk_rx_ring_tag); 1994 if (error != 0) { 1995 device_printf(sc_if->sk_if_dev, 1996 "failed to allocate Rx ring DMA tag\n"); 1997 goto fail; 1998 } 1999 2000 /* create tag for Tx buffers */ 2001 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2002 1, 0, /* algnmnt, boundary */ 2003 BUS_SPACE_MAXADDR, /* lowaddr */ 2004 BUS_SPACE_MAXADDR, /* highaddr */ 2005 NULL, NULL, /* filter, filterarg */ 2006 MCLBYTES * SK_MAXTXSEGS, /* maxsize */ 2007 SK_MAXTXSEGS, /* nsegments */ 2008 MCLBYTES, /* maxsegsize */ 2009 0, /* flags */ 2010 NULL, NULL, /* lockfunc, lockarg */ 2011 &sc_if->sk_cdata.sk_tx_tag); 2012 if (error != 0) { 2013 device_printf(sc_if->sk_if_dev, 2014 "failed to allocate Tx DMA tag\n"); 2015 goto fail; 2016 } 2017 2018 /* create tag for Rx buffers */ 2019 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2020 1, 0, /* algnmnt, boundary */ 2021 BUS_SPACE_MAXADDR, /* lowaddr */ 2022 BUS_SPACE_MAXADDR, /* highaddr */ 2023 NULL, NULL, /* filter, filterarg */ 2024 MCLBYTES, /* maxsize */ 2025 1, /* nsegments */ 2026 MCLBYTES, /* maxsegsize */ 2027 0, /* flags */ 2028 NULL, NULL, /* lockfunc, lockarg */ 2029 &sc_if->sk_cdata.sk_rx_tag); 2030 if (error != 0) { 2031 device_printf(sc_if->sk_if_dev, 2032 "failed to allocate Rx DMA tag\n"); 2033 goto fail; 2034 } 2035 2036 /* allocate DMA'able memory and load the DMA map for Tx ring */ 2037 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag, 2038 (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 2039 &sc_if->sk_cdata.sk_tx_ring_map); 2040 if (error != 0) { 2041 device_printf(sc_if->sk_if_dev, 2042 "failed to allocate DMA'able memory for Tx ring\n"); 2043 goto fail; 2044 } 2045 2046 ctx.sk_busaddr = 0; 2047 error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag, 2048 sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring, 2049 SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2050 if (error != 0) { 2051 device_printf(sc_if->sk_if_dev, 2052 "failed to load DMA'able memory for Tx ring\n"); 2053 goto fail; 2054 } 2055 sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr; 2056 2057 /* allocate DMA'able memory and load the DMA map for Rx ring */ 2058 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag, 2059 (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 2060 &sc_if->sk_cdata.sk_rx_ring_map); 2061 if (error != 0) { 2062 device_printf(sc_if->sk_if_dev, 2063 "failed to allocate DMA'able memory for Rx ring\n"); 2064 goto fail; 2065 } 2066 2067 ctx.sk_busaddr = 0; 2068 error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag, 2069 sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring, 2070 SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2071 if (error != 0) { 2072 device_printf(sc_if->sk_if_dev, 2073 "failed to load DMA'able memory for Rx ring\n"); 2074 goto fail; 2075 } 2076 sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr; 2077 2078 /* create DMA maps for Tx buffers */ 2079 for (i = 0; i < SK_TX_RING_CNT; i++) { 2080 txd = &sc_if->sk_cdata.sk_txdesc[i]; 2081 txd->tx_m = NULL; 2082 txd->tx_dmamap = NULL; 2083 error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0, 2084 &txd->tx_dmamap); 2085 if (error != 0) { 2086 device_printf(sc_if->sk_if_dev, 2087 "failed to create Tx dmamap\n"); 2088 goto fail; 2089 } 2090 } 2091 2092 /* create DMA maps for Rx buffers */ 2093 if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, 2094 &sc_if->sk_cdata.sk_rx_sparemap)) != 0) { 2095 device_printf(sc_if->sk_if_dev, 2096 "failed to create spare Rx dmamap\n"); 2097 goto fail; 2098 } 2099 for (i = 0; i < SK_RX_RING_CNT; i++) { 2100 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 2101 rxd->rx_m = NULL; 2102 rxd->rx_dmamap = NULL; 2103 error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, 2104 &rxd->rx_dmamap); 2105 if (error != 0) { 2106 device_printf(sc_if->sk_if_dev, 2107 "failed to create Rx dmamap\n"); 2108 goto fail; 2109 } 2110 } 2111 2112 fail: 2113 return (error); 2114 } 2115 2116 static int 2117 sk_dma_jumbo_alloc(sc_if) 2118 struct sk_if_softc *sc_if; 2119 { 2120 struct sk_dmamap_arg ctx; 2121 struct sk_rxdesc *jrxd; 2122 int error, i; 2123 2124 if (jumbo_disable != 0) { 2125 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n"); 2126 sc_if->sk_jumbo_disable = 1; 2127 return (0); 2128 } 2129 /* create tag for jumbo Rx ring */ 2130 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2131 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 2132 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2133 BUS_SPACE_MAXADDR, /* highaddr */ 2134 NULL, NULL, /* filter, filterarg */ 2135 SK_JUMBO_RX_RING_SZ, /* maxsize */ 2136 1, /* nsegments */ 2137 SK_JUMBO_RX_RING_SZ, /* maxsegsize */ 2138 0, /* flags */ 2139 NULL, NULL, /* lockfunc, lockarg */ 2140 &sc_if->sk_cdata.sk_jumbo_rx_ring_tag); 2141 if (error != 0) { 2142 device_printf(sc_if->sk_if_dev, 2143 "failed to allocate jumbo Rx ring DMA tag\n"); 2144 goto jumbo_fail; 2145 } 2146 2147 /* create tag for jumbo Rx buffers */ 2148 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2149 1, 0, /* algnmnt, boundary */ 2150 BUS_SPACE_MAXADDR, /* lowaddr */ 2151 BUS_SPACE_MAXADDR, /* highaddr */ 2152 NULL, NULL, /* filter, filterarg */ 2153 MJUM9BYTES, /* maxsize */ 2154 1, /* nsegments */ 2155 MJUM9BYTES, /* maxsegsize */ 2156 0, /* flags */ 2157 NULL, NULL, /* lockfunc, lockarg */ 2158 &sc_if->sk_cdata.sk_jumbo_rx_tag); 2159 if (error != 0) { 2160 device_printf(sc_if->sk_if_dev, 2161 "failed to allocate jumbo Rx DMA tag\n"); 2162 goto jumbo_fail; 2163 } 2164 2165 /* allocate DMA'able memory and load the DMA map for jumbo Rx ring */ 2166 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2167 (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, 2168 BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2169 if (error != 0) { 2170 device_printf(sc_if->sk_if_dev, 2171 "failed to allocate DMA'able memory for jumbo Rx ring\n"); 2172 goto jumbo_fail; 2173 } 2174 2175 ctx.sk_busaddr = 0; 2176 error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2177 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 2178 sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb, 2179 &ctx, BUS_DMA_NOWAIT); 2180 if (error != 0) { 2181 device_printf(sc_if->sk_if_dev, 2182 "failed to load DMA'able memory for jumbo Rx ring\n"); 2183 goto jumbo_fail; 2184 } 2185 sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr; 2186 2187 /* create DMA maps for jumbo Rx buffers */ 2188 if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, 2189 &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) { 2190 device_printf(sc_if->sk_if_dev, 2191 "failed to create spare jumbo Rx dmamap\n"); 2192 goto jumbo_fail; 2193 } 2194 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 2195 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 2196 jrxd->rx_m = NULL; 2197 jrxd->rx_dmamap = NULL; 2198 error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, 2199 &jrxd->rx_dmamap); 2200 if (error != 0) { 2201 device_printf(sc_if->sk_if_dev, 2202 "failed to create jumbo Rx dmamap\n"); 2203 goto jumbo_fail; 2204 } 2205 } 2206 2207 return (0); 2208 2209 jumbo_fail: 2210 sk_dma_jumbo_free(sc_if); 2211 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to " 2212 "resource shortage\n"); 2213 sc_if->sk_jumbo_disable = 1; 2214 return (0); 2215 } 2216 2217 static void 2218 sk_dma_free(sc_if) 2219 struct sk_if_softc *sc_if; 2220 { 2221 struct sk_txdesc *txd; 2222 struct sk_rxdesc *rxd; 2223 int i; 2224 2225 /* Tx ring */ 2226 if (sc_if->sk_cdata.sk_tx_ring_tag) { 2227 if (sc_if->sk_cdata.sk_tx_ring_map) 2228 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag, 2229 sc_if->sk_cdata.sk_tx_ring_map); 2230 if (sc_if->sk_cdata.sk_tx_ring_map && 2231 sc_if->sk_rdata.sk_tx_ring) 2232 bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag, 2233 sc_if->sk_rdata.sk_tx_ring, 2234 sc_if->sk_cdata.sk_tx_ring_map); 2235 sc_if->sk_rdata.sk_tx_ring = NULL; 2236 sc_if->sk_cdata.sk_tx_ring_map = NULL; 2237 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag); 2238 sc_if->sk_cdata.sk_tx_ring_tag = NULL; 2239 } 2240 /* Rx ring */ 2241 if (sc_if->sk_cdata.sk_rx_ring_tag) { 2242 if (sc_if->sk_cdata.sk_rx_ring_map) 2243 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag, 2244 sc_if->sk_cdata.sk_rx_ring_map); 2245 if (sc_if->sk_cdata.sk_rx_ring_map && 2246 sc_if->sk_rdata.sk_rx_ring) 2247 bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag, 2248 sc_if->sk_rdata.sk_rx_ring, 2249 sc_if->sk_cdata.sk_rx_ring_map); 2250 sc_if->sk_rdata.sk_rx_ring = NULL; 2251 sc_if->sk_cdata.sk_rx_ring_map = NULL; 2252 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag); 2253 sc_if->sk_cdata.sk_rx_ring_tag = NULL; 2254 } 2255 /* Tx buffers */ 2256 if (sc_if->sk_cdata.sk_tx_tag) { 2257 for (i = 0; i < SK_TX_RING_CNT; i++) { 2258 txd = &sc_if->sk_cdata.sk_txdesc[i]; 2259 if (txd->tx_dmamap) { 2260 bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag, 2261 txd->tx_dmamap); 2262 txd->tx_dmamap = NULL; 2263 } 2264 } 2265 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag); 2266 sc_if->sk_cdata.sk_tx_tag = NULL; 2267 } 2268 /* Rx buffers */ 2269 if (sc_if->sk_cdata.sk_rx_tag) { 2270 for (i = 0; i < SK_RX_RING_CNT; i++) { 2271 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 2272 if (rxd->rx_dmamap) { 2273 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, 2274 rxd->rx_dmamap); 2275 rxd->rx_dmamap = NULL; 2276 } 2277 } 2278 if (sc_if->sk_cdata.sk_rx_sparemap) { 2279 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, 2280 sc_if->sk_cdata.sk_rx_sparemap); 2281 sc_if->sk_cdata.sk_rx_sparemap = NULL; 2282 } 2283 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag); 2284 sc_if->sk_cdata.sk_rx_tag = NULL; 2285 } 2286 2287 if (sc_if->sk_cdata.sk_parent_tag) { 2288 bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag); 2289 sc_if->sk_cdata.sk_parent_tag = NULL; 2290 } 2291 } 2292 2293 static void 2294 sk_dma_jumbo_free(sc_if) 2295 struct sk_if_softc *sc_if; 2296 { 2297 struct sk_rxdesc *jrxd; 2298 int i; 2299 2300 /* jumbo Rx ring */ 2301 if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) { 2302 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map) 2303 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2304 sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2305 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map && 2306 sc_if->sk_rdata.sk_jumbo_rx_ring) 2307 bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2308 sc_if->sk_rdata.sk_jumbo_rx_ring, 2309 sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2310 sc_if->sk_rdata.sk_jumbo_rx_ring = NULL; 2311 sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL; 2312 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag); 2313 sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL; 2314 } 2315 2316 /* jumbo Rx buffers */ 2317 if (sc_if->sk_cdata.sk_jumbo_rx_tag) { 2318 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 2319 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 2320 if (jrxd->rx_dmamap) { 2321 bus_dmamap_destroy( 2322 sc_if->sk_cdata.sk_jumbo_rx_tag, 2323 jrxd->rx_dmamap); 2324 jrxd->rx_dmamap = NULL; 2325 } 2326 } 2327 if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) { 2328 bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag, 2329 sc_if->sk_cdata.sk_jumbo_rx_sparemap); 2330 sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL; 2331 } 2332 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag); 2333 sc_if->sk_cdata.sk_jumbo_rx_tag = NULL; 2334 } 2335 } 2336 2337 static void 2338 sk_txcksum(ifp, m, f) 2339 struct ifnet *ifp; 2340 struct mbuf *m; 2341 struct sk_tx_desc *f; 2342 { 2343 struct ip *ip; 2344 u_int16_t offset; 2345 u_int8_t *p; 2346 2347 offset = sizeof(struct ip) + ETHER_HDR_LEN; 2348 for(; m && m->m_len == 0; m = m->m_next) 2349 ; 2350 if (m == NULL || m->m_len < ETHER_HDR_LEN) { 2351 if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__); 2352 /* checksum may be corrupted */ 2353 goto sendit; 2354 } 2355 if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) { 2356 if (m->m_len != ETHER_HDR_LEN) { 2357 if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n", 2358 __func__); 2359 /* checksum may be corrupted */ 2360 goto sendit; 2361 } 2362 for(m = m->m_next; m && m->m_len == 0; m = m->m_next) 2363 ; 2364 if (m == NULL) { 2365 offset = sizeof(struct ip) + ETHER_HDR_LEN; 2366 /* checksum may be corrupted */ 2367 goto sendit; 2368 } 2369 ip = mtod(m, struct ip *); 2370 } else { 2371 p = mtod(m, u_int8_t *); 2372 p += ETHER_HDR_LEN; 2373 ip = (struct ip *)p; 2374 } 2375 offset = (ip->ip_hl << 2) + ETHER_HDR_LEN; 2376 2377 sendit: 2378 f->sk_csum_startval = 0; 2379 f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) | 2380 (offset << 16)); 2381 } 2382 2383 static int 2384 sk_encap(sc_if, m_head) 2385 struct sk_if_softc *sc_if; 2386 struct mbuf **m_head; 2387 { 2388 struct sk_txdesc *txd; 2389 struct sk_tx_desc *f = NULL; 2390 struct mbuf *m; 2391 bus_dma_segment_t txsegs[SK_MAXTXSEGS]; 2392 u_int32_t cflags, frag, si, sk_ctl; 2393 int error, i, nseg; 2394 2395 SK_IF_LOCK_ASSERT(sc_if); 2396 2397 if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL) 2398 return (ENOBUFS); 2399 2400 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, 2401 txd->tx_dmamap, *m_head, txsegs, &nseg, 0); 2402 if (error == EFBIG) { 2403 m = m_defrag(*m_head, M_DONTWAIT); 2404 if (m == NULL) { 2405 m_freem(*m_head); 2406 *m_head = NULL; 2407 return (ENOMEM); 2408 } 2409 *m_head = m; 2410 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, 2411 txd->tx_dmamap, *m_head, txsegs, &nseg, 0); 2412 if (error != 0) { 2413 m_freem(*m_head); 2414 *m_head = NULL; 2415 return (error); 2416 } 2417 } else if (error != 0) 2418 return (error); 2419 if (nseg == 0) { 2420 m_freem(*m_head); 2421 *m_head = NULL; 2422 return (EIO); 2423 } 2424 if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) { 2425 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); 2426 return (ENOBUFS); 2427 } 2428 2429 m = *m_head; 2430 if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0) 2431 cflags = SK_OPCODE_CSUM; 2432 else 2433 cflags = SK_OPCODE_DEFAULT; 2434 si = frag = sc_if->sk_cdata.sk_tx_prod; 2435 for (i = 0; i < nseg; i++) { 2436 f = &sc_if->sk_rdata.sk_tx_ring[frag]; 2437 f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr)); 2438 f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr)); 2439 sk_ctl = txsegs[i].ds_len | cflags; 2440 if (i == 0) { 2441 if (cflags == SK_OPCODE_CSUM) 2442 sk_txcksum(sc_if->sk_ifp, m, f); 2443 sk_ctl |= SK_TXCTL_FIRSTFRAG; 