xref: /freebsd/sys/dev/sk/if_sk.c (revision 2357939bc239bd5334a169b62313806178dd8f30)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/queue.h>
96 
97 #include <net/if.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 
103 #include <net/bpf.h>
104 
105 #include <vm/vm.h>              /* for vtophys */
106 #include <vm/pmap.h>            /* for vtophys */
107 #include <machine/bus_pio.h>
108 #include <machine/bus_memio.h>
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/brgphyreg.h>
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #if 0
122 #define SK_USEIOSPACE
123 #endif
124 
125 #include <pci/if_skreg.h>
126 #include <pci/xmaciireg.h>
127 #include <pci/yukonreg.h>
128 
129 MODULE_DEPEND(sk, pci, 1, 1, 1);
130 MODULE_DEPEND(sk, ether, 1, 1, 1);
131 MODULE_DEPEND(sk, miibus, 1, 1, 1);
132 
133 /* "controller miibus0" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 #ifndef lint
137 static const char rcsid[] =
138   "$FreeBSD$";
139 #endif
140 
141 static struct sk_type sk_devs[] = {
142 	{
143 		VENDORID_SK,
144 		DEVICEID_SK_V1,
145 		"SysKonnect Gigabit Ethernet (V1.0)"
146 	},
147 	{
148 		VENDORID_SK,
149 		DEVICEID_SK_V2,
150 		"SysKonnect Gigabit Ethernet (V2.0)"
151 	},
152 	{
153 		VENDORID_MARVELL,
154 		DEVICEID_SK_V2,
155 		"Marvell Gigabit Ethernet"
156 	},
157 	{
158 		VENDORID_3COM,
159 		DEVICEID_3COM_3C940,
160 		"3Com 3C940 Gigabit Ethernet"
161 	},
162 	{
163 		VENDORID_LINKSYS,
164 		DEVICEID_LINKSYS_EG1032,
165 		"Linksys EG1032 Gigabit Ethernet"
166 	},
167 	{
168 		VENDORID_DLINK,
169 		DEVICEID_DLINK_DGE530T,
170 		"D-Link DGE-530T Gigabit Ethernet"
171 	},
172 	{ 0, 0, NULL }
173 };
174 
175 static int skc_probe		(device_t);
176 static int skc_attach		(device_t);
177 static int skc_detach		(device_t);
178 static void skc_shutdown	(device_t);
179 static int sk_detach		(device_t);
180 static int sk_probe		(device_t);
181 static int sk_attach		(device_t);
182 static void sk_tick		(void *);
183 static void sk_intr		(void *);
184 static void sk_intr_xmac	(struct sk_if_softc *);
185 static void sk_intr_bcom	(struct sk_if_softc *);
186 static void sk_intr_yukon	(struct sk_if_softc *);
187 static void sk_rxeof		(struct sk_if_softc *);
188 static void sk_txeof		(struct sk_if_softc *);
189 static int sk_encap		(struct sk_if_softc *, struct mbuf *,
190 					u_int32_t *);
191 static void sk_start		(struct ifnet *);
192 static int sk_ioctl		(struct ifnet *, u_long, caddr_t);
193 static void sk_init		(void *);
194 static void sk_init_xmac	(struct sk_if_softc *);
195 static void sk_init_yukon	(struct sk_if_softc *);
196 static void sk_stop		(struct sk_if_softc *);
197 static void sk_watchdog		(struct ifnet *);
198 static int sk_ifmedia_upd	(struct ifnet *);
199 static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
200 static void sk_reset		(struct sk_softc *);
201 static int sk_newbuf		(struct sk_if_softc *,
202 					struct sk_chain *, struct mbuf *);
203 static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
204 static void *sk_jalloc		(struct sk_if_softc *);
205 static void sk_jfree		(void *, void *);
206 static int sk_init_rx_ring	(struct sk_if_softc *);
207 static void sk_init_tx_ring	(struct sk_if_softc *);
208 static u_int32_t sk_win_read_4	(struct sk_softc *, int);
209 static u_int16_t sk_win_read_2	(struct sk_softc *, int);
210 static u_int8_t sk_win_read_1	(struct sk_softc *, int);
211 static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
212 static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
213 static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
214 static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
215 static void sk_vpd_read_res	(struct sk_softc *, struct vpd_res *, int);
216 static void sk_vpd_read		(struct sk_softc *);
217 
218 static int sk_miibus_readreg	(device_t, int, int);
219 static int sk_miibus_writereg	(device_t, int, int, int);
220 static void sk_miibus_statchg	(device_t);
221 
222 static int sk_xmac_miibus_readreg	(struct sk_if_softc *, int, int);
223 static int sk_xmac_miibus_writereg	(struct sk_if_softc *, int, int,
224 						int);
225 static void sk_xmac_miibus_statchg	(struct sk_if_softc *);
226 
227 static int sk_marv_miibus_readreg	(struct sk_if_softc *, int, int);
228 static int sk_marv_miibus_writereg	(struct sk_if_softc *, int, int,
229 						int);
230 static void sk_marv_miibus_statchg	(struct sk_if_softc *);
231 
232 static uint32_t sk_xmchash	(const uint8_t *);
233 static uint32_t sk_gmchash	(const uint8_t *);
234 static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
235 static void sk_setmulti		(struct sk_if_softc *);
236 static void sk_setpromisc	(struct sk_if_softc *);
237 
238 #ifdef SK_USEIOSPACE
239 #define SK_RES		SYS_RES_IOPORT
240 #define SK_RID		SK_PCI_LOIO
241 #else
242 #define SK_RES		SYS_RES_MEMORY
243 #define SK_RID		SK_PCI_LOMEM
244 #endif
245 
246 /*
247  * Note that we have newbus methods for both the GEnesis controller
248  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
249  * the miibus code is a child of the XMACs. We need to do it this way
250  * so that the miibus drivers can access the PHY registers on the
251  * right PHY. It's not quite what I had in mind, but it's the only
252  * design that achieves the desired effect.
