xref: /freebsd/sys/dev/sk/if_sk.c (revision 2be1a816b9ff69588e55be0a84cbe2a31efc0f2f)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/if_vlan_var.h>
109 
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/ip.h>
113 
114 #include <machine/bus.h>
115 #include <machine/in_cksum.h>
116 #include <machine/resource.h>
117 #include <sys/rman.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/brgphyreg.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129 
130 #include <dev/sk/if_skreg.h>
131 #include <dev/sk/xmaciireg.h>
132 #include <dev/sk/yukonreg.h>
133 
134 MODULE_DEPEND(sk, pci, 1, 1, 1);
135 MODULE_DEPEND(sk, ether, 1, 1, 1);
136 MODULE_DEPEND(sk, miibus, 1, 1, 1);
137 
138 /* "device miibus" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140 
141 #ifndef lint
142 static const char rcsid[] =
143   "$FreeBSD$";
144 #endif
145 
146 static struct sk_type sk_devs[] = {
147 	{
148 		VENDORID_SK,
149 		DEVICEID_SK_V1,
150 		"SysKonnect Gigabit Ethernet (V1.0)"
151 	},
152 	{
153 		VENDORID_SK,
154 		DEVICEID_SK_V2,
155 		"SysKonnect Gigabit Ethernet (V2.0)"
156 	},
157 	{
158 		VENDORID_MARVELL,
159 		DEVICEID_SK_V2,
160 		"Marvell Gigabit Ethernet"
161 	},
162 	{
163 		VENDORID_MARVELL,
164 		DEVICEID_BELKIN_5005,
165 		"Belkin F5D5005 Gigabit Ethernet"
166 	},
167 	{
168 		VENDORID_3COM,
169 		DEVICEID_3COM_3C940,
170 		"3Com 3C940 Gigabit Ethernet"
171 	},
172 	{
173 		VENDORID_LINKSYS,
174 		DEVICEID_LINKSYS_EG1032,
175 		"Linksys EG1032 Gigabit Ethernet"
176 	},
177 	{
178 		VENDORID_DLINK,
179 		DEVICEID_DLINK_DGE530T_A1,
180 		"D-Link DGE-530T Gigabit Ethernet"
181 	},
182 	{
183 		VENDORID_DLINK,
184 		DEVICEID_DLINK_DGE530T_B1,
185 		"D-Link DGE-530T Gigabit Ethernet"
186 	},
187 	{ 0, 0, NULL }
188 };
189 
190 static int skc_probe(device_t);
191 static int skc_attach(device_t);
192 static int skc_detach(device_t);
193 static int skc_shutdown(device_t);
194 static int skc_suspend(device_t);
195 static int skc_resume(device_t);
196 static int sk_detach(device_t);
197 static int sk_probe(device_t);
198 static int sk_attach(device_t);
199 static void sk_tick(void *);
200 static void sk_yukon_tick(void *);
201 static void sk_intr(void *);
202 static void sk_intr_xmac(struct sk_if_softc *);
203 static void sk_intr_bcom(struct sk_if_softc *);
204 static void sk_intr_yukon(struct sk_if_softc *);
205 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
206 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
207 static void sk_rxeof(struct sk_if_softc *);
208 static void sk_jumbo_rxeof(struct sk_if_softc *);
209 static void sk_txeof(struct sk_if_softc *);
210 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
211 static int sk_encap(struct sk_if_softc *, struct mbuf **);
212 static void sk_start(struct ifnet *);
213 static void sk_start_locked(struct ifnet *);
214 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
215 static void sk_init(void *);
216 static void sk_init_locked(struct sk_if_softc *);
217 static void sk_init_xmac(struct sk_if_softc *);
218 static void sk_init_yukon(struct sk_if_softc *);
219 static void sk_stop(struct sk_if_softc *);
220 static void sk_watchdog(void *);
221 static int sk_ifmedia_upd(struct ifnet *);
222 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
223 static void sk_reset(struct sk_softc *);
224 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
225 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
226 static int sk_newbuf(struct sk_if_softc *, int);
227 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
228 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
229 static int sk_dma_alloc(struct sk_if_softc *);
230 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
231 static void sk_dma_free(struct sk_if_softc *);
232 static void sk_dma_jumbo_free(struct sk_if_softc *);
233 static int sk_init_rx_ring(struct sk_if_softc *);
234 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
235 static void sk_init_tx_ring(struct sk_if_softc *);
236 static u_int32_t sk_win_read_4(struct sk_softc *, int);
237 static u_int16_t sk_win_read_2(struct sk_softc *, int);
238 static u_int8_t sk_win_read_1(struct sk_softc *, int);
239 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
241 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
242 
243 static int sk_miibus_readreg(device_t, int, int);
244 static int sk_miibus_writereg(device_t, int, int, int);
245 static void sk_miibus_statchg(device_t);
246 
247 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
248 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
249 						int);
250 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
251 
252 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
253 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
254 						int);
255 static void sk_marv_miibus_statchg(struct sk_if_softc *);
256 
257 static uint32_t sk_xmchash(const uint8_t *);
258 static uint32_t sk_gmchash(const uint8_t *);
259 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
260 static void sk_setmulti(struct sk_if_softc *);
261 static void sk_setpromisc(struct sk_if_softc *);
262 
263 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
264 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
265 
266 /* Tunables. */
267 static int jumbo_disable = 0;
268 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
269 
270 /*
271  * It seems that SK-NET GENESIS supports very simple checksum offload
272  * capability for Tx and I believe it can generate 0 checksum value for
273  * UDP packets in Tx as the hardware can't differenciate UDP packets from
274  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
275  * means sender didn't perforam checksum computation. For the safety I
276  * disabled UDP checksum offload capability at the moment. Alternatively
277  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
278  * offload routine.
279  */
280 #define SK_CSUM_FEATURES	(CSUM_TCP)
281 
282 /*
283  * Note that we have newbus methods for both the GEnesis controller
284  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
285  * the miibus code is a child of the XMACs. We need to do it this way
286  * so that the miibus drivers can access the PHY registers on the
287  * right PHY. It's not quite what I had in mind, but it's the only
288  * design that achieves the desired effect.
289  */
290 static device_method_t skc_methods[] = {
291 	/* Device interface */
292 	DEVMETHOD(device_probe,		skc_probe),
293 	DEVMETHOD(device_attach,	skc_attach),
294 	DEVMETHOD(device_detach,	skc_detach),
295 	DEVMETHOD(device_suspend,	skc_suspend),
296 	DEVMETHOD(device_resume,	skc_resume),
297 	DEVMETHOD(device_shutdown,	skc_shutdown),
298 
299 	/* bus interface */
300 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
301 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
302 
303 	{ 0, 0 }
304 };
305 
306 static driver_t skc_driver = {
307 	"skc",
308 	skc_methods,
309 	sizeof(struct sk_softc)
310 };
311 
312 static devclass_t skc_devclass;
313 
314 static device_method_t sk_methods[] = {
315 	/* Device interface */
316 	DEVMETHOD(device_probe,		sk_probe),
317 	DEVMETHOD(device_attach,	sk_attach),
318 	DEVMETHOD(device_detach,	sk_detach),
319 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
320 
321 	/* bus interface */
322 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
323 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
324 
325 	/* MII interface */
326 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
327 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
328 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
329 
330 	{ 0, 0 }
331 };
332 
333 static driver_t sk_driver = {
334 	"sk",
335 	sk_methods,
336 	sizeof(struct sk_if_softc)
337 };
338 
339 static devclass_t sk_devclass;
340 
341 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0);
342 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
343 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
344 
345 static struct resource_spec sk_res_spec_io[] = {
346 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
347 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
348 	{ -1,			0,		0 }
349 };
350 
351 static struct resource_spec sk_res_spec_mem[] = {
352 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
353 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
354 	{ -1,			0,		0 }
355 };
356 
357 #define SK_SETBIT(sc, reg, x)		\
358 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
359 
360 #define SK_CLRBIT(sc, reg, x)		\
361 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
362 
363 #define SK_WIN_SETBIT_4(sc, reg, x)	\
364 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
365 
366 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
367 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
368 
369 #define SK_WIN_SETBIT_2(sc, reg, x)	\
370 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
371 
372 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
373 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
374 
375 static u_int32_t
376 sk_win_read_4(sc, reg)
377 	struct sk_softc		*sc;
378 	int			reg;
379 {
380 #ifdef SK_USEIOSPACE
381 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
382 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
383 #else
384 	return(CSR_READ_4(sc, reg));
385 #endif
386 }
387 
388 static u_int16_t
389 sk_win_read_2(sc, reg)
390 	struct sk_softc		*sc;
391 	int			reg;
392 {
393 #ifdef SK_USEIOSPACE
394 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
395 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
396 #else
397 	return(CSR_READ_2(sc, reg));
398 #endif
399 }
400 
401 static u_int8_t
402 sk_win_read_1(sc, reg)
403 	struct sk_softc		*sc;
404 	int			reg;
405 {
406 #ifdef SK_USEIOSPACE
407 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
408 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
409 #else
410 	return(CSR_READ_1(sc, reg));
411 #endif
412 }
413 
414 static void
415 sk_win_write_4(sc, reg, val)
416 	struct sk_softc		*sc;
417 	int			reg;
418 	u_int32_t		val;
419 {
420 #ifdef SK_USEIOSPACE
421 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
422 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
423 #else
424 	CSR_WRITE_4(sc, reg, val);
425 #endif
426 	return;
427 }
428 
429 static void
430 sk_win_write_2(sc, reg, val)
431 	struct sk_softc		*sc;
432 	int			reg;
433 	u_int32_t		val;
434 {
435 #ifdef SK_USEIOSPACE
436 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
437 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
438 #else
439 	CSR_WRITE_2(sc, reg, val);
440 #endif
441 	return;
442 }
443 
444 static void
445 sk_win_write_1(sc, reg, val)
446 	struct sk_softc		*sc;
447 	int			reg;
448 	u_int32_t		val;
449 {
450 #ifdef SK_USEIOSPACE
451 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
452 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
453 #else
454 	CSR_WRITE_1(sc, reg, val);
455 #endif
456 	return;
457 }
458 
459 static int
460 sk_miibus_readreg(dev, phy, reg)
461 	device_t		dev;
462 	int			phy, reg;
463 {
464 	struct sk_if_softc	*sc_if;
465 	int			v;
466 
467 	sc_if = device_get_softc(dev);
468 
469 	SK_IF_MII_LOCK(sc_if);
470 	switch(sc_if->sk_softc->sk_type) {
471 	case SK_GENESIS:
472 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
473 		break;
474 	case SK_YUKON:
475 	case SK_YUKON_LITE:
476 	case SK_YUKON_LP:
477 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
478 		break;
479 	default:
480 		v = 0;
481 		break;
482 	}
483 	SK_IF_MII_UNLOCK(sc_if);
484 
485 	return (v);
486 }
487 
488 static int
489 sk_miibus_writereg(dev, phy, reg, val)
490 	device_t		dev;
491 	int			phy, reg, val;
492 {
493 	struct sk_if_softc	*sc_if;
494 	int			v;
495 
496 	sc_if = device_get_softc(dev);
497 
498 	SK_IF_MII_LOCK(sc_if);
499 	switch(sc_if->sk_softc->sk_type) {
500 	case SK_GENESIS:
501 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
502 		break;
503 	case SK_YUKON:
504 	case SK_YUKON_LITE:
505 	case SK_YUKON_LP:
506 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
507 		break;
508 	default:
509 		v = 0;
510 		break;
511 	}
512 	SK_IF_MII_UNLOCK(sc_if);
513 
514 	return (v);
515 }
516 
517 static void
518 sk_miibus_statchg(dev)
519 	device_t		dev;
520 {
521 	struct sk_if_softc	*sc_if;
522 
523 	sc_if = device_get_softc(dev);
524 
525 	SK_IF_MII_LOCK(sc_if);
526 	switch(sc_if->sk_softc->sk_type) {
527 	case SK_GENESIS:
528 		sk_xmac_miibus_statchg(sc_if);
529 		break;
530 	case SK_YUKON:
531 	case SK_YUKON_LITE:
532 	case SK_YUKON_LP:
533 		sk_marv_miibus_statchg(sc_if);
534 		break;
535 	}
536 	SK_IF_MII_UNLOCK(sc_if);
537 
538 	return;
539 }
540 
541 static int
542 sk_xmac_miibus_readreg(sc_if, phy, reg)
543 	struct sk_if_softc	*sc_if;
544 	int			phy, reg;
545 {
546 	int			i;
547 
548 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
549 		return(0);
550 
551 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
552 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
553 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
554 		for (i = 0; i < SK_TIMEOUT; i++) {
555 			DELAY(1);
556 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
557 			    XM_MMUCMD_PHYDATARDY)
558 				break;
559 		}
560 
561 		if (i == SK_TIMEOUT) {
562 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
563 			return(0);
564 		}
565 	}
566 	DELAY(1);
567 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
568 
569 	return(i);
570 }
571 
572 static int
573 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
574 	struct sk_if_softc	*sc_if;
575 	int			phy, reg, val;
576 {
577 	int			i;
578 
579 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
580 	for (i = 0; i < SK_TIMEOUT; i++) {
581 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
582 			break;
583 	}
584 
585 	if (i == SK_TIMEOUT) {
586 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
587 		return (ETIMEDOUT);
588 	}
589 
590 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
591 	for (i = 0; i < SK_TIMEOUT; i++) {
592 		DELAY(1);
593 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
594 			break;
595 	}
596 	if (i == SK_TIMEOUT)
597 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
598 
599 	return(0);
600 }
601 
602 static void
603 sk_xmac_miibus_statchg(sc_if)
604 	struct sk_if_softc	*sc_if;
605 {
606 	struct mii_data		*mii;
607 
608 	mii = device_get_softc(sc_if->sk_miibus);
609 
610 	/*
611 	 * If this is a GMII PHY, manually set the XMAC's
612 	 * duplex mode accordingly.