2444 } else 2445 sk_ctl |= SK_TXCTL_OWN; 2446 f->sk_ctl = htole32(sk_ctl); 2447 sc_if->sk_cdata.sk_tx_cnt++; 2448 SK_INC(frag, SK_TX_RING_CNT); 2449 } 2450 sc_if->sk_cdata.sk_tx_prod = frag; 2451 2452 /* set EOF on the last desciptor */ 2453 frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT; 2454 f = &sc_if->sk_rdata.sk_tx_ring[frag]; 2455 f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR); 2456 2457 /* turn the first descriptor ownership to NIC */ 2458 f = &sc_if->sk_rdata.sk_tx_ring[si]; 2459 f->sk_ctl |= htole32(SK_TXCTL_OWN); 2460 2461 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q); 2462 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q); 2463 txd->tx_m = m; 2464 2465 /* sync descriptors */ 2466 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, 2467 BUS_DMASYNC_PREWRITE); 2468 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2469 sc_if->sk_cdata.sk_tx_ring_map, 2470 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2471 2472 return (0); 2473 } 2474 2475 static void 2476 sk_start(ifp) 2477 struct ifnet *ifp; 2478 { 2479 struct sk_if_softc *sc_if; 2480 2481 sc_if = ifp->if_softc; 2482 2483 SK_IF_LOCK(sc_if); 2484 sk_start_locked(ifp); 2485 SK_IF_UNLOCK(sc_if); 2486 2487 return; 2488 } 2489 2490 static void 2491 sk_start_locked(ifp) 2492 struct ifnet *ifp; 2493 { 2494 struct sk_softc *sc; 2495 struct sk_if_softc *sc_if; 2496 struct mbuf *m_head; 2497 int enq; 2498 2499 sc_if = ifp->if_softc; 2500 sc = sc_if->sk_softc; 2501 2502 SK_IF_LOCK_ASSERT(sc_if); 2503 2504 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2505 sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) { 2506 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2507 if (m_head == NULL) 2508 break; 2509 2510 /* 2511 * Pack the data into the transmit ring. If we 2512 * don't have room, set the OACTIVE flag and wait 2513 * for the NIC to drain the ring. 2514 */ 2515 if (sk_encap(sc_if, &m_head)) { 2516 if (m_head == NULL) 2517 break; 2518 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2519 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2520 break; 2521 } 2522 2523 enq++; 2524 /* 2525 * If there's a BPF listener, bounce a copy of this frame 2526 * to him. 2527 */ 2528 BPF_MTAP(ifp, m_head); 2529 } 2530 2531 if (enq > 0) { 2532 /* Transmit */ 2533 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 2534 2535 /* Set a timeout in case the chip goes out to lunch. */ 2536 sc_if->sk_watchdog_timer = 5; 2537 } 2538 } 2539 2540 2541 static void 2542 sk_watchdog(arg) 2543 void *arg; 2544 { 2545 struct sk_if_softc *sc_if; 2546 struct ifnet *ifp; 2547 2548 ifp = arg; 2549 sc_if = ifp->if_softc; 2550 2551 SK_IF_LOCK_ASSERT(sc_if); 2552 2553 if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer) 2554 goto done; 2555 2556 /* 2557 * Reclaim first as there is a possibility of losing Tx completion 2558 * interrupts. 2559 */ 2560 sk_txeof(sc_if); 2561 if (sc_if->sk_cdata.sk_tx_cnt != 0) { 2562 if_printf(sc_if->sk_ifp, "watchdog timeout\n"); 2563 ifp->if_oerrors++; 2564 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2565 sk_init_locked(sc_if); 2566 } 2567 2568 done: 2569 callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); 2570 2571 return; 2572 } 2573 2574 static int 2575 skc_shutdown(dev) 2576 device_t dev; 2577 { 2578 struct sk_softc *sc; 2579 2580 sc = device_get_softc(dev); 2581 SK_LOCK(sc); 2582 2583 /* Turn off the 'driver is loaded' LED. */ 2584 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2585 2586 /* 2587 * Reset the GEnesis controller. Doing this should also 2588 * assert the resets on the attached XMAC(s). 2589 */ 2590 sk_reset(sc); 2591 SK_UNLOCK(sc); 2592 2593 return (0); 2594 } 2595 2596 static int 2597 skc_suspend(dev) 2598 device_t dev; 2599 { 2600 struct sk_softc *sc; 2601 struct sk_if_softc *sc_if0, *sc_if1; 2602 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2603 2604 sc = device_get_softc(dev); 2605 2606 SK_LOCK(sc); 2607 2608 sc_if0 = sc->sk_if[SK_PORT_A]; 2609 sc_if1 = sc->sk_if[SK_PORT_B]; 2610 if (sc_if0 != NULL) 2611 ifp0 = sc_if0->sk_ifp; 2612 if (sc_if1 != NULL) 2613 ifp1 = sc_if1->sk_ifp; 2614 if (ifp0 != NULL) 2615 sk_stop(sc_if0); 2616 if (ifp1 != NULL) 2617 sk_stop(sc_if1); 2618 sc->sk_suspended = 1; 2619 2620 SK_UNLOCK(sc); 2621 2622 return (0); 2623 } 2624 2625 static int 2626 skc_resume(dev) 2627 device_t dev; 2628 { 2629 struct sk_softc *sc; 2630 struct sk_if_softc *sc_if0, *sc_if1; 2631 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2632 2633 sc = device_get_softc(dev); 2634 2635 SK_LOCK(sc); 2636 2637 sc_if0 = sc->sk_if[SK_PORT_A]; 2638 sc_if1 = sc->sk_if[SK_PORT_B]; 2639 if (sc_if0 != NULL) 2640 ifp0 = sc_if0->sk_ifp; 2641 if (sc_if1 != NULL) 2642 ifp1 = sc_if1->sk_ifp; 2643 if (ifp0 != NULL && ifp0->if_flags & IFF_UP) 2644 sk_init_locked(sc_if0); 2645 if (ifp1 != NULL && ifp1->if_flags & IFF_UP) 2646 sk_init_locked(sc_if1); 2647 sc->sk_suspended = 0; 2648 2649 SK_UNLOCK(sc); 2650 2651 return (0); 2652 } 2653 2654 /* 2655 * According to the data sheet from SK-NET GENESIS the hardware can compute 2656 * two Rx checksums at the same time(Each checksum start position is 2657 * programmed in Rx descriptors). However it seems that TCP/UDP checksum 2658 * does not work at least on my Yukon hardware. I tried every possible ways 2659 * to get correct checksum value but couldn't get correct one. So TCP/UDP 2660 * checksum offload was disabled at the moment and only IP checksum offload 2661 * was enabled. 2662 * As nomral IP header size is 20 bytes I can't expect it would give an 2663 * increase in throughput. However it seems it doesn't hurt performance in 2664 * my testing. If there is a more detailed information for checksum secret 2665 * of the hardware in question please contact yongari@FreeBSD.org to add 2666 * TCP/UDP checksum offload support. 2667 */ 2668 static __inline void 2669 sk_rxcksum(ifp, m, csum) 2670 struct ifnet *ifp; 2671 struct mbuf *m; 2672 u_int32_t csum; 2673 { 2674 struct ether_header *eh; 2675 struct ip *ip; 2676 int32_t hlen, len, pktlen; 2677 u_int16_t csum1, csum2, ipcsum; 2678 2679 pktlen = m->m_pkthdr.len; 2680 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 2681 return; 2682 eh = mtod(m, struct ether_header *); 2683 if (eh->ether_type != htons(ETHERTYPE_IP)) 2684 return; 2685 ip = (struct ip *)(eh + 1); 2686 if (ip->ip_v != IPVERSION) 2687 return; 2688 hlen = ip->ip_hl << 2; 2689 pktlen -= sizeof(struct ether_header); 2690 if (hlen < sizeof(struct ip)) 2691 return; 2692 if (ntohs(ip->ip_len) < hlen) 2693 return; 2694 if (ntohs(ip->ip_len) != pktlen) 2695 return; 2696 2697 csum1 = htons(csum & 0xffff); 2698 csum2 = htons((csum >> 16) & 0xffff); 2699 ipcsum = in_addword(csum1, ~csum2 & 0xffff); 2700 /* checksum fixup for IP options */ 2701 len = hlen - sizeof(struct ip); 2702 if (len > 0) { 2703 /* 2704 * If the second checksum value is correct we can compute IP 2705 * checksum with simple math. Unfortunately the second checksum 2706 * value is wrong so we can't verify the checksum from the 2707 * value(It seems there is some magic here to get correct 2708 * value). If the second checksum value is correct it also 2709 * means we can get TCP/UDP checksum) here. However, it still 2710 * needs pseudo header checksum calculation due to hardware 2711 * limitations. 