253  */
254 static device_method_t skc_methods[] = {
255 	/* Device interface */
256 	DEVMETHOD(device_probe,		skc_probe),
257 	DEVMETHOD(device_attach,	skc_attach),
258 	DEVMETHOD(device_detach,	skc_detach),
259 	DEVMETHOD(device_shutdown,	skc_shutdown),
260 
261 	/* bus interface */
262 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
263 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
264 
265 	{ 0, 0 }
266 };
267 
268 static driver_t skc_driver = {
269 	"skc",
270 	skc_methods,
271 	sizeof(struct sk_softc)
272 };
273 
274 static devclass_t skc_devclass;
275 
276 static device_method_t sk_methods[] = {
277 	/* Device interface */
278 	DEVMETHOD(device_probe,		sk_probe),
279 	DEVMETHOD(device_attach,	sk_attach),
280 	DEVMETHOD(device_detach,	sk_detach),
281 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
282 
283 	/* bus interface */
284 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
285 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
286 
287 	/* MII interface */
288 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
289 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
290 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
291 
292 	{ 0, 0 }
293 };
294 
295 static driver_t sk_driver = {
296 	"sk",
297 	sk_methods,
298 	sizeof(struct sk_if_softc)
299 };
300 
301 static devclass_t sk_devclass;
302 
303 DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
304 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
305 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
306 
307 #define SK_SETBIT(sc, reg, x)		\
308 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
309 
310 #define SK_CLRBIT(sc, reg, x)		\
311 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
312 
313 #define SK_WIN_SETBIT_4(sc, reg, x)	\
314 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
315 
316 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
317 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
318 
319 #define SK_WIN_SETBIT_2(sc, reg, x)	\
320 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
321 
322 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
323 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
324 
325 static u_int32_t
326 sk_win_read_4(sc, reg)
327 	struct sk_softc		*sc;
328 	int			reg;
329 {
330 #ifdef SK_USEIOSPACE
331 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
332 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
333 #else
334 	return(CSR_READ_4(sc, reg));
335 #endif
336 }
337 
338 static u_int16_t
339 sk_win_read_2(sc, reg)
340 	struct sk_softc		*sc;
341 	int			reg;
342 {
343 #ifdef SK_USEIOSPACE
344 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
345 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
346 #else
347 	return(CSR_READ_2(sc, reg));
348 #endif
349 }
350 
351 static u_int8_t
352 sk_win_read_1(sc, reg)
353 	struct sk_softc		*sc;
354 	int			reg;
355 {
356 #ifdef SK_USEIOSPACE
357 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
358 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
359 #else
360 	return(CSR_READ_1(sc, reg));
361 #endif
362 }
363 
364 static void
365 sk_win_write_4(sc, reg, val)
366 	struct sk_softc		*sc;
367 	int			reg;
368 	u_int32_t		val;
369 {
370 #ifdef SK_USEIOSPACE
371 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
372 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
373 #else
374 	CSR_WRITE_4(sc, reg, val);
375 #endif
376 	return;
377 }
378 
379 static void
380 sk_win_write_2(sc, reg, val)
381 	struct sk_softc		*sc;
382 	int			reg;
383 	u_int32_t		val;
384 {
385 #ifdef SK_USEIOSPACE
386 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
387 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
388 #else
389 	CSR_WRITE_2(sc, reg, val);
390 #endif
391 	return;
392 }
393 
394 static void
395 sk_win_write_1(sc, reg, val)
396 	struct sk_softc		*sc;
397 	int			reg;
398 	u_int32_t		val;
399 {
400 #ifdef SK_USEIOSPACE
401 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
402 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
403 #else
404 	CSR_WRITE_1(sc, reg, val);
405 #endif
406 	return;
407 }
408 
409 /*
410  * The VPD EEPROM contains Vital Product Data, as suggested in
411  * the PCI 2.1 specification. The VPD data is separared into areas
412  * denoted by resource IDs. The SysKonnect VPD contains an ID string
413  * resource (the name of the adapter), a read-only area resource
414  * containing various key/data fields and a read/write area which
415  * can be used to store asset management information or log messages.
416  * We read the ID string and read-only into buffers attached to
417  * the controller softc structure for later use. At the moment,
418  * we only use the ID string during skc_attach().