613 	 */
614 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
615 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
616 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
617 		} else {
618 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
619 		}
620 	}
621 }
622 
623 static int
624 sk_marv_miibus_readreg(sc_if, phy, reg)
625 	struct sk_if_softc	*sc_if;
626 	int			phy, reg;
627 {
628 	u_int16_t		val;
629 	int			i;
630 
631 	if (phy != 0 ||
632 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
633 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
634 		return(0);
635 	}
636 
637         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
638 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
639 
640 	for (i = 0; i < SK_TIMEOUT; i++) {
641 		DELAY(1);
642 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
643 		if (val & YU_SMICR_READ_VALID)
644 			break;
645 	}
646 
647 	if (i == SK_TIMEOUT) {
648 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
649 		return(0);
650 	}
651 
652 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
653 
654 	return(val);
655 }
656 
657 static int
658 sk_marv_miibus_writereg(sc_if, phy, reg, val)
659 	struct sk_if_softc	*sc_if;
660 	int			phy, reg, val;
661 {
662 	int			i;
663 
664 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
665 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
666 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
667 
668 	for (i = 0; i < SK_TIMEOUT; i++) {
669 		DELAY(1);
670 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
671 			break;
672 	}
673 	if (i == SK_TIMEOUT)
674 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
675 
676 	return(0);
677 }
678 
679 static void
680 sk_marv_miibus_statchg(sc_if)
681 	struct sk_if_softc	*sc_if;
682 {
683 	return;
684 }
685 
686 #define HASH_BITS		6
687 
688 static u_int32_t
689 sk_xmchash(addr)
690 	const uint8_t *addr;
691 {
692 	uint32_t crc;
693 
694 	/* Compute CRC for the address value. */
695 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
696 
697 	return (~crc & ((1 << HASH_BITS) - 1));
698 }
699 
700 /* gmchash is just a big endian crc */
701 static u_int32_t
702 sk_gmchash(addr)
703 	const uint8_t *addr;
704 {
705 	uint32_t crc;
706 
707 	/* Compute CRC for the address value. */
708 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
709 
710 	return (crc & ((1 << HASH_BITS) - 1));
711 }
712 
713 static void
714 sk_setfilt(sc_if, addr, slot)
715 	struct sk_if_softc	*sc_if;
716 	u_int16_t		*addr;
717 	int			slot;
718 {
719 	int			base;
720 
721 	base = XM_RXFILT_ENTRY(slot);
722 
723 	SK_XM_WRITE_2(sc_if, base, addr[0]);
724 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
725 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
726 
727 	return;
728 }
729 
730 static void
731 sk_setmulti(sc_if)
732 	struct sk_if_softc	*sc_if;
733 {
734 	struct sk_softc		*sc = sc_if->sk_softc;
735 	struct ifnet		*ifp = sc_if->sk_ifp;
736 	u_int32_t		hashes[2] = { 0, 0 };
737 	int			h = 0, i;
738 	struct ifmultiaddr	*ifma;
739 	u_int16_t		dummy[] = { 0, 0, 0 };
740 	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
741 
742 	SK_IF_LOCK_ASSERT(sc_if);
743 
744 	/* First, zot all the existing filters. */
745 	switch(sc->sk_type) {
746 	case SK_GENESIS:
747 		for (i = 1; i < XM_RXFILT_MAX; i++)
748 			sk_setfilt(sc_if, dummy, i);
749 
750 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
751 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
752 		break;
753 	case SK_YUKON:
754 	case SK_YUKON_LITE:
755 	case SK_YUKON_LP:
756 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
757 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
758 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
759 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
760 		break;
761 	}
762 
763 	/* Now program new ones. */
764 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
765 		hashes[0] = 0xFFFFFFFF;
766 		hashes[1] = 0xFFFFFFFF;
767 	} else {
768 		i = 1;
769 		IF_ADDR_LOCK(ifp);
770 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
771 			if (ifma->ifma_addr->sa_family != AF_LINK)
772 				continue;
773 			/*
774 			 * Program the first XM_RXFILT_MAX multicast groups
775 			 * into the perfect filter. For all others,
776 			 * use the hash table.
777 			 */
778 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
779 				bcopy(LLADDR(
780 				    (struct sockaddr_dl *)ifma->ifma_addr),
781 				    maddr, ETHER_ADDR_LEN);
782 				sk_setfilt(sc_if, maddr, i);
783 				i++;
784 				continue;
785 			}
786 
787 			switch(sc->sk_type) {
788 			case SK_GENESIS:
789 				bcopy(LLADDR(
790 				    (struct sockaddr_dl *)ifma->ifma_addr),
791 				    maddr, ETHER_ADDR_LEN);
792 				h = sk_xmchash((const uint8_t *)maddr);
793 				break;
794 			case SK_YUKON:
795 			case SK_YUKON_LITE:
796 			case SK_YUKON_LP:
797 				bcopy(LLADDR(
798 				    (struct sockaddr_dl *)ifma->ifma_addr),
799 				    maddr, ETHER_ADDR_LEN);
800 				h = sk_gmchash((const uint8_t *)maddr);
801 				break;
802 			}
803 			if (h < 32)
804 				hashes[0] |= (1 << h);
805 			else
806 				hashes[1] |= (1 << (h - 32));
807 		}
808 		IF_ADDR_UNLOCK(ifp);
809 	}
810 
811 	switch(sc->sk_type) {
812 	case SK_GENESIS:
813 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
814 			       XM_MODE_RX_USE_PERFECT);
815 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
816 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
817 		break;
818 	case SK_YUKON:
819 	case SK_YUKON_LITE:
820 	case SK_YUKON_LP:
821 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
822 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
823 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
824 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
825 		break;
826 	}
827 
828 	return;
829 }
830 
831 static void
832 sk_setpromisc(sc_if)
833 	struct sk_if_softc	*sc_if;
834 {
835 	struct sk_softc		*sc = sc_if->sk_softc;
836 	struct ifnet		*ifp = sc_if->sk_ifp;
837 
838 	SK_IF_LOCK_ASSERT(sc_if);
839 
840 	switch(sc->sk_type) {
841 	case SK_GENESIS:
842 		if (ifp->if_flags & IFF_PROMISC) {
843 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
844 		} else {
845 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
846 		}
847 		break;
848 	case SK_YUKON:
849 	case SK_YUKON_LITE:
850 	case SK_YUKON_LP:
851 		if (ifp->if_flags & IFF_PROMISC) {
852 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
853 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
854 		} else {
855 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
856 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
857 		}
858 		break;
859 	}
860 
861 	return;
862 }
863 
864 static int
865 sk_init_rx_ring(sc_if)
866 	struct sk_if_softc	*sc_if;
867 {
868 	struct sk_ring_data	*rd;
869 	bus_addr_t		addr;
870 	u_int32_t		csum_start;
871 	int			i;
872 
873 	sc_if->sk_cdata.sk_rx_cons = 0;
874 
875 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
876 	    ETHER_HDR_LEN;
877 	rd = &sc_if->sk_rdata;
878 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
879 	for (i = 0; i < SK_RX_RING_CNT; i++) {
880 		if (sk_newbuf(sc_if, i) != 0)
881 			return (ENOBUFS);
882 		if (i == (SK_RX_RING_CNT - 1))
883 			addr = SK_RX_RING_ADDR(sc_if, 0);
884 		else
885 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
886 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
887 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
888 	}
889 
890 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
891 	    sc_if->sk_cdata.sk_rx_ring_map,
892 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
893 
894 	return(0);
895 }
896 
897 static int
898 sk_init_jumbo_rx_ring(sc_if)
899 	struct sk_if_softc	*sc_if;
900 {
901 	struct sk_ring_data	*rd;
902 	bus_addr_t		addr;
903 	u_int32_t		csum_start;
904 	int			i;
905 
906 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
907 
908 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
909 	    ETHER_HDR_LEN;
910 	rd = &sc_if->sk_rdata;
911 	bzero(rd->sk_jumbo_rx_ring,
912 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
913 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
914 		if (sk_jumbo_newbuf(sc_if, i) != 0)
915 			return (ENOBUFS);
916 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
917 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
918 		else
919 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
920 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
921 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
922 	}
923 
924 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
925 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
926 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
927 
928 	return (0);
929 }
930 
931 static void
932 sk_init_tx_ring(sc_if)
933 	struct sk_if_softc	*sc_if;
934 {
935 	struct sk_ring_data	*rd;
936 	struct sk_txdesc	*txd;
937 	bus_addr_t		addr;
938 	int			i;
939 
940 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
941 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
942 
943 	sc_if->sk_cdata.sk_tx_prod = 0;
944 	sc_if->sk_cdata.sk_tx_cons = 0;
945 	sc_if->sk_cdata.sk_tx_cnt = 0;
946 
947 	rd = &sc_if->sk_rdata;
948 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
949 	for (i = 0; i < SK_TX_RING_CNT; i++) {
950 		if (i == (SK_TX_RING_CNT - 1))
951 			addr = SK_TX_RING_ADDR(sc_if, 0);
952 		else
953 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
954 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
955 		txd = &sc_if->sk_cdata.sk_txdesc[i];
956 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
957 	}
958 
959 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
960 	    sc_if->sk_cdata.sk_tx_ring_map,
961 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
962 }
963 
964 static __inline void
965 sk_discard_rxbuf(sc_if, idx)
966 	struct sk_if_softc	*sc_if;
967 	int			idx;
968 {
969 	struct sk_rx_desc	*r;
970 	struct sk_rxdesc	*rxd;
971 	struct mbuf		*m;
972 
973 
974 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
975 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
976 	m = rxd->rx_m;
977 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
978 }
979 
980 static __inline void
981 sk_discard_jumbo_rxbuf(sc_if, idx)
982 	struct sk_if_softc	*sc_if;
983 	int			idx;
984 {
985 	struct sk_rx_desc	*r;
986 	struct sk_rxdesc	*rxd;
987 	struct mbuf		*m;
988 
989 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
990 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
991 	m = rxd->rx_m;
992 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
993 }
994 
995 static int
996 sk_newbuf(sc_if, idx)
997 	struct sk_if_softc	*sc_if;
998 	int 			idx;
999 {
1000 	struct sk_rx_desc	*r;
1001 	struct sk_rxdesc	*rxd;
1002 	struct mbuf		*m;
1003 	bus_dma_segment_t	segs[1];
1004 	bus_dmamap_t		map;
1005 	int			nsegs;
1006 
1007 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1008 	if (m == NULL)
1009 		return (ENOBUFS);
1010 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1011 	m_adj(m, ETHER_ALIGN);
1012 
1013 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
1014 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1015 		m_freem(m);
1016 		return (ENOBUFS);
1017 	}
1018 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1019 
1020 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
1021 	if (rxd->rx_m != NULL) {
1022 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
1023 		    BUS_DMASYNC_POSTREAD);
1024 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
1025 	}
1026 	map = rxd->rx_dmamap;
1027 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
1028 	sc_if->sk_cdata.sk_rx_sparemap = map;
1029 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
1030 	    BUS_DMASYNC_PREREAD);
1031 	rxd->rx_m = m;
1032 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
1033 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1034 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1035 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1036 
1037 	return (0);
1038 }
1039 
1040 static int
1041 sk_jumbo_newbuf(sc_if, idx)
1042 	struct sk_if_softc	*sc_if;
1043 	int			idx;
1044 {
1045 	struct sk_rx_desc	*r;
1046 	struct sk_rxdesc	*rxd;
1047 	struct mbuf		*m;
1048 	bus_dma_segment_t	segs[1];
1049 	bus_dmamap_t		map;
1050 	int			nsegs;
1051 
1052 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1053 	if (m == NULL)
1054 		return (ENOBUFS);
1055 	if ((m->m_flags & M_EXT) == 0) {
1056 		m_freem(m);
1057 		return (ENOBUFS);
1058 	}
1059 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1060 	/*
1061 	 * Adjust alignment so packet payload begins on a
1062 	 * longword boundary. Mandatory for Alpha, useful on
1063 	 * x86 too.
1064 	 */
1065 	m_adj(m, ETHER_ALIGN);
1066 
1067 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1068 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1069 		m_freem(m);
1070 		return (ENOBUFS);
1071 	}
1072 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1073 
1074 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1075 	if (rxd->rx_m != NULL) {
1076 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1077 		    BUS_DMASYNC_POSTREAD);
1078 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1079 		    rxd->rx_dmamap);
1080 	}
1081 	map = rxd->rx_dmamap;
1082 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1083 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1084 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1085 	    BUS_DMASYNC_PREREAD);
1086 	rxd->rx_m = m;
1087 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1088 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1089 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1090 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1091 
1092 	return (0);
1093 }
1094 
1095 /*
1096  * Set media options.
1097  */
1098 static int
1099 sk_ifmedia_upd(ifp)
1100 	struct ifnet		*ifp;
1101 {
1102 	struct sk_if_softc	*sc_if = ifp->if_softc;
1103 	struct mii_data		*mii;
1104 
1105 	mii = device_get_softc(sc_if->sk_miibus);
1106 	sk_init(sc_if);
1107 	mii_mediachg(mii);
1108 
1109 	return(0);
1110 }
1111 
1112 /*
1113  * Report current media status.