2712 */ 2713 return; 2714 } 2715 m->m_pkthdr.csum_flags = CSUM_IP_CHECKED; 2716 if (ipcsum == 0xffff) 2717 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2718 } 2719 2720 static __inline int 2721 sk_rxvalid(sc, stat, len) 2722 struct sk_softc *sc; 2723 u_int32_t stat, len; 2724 { 2725 2726 if (sc->sk_type == SK_GENESIS) { 2727 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME || 2728 XM_RXSTAT_BYTES(stat) != len) 2729 return (0); 2730 } else { 2731 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR | 2732 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | 2733 YU_RXSTAT_JABBER)) != 0 || 2734 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK || 2735 YU_RXSTAT_BYTES(stat) != len) 2736 return (0); 2737 } 2738 2739 return (1); 2740 } 2741 2742 static void 2743 sk_rxeof(sc_if) 2744 struct sk_if_softc *sc_if; 2745 { 2746 struct sk_softc *sc; 2747 struct mbuf *m; 2748 struct ifnet *ifp; 2749 struct sk_rx_desc *cur_rx; 2750 struct sk_rxdesc *rxd; 2751 int cons, prog; 2752 u_int32_t csum, rxstat, sk_ctl; 2753 2754 sc = sc_if->sk_softc; 2755 ifp = sc_if->sk_ifp; 2756 2757 SK_IF_LOCK_ASSERT(sc_if); 2758 2759 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 2760 sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD); 2761 2762 prog = 0; 2763 for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT; 2764 prog++, SK_INC(cons, SK_RX_RING_CNT)) { 2765 cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons]; 2766 sk_ctl = le32toh(cur_rx->sk_ctl); 2767 if ((sk_ctl & SK_RXCTL_OWN) != 0) 2768 break; 2769 rxd = &sc_if->sk_cdata.sk_rxdesc[cons]; 2770 rxstat = le32toh(cur_rx->sk_xmac_rxstat); 2771 2772 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | 2773 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | 2774 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || 2775 SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || 2776 SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN || 2777 sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { 2778 ifp->if_ierrors++; 2779 sk_discard_rxbuf(sc_if, cons); 2780 continue; 2781 } 2782 2783 m = rxd->rx_m; 2784 csum = le32toh(cur_rx->sk_csum); 2785 if (sk_newbuf(sc_if, cons) != 0) { 2786 ifp->if_iqdrops++; 2787 /* reuse old buffer */ 2788 sk_discard_rxbuf(sc_if, cons); 2789 continue; 2790 } 2791 m->m_pkthdr.rcvif = ifp; 2792 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); 2793 ifp->if_ipackets++; 2794 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2795 sk_rxcksum(ifp, m, csum); 2796 SK_IF_UNLOCK(sc_if); 2797 (*ifp->if_input)(ifp, m); 2798 SK_IF_LOCK(sc_if); 2799 } 2800 2801 if (prog > 0) { 2802 sc_if->sk_cdata.sk_rx_cons = cons; 2803 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 2804 sc_if->sk_cdata.sk_rx_ring_map, 2805 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2806 } 2807 } 2808 2809 static void 2810 sk_jumbo_rxeof(sc_if) 2811 struct sk_if_softc *sc_if; 2812 { 2813 struct sk_softc *sc; 2814 struct mbuf *m; 2815 struct ifnet *ifp; 2816 struct sk_rx_desc *cur_rx; 2817 struct sk_rxdesc *jrxd; 2818 int cons, prog; 2819 u_int32_t csum, rxstat, sk_ctl; 2820 2821 sc = sc_if->sk_softc; 2822 ifp = sc_if->sk_ifp; 2823 2824 SK_IF_LOCK_ASSERT(sc_if); 2825 2826 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2827 sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD); 2828 2829 prog = 0; 2830 for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons; 2831 prog < SK_JUMBO_RX_RING_CNT; 2832 prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) { 2833 cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons]; 2834 sk_ctl = le32toh(cur_rx->sk_ctl); 2835 if ((sk_ctl & SK_RXCTL_OWN) != 0) 2836 break; 2837 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons]; 2838 rxstat = le32toh(cur_rx->sk_xmac_rxstat); 2839 2840 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | 2841 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | 2842 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || 2843 SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || 2844 SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN || 2845 sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { 2846 ifp->if_ierrors++; 2847 sk_discard_jumbo_rxbuf(sc_if, cons); 2848 continue; 2849 } 2850 2851 m = jrxd->rx_m; 2852 csum = le32toh(cur_rx->sk_csum); 2853 if (sk_jumbo_newbuf(sc_if, cons) != 0) { 2854 ifp->if_iqdrops++; 2855 /* reuse old buffer */ 2856 sk_discard_jumbo_rxbuf(sc_if, cons); 2857 continue; 2858 } 2859 m->m_pkthdr.rcvif = ifp; 2860 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); 2861 ifp->if_ipackets++; 2862 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2863 sk_rxcksum(ifp, m, csum); 2864 SK_IF_UNLOCK(sc_if); 2865 (*ifp->if_input)(ifp, m); 2866 SK_IF_LOCK(sc_if); 2867 } 2868 2869 if (prog > 0) { 2870 sc_if->sk_cdata.sk_jumbo_rx_cons = cons; 2871 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2872 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 2873 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2874 } 2875 } 2876 2877 static void 2878 sk_txeof(sc_if) 2879 struct sk_if_softc *sc_if; 2880 { 2881 struct sk_softc *sc; 2882 struct sk_txdesc *txd; 2883 struct sk_tx_desc *cur_tx; 2884 struct ifnet *ifp; 2885 u_int32_t idx, sk_ctl; 2886 2887 sc = sc_if->sk_softc; 2888 ifp = sc_if->sk_ifp; 2889 2890 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); 2891 if (txd == NULL) 2892 return; 2893 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2894 sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD); 2895 /* 2896 * Go through our tx ring and free mbufs for those 2897 * frames that have been sent. 2898 */ 2899 for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) { 2900 if (sc_if->sk_cdata.sk_tx_cnt <= 0) 2901 break; 2902 cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx]; 2903 sk_ctl = le32toh(cur_tx->sk_ctl); 2904 if (sk_ctl & SK_TXCTL_OWN) 2905 break; 2906 sc_if->sk_cdata.sk_tx_cnt--; 2907 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2908 if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0) 2909 continue; 2910 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, 2911 BUS_DMASYNC_POSTWRITE); 2912 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); 2913 2914 ifp->if_opackets++; 2915 m_freem(txd->tx_m); 2916 txd->tx_m = NULL; 2917 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q); 2918 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); 2919 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); 2920 } 2921 sc_if->sk_cdata.sk_tx_cons = idx; 2922 sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0; 2923 2924 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2925 sc_if->sk_cdata.sk_tx_ring_map, 2926 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2927 } 2928 2929 static void 2930 sk_tick(xsc_if) 2931 void *xsc_if; 2932 { 2933 struct sk_if_softc *sc_if; 2934 struct mii_data *mii; 2935 struct ifnet *ifp; 2936 int i; 2937 2938 sc_if = xsc_if; 2939 ifp = sc_if->sk_ifp; 2940 mii = device_get_softc(sc_if->sk_miibus); 2941 2942 if (!