419  */
420 static u_int8_t
421 sk_vpd_readbyte(sc, addr)
422 	struct sk_softc		*sc;
423 	int			addr;
424 {
425 	int			i;
426 
427 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
428 	for (i = 0; i < SK_TIMEOUT; i++) {
429 		DELAY(1);
430 		if (sk_win_read_2(sc,
431 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
432 			break;
433 	}
434 
435 	if (i == SK_TIMEOUT)
436 		return(0);
437 
438 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
439 }
440 
441 static void
442 sk_vpd_read_res(sc, res, addr)
443 	struct sk_softc		*sc;
444 	struct vpd_res		*res;
445 	int			addr;
446 {
447 	int			i;
448 	u_int8_t		*ptr;
449 
450 	ptr = (u_int8_t *)res;
451 	for (i = 0; i < sizeof(struct vpd_res); i++)
452 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
453 
454 	return;
455 }
456 
457 static void
458 sk_vpd_read(sc)
459 	struct sk_softc		*sc;
460 {
461 	int			pos = 0, i;
462 	struct vpd_res		res;
463 
464 	if (sc->sk_vpd_prodname != NULL)
465 		free(sc->sk_vpd_prodname, M_DEVBUF);
466 	if (sc->sk_vpd_readonly != NULL)
467 		free(sc->sk_vpd_readonly, M_DEVBUF);
468 	sc->sk_vpd_prodname = NULL;
469 	sc->sk_vpd_readonly = NULL;
470 
471 	sk_vpd_read_res(sc, &res, pos);
472 
473 	/*
474 	 * Bail out quietly if the eeprom appears to be missing or empty.
475 	 */
476 	if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff)
477 		return;
478 
479 	if (res.vr_id != VPD_RES_ID) {
480 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
481 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
482 		return;
483 	}
484 
485 	pos += sizeof(res);
486 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
487 	for (i = 0; i < res.vr_len; i++)
488 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
489 	sc->sk_vpd_prodname[i] = '\0';
490 	pos += i;
491 
492 	sk_vpd_read_res(sc, &res, pos);
493 
494 	if (res.vr_id != VPD_RES_READ) {
495 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
496 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
497 		return;
498 	}
499 
500 	pos += sizeof(res);
501 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
502 	for (i = 0; i < res.vr_len + 1; i++)
503 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
504 
505 	return;
506 }
507 
508 static int
509 sk_miibus_readreg(dev, phy, reg)
510 	device_t		dev;
511 	int			phy, reg;
512 {
513 	struct sk_if_softc	*sc_if;
514 
515 	sc_if = device_get_softc(dev);
516 
517 	switch(sc_if->sk_softc->sk_type) {
518 	case SK_GENESIS:
519 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
520 	case SK_YUKON:
521 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
522 	}
523 
524 	return(0);
525 }
526 
527 static int
528 sk_miibus_writereg(dev, phy, reg, val)
529 	device_t		dev;
530 	int			phy, reg, val;
531 {
532 	struct sk_if_softc	*sc_if;
533 
534 	sc_if = device_get_softc(dev);
535 
536 	switch(sc_if->sk_softc->sk_type) {
537 	case SK_GENESIS:
538 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
539 	case SK_YUKON:
540 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
541 	}
542 
543 	return(0);
544 }
545 
546 static void
547 sk_miibus_statchg(dev)
548 	device_t		dev;
549 {
550 	struct sk_if_softc	*sc_if;
551 
552 	sc_if = device_get_softc(dev);
553 
554 	switch(sc_if->sk_softc->sk_type) {
555 	case SK_GENESIS:
556 		sk_xmac_miibus_statchg(sc_if);
557 		break;
558 	case SK_YUKON:
559 		sk_marv_miibus_statchg(sc_if);
560 		break;
561 	}
562 
563 	return;
564 }
565 
566 static int
567 sk_xmac_miibus_readreg(sc_if, phy, reg)
568 	struct sk_if_softc	*sc_if;
569 	int			phy, reg;
570 {
571 	int			i;
572 
573 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
574 		return(0);
575 
576 	SK_IF_LOCK(sc_if);
577 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
578 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
579 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
580 		for (i = 0; i < SK_TIMEOUT; i++) {
581 			DELAY(1);
582 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
583 			    XM_MMUCMD_PHYDATARDY)
584 				break;
585 		}
586 
587 		if (i == SK_TIMEOUT) {
588 			printf("sk%d: phy failed to come ready\n",
589 			    sc_if->sk_unit);
590 			SK_IF_UNLOCK(sc_if);
591 			return(0);
592 		}
593 	}
594 	DELAY(1);
595 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
596 	SK_IF_UNLOCK(sc_if);
597 	return(i);
598 }
599 
600 static int
601 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
602 	struct sk_if_softc	*sc_if;
603 	int			phy, reg, val;
604 {
605 	int			i;
606 
607 	SK_IF_LOCK(sc_if);
608 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
609 	for (i = 0; i < SK_TIMEOUT; i++) {
610 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
611 			break;
612 	}
613 
614 	if (i == SK_TIMEOUT) {
615 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
616 		SK_IF_UNLOCK(sc_if);
617 		return(ETIMEDOUT);
618 	}
619 
620 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
621 	for (i = 0; i < SK_TIMEOUT; i++) {
622 		DELAY(1);
623 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
624 			break;
625 	}
626 	SK_IF_UNLOCK(sc_if);
627 	if (i == SK_TIMEOUT)
628 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
629 
630 	return(0);
631 }
632 
633 static void
634 sk_xmac_miibus_statchg(sc_if)
635 	struct sk_if_softc	*sc_if;
636 {
637 	struct mii_data		*mii;
638 
639 	mii = device_get_softc(sc_if->sk_miibus);
640 
641 	SK_IF_LOCK(sc_if);
642 	/*
643 	 * If this is a GMII PHY, manually set the XMAC's
644 	 * duplex mode accordingly.