1114  */
1115 static void
1116 sk_ifmedia_sts(ifp, ifmr)
1117 	struct ifnet		*ifp;
1118 	struct ifmediareq	*ifmr;
1119 {
1120 	struct sk_if_softc	*sc_if;
1121 	struct mii_data		*mii;
1122 
1123 	sc_if = ifp->if_softc;
1124 	mii = device_get_softc(sc_if->sk_miibus);
1125 
1126 	mii_pollstat(mii);
1127 	ifmr->ifm_active = mii->mii_media_active;
1128 	ifmr->ifm_status = mii->mii_media_status;
1129 
1130 	return;
1131 }
1132 
1133 static int
1134 sk_ioctl(ifp, command, data)
1135 	struct ifnet		*ifp;
1136 	u_long			command;
1137 	caddr_t			data;
1138 {
1139 	struct sk_if_softc	*sc_if = ifp->if_softc;
1140 	struct ifreq		*ifr = (struct ifreq *) data;
1141 	int			error, mask;
1142 	struct mii_data		*mii;
1143 
1144 	error = 0;
1145 	switch(command) {
1146 	case SIOCSIFMTU:
1147 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1148 			error = EINVAL;
1149 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1150 			if (sc_if->sk_jumbo_disable != 0 &&
1151 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1152 				error = EINVAL;
1153 			else {
1154 				SK_IF_LOCK(sc_if);
1155 				ifp->if_mtu = ifr->ifr_mtu;
1156 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1157 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1158 					sk_init_locked(sc_if);
1159 				}
1160 				SK_IF_UNLOCK(sc_if);
1161 			}
1162 		}
1163 		break;
1164 	case SIOCSIFFLAGS:
1165 		SK_IF_LOCK(sc_if);
1166 		if (ifp->if_flags & IFF_UP) {
1167 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1168 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1169 				    & IFF_PROMISC) {
1170 					sk_setpromisc(sc_if);
1171 					sk_setmulti(sc_if);
1172 				}
1173 			} else
1174 				sk_init_locked(sc_if);
1175 		} else {
1176 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1177 				sk_stop(sc_if);
1178 		}
1179 		sc_if->sk_if_flags = ifp->if_flags;
1180 		SK_IF_UNLOCK(sc_if);
1181 		break;
1182 	case SIOCADDMULTI:
1183 	case SIOCDELMULTI:
1184 		SK_IF_LOCK(sc_if);
1185 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1186 			sk_setmulti(sc_if);
1187 		SK_IF_UNLOCK(sc_if);
1188 		break;
1189 	case SIOCGIFMEDIA:
1190 	case SIOCSIFMEDIA:
1191 		mii = device_get_softc(sc_if->sk_miibus);
1192 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1193 		break;
1194 	case SIOCSIFCAP:
1195 		SK_IF_LOCK(sc_if);
1196 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1197 			SK_IF_UNLOCK(sc_if);
1198 			break;
1199 		}
1200 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1201 		if (mask & IFCAP_HWCSUM) {
1202 			ifp->if_capenable ^= IFCAP_HWCSUM;
1203 			if (IFCAP_HWCSUM & ifp->if_capenable &&
1204 			    IFCAP_HWCSUM & ifp->if_capabilities)
1205 				ifp->if_hwassist = SK_CSUM_FEATURES;
1206 			else
1207 				ifp->if_hwassist = 0;
1208 		}
1209 		SK_IF_UNLOCK(sc_if);
1210 		break;
1211 	default:
1212 		error = ether_ioctl(ifp, command, data);
1213 		break;
1214 	}
1215 
1216 	return (error);
1217 }
1218 
1219 /*
1220  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1221  * IDs against our list and return a device name if we find a match.
1222  */
1223 static int
1224 skc_probe(dev)
1225 	device_t		dev;
1226 {
1227 	struct sk_type		*t = sk_devs;
1228 
1229 	while(t->sk_name != NULL) {
1230 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1231 		    (pci_get_device(dev) == t->sk_did)) {
1232 			/*
1233 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1234 			 * Rev. 3 is supported by re(4).
1235 			 */
1236 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1237 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1238 				(pci_get_subdevice(dev) !=
1239 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1240 				t++;
1241 				continue;
1242 			}
1243 			device_set_desc(dev, t->sk_name);
1244 			return (BUS_PROBE_DEFAULT);
1245 		}
1246 		t++;
1247 	}
1248 
1249 	return(ENXIO);
1250 }
1251 
1252 /*
1253  * Force the GEnesis into reset, then bring it out of reset.
1254  */
1255 static void
1256 sk_reset(sc)
1257 	struct sk_softc		*sc;
1258 {
1259 
1260 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1261 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1262 	if (SK_YUKON_FAMILY(sc->sk_type))
1263 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1264 
1265 	DELAY(1000);
1266 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1267 	DELAY(2);
1268 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1269 	if (SK_YUKON_FAMILY(sc->sk_type))
1270 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1271 
1272 	if (sc->sk_type == SK_GENESIS) {
1273 		/* Configure packet arbiter */
1274 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1275 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1276 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1277 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1278 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1279 	}
1280 
1281 	/* Enable RAM interface */
1282 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1283 
1284 	/*
1285          * Configure interrupt moderation. The moderation timer
1286 	 * defers interrupts specified in the interrupt moderation
1287 	 * timer mask based on the timeout specified in the interrupt
1288 	 * moderation timer init register. Each bit in the timer
1289 	 * register represents one tick, so to specify a timeout in
1290 	 * microseconds, we have to multiply by the correct number of
1291 	 * ticks-per-microsecond.
1292 	 */
1293 	switch (sc->sk_type) {
1294 	case SK_GENESIS:
1295 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1296 		break;
1297 	default:
1298 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1299 		break;
1300 	}
1301 	if (bootverbose)
1302 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1303 		    sc->sk_int_mod);
1304 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1305 	    sc->sk_int_ticks));
1306 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1307 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1308 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1309 
1310 	return;
1311 }
1312 
1313 static int
1314 sk_probe(dev)
1315 	device_t		dev;
1316 {
1317 	struct sk_softc		*sc;
1318 
1319 	sc = device_get_softc(device_get_parent(dev));
1320 
1321 	/*
1322 	 * Not much to do here. We always know there will be
1323 	 * at least one XMAC present, and if there are two,
1324 	 * skc_attach() will create a second device instance
1325 	 * for us.
1326 	 */
1327 	switch (sc->sk_type) {
1328 	case SK_GENESIS:
1329 		device_set_desc(dev, "XaQti Corp. XMAC II");
1330 		break;
1331 	case SK_YUKON:
1332 	case SK_YUKON_LITE:
1333 	case SK_YUKON_LP:
1334 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1335 		break;
1336 	}
1337 
1338 	return (BUS_PROBE_DEFAULT);
1339 }
1340 
1341 /*
1342  * Each XMAC chip is attached as a separate logical IP interface.
1343  * Single port cards will have only one logical interface of course.
1344  */
1345 static int
1346 sk_attach(dev)
1347 	device_t		dev;
1348 {
1349 	struct sk_softc		*sc;
1350 	struct sk_if_softc	*sc_if;
1351 	struct ifnet		*ifp;
1352 	int			i, port, error;
1353 	u_char			eaddr[6];
1354 
1355 	if (dev == NULL)
1356 		return(EINVAL);
1357 
1358 	error = 0;
1359 	sc_if = device_get_softc(dev);
1360 	sc = device_get_softc(device_get_parent(dev));
1361 	port = *(int *)device_get_ivars(dev);
1362 
1363 	sc_if->sk_if_dev = dev;
1364 	sc_if->sk_port = port;
1365 	sc_if->sk_softc = sc;
1366 	sc->sk_if[port] = sc_if;
1367 	if (port == SK_PORT_A)
1368 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1369 	if (port == SK_PORT_B)
1370 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1371 
1372 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1373 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1374 
1375 	if (sk_dma_alloc(sc_if) != 0) {
1376 		error = ENOMEM;
1377 		goto fail;
1378 	}
1379 	sk_dma_jumbo_alloc(sc_if);
1380 
1381 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1382 	if (ifp == NULL) {
1383 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1384 		error = ENOSPC;
1385 		goto fail;
1386 	}
1387 	ifp->if_softc = sc_if;
1388 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1389 	ifp->if_mtu = ETHERMTU;
1390 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1391 	/*
1392 	 * SK_GENESIS has a bug in checksum offload - From linux.
1393 	 */
1394 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1395 		ifp->if_capabilities = IFCAP_HWCSUM;
1396 		ifp->if_hwassist = SK_CSUM_FEATURES;
1397 	} else {
1398 		ifp->if_capabilities = 0;
1399 		ifp->if_hwassist = 0;
1400 	}
1401 	ifp->if_capenable = ifp->if_capabilities;
1402 	ifp->if_ioctl = sk_ioctl;
1403 	ifp->if_start = sk_start;
1404 	ifp->if_timer = 0;
1405 	ifp->if_watchdog = NULL;
1406 	ifp->if_init = sk_init;
1407 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1408 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1409 	IFQ_SET_READY(&ifp->if_snd);
1410 
1411 	/*
1412 	 * Get station address for this interface. Note that
1413 	 * dual port cards actually come with three station
1414 	 * addresses: one for each port, plus an extra. The
1415 	 * extra one is used by the SysKonnect driver software
1416 	 * as a 'virtual' station address for when both ports
1417 	 * are operating in failover mode. Currently we don't
1418 	 * use this extra address.
1419 	 */
1420 	SK_IF_LOCK(sc_if);
1421 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1422 		eaddr[i] =
1423 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1424 
1425 	/*
1426 	 * Set up RAM buffer addresses. The NIC will have a certain
1427 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1428 	 * need to divide this up a) between the transmitter and
1429  	 * receiver and b) between the two XMACs, if this is a
1430 	 * dual port NIC. Our algotithm is to divide up the memory
1431 	 * evenly so that everyone gets a fair share.
1432 	 *
1433 	 * Just to be contrary, Yukon2 appears to have separate memory
1434 	 * for each MAC.
1435 	 */
1436 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1437 		u_int32_t		chunk, val;
1438 
1439 		chunk = sc->sk_ramsize / 2;
1440 		val = sc->sk_rboff / sizeof(u_int64_t);
1441 		sc_if->sk_rx_ramstart = val;
1442 		val += (chunk / sizeof(u_int64_t));
1443 		sc_if->sk_rx_ramend = val - 1;
1444 		sc_if->sk_tx_ramstart = val;
1445 		val += (chunk / sizeof(u_int64_t));
1446 		sc_if->sk_tx_ramend = val - 1;
1447 	} else {
1448 		u_int32_t		chunk, val;
1449 
1450 		chunk = sc->sk_ramsize / 4;
1451 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1452 		    sizeof(u_int64_t);
1453 		sc_if->sk_rx_ramstart = val;
1454 		val += (chunk / sizeof(u_int64_t));
1455 		sc_if->sk_rx_ramend = val - 1;
1456 		sc_if->sk_tx_ramstart = val;
1457 		val += (chunk / sizeof(u_int64_t));
1458 		sc_if->sk_tx_ramend = val - 1;
1459 	}
1460 
1461 	/* Read and save PHY type and set PHY address */
1462 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1463 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1464 		switch(sc_if->sk_phytype) {
1465 		case SK_PHYTYPE_XMAC:
1466 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1467 			break;
1468 		case SK_PHYTYPE_BCOM:
1469 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1470 			break;
1471 		default:
1472 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1473 			    sc_if->sk_phytype);
1474 			error = ENODEV;
1475 			SK_IF_UNLOCK(sc_if);
1476 			goto fail;
1477 		}
1478 	} else {
1479 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1480 		    sc->sk_pmd != 'S') {
1481 			/* not initialized, punt */
1482 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1483 			sc->sk_coppertype = 1;
1484 		}
1485 
1486 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1487 
1488 		if (!(sc->sk_coppertype))
1489 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1490 	}
1491 
1492 	/*
1493 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1494 	 */
1495 	SK_IF_UNLOCK(sc_if);
1496 	ether_ifattach(ifp, eaddr);
1497 	SK_IF_LOCK(sc_if);
1498 
1499 	/*
1500 	 * The hardware should be ready for VLAN_MTU by default:
1501 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1502 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1503 	 *
1504 	 */
1505         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1506         ifp->if_capenable |= IFCAP_VLAN_MTU;
1507 	/*
1508 	 * Tell the upper layer(s) we support long frames.
1509 	 * Must appear after the call to ether_ifattach() because
1510 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1511 	 */
1512         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1513 
1514 	/*
1515 	 * Do miibus setup.
1516 	 */
1517 	switch (sc->sk_type) {
1518 	case SK_GENESIS:
1519 		sk_init_xmac(sc_if);
1520 		break;
1521 	case SK_YUKON:
1522 	case SK_YUKON_LITE:
1523 	case SK_YUKON_LP:
1524 		sk_init_yukon(sc_if);
1525 		break;
1526 	}
1527 
1528 	SK_IF_UNLOCK(sc_if);
1529 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1530 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1531 		device_printf(sc_if->sk_if_dev, "no PHY found!\n");
1532 		ether_ifdetach(ifp);
1533 		error = ENXIO;
1534 		goto fail;
1535 	}
1536 
1537 fail:
1538 	if (error) {
1539 		/* Access should be ok even though lock has been dropped */
1540 		sc->sk_if[port] = NULL;
1541 		sk_detach(dev);
1542 	}
1543 
1544 	return(error);
1545 }
1546 
1547 /*
1548  * Attach the interface. Allocate softc structures, do ifmedia
1549  * setup and ethernet/BPF attach.
1550  */
1551 static int
1552 skc_attach(dev)
1553 	device_t		dev;
1554 {
1555 	struct sk_softc		*sc;
1556 	int			error = 0, *port;
1557 	uint8_t			skrs;
1558 	const char		*pname = NULL;
1559 	char			*revstr;
1560 
1561 	sc = device_get_softc(dev);
1562 	sc->sk_dev = dev;
1563 
1564 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1565 	    MTX_DEF);
1566 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1567 	/*
1568 	 * Map control/status registers.