(ifp->if_flags & IFF_UP)) 2943 return; 2944 2945 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2946 sk_intr_bcom(sc_if); 2947 return; 2948 } 2949 2950 /* 2951 * According to SysKonnect, the correct way to verify that 2952 * the link has come back up is to poll bit 0 of the GPIO 2953 * register three times. This pin has the signal from the 2954 * link_sync pin connected to it; if we read the same link 2955 * state 3 times in a row, we know the link is up. 2956 */ 2957 for (i = 0; i < 3; i++) { 2958 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 2959 break; 2960 } 2961 2962 if (i != 3) { 2963 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2964 return; 2965 } 2966 2967 /* Turn the GP0 interrupt back on. */ 2968 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2969 SK_XM_READ_2(sc_if, XM_ISR); 2970 mii_tick(mii); 2971 callout_stop(&sc_if->sk_tick_ch); 2972 } 2973 2974 static void 2975 sk_yukon_tick(xsc_if) 2976 void *xsc_if; 2977 { 2978 struct sk_if_softc *sc_if; 2979 struct mii_data *mii; 2980 2981 sc_if = xsc_if; 2982 mii = device_get_softc(sc_if->sk_miibus); 2983 2984 mii_tick(mii); 2985 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); 2986 } 2987 2988 static void 2989 sk_intr_bcom(sc_if) 2990 struct sk_if_softc *sc_if; 2991 { 2992 struct mii_data *mii; 2993 struct ifnet *ifp; 2994 int status; 2995 mii = device_get_softc(sc_if->sk_miibus); 2996 ifp = sc_if->sk_ifp; 2997 2998 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2999 3000 /* 3001 * Read the PHY interrupt register to make sure 3002 * we clear any pending interrupts. 3003 */ 3004 status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); 3005 3006 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3007 sk_init_xmac(sc_if); 3008 return; 3009 } 3010 3011 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { 3012 int lstat; 3013 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 3014 BRGPHY_MII_AUXSTS); 3015 3016 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 3017 mii_mediachg(mii); 3018 /* Turn off the link LED. */ 3019 SK_IF_WRITE_1(sc_if, 0, 3020 SK_LINKLED1_CTL, SK_LINKLED_OFF); 3021 sc_if->sk_link = 0; 3022 } else if (status & BRGPHY_ISR_LNK_CHG) { 3023 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3024 BRGPHY_MII_IMR, 0xFF00); 3025 mii_tick(mii); 3026 sc_if->sk_link = 1; 3027 /* Turn on the link LED. */ 3028 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 3029 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| 3030 SK_LINKLED_BLINK_OFF); 3031 } else { 3032 mii_tick(mii); 3033 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3034 } 3035 } 3036 3037 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3038 3039 return; 3040 } 3041 3042 static void 3043 sk_intr_xmac(sc_if) 3044 struct sk_if_softc *sc_if; 3045 { 3046 struct sk_softc *sc; 3047 u_int16_t status; 3048 3049 sc = sc_if->sk_softc; 3050 status = SK_XM_READ_2(sc_if, XM_ISR); 3051 3052 /* 3053 * Link has gone down. Start MII tick timeout to 3054 * watch for link resync. 3055 */ 3056 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 3057 if (status & XM_ISR_GP0_SET) { 3058 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 3059 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3060 } 3061 3062 if (status & XM_ISR_AUTONEG_DONE) { 3063 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3064 } 3065 } 3066 3067 if (status & XM_IMR_TX_UNDERRUN) 3068 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 3069 3070 if (status & XM_IMR_RX_OVERRUN) 3071 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 3072 3073 status = SK_XM_READ_2(sc_if, XM_ISR); 3074 3075 return; 3076 } 3077 3078 static void 3079 sk_intr_yukon(sc_if) 3080 struct sk_if_softc *sc_if; 3081 { 3082 u_int8_t status; 3083 3084 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR); 3085 /* RX overrun */ 3086 if ((status & SK_GMAC_INT_RX_OVER) != 0) { 3087 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 3088 SK_RFCTL_RX_FIFO_OVER); 3089 } 3090 /* TX underrun */ 3091 if ((status & SK_GMAC_INT_TX_UNDER) != 0) { 3092 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 3093 SK_TFCTL_TX_FIFO_UNDER); 3094 } 3095 } 3096 3097 static void 3098 sk_intr(xsc) 3099 void *xsc; 3100 { 3101 struct sk_softc *sc = xsc; 3102 struct sk_if_softc *sc_if0, *sc_if1; 3103 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 3104 u_int32_t status; 3105 3106 SK_LOCK(sc); 3107 3108 status = CSR_READ_4(sc, SK_ISSR); 3109 if (status == 0 || status == 0xffffffff || sc->sk_suspended) 3110 goto done_locked; 3111 3112 sc_if0 = sc->sk_if[SK_PORT_A]; 3113 sc_if1 = sc->sk_if[SK_PORT_B]; 3114 3115 if (sc_if0 != NULL) 3116 ifp0 = sc_if0->sk_ifp; 3117 if (sc_if1 != NULL) 3118 ifp1 = sc_if1->sk_ifp; 3119 3120 for (; (status &= sc->sk_intrmask) != 0;) { 3121 /* Handle receive interrupts first. */ 3122 if (status & SK_ISR_RX1_EOF) { 3123 if (ifp0->if_mtu > SK_MAX_FRAMELEN) 3124 sk_jumbo_rxeof(sc_if0); 3125 else 3126 sk_rxeof(sc_if0); 3127 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 3128 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 3129 } 3130 if (status & SK_ISR_RX2_EOF) { 3131 if (ifp1->if_mtu > SK_MAX_FRAMELEN) 3132 sk_jumbo_rxeof(sc_if1); 3133 else 3134 sk_rxeof(sc_if1); 3135 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 3136 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 3137 } 3138 3139 /* Then transmit interrupts. */ 3140 if (status & SK_ISR_TX1_S_EOF) { 3141 sk_txeof(sc_if0); 3142 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF); 3143 } 3144 if (status & SK_ISR_TX2_S_EOF) { 3145 sk_txeof(sc_if1); 3146 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF); 3147 } 3148 3149 /* Then MAC interrupts. */ 3150 if (status & SK_ISR_MAC1 && 3151 ifp0->if_drv_flags & IFF_DRV_RUNNING) { 3152 if (sc->sk_type == SK_GENESIS) 3153 sk_intr_xmac(sc_if0); 3154 else 3155 sk_intr_yukon(sc_if0); 3156 } 3157 3158 if (status & SK_ISR_MAC2 && 3159 ifp1->if_drv_flags & IFF_DRV_RUNNING) { 3160 if (sc->sk_type == SK_GENESIS) 3161 sk_intr_xmac(sc_if1); 3162 else 3163 sk_intr_yukon(sc_if1); 3164 } 3165 3166 if (status & SK_ISR_EXTERNAL_REG) { 3167 if (ifp0 != NULL && 3168 sc_if0->sk_phytype == SK_PHYTYPE_BCOM) 3169 sk_intr_bcom(sc_if0); 3170 if (ifp1 != NULL && 3171 sc_if1->sk_phytype == SK_PHYTYPE_BCOM) 3172 sk_intr_bcom(sc_if1); 3173 } 3174 status = CSR_READ_4(sc, SK_ISSR); 3175 } 3176 3177 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3178 3179 if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3180 sk_start_locked(ifp0); 3181 if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3182 sk_start_locked(ifp1); 3183 3184 done_locked: 3185 SK_UNLOCK(sc); 3186 } 3187 3188 static void 3189 sk_init_xmac(sc_if) 3190 struct sk_if_softc *sc_if; 3191 { 3192 struct sk_softc *sc; 3193 struct ifnet *ifp; 3194 u_int16_t eaddr[(ETHER_ADDR_LEN+1)/2]; 3195 struct sk_bcom_hack bhack[] = { 3196 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 3197 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 3198 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 3199 { 0, 0 } }; 3200 3201 SK_IF_LOCK_ASSERT(sc_if); 3202 3203 sc = sc_if->sk_softc; 3204 ifp = sc_if->sk_ifp; 3205 3206 /* Unreset the XMAC. */ 3207 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 3208 DELAY(1000); 3209 3210 /* Reset the XMAC's internal state. */ 3211 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 3212 3213 /* Save the XMAC II revision */ 3214 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 3215 3216 /* 3217 * Perform additional initialization for external PHYs, 3218 * namely for the 1000baseTX cards that use the XMAC's 3219 * GMII mode. 3220 */ 3221 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 3222 int i = 0; 3223 u_int32_t val; 3224 3225 /* Take PHY out of reset. */ 3226 val = sk_win_read_4(sc, SK_GPIO); 3227 if (sc_if->sk_port == SK_PORT_A) 3228 val |= SK_GPIO_DIR0|SK_GPIO_DAT0; 3229 else 3230 val |= SK_GPIO_DIR2|SK_GPIO_DAT2; 3231 sk_win_write_4(sc, SK_GPIO, val); 3232 3233 /* Enable GMII mode on the XMAC. */ 3234 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 3235 3236 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3237 BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); 3238 DELAY(10000); 3239 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3240 BRGPHY_MII_IMR, 0xFFF0); 3241 3242 /* 3243 * Early versions of the BCM5400 apparently have 3244 * a bug that requires them to have their reserved 3245 * registers initialized to some magic values. I don't 3246 * know what the numbers do, I'm just the messenger. 