645 	 */
646 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
647 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
648 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
649 		} else {
650 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
651 		}
652 	}
653 	SK_IF_UNLOCK(sc_if);
654 
655 	return;
656 }
657 
658 static int
659 sk_marv_miibus_readreg(sc_if, phy, reg)
660 	struct sk_if_softc	*sc_if;
661 	int			phy, reg;
662 {
663 	u_int16_t		val;
664 	int			i;
665 
666 	if (phy != 0 ||
667 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
668 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
669 		return(0);
670 	}
671 
672 	SK_IF_LOCK(sc_if);
673         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
674 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
675 
676 	for (i = 0; i < SK_TIMEOUT; i++) {
677 		DELAY(1);
678 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
679 		if (val & YU_SMICR_READ_VALID)
680 			break;
681 	}
682 
683 	if (i == SK_TIMEOUT) {
684 		printf("sk%d: phy failed to come ready\n",
685 		    sc_if->sk_unit);
686 		SK_IF_UNLOCK(sc_if);
687 		return(0);
688 	}
689 
690 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
691 	SK_IF_UNLOCK(sc_if);
692 
693 	return(val);
694 }
695 
696 static int
697 sk_marv_miibus_writereg(sc_if, phy, reg, val)
698 	struct sk_if_softc	*sc_if;
699 	int			phy, reg, val;
700 {
701 	int			i;
702 
703 	SK_IF_LOCK(sc_if);
704 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
705 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
706 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
707 
708 	for (i = 0; i < SK_TIMEOUT; i++) {
709 		DELAY(1);
710 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
711 			break;
712 	}
713 	SK_IF_UNLOCK(sc_if);
714 
715 	return(0);
716 }
717 
718 static void
719 sk_marv_miibus_statchg(sc_if)
720 	struct sk_if_softc	*sc_if;
721 {
722 	return;
723 }
724 
725 #define XMAC_POLY		0xEDB88320
726 #define GMAC_POLY		0x04C11DB7L
727 #define HASH_BITS		6
728 
729 static u_int32_t
730 sk_xmchash(addr)
731 	const uint8_t *addr;
732 {
733 	uint32_t crc;
734 	int idx, bit;
735 	uint8_t data;
736 
737 	/* Compute CRC for the address value. */
738 	crc = 0xFFFFFFFF; /* initial value */
739 
740 	for (idx = 0; idx < 6; idx++) {
741 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
742 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? XMAC_POLY : 0);
743 	}
744 
745 	return (~crc & ((1 << HASH_BITS) - 1));
746 }
747 
748 static u_int32_t
749 sk_gmchash(addr)
750 	const uint8_t *addr;
751 {
752 	u_int32_t crc;
753 	u_int idx, bit;
754 	uint8_t tmpData, data;
755 
756 	/* Compute CRC for the address value. */
757 	crc = 0xFFFFFFFF; /* initial value */
758 
759 	for (idx = 0; idx < 6; idx++) {
760 		data = *addr++;
761 
762 		/* Change bit order in byte. */
763 		tmpData = data;
764 		for (bit = 0; bit < 8; bit++) {
765 			if (tmpData & 1) {
766 				data |=  1 << (7 - bit);
767 			} else {
768 				data &= ~(1 << (7 - bit));
769 			}
770 			tmpData >>= 1;
771 		}
772 
773 		crc ^= (data << 24);
774 		for (bit = 0; bit < 8; bit++) {
775 			if (crc & 0x80000000) {
776 				crc = (crc << 1) ^ GMAC_POLY;
777 			} else {
778 				crc <<= 1;
779 			}
780 		}
781 	}
782 
783 	return (crc & ((1 << HASH_BITS) - 1));
784 }
785 
786 static void
787 sk_setfilt(sc_if, addr, slot)
788 	struct sk_if_softc	*sc_if;
789 	caddr_t			addr;
790 	int			slot;
791 {
792 	int			base;
793 
794 	base = XM_RXFILT_ENTRY(slot);
795 
796 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
797 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
798 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
799 
800 	return;
801 }
802 
803 static void
804 sk_setmulti(sc_if)
805 	struct sk_if_softc	*sc_if;
806 {
807 	struct sk_softc		*sc = sc_if->sk_softc;
808 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
809 	u_int32_t		hashes[2] = { 0, 0 };
810 	int			h = 0, i;
811 	struct ifmultiaddr	*ifma;
812 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
813 
814 
815 	/* First, zot all the existing filters. */
816 	switch(sc->sk_type) {
817 	case SK_GENESIS:
818 		for (i = 1; i < XM_RXFILT_MAX; i++)
819 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
820 
821 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
822 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
823 		break;
824 	case SK_YUKON:
825 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
826 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
827 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
828 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
829 		break;
830 	}
831 
832 	/* Now program new ones. */
833 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
834 		hashes[0] = 0xFFFFFFFF;
835 		hashes[1] = 0xFFFFFFFF;
836 	} else {
837 		i = 1;
838 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
839 			if (ifma->ifma_addr->sa_family != AF_LINK)
840 				continue;
841 			/*
842 			 * Program the first XM_RXFILT_MAX multicast groups
843 			 * into the perfect filter. For all others,
844 			 * use the hash table.