1569 	 */
1570 	pci_enable_busmaster(dev);
1571 
1572 	/* Allocate resources */
1573 #ifdef SK_USEIOSPACE
1574 	sc->sk_res_spec = sk_res_spec_io;
1575 #else
1576 	sc->sk_res_spec = sk_res_spec_mem;
1577 #endif
1578 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1579 	if (error) {
1580 		if (sc->sk_res_spec == sk_res_spec_mem)
1581 			sc->sk_res_spec = sk_res_spec_io;
1582 		else
1583 			sc->sk_res_spec = sk_res_spec_mem;
1584 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1585 		if (error) {
1586 			device_printf(dev, "couldn't allocate %s resources\n",
1587 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1588 			    "I/O");
1589 			goto fail;
1590 		}
1591 	}
1592 
1593 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1594 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1595 
1596 	/* Bail out if chip is not recognized. */
1597 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1598 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1599 		    sc->sk_type, sc->sk_rev);
1600 		error = ENXIO;
1601 		goto fail;
1602 	}
1603 
1604 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1605 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1606 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1607 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1608 		"SK interrupt moderation");
1609 
1610 	/* Pull in device tunables. */
1611 	sc->sk_int_mod = SK_IM_DEFAULT;
1612 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1613 		"int_mod", &sc->sk_int_mod);
1614 	if (error == 0) {
1615 		if (sc->sk_int_mod < SK_IM_MIN ||
1616 		    sc->sk_int_mod > SK_IM_MAX) {
1617 			device_printf(dev, "int_mod value out of range; "
1618 			    "using default: %d\n", SK_IM_DEFAULT);
1619 			sc->sk_int_mod = SK_IM_DEFAULT;
1620 		}
1621 	}
1622 
1623 	/* Reset the adapter. */
1624 	sk_reset(sc);
1625 
1626 	skrs = sk_win_read_1(sc, SK_EPROM0);
1627 	if (sc->sk_type == SK_GENESIS) {
1628 		/* Read and save RAM size and RAMbuffer offset */
1629 		switch(skrs) {
1630 		case SK_RAMSIZE_512K_64:
1631 			sc->sk_ramsize = 0x80000;
1632 			sc->sk_rboff = SK_RBOFF_0;
1633 			break;
1634 		case SK_RAMSIZE_1024K_64:
1635 			sc->sk_ramsize = 0x100000;
1636 			sc->sk_rboff = SK_RBOFF_80000;
1637 			break;
1638 		case SK_RAMSIZE_1024K_128:
1639 			sc->sk_ramsize = 0x100000;
1640 			sc->sk_rboff = SK_RBOFF_0;
1641 			break;
1642 		case SK_RAMSIZE_2048K_128:
1643 			sc->sk_ramsize = 0x200000;
1644 			sc->sk_rboff = SK_RBOFF_0;
1645 			break;
1646 		default:
1647 			device_printf(dev, "unknown ram size: %d\n", skrs);
1648 			error = ENXIO;
1649 			goto fail;
1650 		}
1651 	} else { /* SK_YUKON_FAMILY */
1652 		if (skrs == 0x00)
1653 			sc->sk_ramsize = 0x20000;
1654 		else
1655 			sc->sk_ramsize = skrs * (1<<12);
1656 		sc->sk_rboff = SK_RBOFF_0;
1657 	}
1658 
1659 	/* Read and save physical media type */
1660 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1661 
1662 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1663 		 sc->sk_coppertype = 1;
1664 	 else
1665 		 sc->sk_coppertype = 0;
1666 
1667 	/* Determine whether to name it with VPD PN or just make it up.
1668 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1669 	switch (pci_get_device(dev)) {
1670 	case DEVICEID_SK_V1:
1671 	case DEVICEID_BELKIN_5005:
1672 	case DEVICEID_3COM_3C940:
1673 	case DEVICEID_LINKSYS_EG1032:
1674 	case DEVICEID_DLINK_DGE530T_A1:
1675 	case DEVICEID_DLINK_DGE530T_B1:
1676 		/* Stay with VPD PN. */
1677 		(void) pci_get_vpd_ident(dev, &pname);
1678 		break;
1679 	case DEVICEID_SK_V2:
1680 		/* YUKON VPD PN might bear no resemblance to reality. */
1681 		switch (sc->sk_type) {
1682 		case SK_GENESIS:
1683 			/* Stay with VPD PN. */
1684 			(void) pci_get_vpd_ident(dev, &pname);
1685 			break;
1686 		case SK_YUKON:
1687 			pname = "Marvell Yukon Gigabit Ethernet";
1688 			break;
1689 		case SK_YUKON_LITE:
1690 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1691 			break;
1692 		case SK_YUKON_LP:
1693 			pname = "Marvell Yukon LP Gigabit Ethernet";
1694 			break;
1695 		default:
1696 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1697 			break;
1698 		}
1699 
1700 		/* Yukon Lite Rev. A0 needs special test. */
1701 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1702 			u_int32_t far;
1703 			u_int8_t testbyte;
1704 
1705 			/* Save flash address register before testing. */
1706 			far = sk_win_read_4(sc, SK_EP_ADDR);
1707 
1708 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1709 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1710 
1711 			if (testbyte != 0x00) {
1712 				/* Yukon Lite Rev. A0 detected. */
1713 				sc->sk_type = SK_YUKON_LITE;
1714 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1715 				/* Restore flash address register. */
1716 				sk_win_write_4(sc, SK_EP_ADDR, far);
1717 			}
1718 		}
1719 		break;
1720 	default:
1721 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1722 			"chipver=%02x, rev=%x\n",
1723 			pci_get_vendor(dev), pci_get_device(dev),
1724 			sc->sk_type, sc->sk_rev);
1725 		error = ENXIO;
1726 		goto fail;
1727 	}
1728 
1729 	if (sc->sk_type == SK_YUKON_LITE) {
1730 		switch (sc->sk_rev) {
1731 		case SK_YUKON_LITE_REV_A0:
1732 			revstr = "A0";
1733 			break;
1734 		case SK_YUKON_LITE_REV_A1:
1735 			revstr = "A1";
1736 			break;
1737 		case SK_YUKON_LITE_REV_A3:
1738 			revstr = "A3";
1739 			break;
1740 		default:
1741 			revstr = "";
1742 			break;
1743 		}
1744 	} else {
1745 		revstr = "";
1746 	}
1747 
1748 	/* Announce the product name and more VPD data if there. */
1749 	if (pname != NULL)
1750 		device_printf(dev, "%s rev. %s(0x%x)\n",
1751 			pname, revstr, sc->sk_rev);
1752 
1753 	if (bootverbose) {
1754 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1755 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1756 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1757 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1758 	}
1759 
1760 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1761 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1762 		device_printf(dev, "failed to add child for PORT_A\n");
1763 		error = ENXIO;
1764 		goto fail;
1765 	}
1766 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1767 	if (port == NULL) {
1768 		device_printf(dev, "failed to allocate memory for "
1769 		    "ivars of PORT_A\n");
1770 		error = ENXIO;
1771 		goto fail;
1772 	}
1773 	*port = SK_PORT_A;
1774 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1775 
1776 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1777 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1778 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1779 			device_printf(dev, "failed to add child for PORT_B\n");
1780 			error = ENXIO;
1781 			goto fail;
1782 		}
1783 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1784 		if (port == NULL) {
1785 			device_printf(dev, "failed to allocate memory for "
1786 			    "ivars of PORT_B\n");
1787 			error = ENXIO;
1788 			goto fail;
1789 		}
1790 		*port = SK_PORT_B;
1791 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1792 	}
1793 
1794 	/* Turn on the 'driver is loaded' LED. */
1795 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1796 
1797 	error = bus_generic_attach(dev);
1798 	if (error) {
1799 		device_printf(dev, "failed to attach port(s)\n");
1800 		goto fail;
1801 	}
1802 
1803 	/* Hook interrupt last to avoid having to lock softc */
1804 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1805 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1806 
1807 	if (error) {
1808 		device_printf(dev, "couldn't set up irq\n");
1809 		goto fail;
1810 	}
1811 
1812 fail:
1813 	if (error)
1814 		skc_detach(dev);
1815 
1816 	return(error);
1817 }
1818 
1819 /*
1820  * Shutdown hardware and free up resources. This can be called any
1821  * time after the mutex has been initialized. It is called in both
1822  * the error case in attach and the normal detach case so it needs
1823  * to be careful about only freeing resources that have actually been
1824  * allocated.
1825  */
1826 static int
1827 sk_detach(dev)
1828 	device_t		dev;
1829 {
1830 	struct sk_if_softc	*sc_if;
1831 	struct ifnet		*ifp;
1832 
1833 	sc_if = device_get_softc(dev);
1834 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1835 	    ("sk mutex not initialized in sk_detach"));
1836 	SK_IF_LOCK(sc_if);
1837 
1838 	ifp = sc_if->sk_ifp;
1839 	/* These should only be active if attach_xmac succeeded */
1840 	if (device_is_attached(dev)) {
1841 		sk_stop(sc_if);
1842 		/* Can't hold locks while calling detach */
1843 		SK_IF_UNLOCK(sc_if);
1844 		callout_drain(&sc_if->sk_tick_ch);
1845 		callout_drain(&sc_if->sk_watchdog_ch);
1846 		ether_ifdetach(ifp);
1847 		SK_IF_LOCK(sc_if);
1848 	}
1849 	if (ifp)
1850 		if_free(ifp);
1851 	/*
1852 	 * We're generally called from skc_detach() which is using
1853 	 * device_delete_child() to get to here. It's already trashed
1854 	 * miibus for us, so don't do it here or we'll panic.
1855 	 */
1856 	/*
1857 	if (sc_if->sk_miibus != NULL)
1858 		device_delete_child(dev, sc_if->sk_miibus);
1859 	*/
1860 	bus_generic_detach(dev);
1861 	sk_dma_jumbo_free(sc_if);
1862 	sk_dma_free(sc_if);
1863 	SK_IF_UNLOCK(sc_if);
1864 
1865 	return(0);
1866 }
1867 
1868 static int
1869 skc_detach(dev)
1870 	device_t		dev;
1871 {
1872 	struct sk_softc		*sc;
1873 
1874 	sc = device_get_softc(dev);
1875 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1876 
1877 	if (device_is_alive(dev)) {
1878 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1879 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1880 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1881 		}
1882 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1883 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1884 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1885 		}
1886 		bus_generic_detach(dev);
1887 	}
1888 
1889 	if (sc->sk_intrhand)
1890 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1891 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1892 
1893 	mtx_destroy(&sc->sk_mii_mtx);
1894 	mtx_destroy(&sc->sk_mtx);
1895 
1896 	return(0);
1897 }
1898 
1899 struct sk_dmamap_arg {
1900 	bus_addr_t	sk_busaddr;
1901 };
1902 
1903 static void
1904 sk_dmamap_cb(arg, segs, nseg, error)
1905 	void			*arg;
1906 	bus_dma_segment_t	*segs;
1907 	int			nseg;
1908 	int			error;
1909 {
1910 	struct sk_dmamap_arg	*ctx;
1911 
1912 	if (error != 0)
1913 		return;
1914 
1915 	ctx = arg;
1916 	ctx->sk_busaddr = segs[0].ds_addr;
1917 }
1918 
1919 /*
1920  * Allocate jumbo buffer storage. The SysKonnect adapters support
1921  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1922  * use them in their drivers. In order for us to use them, we need
1923  * large 9K receive buffers, however standard mbuf clusters are only
1924  * 2048 bytes in size. Consequently, we need to allocate and manage
1925  * our own jumbo buffer pool. Fortunately, this does not require an
1926  * excessive amount of additional code.
1927  */
1928 static int
1929 sk_dma_alloc(sc_if)
1930 	struct sk_if_softc	*sc_if;
1931 {
1932 	struct sk_dmamap_arg	ctx;
1933 	struct sk_txdesc	*txd;
1934 	struct sk_rxdesc	*rxd;
1935 	int			error, i;
1936 
1937 	/* create parent tag */
1938 	/*
1939 	 * XXX
1940 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1941 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1942 	 * However bz@ reported that it does not work on amd64 with > 4GB
1943 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1944 	 * by limiting DMA address to be in 32bit address space.