3247 */ 3248 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03) 3249 == 0x6041) { 3250 while(bhack[i].reg) { 3251 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3252 bhack[i].reg, bhack[i].val); 3253 i++; 3254 } 3255 } 3256 } 3257 3258 /* Set station address */ 3259 bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN); 3260 SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]); 3261 SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]); 3262 SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]); 3263 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 3264 3265 if (ifp->if_flags & IFF_BROADCAST) { 3266 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 3267 } else { 3268 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 3269 } 3270 3271 /* We don't need the FCS appended to the packet. */ 3272 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 3273 3274 /* We want short frames padded to 60 bytes. */ 3275 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 3276 3277 /* 3278 * Enable the reception of all error frames. This is is 3279 * a necessary evil due to the design of the XMAC. The 3280 * XMAC's receive FIFO is only 8K in size, however jumbo 3281 * frames can be up to 9000 bytes in length. When bad 3282 * frame filtering is enabled, the XMAC's RX FIFO operates 3283 * in 'store and forward' mode. For this to work, the 3284 * entire frame has to fit into the FIFO, but that means 3285 * that jumbo frames larger than 8192 bytes will be 3286 * truncated. Disabling all bad frame filtering causes 3287 * the RX FIFO to operate in streaming mode, in which 3288 * case the XMAC will start transfering frames out of the 3289 * RX FIFO as soon as the FIFO threshold is reached. 3290 */ 3291 if (ifp->if_mtu > SK_MAX_FRAMELEN) { 3292 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| 3293 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| 3294 XM_MODE_RX_INRANGELEN); 3295 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 3296 } else 3297 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 3298 3299 /* 3300 * Bump up the transmit threshold. This helps hold off transmit 3301 * underruns when we're blasting traffic from both ports at once. 3302 */ 3303 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 3304 3305 /* Set promiscuous mode */ 3306 sk_setpromisc(sc_if); 3307 3308 /* Set multicast filter */ 3309 sk_setmulti(sc_if); 3310 3311 /* Clear and enable interrupts */ 3312 SK_XM_READ_2(sc_if, XM_ISR); 3313 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 3314 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 3315 else 3316 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 3317 3318 /* Configure MAC arbiter */ 3319 switch(sc_if->sk_xmac_rev) { 3320 case XM_XMAC_REV_B2: 3321 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 3322 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 3323 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 3324 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 3325 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 3326 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 3327 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 3328 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 3329 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 3330 break; 3331 case XM_XMAC_REV_C1: 3332 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 3333 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 3334 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 3335 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 3336 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 3337 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 3338 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 3339 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 3340 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 3341 break; 3342 default: 3343 break; 3344 } 3345 sk_win_write_2(sc, SK_MACARB_CTL, 3346 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); 3347 3348 sc_if->sk_link = 1; 3349 3350 return; 3351 } 3352 3353 static void 3354 sk_init_yukon(sc_if) 3355 struct sk_if_softc *sc_if; 3356 { 3357 u_int32_t phy, v; 3358 u_int16_t reg; 3359 struct sk_softc *sc; 3360 struct ifnet *ifp; 3361 int i; 3362 3363 SK_IF_LOCK_ASSERT(sc_if); 3364 3365 sc = sc_if->sk_softc; 3366 ifp = sc_if->sk_ifp; 3367 3368 if (sc->sk_type == SK_YUKON_LITE && 3369 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 3370 /* 3371 * Workaround code for COMA mode, set PHY reset. 3372 * Otherwise it will not correctly take chip out of 3373 * powerdown (coma) 3374 */ 3375 v = sk_win_read_4(sc, SK_GPIO); 3376 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9; 3377 sk_win_write_4(sc, SK_GPIO, v); 3378 } 3379 3380 /* GMAC and GPHY Reset */ 3381 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 3382 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 3383 DELAY(1000); 3384 3385 if (sc->sk_type == SK_YUKON_LITE && 3386 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 3387 /* 3388 * Workaround code for COMA mode, clear PHY reset 3389 */ 3390 v = sk_win_read_4(sc, SK_GPIO); 3391 v |= SK_GPIO_DIR9; 3392 v &= ~SK_GPIO_DAT9; 3393 sk_win_write_4(sc, SK_GPIO, v); 3394 } 3395 3396 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | 3397 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; 3398 3399 if (sc->sk_coppertype) 3400 phy |= SK_GPHY_COPPER; 3401 else 3402 phy |= SK_GPHY_FIBER; 3403 3404 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); 3405 DELAY(1000); 3406 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); 3407 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 3408 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 3409 3410 /* unused read of the interrupt source register */ 3411 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 3412 3413 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 3414 3415 /* MIB Counter Clear Mode set */ 3416 reg |= YU_PAR_MIB_CLR; 3417 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 3418 3419 /* MIB Counter Clear Mode clear */ 3420 reg &= ~YU_PAR_MIB_CLR; 3421 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 3422 3423 /* receive control reg */ 3424 