845 			 */
846 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
847 				sk_setfilt(sc_if,
848 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
849 				i++;
850 				continue;
851 			}
852 
853 			switch(sc->sk_type) {
854 			case SK_GENESIS:
855 				h = sk_xmchash(
856 					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
857 				break;
858 			case SK_YUKON:
859 				h = sk_gmchash(
860 					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
861 				break;
862 			}
863 			if (h < 32)
864 				hashes[0] |= (1 << h);
865 			else
866 				hashes[1] |= (1 << (h - 32));
867 		}
868 	}
869 
870 	switch(sc->sk_type) {
871 	case SK_GENESIS:
872 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
873 			       XM_MODE_RX_USE_PERFECT);
874 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
875 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
876 		break;
877 	case SK_YUKON:
878 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
879 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
880 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
881 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
882 		break;
883 	}
884 
885 	return;
886 }
887 
888 static void
889 sk_setpromisc(sc_if)
890 	struct sk_if_softc	*sc_if;
891 {
892 	struct sk_softc		*sc = sc_if->sk_softc;
893 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
894 
895 	switch(sc->sk_type) {
896 	case SK_GENESIS:
897 		if (ifp->if_flags & IFF_PROMISC) {
898 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
899 		} else {
900 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
901 		}
902 		break;
903 	case SK_YUKON:
904 		if (ifp->if_flags & IFF_PROMISC) {
905 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
906 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
907 		} else {
908 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
909 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
910 		}
911 		break;
912 	}
913 
914 	return;
915 }
916 
917 static int
918 sk_init_rx_ring(sc_if)
919 	struct sk_if_softc	*sc_if;
920 {
921 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
922 	struct sk_ring_data	*rd = sc_if->sk_rdata;
923 	int			i;
924 
925 	bzero((char *)rd->sk_rx_ring,
926 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
927 
928 	for (i = 0; i < SK_RX_RING_CNT; i++) {
929 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
930 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
931 			return(ENOBUFS);
932 		if (i == (SK_RX_RING_CNT - 1)) {
933 			cd->sk_rx_chain[i].sk_next =
934 			    &cd->sk_rx_chain[0];
935 			rd->sk_rx_ring[i].sk_next =
936 			    vtophys(&rd->sk_rx_ring[0]);
937 		} else {
938 			cd->sk_rx_chain[i].sk_next =
939 			    &cd->sk_rx_chain[i + 1];
940 			rd->sk_rx_ring[i].sk_next =
941 			    vtophys(&rd->sk_rx_ring[i + 1]);
942 		}
943 	}
944 
945 	sc_if->sk_cdata.sk_rx_prod = 0;
946 	sc_if->sk_cdata.sk_rx_cons = 0;
947 
948 	return(0);
949 }
950 
951 static void
952 sk_init_tx_ring(sc_if)
953 	struct sk_if_softc	*sc_if;
954 {
955 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
956 	struct sk_ring_data	*rd = sc_if->sk_rdata;
957 	int			i;
958 
959 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
960 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
961 
962 	for (i = 0; i < SK_TX_RING_CNT; i++) {
963 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
964 		if (i == (SK_TX_RING_CNT - 1)) {
965 			cd->sk_tx_chain[i].sk_next =
966 			    &cd->sk_tx_chain[0];
967 			rd->sk_tx_ring[i].sk_next =
968 			    vtophys(&rd->sk_tx_ring[0]);
969 		} else {
970 			cd->sk_tx_chain[i].sk_next =
971 			    &cd->sk_tx_chain[i + 1];
972 			rd->sk_tx_ring[i].sk_next =
973 			    vtophys(&rd->sk_tx_ring[i + 1]);
974 		}
975 	}
976 
977 	sc_if->sk_cdata.sk_tx_prod = 0;
978 	sc_if->sk_cdata.sk_tx_cons = 0;
979 	sc_if->sk_cdata.sk_tx_cnt = 0;
980 
981 	return;
982 }
983 
984 static int
985 sk_newbuf(sc_if, c, m)
986 	struct sk_if_softc	*sc_if;
987 	struct sk_chain		*c;
988 	struct mbuf		*m;
989 {
990 	struct mbuf		*m_new = NULL;
991 	struct sk_rx_desc	*r;
992 
993 	if (m == NULL) {
994 		caddr_t			*buf = NULL;
995 
996 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
997 		if (m_new == NULL)
998 			return(ENOBUFS);
999 
1000 		/* Allocate the jumbo buffer */
1001 		buf = sk_jalloc(sc_if);
1002 		if (buf == NULL) {
1003 			m_freem(m_new);
1004 #ifdef SK_VERBOSE
1005 			printf("sk%d: jumbo allocation failed "
1006 			    "-- packet dropped!\n", sc_if->sk_unit);
1007 #endif
1008 			return(ENOBUFS);
1009 		}
1010 
1011 		/* Attach the buffer to the mbuf */
1012 		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
1013 		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
1014 		m_new->m_data = (void *)buf;
1015 		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
1016 	} else {
1017 		/*
1018 	 	 * We're re-using a previously allocated mbuf;
1019 		 * be sure to re-init pointers and lengths to
1020 		 * default values.