1945 	 */
1946 	error = bus_dma_tag_create(
1947 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1948 		    1, 0,			/* algnmnt, boundary */
1949 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1950 		    BUS_SPACE_MAXADDR,		/* highaddr */
1951 		    NULL, NULL,			/* filter, filterarg */
1952 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1953 		    0,				/* nsegments */
1954 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1955 		    0,				/* flags */
1956 		    NULL, NULL,			/* lockfunc, lockarg */
1957 		    &sc_if->sk_cdata.sk_parent_tag);
1958 	if (error != 0) {
1959 		device_printf(sc_if->sk_if_dev,
1960 		    "failed to create parent DMA tag\n");
1961 		goto fail;
1962 	}
1963 
1964 	/* create tag for Tx ring */
1965 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1966 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1967 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1968 		    BUS_SPACE_MAXADDR,		/* highaddr */
1969 		    NULL, NULL,			/* filter, filterarg */
1970 		    SK_TX_RING_SZ,		/* maxsize */
1971 		    1,				/* nsegments */
1972 		    SK_TX_RING_SZ,		/* maxsegsize */
1973 		    0,				/* flags */
1974 		    NULL, NULL,			/* lockfunc, lockarg */
1975 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1976 	if (error != 0) {
1977 		device_printf(sc_if->sk_if_dev,
1978 		    "failed to allocate Tx ring DMA tag\n");
1979 		goto fail;
1980 	}
1981 
1982 	/* create tag for Rx ring */
1983 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1984 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1985 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1986 		    BUS_SPACE_MAXADDR,		/* highaddr */
1987 		    NULL, NULL,			/* filter, filterarg */
1988 		    SK_RX_RING_SZ,		/* maxsize */
1989 		    1,				/* nsegments */
1990 		    SK_RX_RING_SZ,		/* maxsegsize */
1991 		    0,				/* flags */
1992 		    NULL, NULL,			/* lockfunc, lockarg */
1993 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1994 	if (error != 0) {
1995 		device_printf(sc_if->sk_if_dev,
1996 		    "failed to allocate Rx ring DMA tag\n");
1997 		goto fail;
1998 	}
1999 
2000 	/* create tag for Tx buffers */
2001 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2002 		    1, 0,			/* algnmnt, boundary */
2003 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2004 		    BUS_SPACE_MAXADDR,		/* highaddr */
2005 		    NULL, NULL,			/* filter, filterarg */
2006 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2007 		    SK_MAXTXSEGS,		/* nsegments */
2008 		    MCLBYTES,			/* maxsegsize */
2009 		    0,				/* flags */
2010 		    NULL, NULL,			/* lockfunc, lockarg */
2011 		    &sc_if->sk_cdata.sk_tx_tag);
2012 	if (error != 0) {
2013 		device_printf(sc_if->sk_if_dev,
2014 		    "failed to allocate Tx DMA tag\n");
2015 		goto fail;
2016 	}
2017 
2018 	/* create tag for Rx buffers */
2019 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2020 		    1, 0,			/* algnmnt, boundary */
2021 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2022 		    BUS_SPACE_MAXADDR,		/* highaddr */
2023 		    NULL, NULL,			/* filter, filterarg */
2024 		    MCLBYTES,			/* maxsize */
2025 		    1,				/* nsegments */
2026 		    MCLBYTES,			/* maxsegsize */
2027 		    0,				/* flags */
2028 		    NULL, NULL,			/* lockfunc, lockarg */
2029 		    &sc_if->sk_cdata.sk_rx_tag);
2030 	if (error != 0) {
2031 		device_printf(sc_if->sk_if_dev,
2032 		    "failed to allocate Rx DMA tag\n");
2033 		goto fail;
2034 	}
2035 
2036 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2037 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2038 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2039 	    &sc_if->sk_cdata.sk_tx_ring_map);
2040 	if (error != 0) {
2041 		device_printf(sc_if->sk_if_dev,
2042 		    "failed to allocate DMA'able memory for Tx ring\n");
2043 		goto fail;
2044 	}
2045 
2046 	ctx.sk_busaddr = 0;
2047 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2048 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2049 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2050 	if (error != 0) {
2051 		device_printf(sc_if->sk_if_dev,
2052 		    "failed to load DMA'able memory for Tx ring\n");
2053 		goto fail;
2054 	}
2055 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2056 
2057 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2058 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2059 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2060 	    &sc_if->sk_cdata.sk_rx_ring_map);
2061 	if (error != 0) {
2062 		device_printf(sc_if->sk_if_dev,
2063 		    "failed to allocate DMA'able memory for Rx ring\n");
2064 		goto fail;
2065 	}
2066 
2067 	ctx.sk_busaddr = 0;
2068 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2069 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2070 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2071 	if (error != 0) {
2072 		device_printf(sc_if->sk_if_dev,
2073 		    "failed to load DMA'able memory for Rx ring\n");
2074 		goto fail;
2075 	}
2076 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2077 
2078 	/* create DMA maps for Tx buffers */
2079 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2080 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2081 		txd->tx_m = NULL;
2082 		txd->tx_dmamap = NULL;
2083 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2084 		    &txd->tx_dmamap);
2085 		if (error != 0) {
2086 			device_printf(sc_if->sk_if_dev,
2087 			    "failed to create Tx dmamap\n");
2088 			goto fail;
2089 		}
2090 	}
2091 
2092 	/* create DMA maps for Rx buffers */
2093 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2094 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2095 		device_printf(sc_if->sk_if_dev,
2096 		    "failed to create spare Rx dmamap\n");
2097 		goto fail;
2098 	}
2099 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2100 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2101 		rxd->rx_m = NULL;
2102 		rxd->rx_dmamap = NULL;
2103 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2104 		    &rxd->rx_dmamap);
2105 		if (error != 0) {
2106 			device_printf(sc_if->sk_if_dev,
2107 			    "failed to create Rx dmamap\n");
2108 			goto fail;
2109 		}
2110 	}
2111 
2112 fail:
2113 	return (error);
2114 }
2115 
2116 static int
2117 sk_dma_jumbo_alloc(sc_if)
2118 	struct sk_if_softc	*sc_if;
2119 {
2120 	struct sk_dmamap_arg	ctx;
2121 	struct sk_rxdesc	*jrxd;
2122 	int			error, i;
2123 
2124 	if (jumbo_disable != 0) {
2125 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2126 		sc_if->sk_jumbo_disable = 1;
2127 		return (0);
2128 	}
2129 	/* create tag for jumbo Rx ring */
2130 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2131 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2132 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2133 		    BUS_SPACE_MAXADDR,		/* highaddr */
2134 		    NULL, NULL,			/* filter, filterarg */
2135 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2136 		    1,				/* nsegments */
2137 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2138 		    0,				/* flags */
2139 		    NULL, NULL,			/* lockfunc, lockarg */
2140 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2141 	if (error != 0) {
2142 		device_printf(sc_if->sk_if_dev,
2143 		    "failed to allocate jumbo Rx ring DMA tag\n");
2144 		goto jumbo_fail;
2145 	}
2146 
2147 	/* create tag for jumbo Rx buffers */
2148 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2149 		    1, 0,			/* algnmnt, boundary */
2150 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2151 		    BUS_SPACE_MAXADDR,		/* highaddr */
2152 		    NULL, NULL,			/* filter, filterarg */
2153 		    MJUM9BYTES,			/* maxsize */
2154 		    1,				/* nsegments */
2155 		    MJUM9BYTES,			/* maxsegsize */
2156 		    0,				/* flags */
2157 		    NULL, NULL,			/* lockfunc, lockarg */
2158 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2159 	if (error != 0) {
2160 		device_printf(sc_if->sk_if_dev,
2161 		    "failed to allocate jumbo Rx DMA tag\n");
2162 		goto jumbo_fail;
2163 	}
2164 
2165 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2166 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2167 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring,
2168 	    BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2169 	if (error != 0) {
2170 		device_printf(sc_if->sk_if_dev,
2171 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2172 		goto jumbo_fail;
2173 	}
2174 
2175 	ctx.sk_busaddr = 0;
2176 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2177 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2178 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2179 	    &ctx, BUS_DMA_NOWAIT);
2180 	if (error != 0) {
2181 		device_printf(sc_if->sk_if_dev,
2182 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2183 		goto jumbo_fail;
2184 	}
2185 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2186 
2187 	/* create DMA maps for jumbo Rx buffers */
2188 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2189 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2190 		device_printf(sc_if->sk_if_dev,
2191 		    "failed to create spare jumbo Rx dmamap\n");
2192 		goto jumbo_fail;
2193 	}
2194 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2195 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2196 		jrxd->rx_m = NULL;
2197 		jrxd->rx_dmamap = NULL;
2198 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2199 		    &jrxd->rx_dmamap);
2200 		if (error != 0) {
2201 			device_printf(sc_if->sk_if_dev,
2202 			    "failed to create jumbo Rx dmamap\n");
2203 			goto jumbo_fail;
2204 		}
2205 	}
2206 
2207 	return (0);
2208 
2209 jumbo_fail:
2210 	sk_dma_jumbo_free(sc_if);
2211 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2212 	    "resource shortage\n");
2213 	sc_if->sk_jumbo_disable = 1;
2214 	return (0);
2215 }
2216 
2217 static void
2218 sk_dma_free(sc_if)
2219 	struct sk_if_softc	*sc_if;
2220 {
2221 	struct sk_txdesc	*txd;
2222 	struct sk_rxdesc	*rxd;
2223 	int			i;
2224 
2225 	/* Tx ring */
2226 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2227 		if (sc_if->sk_cdata.sk_tx_ring_map)
2228 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2229 			    sc_if->sk_cdata.sk_tx_ring_map);
2230 		if (sc_if->sk_cdata.sk_tx_ring_map &&
2231 		    sc_if->sk_rdata.sk_tx_ring)
2232 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2233 			    sc_if->sk_rdata.sk_tx_ring,
2234 			    sc_if->sk_cdata.sk_tx_ring_map);
2235 		sc_if->sk_rdata.sk_tx_ring = NULL;
2236 		sc_if->sk_cdata.sk_tx_ring_map = NULL;
2237 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2238 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2239 	}
2240 	/* Rx ring */
2241 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2242 		if (sc_if->sk_cdata.sk_rx_ring_map)
2243 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2244 			    sc_if->sk_cdata.sk_rx_ring_map);
2245 		if (sc_if->sk_cdata.sk_rx_ring_map &&
2246 		    sc_if->sk_rdata.sk_rx_ring)
2247 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2248 			    sc_if->sk_rdata.sk_rx_ring,
2249 			    sc_if->sk_cdata.sk_rx_ring_map);
2250 		sc_if->sk_rdata.sk_rx_ring = NULL;
2251 		sc_if->sk_cdata.sk_rx_ring_map = NULL;
2252 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2253 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2254 	}
2255 	/* Tx buffers */
2256 	if (sc_if->sk_cdata.sk_tx_tag) {
2257 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2258 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2259 			if (txd->tx_dmamap) {
2260 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2261 				    txd->tx_dmamap);
2262 				txd->tx_dmamap = NULL;
2263 			}
2264 		}
2265 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2266 		sc_if->sk_cdata.sk_tx_tag = NULL;
2267 	}
2268 	/* Rx buffers */
2269 	if (sc_if->sk_cdata.sk_rx_tag) {
2270 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2271 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2272 			if (rxd->rx_dmamap) {
2273 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2274 				    rxd->rx_dmamap);
2275 				rxd->rx_dmamap = NULL;
2276 			}
2277 		}
2278 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2279 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2280 			    sc_if->sk_cdata.sk_rx_sparemap);
2281 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2282 		}
2283 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2284 		sc_if->sk_cdata.sk_rx_tag = NULL;
2285 	}
2286 
2287 	if (sc_if->sk_cdata.sk_parent_tag) {
2288 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2289 		sc_if->sk_cdata.sk_parent_tag = NULL;
2290 	}
2291 }
2292 
2293 static void
2294 sk_dma_jumbo_free(sc_if)
2295 	struct sk_if_softc	*sc_if;
2296 {
2297 	struct sk_rxdesc	*jrxd;
2298 	int			i;
2299 
2300 	/* jumbo Rx ring */
2301 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2302 		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
2303 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2304 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2305 		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
2306 		    sc_if->sk_rdata.sk_jumbo_rx_ring)
2307 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2308 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2309 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2310 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2311 		sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL;
2312 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2313 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2314 	}
2315 
2316 	/* jumbo Rx buffers */
2317 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2318 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2319 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2320 			if (jrxd->rx_dmamap) {
2321 				bus_dmamap_destroy(
2322 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2323 				    jrxd->rx_dmamap);
2324 				jrxd->rx_dmamap = NULL;
2325 			}
2326 		}
2327 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2328 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2329 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2330 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2331 		}
2332 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2333 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2334 	}
2335 }
2336 
2337 static void
2338 sk_txcksum(ifp, m, f)
2339 	struct ifnet		*ifp;
2340 	struct mbuf		*m;
2341 	struct sk_tx_desc	*f;
2342 {
2343 	struct ip		*ip;
2344 	u_int16_t		offset;
2345 	u_int8_t 		*p;
2346 
2347 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2348 	for(; m && m->m_len == 0; m = m->m_next)
2349 		;
2350 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2351 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2352 		/* checksum may be corrupted */
2353 		goto sendit;
2354 	}
2355 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2356 		if (m->m_len != ETHER_HDR_LEN) {
2357 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2358 			    __func__);
2359 			/* checksum may be corrupted */
2360 			goto sendit;
2361 		}
2362 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2363 			;
2364 		if (m == NULL) {
2365 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2366 			/* checksum may be corrupted */
2367 			goto sendit;
2368 		}
2369 		ip = mtod(m, struct ip *);
2370 	} else {
2371 		p = mtod(m, u_int8_t *);
2372 		p += ETHER_HDR_LEN;
2373 		ip = (struct ip *)p;
2374 	}
2375 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2376 
2377 sendit:
2378 	f->sk_csum_startval = 0;
2379 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2380 	    (offset << 16));
2381 }
2382 
2383 static int
2384 sk_encap(sc_if, m_head)
2385         struct sk_if_softc	*sc_if;
2386         struct mbuf		**m_head;
2387 {
2388 	struct sk_txdesc	*txd;
2389 	struct sk_tx_desc	*f = NULL;
2390 	struct mbuf		*m;
2391 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2392 	u_int32_t		cflags, frag, si, sk_ctl;
2393 	int			error, i, nseg;
2394 
2395 	SK_IF_LOCK_ASSERT(sc_if);
2396 
2397 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2398 		return (ENOBUFS);
2399 
2400 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2401 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2402 	if (error == EFBIG) {
2403 		m = m_defrag(*m_head, M_DONTWAIT);
2404 		if (m == NULL) {
2405 			m_freem(*m_head);
2406 			*m_head = NULL;
2407 			return (ENOMEM);
2408 		}
2409 		*m_head = m;
2410 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2411 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2412 		if (error != 0) {
2413 			m_freem(*m_head);
2414 			*m_head = NULL;
2415 			return (error);
2416 		}
2417 	} else if (error != 0)
2418 		return (error);
2419 	if (nseg == 0) {
2420 		m_freem(*m_head);
2421 		*m_head = NULL;
2422 		return (EIO);
2423 	}
2424 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2425 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2426 		return (ENOBUFS);
2427 	}
2428 
2429 	m = *m_head;
2430 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2431 		cflags = SK_OPCODE_CSUM;
2432 	else
2433 		cflags = SK_OPCODE_DEFAULT;
2434 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2435 	for (i = 0; i < nseg; i++) {
2436 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2437 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2438 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2439 		sk_ctl = txsegs[i].ds_len | cflags;
2440 		if (i == 0) {
2441 			if (cflags == SK_OPCODE_CSUM)
2442 				sk_txcksum(sc_if->sk_ifp, m, f);
2443 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2444 		} else
2445 			sk_ctl |= SK_TXCTL_OWN;
2446 		f->sk_ctl = htole32(sk_ctl);
2447 		sc_if->sk_cdata.sk_tx_cnt++;
2448 		SK_INC(frag, SK_TX_RING_CNT);
2449 	}
2450 	sc_if->sk_cdata.sk_tx_prod = frag;
2451 
2452 	/* set EOF on the last desciptor */
2453 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2454 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2455 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2456 
2457 	/* turn the first descriptor ownership to NIC */
2458 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2459 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2460 
2461 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2462 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2463 	txd->tx_m = m;
2464 
2465 	/* sync descriptors */
2466 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2467 	    BUS_DMASYNC_PREWRITE);
2468 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2469 	    sc_if->sk_cdata.sk_tx_ring_map,
2470 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2471 
2472 	return (0);
2473 }
2474 
2475 static void
2476 sk_start(ifp)
2477 	struct ifnet		*ifp;
2478 {
2479 	struct sk_if_softc *sc_if;
2480 
2481 	sc_if = ifp->if_softc;
2482 
2483 	SK_IF_LOCK(sc_if);
2484 	sk_start_locked(ifp);
2485 	SK_IF_UNLOCK(sc_if);
2486 
2487 	return;
2488 }
2489 
2490 static void
2491 sk_start_locked(ifp)
2492 	struct ifnet		*ifp;
2493 {
2494         struct sk_softc		*sc;
2495         struct sk_if_softc	*sc_if;
2496         struct mbuf		*m_head;
2497 	int			enq;
2498 
2499 	sc_if = ifp->if_softc;
2500 	sc = sc_if->sk_softc;
2501 
2502 	SK_IF_LOCK_ASSERT(sc_if);
2503 
2504 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2505 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2506 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2507 		if (m_head == NULL)
2508 			break;
2509 
2510 		/*
2511 		 * Pack the data into the transmit ring. If we
2512 		 * don't have room, set the OACTIVE flag and wait
2513 		 * for the NIC to drain the ring.