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); 3425 3426 /* transmit parameter register */ 3427 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 3428 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); 3429 3430 /* serial mode register */ 3431 reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e); 3432 if (ifp->if_mtu > SK_MAX_FRAMELEN) 3433 reg |= YU_SMR_MFL_JUMBO; 3434 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg); 3435 3436 /* Setup Yukon's address */ 3437 for (i = 0; i < 3; i++) { 3438 /* Write Source Address 1 (unicast filter) */ 3439 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 3440 IF_LLADDR(sc_if->sk_ifp)[i * 2] | 3441 IF_LLADDR(sc_if->sk_ifp)[i * 2 + 1] << 8); 3442 } 3443 3444 for (i = 0; i < 3; i++) { 3445 reg = sk_win_read_2(sc_if->sk_softc, 3446 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); 3447 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); 3448 } 3449 3450 /* Set promiscuous mode */ 3451 sk_setpromisc(sc_if); 3452 3453 /* Set multicast filter */ 3454 sk_setmulti(sc_if); 3455 3456 /* enable interrupt mask for counter overflows */ 3457 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 3458 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 3459 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 3460 3461 /* Configure RX MAC FIFO Flush Mask */ 3462 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR | 3463 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT | 3464 YU_RXSTAT_JABBER; 3465 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v); 3466 3467 /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */ 3468 if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0) 3469 v = SK_TFCTL_OPERATION_ON; 3470 else 3471 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON; 3472 /* Configure RX MAC FIFO */ 3473 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 3474 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v); 3475 3476 /* Increase flush threshould to 64 bytes */ 3477 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, 3478 SK_RFCTL_FIFO_THRESHOLD + 1); 3479 3480 /* Configure TX MAC FIFO */ 3481 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 3482 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 3483 } 3484 3485 /* 3486 * Note that to properly initialize any part of the GEnesis chip, 3487 * you first have to take it out of reset mode. 3488 */ 3489 static void 3490 sk_init(xsc) 3491 void *xsc; 3492 { 3493 struct sk_if_softc *sc_if = xsc; 3494 3495 SK_IF_LOCK(sc_if); 3496 sk_init_locked(sc_if); 3497 SK_IF_UNLOCK(sc_if); 3498 3499 return; 3500 } 3501 3502 static void 3503 sk_init_locked(sc_if) 3504 struct sk_if_softc *sc_if; 3505 { 3506 struct sk_softc *sc; 3507 struct ifnet *ifp; 3508 struct mii_data *mii; 3509 u_int16_t reg; 3510 u_int32_t imr; 3511 int error; 3512 3513 SK_IF_LOCK_ASSERT(sc_if); 3514 3515 ifp = sc_if->sk_ifp; 3516 sc = sc_if->sk_softc; 3517 mii = device_get_softc(sc_if->sk_miibus); 3518 3519 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3520 return; 3521 3522 /* Cancel pending I/O and free all RX/TX buffers. */ 3523 sk_stop(sc_if); 3524 3525 if (sc->sk_type == SK_GENESIS) { 3526 /* Configure LINK_SYNC LED */ 3527 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 3528 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 3529 SK_LINKLED_LINKSYNC_ON); 3530 3531 /* Configure RX LED */ 3532 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, 3533 SK_RXLEDCTL_COUNTER_START); 3534 3535 /* Configure TX LED */ 3536 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, 3537 SK_TXLEDCTL_COUNTER_START); 3538 } 3539 3540 /* 3541 * Configure descriptor poll timer 3542 * 3543 * SK-NET GENESIS data sheet says that possibility of losing Start 3544 * transmit command due to CPU/cache related interim storage problems 3545 * under certain conditions. The document recommends a polling 3546 * mechanism to send a Start transmit command to initiate transfer 3547 * of ready descriptors regulary. To cope with this issue sk(4) now 3548 * enables descriptor poll timer to initiate descriptor processing 3549 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still 3550 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx 3551 * command instead of waiting for next descriptor polling time. 3552 * The same rule may apply to Rx side too but it seems that is not 3553 * needed at the moment. 3554 * Since sk(4) uses descriptor polling as a last resort there is no 3555 * need to set smaller polling time than maximum allowable one. 3556 */ 3557 SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX); 3558 3559 /* Configure I2C registers */ 3560 3561 /* Configure XMAC(s) */ 3562 switch (sc->sk_type) { 3563 case SK_GENESIS: 3564 sk_init_xmac(sc_if); 3565 break; 3566 case SK_YUKON: 3567 case SK_YUKON_LITE: 3568 case SK_YUKON_LP: 3569 sk_init_yukon(sc_if); 3570 break; 3571 } 3572 mii_mediachg(mii); 3573 3574 if (sc->sk_type == SK_GENESIS) { 3575 /* Configure MAC FIFOs */ 3576 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 3577 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 3578 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 3579 3580 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 3581 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 3582 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 3583 } 3584 3585 /* Configure transmit arbiter(s) */ 3586 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 3587 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); 3588 3589 /* Configure RAMbuffers */ 3590 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 3591 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 3592 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 3593 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 3594 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 3595 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 3596 3597 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 3598 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 3599 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 3600 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 3601 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 3602 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 3603 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 3604 3605 /* Configure BMUs */ 3606 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 3607 if (ifp->if_mtu > SK_MAX_FRAMELEN) { 3608 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 3609 SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); 3610 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 3611 SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); 3612 } else { 3613 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 3614 SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0))); 3615 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 3616 SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0))); 3617 } 3618 3619 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 3620 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 3621 SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0))); 3622 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 3623 SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0))); 3624 3625 /* Init descriptors */ 3626 if (ifp->if_mtu > SK_MAX_FRAMELEN) 3627 error = sk_init_jumbo_rx_ring(sc_if); 3628 else 3629 error = sk_init_rx_ring(sc_if); 3630 if (error != 0) { 3631 device_printf(sc_if->sk_if_dev, 3632 "initialization failed: no memory for rx buffers\n"); 3633 sk_stop(sc_if); 3634 return; 3635 } 3636 sk_init_tx_ring(sc_if); 3637 3638 /* Set interrupt moderation if changed via sysctl. */ 3639 imr = sk_win_read_4(sc, SK_IMTIMERINIT); 3640 if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) { 3641 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, 3642 sc->sk_int_ticks)); 3643 if (bootverbose) 3644 device_printf(sc_if->sk_if_dev, 3645 "interrupt moderation is %d us.