1021 		 */
1022 		m_new = m;
1023 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
1024 		m_new->m_data = m_new->m_ext.ext_buf;
1025 	}
1026 
1027 	/*
1028 	 * Adjust alignment so packet payload begins on a
1029 	 * longword boundary. Mandatory for Alpha, useful on
1030 	 * x86 too.
1031 	 */
1032 	m_adj(m_new, ETHER_ALIGN);
1033 
1034 	r = c->sk_desc;
1035 	c->sk_mbuf = m_new;
1036 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
1037 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
1038 
1039 	return(0);
1040 }
1041 
1042 /*
1043  * Allocate jumbo buffer storage. The SysKonnect adapters support
1044  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1045  * use them in their drivers. In order for us to use them, we need
1046  * large 9K receive buffers, however standard mbuf clusters are only
1047  * 2048 bytes in size. Consequently, we need to allocate and manage
1048  * our own jumbo buffer pool. Fortunately, this does not require an
1049  * excessive amount of additional code.
1050  */
1051 static int
1052 sk_alloc_jumbo_mem(sc_if)
1053 	struct sk_if_softc	*sc_if;
1054 {
1055 	caddr_t			ptr;
1056 	register int		i;
1057 	struct sk_jpool_entry   *entry;
1058 
1059 	/* Grab a big chunk o' storage. */
1060 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1061 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1062 
1063 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1064 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1065 		return(ENOBUFS);
1066 	}
1067 
1068 	SLIST_INIT(&sc_if->sk_jfree_listhead);
1069 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
1070 
1071 	/*
1072 	 * Now divide it up into 9K pieces and save the addresses
1073 	 * in an array.
1074 	 */
1075 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
1076 	for (i = 0; i < SK_JSLOTS; i++) {
1077 		sc_if->sk_cdata.sk_jslots[i] = ptr;
1078 		ptr += SK_JLEN;
1079 		entry = malloc(sizeof(struct sk_jpool_entry),
1080 		    M_DEVBUF, M_NOWAIT);
1081 		if (entry == NULL) {
1082 			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1083 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
1084 			printf("sk%d: no memory for jumbo "
1085 			    "buffer queue!\n", sc_if->sk_unit);
1086 			return(ENOBUFS);
1087 		}
1088 		entry->slot = i;
1089 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1090 		    entry, jpool_entries);
1091 	}
1092 
1093 	return(0);
1094 }
1095 
1096 /*
1097  * Allocate a jumbo buffer.
1098  */
1099 static void *
1100 sk_jalloc(sc_if)
1101 	struct sk_if_softc	*sc_if;
1102 {
1103 	struct sk_jpool_entry   *entry;
1104 
1105 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1106 
1107 	if (entry == NULL) {
1108 #ifdef SK_VERBOSE
1109 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1110 #endif
1111 		return(NULL);
1112 	}
1113 
1114 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1115 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1116 	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
1117 }
1118 
1119 /*
1120  * Release a jumbo buffer.
1121  */
1122 static void
1123 sk_jfree(buf, args)
1124 	void			*buf;
1125 	void			*args;
1126 {
1127 	struct sk_if_softc	*sc_if;
1128 	int		        i;
1129 	struct sk_jpool_entry   *entry;
1130 
1131 	/* Extract the softc struct pointer. */
1132 	sc_if = (struct sk_if_softc *)args;
1133 
1134 	if (sc_if == NULL)
1135 		panic("sk_jfree: didn't get softc pointer!");
1136 
1137 	/* calculate the slot this buffer belongs to */
1138 	i = ((vm_offset_t)buf
1139 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1140 
1141 	if ((i < 0) || (i >= SK_JSLOTS))
1142 		panic("sk_jfree: asked to free buffer that we don't manage!");
1143 
1144 	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1145 	if (entry == NULL)
1146 		panic("sk_jfree: buffer not in use!");
1147 	entry->slot = i;
1148 	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
1149 	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
1150 
1151 	return;
1152 }
1153 
1154 /*
1155  * Set media options.
1156  */
1157 static int
1158 sk_ifmedia_upd(ifp)
1159 	struct ifnet		*ifp;
1160 {
1161 	struct sk_if_softc	*sc_if = ifp->if_softc;
1162 	struct mii_data		*mii;
1163 
1164 	mii = device_get_softc(sc_if->sk_miibus);
1165 	sk_init(sc_if);
1166 	mii_mediachg(mii);
1167 
1168 	return(0);
1169 }
1170 
1171 /*
1172  * Report current media status.