2514 		 */
2515 		if (sk_encap(sc_if, &m_head)) {
2516 			if (m_head == NULL)
2517 				break;
2518 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2519 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2520 			break;
2521 		}
2522 
2523 		enq++;
2524 		/*
2525 		 * If there's a BPF listener, bounce a copy of this frame
2526 		 * to him.
2527 		 */
2528 		BPF_MTAP(ifp, m_head);
2529 	}
2530 
2531 	if (enq > 0) {
2532 		/* Transmit */
2533 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2534 
2535 		/* Set a timeout in case the chip goes out to lunch. */
2536 		sc_if->sk_watchdog_timer = 5;
2537 	}
2538 }
2539 
2540 
2541 static void
2542 sk_watchdog(arg)
2543 	void			*arg;
2544 {
2545 	struct sk_if_softc	*sc_if;
2546 	struct ifnet		*ifp;
2547 
2548 	ifp = arg;
2549 	sc_if = ifp->if_softc;
2550 
2551 	SK_IF_LOCK_ASSERT(sc_if);
2552 
2553 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2554 		goto done;
2555 
2556 	/*
2557 	 * Reclaim first as there is a possibility of losing Tx completion
2558 	 * interrupts.
2559 	 */
2560 	sk_txeof(sc_if);
2561 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2562 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2563 		ifp->if_oerrors++;
2564 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2565 		sk_init_locked(sc_if);
2566 	}
2567 
2568 done:
2569 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2570 
2571 	return;
2572 }
2573 
2574 static int
2575 skc_shutdown(dev)
2576 	device_t		dev;
2577 {
2578 	struct sk_softc		*sc;
2579 
2580 	sc = device_get_softc(dev);
2581 	SK_LOCK(sc);
2582 
2583 	/* Turn off the 'driver is loaded' LED. */
2584 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2585 
2586 	/*
2587 	 * Reset the GEnesis controller. Doing this should also
2588 	 * assert the resets on the attached XMAC(s).
2589 	 */
2590 	sk_reset(sc);
2591 	SK_UNLOCK(sc);
2592 
2593 	return (0);
2594 }
2595 
2596 static int
2597 skc_suspend(dev)
2598 	device_t		dev;
2599 {
2600 	struct sk_softc		*sc;
2601 	struct sk_if_softc	*sc_if0, *sc_if1;
2602 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2603 
2604 	sc = device_get_softc(dev);
2605 
2606 	SK_LOCK(sc);
2607 
2608 	sc_if0 = sc->sk_if[SK_PORT_A];
2609 	sc_if1 = sc->sk_if[SK_PORT_B];
2610 	if (sc_if0 != NULL)
2611 		ifp0 = sc_if0->sk_ifp;
2612 	if (sc_if1 != NULL)
2613 		ifp1 = sc_if1->sk_ifp;
2614 	if (ifp0 != NULL)
2615 		sk_stop(sc_if0);
2616 	if (ifp1 != NULL)
2617 		sk_stop(sc_if1);
2618 	sc->sk_suspended = 1;
2619 
2620 	SK_UNLOCK(sc);
2621 
2622 	return (0);
2623 }
2624 
2625 static int
2626 skc_resume(dev)
2627 	device_t		dev;
2628 {
2629 	struct sk_softc		*sc;
2630 	struct sk_if_softc	*sc_if0, *sc_if1;
2631 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2632 
2633 	sc = device_get_softc(dev);
2634 
2635 	SK_LOCK(sc);
2636 
2637 	sc_if0 = sc->sk_if[SK_PORT_A];
2638 	sc_if1 = sc->sk_if[SK_PORT_B];
2639 	if (sc_if0 != NULL)
2640 		ifp0 = sc_if0->sk_ifp;
2641 	if (sc_if1 != NULL)
2642 		ifp1 = sc_if1->sk_ifp;
2643 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2644 		sk_init_locked(sc_if0);
2645 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2646 		sk_init_locked(sc_if1);
2647 	sc->sk_suspended = 0;
2648 
2649 	SK_UNLOCK(sc);
2650 
2651 	return (0);
2652 }
2653 
2654 /*
2655  * According to the data sheet from SK-NET GENESIS the hardware can compute
2656  * two Rx checksums at the same time(Each checksum start position is
2657  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2658  * does not work at least on my Yukon hardware. I tried every possible ways
2659  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2660  * checksum offload was disabled at the moment and only IP checksum offload
2661  * was enabled.
2662  * As nomral IP header size is 20 bytes I can't expect it would give an
2663  * increase in throughput. However it seems it doesn't hurt performance in
2664  * my testing. If there is a more detailed information for checksum secret
2665  * of the hardware in question please contact yongari@FreeBSD.org to add
2666  * TCP/UDP checksum offload support.
2667  */
2668 static __inline void
2669 sk_rxcksum(ifp, m, csum)
2670 	struct ifnet		*ifp;
2671 	struct mbuf		*m;
2672 	u_int32_t		csum;
2673 {
2674 	struct ether_header	*eh;
2675 	struct ip		*ip;
2676 	int32_t			hlen, len, pktlen;
2677 	u_int16_t		csum1, csum2, ipcsum;
2678 
2679 	pktlen = m->m_pkthdr.len;
2680 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2681 		return;
2682 	eh = mtod(m, struct ether_header *);
2683 	if (eh->ether_type != htons(ETHERTYPE_IP))
2684 		return;
2685 	ip = (struct ip *)(eh + 1);
2686 	if (ip->ip_v != IPVERSION)
2687 		return;
2688 	hlen = ip->ip_hl << 2;
2689 	pktlen -= sizeof(struct ether_header);
2690 	if (hlen < sizeof(struct ip))
2691 		return;
2692 	if (ntohs(ip->ip_len) < hlen)
2693 		return;
2694 	if (ntohs(ip->ip_len) != pktlen)
2695 		return;
2696 
2697 	csum1 = htons(csum & 0xffff);
2698 	csum2 = htons((csum >> 16) & 0xffff);
2699 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2700 	/* checksum fixup for IP options */
2701 	len = hlen - sizeof(struct ip);
2702 	if (len > 0) {
2703 		/*
2704 		 * If the second checksum value is correct we can compute IP
2705 		 * checksum with simple math. Unfortunately the second checksum
2706 		 * value is wrong so we can't verify the checksum from the
2707 		 * value(It seems there is some magic here to get correct
2708 		 * value). If the second checksum value is correct it also
2709 		 * means we can get TCP/UDP checksum) here. However, it still
2710 		 * needs pseudo header checksum calculation due to hardware
2711 		 * limitations.
2712 		 */
2713 		return;
2714 	}
2715 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2716 	if (ipcsum == 0xffff)
2717 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2718 }
2719 
2720 static __inline int
2721 sk_rxvalid(sc, stat, len)
2722 	struct sk_softc		*sc;
2723 	u_int32_t		stat, len;
2724 {
2725 
2726 	if (sc->sk_type == SK_GENESIS) {
2727 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2728 		    XM_RXSTAT_BYTES(stat) != len)
2729 			return (0);
2730 	} else {
2731 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2732 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2733 		    YU_RXSTAT_JABBER)) != 0 ||
2734 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2735 		    YU_RXSTAT_BYTES(stat) != len)
2736 			return (0);
2737 	}
2738 
2739 	return (1);
2740 }
2741 
2742 static void
2743 sk_rxeof(sc_if)
2744 	struct sk_if_softc	*sc_if;
2745 {
2746 	struct sk_softc		*sc;
2747 	struct mbuf		*m;
2748 	struct ifnet		*ifp;
2749 	struct sk_rx_desc	*cur_rx;
2750 	struct sk_rxdesc	*rxd;
2751 	int			cons, prog;
2752 	u_int32_t		csum, rxstat, sk_ctl;
2753 
2754 	sc = sc_if->sk_softc;
2755 	ifp = sc_if->sk_ifp;
2756 
2757 	SK_IF_LOCK_ASSERT(sc_if);
2758 
2759 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2760 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2761 
2762 	prog = 0;
2763 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2764 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2765 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2766 		sk_ctl = le32toh(cur_rx->sk_ctl);
2767 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2768 			break;
2769 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2770 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2771 
2772 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2773 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2774 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2775 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2776 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2777 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2778 			ifp->if_ierrors++;
2779 			sk_discard_rxbuf(sc_if, cons);
2780 			continue;
2781 		}
2782 
2783 		m = rxd->rx_m;
2784 		csum = le32toh(cur_rx->sk_csum);
2785 		if (sk_newbuf(sc_if, cons) != 0) {
2786 			ifp->if_iqdrops++;
2787 			/* reuse old buffer */
2788 			sk_discard_rxbuf(sc_if, cons);
2789 			continue;
2790 		}
2791 		m->m_pkthdr.rcvif = ifp;
2792 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2793 		ifp->if_ipackets++;
2794 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2795 			sk_rxcksum(ifp, m, csum);
2796 		SK_IF_UNLOCK(sc_if);
2797 		(*ifp->if_input)(ifp, m);
2798 		SK_IF_LOCK(sc_if);
2799 	}
2800 
2801 	if (prog > 0) {
2802 		sc_if->sk_cdata.sk_rx_cons = cons;
2803 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2804 		    sc_if->sk_cdata.sk_rx_ring_map,
2805 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2806 	}
2807 }
2808 
2809 static void
2810 sk_jumbo_rxeof(sc_if)
2811 	struct sk_if_softc	*sc_if;
2812 {
2813 	struct sk_softc		*sc;
2814 	struct mbuf		*m;
2815 	struct ifnet		*ifp;
2816 	struct sk_rx_desc	*cur_rx;
2817 	struct sk_rxdesc	*jrxd;
2818 	int			cons, prog;
2819 	u_int32_t		csum, rxstat, sk_ctl;
2820 
2821 	sc = sc_if->sk_softc;
2822 	ifp = sc_if->sk_ifp;
2823 
2824 	SK_IF_LOCK_ASSERT(sc_if);
2825 
2826 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2827 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2828 
2829 	prog = 0;
2830 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2831 	    prog < SK_JUMBO_RX_RING_CNT;
2832 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2833 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2834 		sk_ctl = le32toh(cur_rx->sk_ctl);
2835 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2836 			break;
2837 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2838 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2839 
2840 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2841 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2842 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2843 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2844 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2845 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2846 			ifp->if_ierrors++;
2847 			sk_discard_jumbo_rxbuf(sc_if, cons);
2848 			continue;
2849 		}
2850 
2851 		m = jrxd->rx_m;
2852 		csum = le32toh(cur_rx->sk_csum);
2853 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2854 			ifp->if_iqdrops++;
2855 			/* reuse old buffer */
2856 			sk_discard_jumbo_rxbuf(sc_if, cons);
2857 			continue;
2858 		}
2859 		m->m_pkthdr.rcvif = ifp;
2860 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2861 		ifp->if_ipackets++;
2862 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2863 			sk_rxcksum(ifp, m, csum);
2864 		SK_IF_UNLOCK(sc_if);
2865 		(*ifp->if_input)(ifp, m);
2866 		SK_IF_LOCK(sc_if);
2867 	}
2868 
2869 	if (prog > 0) {
2870 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2871 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2872 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2873 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2874 	}
2875 }
2876 
2877 static void
2878 sk_txeof(sc_if)
2879 	struct sk_if_softc	*sc_if;
2880 {
2881 	struct sk_softc		*sc;
2882 	struct sk_txdesc	*txd;
2883 	struct sk_tx_desc	*cur_tx;
2884 	struct ifnet		*ifp;
2885 	u_int32_t		idx, sk_ctl;
2886 
2887 	sc = sc_if->sk_softc;
2888 	ifp = sc_if->sk_ifp;
2889 
2890 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2891 	if (txd == NULL)
2892 		return;
2893 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2894 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2895 	/*
2896 	 * Go through our tx ring and free mbufs for those
2897 	 * frames that have been sent.