\n", 3646 sc->sk_int_mod); 3647 } 3648 3649 /* Configure interrupt handling */ 3650 CSR_READ_4(sc, SK_ISSR); 3651 if (sc_if->sk_port == SK_PORT_A) 3652 sc->sk_intrmask |= SK_INTRS1; 3653 else 3654 sc->sk_intrmask |= SK_INTRS2; 3655 3656 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 3657 3658 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3659 3660 /* Start BMUs. */ 3661 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 3662 3663 switch(sc->sk_type) { 3664 case SK_GENESIS: 3665 /* Enable XMACs TX and RX state machines */ 3666 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 3667 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3668 break; 3669 case SK_YUKON: 3670 case SK_YUKON_LITE: 3671 case SK_YUKON_LP: 3672 reg = SK_YU_READ_2(sc_if, YUKON_GPCR); 3673 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; 3674 #if 0 3675 /* XXX disable 100Mbps and full duplex mode? */ 3676 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS); 3677 #endif 3678 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); 3679 } 3680 3681 /* Activate descriptor polling timer */ 3682 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START); 3683 /* start transfer of Tx descriptors */ 3684 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 3685 3686 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3687 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3688 3689 switch (sc->sk_type) { 3690 case SK_YUKON: 3691 case SK_YUKON_LITE: 3692 case SK_YUKON_LP: 3693 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); 3694 break; 3695 } 3696 3697 callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); 3698 3699 return; 3700 } 3701 3702 static void 3703 sk_stop(sc_if) 3704 struct sk_if_softc *sc_if; 3705 { 3706 int i; 3707 struct sk_softc *sc; 3708 struct sk_txdesc *txd; 3709 struct sk_rxdesc *rxd; 3710 struct sk_rxdesc *jrxd; 3711 struct ifnet *ifp; 3712 u_int32_t val; 3713 3714 SK_IF_LOCK_ASSERT(sc_if); 3715 sc = sc_if->sk_softc; 3716 ifp = sc_if->sk_ifp; 3717 3718 callout_stop(&sc_if->sk_tick_ch); 3719 callout_stop(&sc_if->sk_watchdog_ch); 3720 3721 /* stop Tx descriptor polling timer */ 3722 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP); 3723 /* stop transfer of Tx descriptors */ 3724 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP); 3725 for (i = 0; i < SK_TIMEOUT; i++) { 3726 val = CSR_READ_4(sc, sc_if->sk_tx_bmu); 3727 if ((val & SK_TXBMU_TX_STOP) == 0) 3728 break; 3729 DELAY(1); 3730 } 3731 if (i == SK_TIMEOUT) 3732 device_printf(sc_if->sk_if_dev, 3733 "can not stop transfer of Tx descriptor\n"); 3734 /* stop transfer of Rx descriptors */ 3735 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP); 3736 for (i = 0; i < SK_TIMEOUT; i++) { 3737 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR); 3738 if ((val & SK_RXBMU_RX_STOP) == 0) 3739 break; 3740 DELAY(1); 3741 } 3742 if (i == SK_TIMEOUT) 3743 device_printf(sc_if->sk_if_dev, 3744 "can not stop transfer of Rx descriptor\n"); 3745 3746 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 3747 /* Put PHY back into reset. */ 3748 val = sk_win_read_4(sc, SK_GPIO); 3749 if (sc_if->sk_port == SK_PORT_A) { 3750 val |= SK_GPIO_DIR0; 3751 val &= ~SK_GPIO_DAT0; 3752 } else { 3753 val |= SK_GPIO_DIR2; 3754 val &= ~SK_GPIO_DAT2; 3755 } 3756 sk_win_write_4(sc, SK_GPIO, val); 3757 } 3758 3759 /* Turn off various components of this interface. */ 3760 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 3761 switch (sc->sk_type) { 3762 case SK_GENESIS: 3763 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); 3764 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 3765 break; 3766 case SK_YUKON: 3767 case SK_YUKON_LITE: 3768 case SK_YUKON_LP: 3769 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 3770 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 3771 break; 3772 } 3773 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 3774 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 3775 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 3776 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 3777 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 3778 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 3779 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 3780 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 3781 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 3782 3783 /* Disable interrupts */ 3784 if (sc_if->sk_port == SK_PORT_A) 3785 sc->sk_intrmask &= ~SK_INTRS1; 3786 else 3787 sc->sk_intrmask &= ~SK_INTRS2; 3788 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3789 3790 SK_XM_READ_2(sc_if, XM_ISR); 3791 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 3792 3793 /* Free RX and TX mbufs still in the queues. */ 3794 for (i = 0; i < SK_RX_RING_CNT; i++) { 3795 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 3796 if (rxd->rx_m != NULL) { 3797 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, 3798 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3799 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, 3800 rxd->rx_dmamap); 3801 m_freem(rxd->rx_m); 3802 rxd->rx_m = NULL; 3803 } 3804 } 3805 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 3806 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 3807 if (jrxd->rx_m != NULL) { 3808 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, 3809 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3810 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, 3811 jrxd->rx_dmamap); 3812 m_freem(jrxd->rx_m); 3813 jrxd->rx_m = NULL; 3814 } 3815 } 3816 for (i = 0; i < SK_TX_RING_CNT; i++) { 3817 txd = &sc_if->sk_cdata.sk_txdesc[i]; 3818 if (txd->tx_m != NULL) { 3819 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, 3820 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3821 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, 3822 txd->tx_dmamap); 3823 m_freem(txd->tx_m); 3824 txd->tx_m = NULL; 3825 } 3826 } 3827 3828 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE); 3829 3830 return; 3831 } 3832 3833 static int 3834 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3835 { 3836 int error, value; 3837 3838 if (!arg1) 3839 return (EINVAL); 3840 value = *(int *)arg1; 3841 error = sysctl_handle_int(oidp, &value, 0, req); 3842 if (error || !req->newptr) 3843 return (error); 3844 if (value < low || value > high) 3845 return (EINVAL); 3846 *(int *)arg1 = value; 3847 return (0); 3848 } 3849 3850 static int 3851 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS) 3852 { 3853 return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX)); 3854 } 3855