1173  */
1174 static void
1175 sk_ifmedia_sts(ifp, ifmr)
1176 	struct ifnet		*ifp;
1177 	struct ifmediareq	*ifmr;
1178 {
1179 	struct sk_if_softc	*sc_if;
1180 	struct mii_data		*mii;
1181 
1182 	sc_if = ifp->if_softc;
1183 	mii = device_get_softc(sc_if->sk_miibus);
1184 
1185 	mii_pollstat(mii);
1186 	ifmr->ifm_active = mii->mii_media_active;
1187 	ifmr->ifm_status = mii->mii_media_status;
1188 
1189 	return;
1190 }
1191 
1192 static int
1193 sk_ioctl(ifp, command, data)
1194 	struct ifnet		*ifp;
1195 	u_long			command;
1196 	caddr_t			data;
1197 {
1198 	struct sk_if_softc	*sc_if = ifp->if_softc;
1199 	struct ifreq		*ifr = (struct ifreq *) data;
1200 	int			error = 0;
1201 	struct mii_data		*mii;
1202 
1203 	SK_IF_LOCK(sc_if);
1204 
1205 	switch(command) {
1206 	case SIOCSIFMTU:
1207 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1208 			error = EINVAL;
1209 		else {
1210 			ifp->if_mtu = ifr->ifr_mtu;
1211 			sk_init(sc_if);
1212 		}
1213 		break;
1214 	case SIOCSIFFLAGS:
1215 		if (ifp->if_flags & IFF_UP) {
1216 			if (ifp->if_flags & IFF_RUNNING) {
1217 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1218 				    & IFF_PROMISC) {
1219 					sk_setpromisc(sc_if);
1220 					sk_setmulti(sc_if);
1221 				}
1222 			} else
1223 				sk_init(sc_if);
1224 		} else {
1225 			if (ifp->if_flags & IFF_RUNNING)
1226 				sk_stop(sc_if);
1227 		}
1228 		sc_if->sk_if_flags = ifp->if_flags;
1229 		error = 0;
1230 		break;
1231 	case SIOCADDMULTI:
1232 	case SIOCDELMULTI:
1233 		sk_setmulti(sc_if);
1234 		error = 0;
1235 		break;
1236 	case SIOCGIFMEDIA:
1237 	case SIOCSIFMEDIA:
1238 		mii = device_get_softc(sc_if->sk_miibus);
1239 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1240 		break;
1241 	default:
1242 		error = ether_ioctl(ifp, command, data);
1243 		break;
1244 	}
1245 
1246 	SK_IF_UNLOCK(sc_if);
1247 
1248 	return(error);
1249 }
1250 
1251 /*
1252  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1253  * IDs against our list and return a device name if we find a match.
1254  */
1255 static int
1256 skc_probe(dev)
1257 	device_t		dev;
1258 {
1259 	struct sk_softc		*sc;
1260 	struct sk_type		*t = sk_devs;
1261 
1262 	sc = device_get_softc(dev);
1263 
1264 	while(t->sk_name != NULL) {
1265 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1266 		    (pci_get_device(dev) == t->sk_did)) {
1267 			device_set_desc(dev, t->sk_name);
1268 			return(0);
1269 		}
1270 		t++;
1271 	}
1272 
1273 	return(ENXIO);
1274 }
1275 
1276 /*
1277  * Force the GEnesis into reset, then bring it out of reset.
1278  */
1279 static void
1280 sk_reset(sc)
1281 	struct sk_softc		*sc;
1282 {
1283 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1284 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1285 	if (sc->sk_type == SK_YUKON)
1286 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1287 
1288 	DELAY(1000);
1289 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1290 	DELAY(2);
1291 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1292 	if (sc->sk_type == SK_YUKON)
1293 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1294 
1295 	if (sc->sk_type == SK_GENESIS) {
1296 		/* Configure packet arbiter */
1297 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1298 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1299 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1300 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1301 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1302 	}
1303 
1304 	/* Enable RAM interface */
1305 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1306 
1307 	/*
1308          * Configure interrupt moderation. The moderation timer
1309 	 * defers interrupts specified in the interrupt moderation
1310 	 * timer mask based on the timeout specified in the interrupt
1311 	 * moderation timer init register. Each bit in the timer
1312 	 * register represents 18.825ns, so to specify a timeout in
1313 	 * microseconds, we have to multiply by 54.
1314 	 */
1315 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1316 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1317 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1318 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1319 
1320 	return;
1321 }
1322 
1323 static int
1324 sk_probe(dev)
1325 	device_t		dev;
1326 {
1327 	struct sk_softc		*sc;
1328 
1329 	sc = device_get_softc(device_get_parent(dev));
1330 
1331 	/*
1332 	 * Not much to do here. We always know there will be
1333 	 * at least one XMAC present, and if there are two,
1334 	 * skc_attach() will create a second device instance
1335 	 * for us.
1336 	 */
1337 	switch (sc->sk_type) {
1338 	case SK_GENESIS:
1339 		device_set_desc(dev, "XaQti Corp. XMAC II");
1340 		break;
1341 	case SK_YUKON:
1342 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1343 		break;
1344 	}
1345 
1346 	return(0);
1347 }
1348 
1349 /*
1350  * Each XMAC chip is attached as a separate logical IP interface.
1351  * Single port cards will have only one logical interface of course.
1352  */
1353 static int
1354 sk_attach(dev)
1355 	device_t		dev;
1356 {
1357 	struct sk_softc		*sc;
1358 	struct sk_if_softc	*sc_if;
1359 	struct ifnet		*ifp;
1360 	int			i, port, error;
1361 
1362 	if (dev == NULL)
1363 		return(EINVAL);
1364 
1365 	error = 0;
1366 	sc_if = device_get_softc(dev);
1367 	sc = device_get_softc(device_get_parent(dev));
1368 	SK_LOCK(sc);
1369 	port = *(int *)device_get_ivars(dev);
1370 	free(device_get_ivars(dev), M_DEVBUF);
1371 	device_set_ivars(dev, NULL);
1372 
1373 	sc_if->sk_dev = dev;
1374 	sc_if->sk_unit = device_get_unit(dev);
1375 	sc_if->sk_port = port;
1376 	sc_if->sk_softc = sc;
1377 	sc->sk_if[port] = sc_if;
1378 	if (port == SK_PORT_A)
1379 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1380 	if (port == SK_PORT_B)
1381 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1382 
1383 	/*
1384 	 * Get station address for this interface. Note that
1385 	 * dual port cards actually come with three station
1386 	 * addresses: one for each port, plus an extra. The
1387 	 * extra one is used by the SysKonnect driver software
1388 	 * as a 'virtual' station address for when both ports
1389 	 * are operating in failover mode. Currently we don't
1390 	 * use this extra address.