2898 	 */
2899 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2900 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2901 			break;
2902 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2903 		sk_ctl = le32toh(cur_tx->sk_ctl);
2904 		if (sk_ctl & SK_TXCTL_OWN)
2905 			break;
2906 		sc_if->sk_cdata.sk_tx_cnt--;
2907 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2908 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2909 			continue;
2910 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2911 		    BUS_DMASYNC_POSTWRITE);
2912 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2913 
2914 		ifp->if_opackets++;
2915 		m_freem(txd->tx_m);
2916 		txd->tx_m = NULL;
2917 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2918 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2919 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2920 	}
2921 	sc_if->sk_cdata.sk_tx_cons = idx;
2922 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2923 
2924 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2925 	    sc_if->sk_cdata.sk_tx_ring_map,
2926 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2927 }
2928 
2929 static void
2930 sk_tick(xsc_if)
2931 	void			*xsc_if;
2932 {
2933 	struct sk_if_softc	*sc_if;
2934 	struct mii_data		*mii;
2935 	struct ifnet		*ifp;
2936 	int			i;
2937 
2938 	sc_if = xsc_if;
2939 	ifp = sc_if->sk_ifp;
2940 	mii = device_get_softc(sc_if->sk_miibus);
2941 
2942 	if (!(ifp->if_flags & IFF_UP))
2943 		return;
2944 
2945 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2946 		sk_intr_bcom(sc_if);
2947 		return;
2948 	}
2949 
2950 	/*
2951 	 * According to SysKonnect, the correct way to verify that
2952 	 * the link has come back up is to poll bit 0 of the GPIO
2953 	 * register three times. This pin has the signal from the
2954 	 * link_sync pin connected to it; if we read the same link
2955 	 * state 3 times in a row, we know the link is up.
2956 	 */
2957 	for (i = 0; i < 3; i++) {
2958 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2959 			break;
2960 	}
2961 
2962 	if (i != 3) {
2963 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2964 		return;
2965 	}
2966 
2967 	/* Turn the GP0 interrupt back on. */
2968 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2969 	SK_XM_READ_2(sc_if, XM_ISR);
2970 	mii_tick(mii);
2971 	callout_stop(&sc_if->sk_tick_ch);
2972 }
2973 
2974 static void
2975 sk_yukon_tick(xsc_if)
2976 	void			*xsc_if;
2977 {
2978 	struct sk_if_softc	*sc_if;
2979 	struct mii_data		*mii;
2980 
2981 	sc_if = xsc_if;
2982 	mii = device_get_softc(sc_if->sk_miibus);
2983 
2984 	mii_tick(mii);
2985 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2986 }
2987 
2988 static void
2989 sk_intr_bcom(sc_if)
2990 	struct sk_if_softc	*sc_if;
2991 {
2992 	struct mii_data		*mii;
2993 	struct ifnet		*ifp;
2994 	int			status;
2995 	mii = device_get_softc(sc_if->sk_miibus);
2996 	ifp = sc_if->sk_ifp;
2997 
2998 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2999 
3000 	/*
3001 	 * Read the PHY interrupt register to make sure
3002 	 * we clear any pending interrupts.
3003 	 */
3004 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
3005 
3006 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3007 		sk_init_xmac(sc_if);
3008 		return;
3009 	}
3010 
3011 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3012 		int			lstat;
3013 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3014 		    BRGPHY_MII_AUXSTS);
3015 
3016 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3017 			mii_mediachg(mii);
3018 			/* Turn off the link LED. */
3019 			SK_IF_WRITE_1(sc_if, 0,
3020 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3021 			sc_if->sk_link = 0;
3022 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3023 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3024 	    		    BRGPHY_MII_IMR, 0xFF00);
3025 			mii_tick(mii);
3026 			sc_if->sk_link = 1;
3027 			/* Turn on the link LED. */
3028 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3029 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3030 			    SK_LINKLED_BLINK_OFF);
3031 		} else {
3032 			mii_tick(mii);
3033 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3034 		}
3035 	}
3036 
3037 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3038 
3039 	return;
3040 }
3041 
3042 static void
3043 sk_intr_xmac(sc_if)
3044 	struct sk_if_softc	*sc_if;
3045 {
3046 	struct sk_softc		*sc;
3047 	u_int16_t		status;
3048 
3049 	sc = sc_if->sk_softc;
3050 	status = SK_XM_READ_2(sc_if, XM_ISR);
3051 
3052 	/*
3053 	 * Link has gone down. Start MII tick timeout to
3054 	 * watch for link resync.
3055 	 */
3056 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3057 		if (status & XM_ISR_GP0_SET) {
3058 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3059 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3060 		}
3061 
3062 		if (status & XM_ISR_AUTONEG_DONE) {
3063 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3064 		}
3065 	}
3066 
3067 	if (status & XM_IMR_TX_UNDERRUN)
3068 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3069 
3070 	if (status & XM_IMR_RX_OVERRUN)
3071 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3072 
3073 	status = SK_XM_READ_2(sc_if, XM_ISR);
3074 
3075 	return;
3076 }
3077 
3078 static void
3079 sk_intr_yukon(sc_if)
3080 	struct sk_if_softc	*sc_if;
3081 {
3082 	u_int8_t status;
3083 
3084 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3085 	/* RX overrun */
3086 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3087 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3088 		    SK_RFCTL_RX_FIFO_OVER);
3089 	}
3090 	/* TX underrun */
3091 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3092 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3093 		    SK_TFCTL_TX_FIFO_UNDER);
3094 	}
3095 }
3096 
3097 static void
3098 sk_intr(xsc)
3099 	void			*xsc;
3100 {
3101 	struct sk_softc		*sc = xsc;
3102 	struct sk_if_softc	*sc_if0, *sc_if1;
3103 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3104 	u_int32_t		status;
3105 
3106 	SK_LOCK(sc);
3107 
3108 	status = CSR_READ_4(sc, SK_ISSR);
3109 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3110 		goto done_locked;
3111 
3112 	sc_if0 = sc->sk_if[SK_PORT_A];
3113 	sc_if1 = sc->sk_if[SK_PORT_B];
3114 
3115 	if (sc_if0 != NULL)
3116 		ifp0 = sc_if0->sk_ifp;
3117 	if (sc_if1 != NULL)
3118 		ifp1 = sc_if1->sk_ifp;
3119 
3120 	for (; (status &= sc->sk_intrmask) != 0;) {
3121 		/* Handle receive interrupts first. */
3122 		if (status & SK_ISR_RX1_EOF) {
3123 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3124 				sk_jumbo_rxeof(sc_if0);
3125 			else
3126 				sk_rxeof(sc_if0);
3127 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3128 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3129 		}
3130 		if (status & SK_ISR_RX2_EOF) {
3131 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3132 				sk_jumbo_rxeof(sc_if1);
3133 			else
3134 				sk_rxeof(sc_if1);
3135 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3136 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3137 		}
3138 
3139 		/* Then transmit interrupts. */
3140 		if (status & SK_ISR_TX1_S_EOF) {
3141 			sk_txeof(sc_if0);
3142 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3143 		}
3144 		if (status & SK_ISR_TX2_S_EOF) {
3145 			sk_txeof(sc_if1);
3146 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3147 		}
3148 
3149 		/* Then MAC interrupts. */
3150 		if (status & SK_ISR_MAC1 &&
3151 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3152 			if (sc->sk_type == SK_GENESIS)
3153 				sk_intr_xmac(sc_if0);
3154 			else
3155 				sk_intr_yukon(sc_if0);
3156 		}
3157 
3158 		if (status & SK_ISR_MAC2 &&
3159 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3160 			if (sc->sk_type == SK_GENESIS)
3161 				sk_intr_xmac(sc_if1);
3162 			else
3163 				sk_intr_yukon(sc_if1);
3164 		}
3165 
3166 		if (status & SK_ISR_EXTERNAL_REG) {
3167 			if (ifp0 != NULL &&
3168 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3169 				sk_intr_bcom(sc_if0);
3170 			if (ifp1 != NULL &&
3171 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3172 				sk_intr_bcom(sc_if1);
3173 		}
3174 		status = CSR_READ_4(sc, SK_ISSR);
3175 	}
3176 
3177 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3178 
3179 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3180 		sk_start_locked(ifp0);
3181 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3182 		sk_start_locked(ifp1);
3183 
3184 done_locked:
3185 	SK_UNLOCK(sc);
3186 }
3187 
3188 static void
3189 sk_init_xmac(sc_if)
3190 	struct sk_if_softc	*sc_if;
3191 {
3192 	struct sk_softc		*sc;
3193 	struct ifnet		*ifp;
3194 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3195 	struct sk_bcom_hack	bhack[] = {
3196 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3197 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3198 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3199 	{ 0, 0 } };
3200 
3201 	SK_IF_LOCK_ASSERT(sc_if);
3202 
3203 	sc = sc_if->sk_softc;
3204 	ifp = sc_if->sk_ifp;
3205 
3206 	/* Unreset the XMAC. */
3207 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3208 	DELAY(1000);
3209 
3210 	/* Reset the XMAC's internal state. */
3211 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3212 
3213 	/* Save the XMAC II revision */
3214 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3215 
3216 	/*
3217 	 * Perform additional initialization for external PHYs,
3218 	 * namely for the 1000baseTX cards that use the XMAC's
3219 	 * GMII mode.
3220 	 */
3221 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3222 		int			i = 0;
3223 		u_int32_t		val;
3224 
3225 		/* Take PHY out of reset. */
3226 		val = sk_win_read_4(sc, SK_GPIO);
3227 		if (sc_if->sk_port == SK_PORT_A)
3228 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3229 		else
3230 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3231 		sk_win_write_4(sc, SK_GPIO, val);
3232 
3233 		/* Enable GMII mode on the XMAC. */
3234 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3235 
3236 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3237 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3238 		DELAY(10000);
3239 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3240 		    BRGPHY_MII_IMR, 0xFFF0);
3241 
3242 		/*
3243 		 * Early versions of the BCM5400 apparently have
3244 		 * a bug that requires them to have their reserved
3245 		 * registers initialized to some magic values. I don't
3246 		 * know what the numbers do, I'm just the messenger.
3247 		 */
3248 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3249 		    == 0x6041) {
3250 			while(bhack[i].reg) {
3251 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3252 				    bhack[i].reg, bhack[i].val);
3253 				i++;
3254 			}
3255 		}
3256 	}
3257 
3258 	/* Set station address */
3259 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3260 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3261 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3262 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3263 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3264 
3265 	if (ifp->if_flags & IFF_BROADCAST) {
3266 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3267 	} else {
3268 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3269 	}
3270 
3271 	/* We don't need the FCS appended to the packet. */
3272 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3273 
3274 	/* We want short frames padded to 60 bytes. */
3275 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3276 
3277 	/*
3278 	 * Enable the reception of all error frames. This is is
3279 	 * a necessary evil due to the design of the XMAC. The
3280 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3281 	 * frames can be up to 9000 bytes in length. When bad
3282 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3283 	 * in 'store and forward' mode. For this to work, the
3284 	 * entire frame has to fit into the FIFO, but that means
3285 	 * that jumbo frames larger than 8192 bytes will be
3286 	 * truncated. Disabling all bad frame filtering causes
3287 	 * the RX FIFO to operate in streaming mode, in which
3288 	 * case the XMAC will start transfering frames out of the
3289 	 * RX FIFO as soon as the FIFO threshold is reached.
3290 	 */
3291 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3292 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3293 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3294 		    XM_MODE_RX_INRANGELEN);
3295 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3296 	} else
3297 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3298 
3299 	/*
3300 	 * Bump up the transmit threshold. This helps hold off transmit
3301 	 * underruns when we're blasting traffic from both ports at once.
3302 	 */
3303 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3304 
3305 	/* Set promiscuous mode */
3306 	sk_setpromisc(sc_if);
3307 
3308 	/* Set multicast filter */
3309 	sk_setmulti(sc_if);
3310 
3311 	/* Clear and enable interrupts */
3312 	SK_XM_READ_2(sc_if, XM_ISR);
3313 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3314 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3315 	else
3316 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3317 
3318 	/* Configure MAC arbiter */
3319 	switch(sc_if->sk_xmac_rev) {
3320 	case XM_XMAC_REV_B2:
3321 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3322 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3323 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3324 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3325 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3326 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3327 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3328 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3329 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3330 		break;
3331 	case XM_XMAC_REV_C1:
3332 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3333 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3334 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3335 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3336 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3337 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3338 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3339 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3340 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3341 		break;
3342 	default:
3343 		break;
3344 	}
3345 	sk_win_write_2(sc, SK_MACARB_CTL,
3346 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3347 
3348 	sc_if->sk_link = 1;
3349 
3350 	return;
3351 }
3352 
3353 static void
3354 sk_init_yukon(sc_if)
3355 	struct sk_if_softc	*sc_if;
3356 {
3357 	u_int32_t		phy, v;
3358 	u_int16_t		reg;
3359 	struct sk_softc		*sc;
3360 	struct ifnet		*ifp;
3361 	int			i;
3362 
3363 	SK_IF_LOCK_ASSERT(sc_if);
3364 
3365 	sc = sc_if->sk_softc;
3366 	ifp = sc_if->sk_ifp;
3367 
3368 	if (sc->sk_type == SK_YUKON_LITE &&
3369 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3370 		/*
3371 		 * Workaround code for COMA mode, set PHY reset.
3372 		 * Otherwise it will not correctly take chip out of
3373 		 * powerdown (coma)
3374 		 */
3375 		v = sk_win_read_4(sc, SK_GPIO);
3376 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3377 		sk_win_write_4(sc, SK_GPIO, v);
3378 	}
3379 
3380 	/* GMAC and GPHY Reset */
3381 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3382 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3383 	DELAY(1000);
3384 
3385 	if (sc->sk_type == SK_YUKON_LITE &&
3386 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3387 		/*
3388 		 * Workaround code for COMA mode, clear PHY reset
3389 		 */
3390 		v = sk_win_read_4(sc, SK_GPIO);
3391 		v |= SK_GPIO_DIR9;
3392 		v &= ~SK_GPIO_DAT9;
3393 		sk_win_write_4(sc, SK_GPIO, v);
3394 	}
3395 
3396 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3397 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3398 
3399 	if (sc->sk_coppertype)
3400 		phy |= SK_GPHY_COPPER;
3401 	else
3402 		phy |= SK_GPHY_FIBER;
3403 
3404 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3405 	DELAY(1000);
3406 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3407 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3408 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3409 
3410 	/* unused read of the interrupt source register */
3411 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3412 
3413 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3414 
3415 	/* MIB Counter Clear Mode set */
3416 	reg |= YU_PAR_MIB_CLR;
3417 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3418 
3419 	/* MIB Counter Clear Mode clear */
3420 	reg &= ~YU_PAR_MIB_CLR;
3421 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3422 
3423 	/* receive control reg */
3424 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3425 
3426 	/* transmit parameter register */
3427 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3428 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3429 
3430 	/* serial mode register */
3431 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3432 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3433 		reg |= YU_SMR_MFL_JUMBO;
3434 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3435 
3436 	/* Setup Yukon's address */
3437 	for (i = 0; i < 3; i++) {
3438 		/* Write Source Address 1 (unicast filter) */
3439 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3440 			      IF_LLADDR(sc_if->sk_ifp)[i * 2] |
3441 			      IF_LLADDR(sc_if->sk_ifp)[i * 2 + 1] << 8);
3442 	}
3443 
3444 	for (i = 0; i < 3; i++) {
3445 		reg = sk_win_read_2(sc_if->sk_softc,
3446 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
3447 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
3448 	}
3449 
3450 	/* Set promiscuous mode */
3451 	sk_setpromisc(sc_if);
3452 
3453 	/* Set multicast filter */
3454 	sk_setmulti(sc_if);
3455 
3456 	/* enable interrupt mask for counter overflows */
3457 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3458 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3459 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3460 
3461 	/* Configure RX MAC FIFO Flush Mask */
3462 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3463 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3464 	    YU_RXSTAT_JABBER;
3465 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3466 
3467 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3468 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3469 		v = SK_TFCTL_OPERATION_ON;
3470 	else
3471 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3472 	/* Configure RX MAC FIFO */
3473 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3474 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3475 
3476 	/* Increase flush threshould to 64 bytes */
3477 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3478 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3479 
3480 	/* Configure TX MAC FIFO */
3481 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3482 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3483 }
3484 
3485 /*
3486  * Note that to properly initialize any part of the GEnesis chip,
3487  * you first have to take it out of reset mode.
3488  */
3489 static void
3490 sk_init(xsc)
3491 	void			*xsc;
3492 {
3493 	struct sk_if_softc	*sc_if = xsc;
3494 
3495 	SK_IF_LOCK(sc_if);
3496 	sk_init_locked(sc_if);
3497 	SK_IF_UNLOCK(sc_if);
3498 
3499 	return;
3500 }
3501 
3502 static void
3503 sk_init_locked(sc_if)
3504 	struct sk_if_softc	*sc_if;
3505 {
3506 	struct sk_softc		*sc;
3507 	struct ifnet		*ifp;
3508 	struct mii_data		*mii;
3509 	u_int16_t		reg;
3510 	u_int32_t		imr;
3511 	int			error;
3512 
3513 	SK_IF_LOCK_ASSERT(sc_if);
3514 
3515 	ifp = sc_if->sk_ifp;
3516 	sc = sc_if->sk_softc;
3517 	mii = device_get_softc(sc_if->sk_miibus);
3518 
3519 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3520 		return;
3521 
3522 	/* Cancel pending I/O and free all RX/TX buffers. */
3523 	sk_stop(sc_if);
3524 
3525 	if (sc->sk_type == SK_GENESIS) {
3526 		/* Configure LINK_SYNC LED */
3527 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3528 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3529 			SK_LINKLED_LINKSYNC_ON);
3530 
3531 		/* Configure RX LED */
3532 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3533 			SK_RXLEDCTL_COUNTER_START);
3534 
3535 		/* Configure TX LED */
3536 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3537 			SK_TXLEDCTL_COUNTER_START);
3538 	}
3539 
3540 	/*
3541 	 * Configure descriptor poll timer
3542 	 *
3543 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3544 	 * transmit command due to CPU/cache related interim storage problems
3545 	 * under certain conditions. The document recommends a polling
3546 	 * mechanism to send a Start transmit command to initiate transfer
3547 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3548 	 * enables descriptor poll timer to initiate descriptor processing
3549 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3550 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3551 	 * command instead of waiting for next descriptor polling time.
3552 	 * The same rule may apply to Rx side too but it seems that is not
3553 	 * needed at the moment.
3554 	 * Since sk(4) uses descriptor polling as a last resort there is no
3555 	 * need to set smaller polling time than maximum allowable one.
3556 	 */
3557 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3558 
3559 	/* Configure I2C registers */
3560 
3561 	/* Configure XMAC(s) */
3562 	switch (sc->sk_type) {
3563 	case SK_GENESIS:
3564 		sk_init_xmac(sc_if);
3565 		break;
3566 	case SK_YUKON:
3567 	case SK_YUKON_LITE:
3568 	case SK_YUKON_LP:
3569 		sk_init_yukon(sc_if);
3570 		break;
3571 	}
3572 	mii_mediachg(mii);
3573 
3574 	if (sc->sk_type == SK_GENESIS) {
3575 		/* Configure MAC FIFOs */
3576 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3577 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3578 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3579 
3580 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3581 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3582 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3583 	}
3584 
3585 	/* Configure transmit arbiter(s) */
3586 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3587 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3588 
3589 	/* Configure RAMbuffers */
3590 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3591 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3592 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3593 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3594 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3595 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3596 
3597 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3598 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3599 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3600 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3601 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3602 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3603 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3604 
3605 	/* Configure BMUs */
3606 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3607 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3608 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3609 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3610 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3611 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3612 	} else {
3613 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3614 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3615 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3616 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3617 	}
3618 
3619 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3620 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3621 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3622 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3623 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3624 
3625 	/* Init descriptors */
3626 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3627 		error = sk_init_jumbo_rx_ring(sc_if);
3628 	else
3629 		error = sk_init_rx_ring(sc_if);
3630 	if (error != 0) {
3631 		device_printf(sc_if->sk_if_dev,
3632 		    "initialization failed: no memory for rx buffers\n");
3633 		sk_stop(sc_if);
3634 		return;
3635 	}
3636 	sk_init_tx_ring(sc_if);
3637 
3638 	/* Set interrupt moderation if changed via sysctl. */
3639 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3640 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3641 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3642 		    sc->sk_int_ticks));
3643 		if (bootverbose)
3644 			device_printf(sc_if->sk_if_dev,
3645 			    "interrupt moderation is %d us.\n",
3646 			    sc->sk_int_mod);
3647 	}
3648 
3649 	/* Configure interrupt handling */
3650 	CSR_READ_4(sc, SK_ISSR);
3651 	if (sc_if->sk_port == SK_PORT_A)
3652 		sc->sk_intrmask |= SK_INTRS1;
3653 	else
3654 		sc->sk_intrmask |= SK_INTRS2;
3655 
3656 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3657 
3658 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3659 
3660 	/* Start BMUs. */
3661 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3662 
3663 	switch(sc->sk_type) {
3664 	case SK_GENESIS:
3665 		/* Enable XMACs TX and RX state machines */
3666 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3667 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3668 		break;
3669 	case SK_YUKON:
3670 	case SK_YUKON_LITE:
3671 	case SK_YUKON_LP:
3672 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3673 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3674 #if 0
3675 		/* XXX disable 100Mbps and full duplex mode? */
3676 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3677 #endif
3678 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3679 	}
3680 
3681 	/* Activate descriptor polling timer */
3682 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3683 	/* start transfer of Tx descriptors */
3684 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3685 
3686 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3687 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3688 
3689 	switch (sc->sk_type) {
3690 	case SK_YUKON:
3691 	case SK_YUKON_LITE:
3692 	case SK_YUKON_LP:
3693 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3694 		break;
3695 	}
3696 
3697 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3698 
3699 	return;
3700 }
3701 
3702 static void
3703 sk_stop(sc_if)
3704 	struct sk_if_softc	*sc_if;
3705 {
3706 	int			i;
3707 	struct sk_softc		*sc;
3708 	struct sk_txdesc	*txd;
3709 	struct sk_rxdesc	*rxd;
3710 	struct sk_rxdesc	*jrxd;
3711 	struct ifnet		*ifp;
3712 	u_int32_t		val;
3713 
3714 	SK_IF_LOCK_ASSERT(sc_if);
3715 	sc = sc_if->sk_softc;
3716 	ifp = sc_if->sk_ifp;
3717 
3718 	callout_stop(&sc_if->sk_tick_ch);
3719 	callout_stop(&sc_if->sk_watchdog_ch);
3720 
3721 	/* stop Tx descriptor polling timer */
3722 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3723 	/* stop transfer of Tx descriptors */
3724 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3725 	for (i = 0; i < SK_TIMEOUT; i++) {
3726 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3727 		if ((val & SK_TXBMU_TX_STOP) == 0)
3728 			break;
3729 		DELAY(1);
3730 	}
3731 	if (i == SK_TIMEOUT)
3732 		device_printf(sc_if->sk_if_dev,
3733 		    "can not stop transfer of Tx descriptor\n");
3734 	/* stop transfer of Rx descriptors */
3735 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3736 	for (i = 0; i < SK_TIMEOUT; i++) {
3737 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3738 		if ((val & SK_RXBMU_RX_STOP) == 0)
3739 			break;
3740 		DELAY(1);
3741 	}
3742 	if (i == SK_TIMEOUT)
3743 		device_printf(sc_if->sk_if_dev,
3744 		    "can not stop transfer of Rx descriptor\n");
3745 
3746 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3747 		/* Put PHY back into reset. */
3748 		val = sk_win_read_4(sc, SK_GPIO);
3749 		if (sc_if->sk_port == SK_PORT_A) {
3750 			val |= SK_GPIO_DIR0;
3751 			val &= ~SK_GPIO_DAT0;
3752 		} else {
3753 			val |= SK_GPIO_DIR2;
3754 			val &= ~SK_GPIO_DAT2;
3755 		}
3756 		sk_win_write_4(sc, SK_GPIO, val);
3757 	}
3758 
3759 	/* Turn off various components of this interface. */
3760 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3761 	switch (sc->sk_type) {
3762 	case SK_GENESIS:
3763 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3764 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3765 		break;
3766 	case SK_YUKON:
3767 	case SK_YUKON_LITE:
3768 	case SK_YUKON_LP:
3769 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3770 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3771 		break;
3772 	}
3773 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3774 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3775 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3776 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3777 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3778 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3779 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3780 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3781 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3782 
3783 	/* Disable interrupts */
3784 	if (sc_if->sk_port == SK_PORT_A)
3785 		sc->sk_intrmask &= ~SK_INTRS1;
3786 	else
3787 		sc->sk_intrmask &= ~SK_INTRS2;
3788 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3789 
3790 	SK_XM_READ_2(sc_if, XM_ISR);
3791 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3792 
3793 	/* Free RX and TX mbufs still in the queues. */
3794 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3795 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3796 		if (rxd->rx_m != NULL) {
3797 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3798 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3799 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3800 			    rxd->rx_dmamap);
3801 			m_freem(rxd->rx_m);
3802 			rxd->rx_m = NULL;
3803 		}
3804 	}
3805 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3806 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3807 		if (jrxd->rx_m != NULL) {
3808 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3809 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3810 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3811 			    jrxd->rx_dmamap);
3812 			m_freem(jrxd->rx_m);
3813 			jrxd->rx_m = NULL;
3814 		}
3815 	}
3816 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3817 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3818 		if (txd->tx_m != NULL) {
3819 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3820 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3821 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3822 			    txd->tx_dmamap);
3823 			m_freem(txd->tx_m);
3824 			txd->tx_m = NULL;
3825 		}
3826 	}
3827 
3828 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3829 
3830 	return;
3831 }
3832 
3833 static int
3834 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3835 {
3836 	int error, value;
3837 
3838 	if (!arg1)
3839 		return (EINVAL);
3840 	value = *(int *)arg1;
3841 	error = sysctl_handle_int(oidp, &value, 0, req);
3842 	if (error || !req->newptr)
3843 		return (error);
3844 	if (value < low || value > high)
3845 		return (EINVAL);
3846 	*(int *)arg1 = value;
3847 	return (0);
3848 }
3849 
3850 static int
3851 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3852 {
3853 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3854 }
3855