1391 	 */
1392 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1393 		sc_if->arpcom.ac_enaddr[i] =
1394 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1395 
1396 	/*
1397 	 * Set up RAM buffer addresses. The NIC will have a certain
1398 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1399 	 * need to divide this up a) between the transmitter and
1400  	 * receiver and b) between the two XMACs, if this is a
1401 	 * dual port NIC. Our algotithm is to divide up the memory
1402 	 * evenly so that everyone gets a fair share.
1403 	 */
1404 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1405 		u_int32_t		chunk, val;
1406 
1407 		chunk = sc->sk_ramsize / 2;
1408 		val = sc->sk_rboff / sizeof(u_int64_t);
1409 		sc_if->sk_rx_ramstart = val;
1410 		val += (chunk / sizeof(u_int64_t));
1411 		sc_if->sk_rx_ramend = val - 1;
1412 		sc_if->sk_tx_ramstart = val;
1413 		val += (chunk / sizeof(u_int64_t));
1414 		sc_if->sk_tx_ramend = val - 1;
1415 	} else {
1416 		u_int32_t		chunk, val;
1417 
1418 		chunk = sc->sk_ramsize / 4;
1419 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1420 		    sizeof(u_int64_t);
1421 		sc_if->sk_rx_ramstart = val;
1422 		val += (chunk / sizeof(u_int64_t));
1423 		sc_if->sk_rx_ramend = val - 1;
1424 		sc_if->sk_tx_ramstart = val;
1425 		val += (chunk / sizeof(u_int64_t));
1426 		sc_if->sk_tx_ramend = val - 1;
1427 	}
1428 
1429 	/* Read and save PHY type and set PHY address */
1430 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1431 	switch(sc_if->sk_phytype) {
1432 	case SK_PHYTYPE_XMAC:
1433 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1434 		break;
1435 	case SK_PHYTYPE_BCOM:
1436 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1437 		break;
1438 	case SK_PHYTYPE_MARV_COPPER:
1439 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1440 		break;
1441 	default:
1442 		printf("skc%d: unsupported PHY type: %d\n",
1443 		    sc->sk_unit, sc_if->sk_phytype);
1444 		error = ENODEV;
1445 		goto fail;
1446 	}
1447 
1448 	/* Allocate the descriptor queues. */
1449 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1450 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1451 
1452 	if (sc_if->sk_rdata == NULL) {
1453 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1454 		error = ENOMEM;
1455 		goto fail;
1456 	}
1457 
1458 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1459 
1460 	/* Try to allocate memory for jumbo buffers. */
1461 	if (sk_alloc_jumbo_mem(sc_if)) {
1462 		printf("sk%d: jumbo buffer allocation failed\n",
1463 		    sc_if->sk_unit);
1464 		error = ENOMEM;
1465 		goto fail;
1466 	}
1467 
1468 	ifp = &sc_if->arpcom.ac_if;
1469 	ifp->if_softc = sc_if;
1470 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1471 	ifp->if_mtu = ETHERMTU;
1472 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1473 	ifp->if_ioctl = sk_ioctl;
1474 	ifp->if_start = sk_start;
1475 	ifp->if_watchdog = sk_watchdog;
1476 	ifp->if_init = sk_init;
1477 	ifp->if_baudrate = 1000000000;
1478 	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1479 
1480 	callout_handle_init(&sc_if->sk_tick_ch);
1481 
1482 	/*
1483 	 * Call MI attach routine.
1484 	 */
1485 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1486 
1487 	/*
1488 	 * Do miibus setup.
1489 	 */
1490 	switch (sc->sk_type) {
1491 	case SK_GENESIS:
1492 		sk_init_xmac(sc_if);
1493 		break;
1494 	case SK_YUKON:
1495 		sk_init_yukon(sc_if);
1496 		break;
1497 	}
1498 
1499 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1500 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1501 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1502 		ether_ifdetach(ifp);
1503 		error = ENXIO;
1504 		goto fail;
1505 	}
1506 
1507 fail:
1508 	SK_UNLOCK(sc);
1509 	if (error) {
1510 		/* Access should be ok even though lock has been dropped */
1511 		sc->sk_if[port] = NULL;
1512 		sk_detach(dev);
1513 	}
1514 
1515 	return(error);
1516 }
1517 
1518 /*
1519  * Attach the interface. Allocate softc structures, do ifmedia
1520  * setup and ethernet/BPF attach.
1521  */
1522 static int
1523 skc_attach(dev)
1524 	device_t		dev;
1525 {
1526 	struct sk_softc		*sc;
1527 	int			unit, error = 0, rid, *port;
1528 
1529 	sc = device_get_softc(dev);
1530 	unit = device_get_unit(dev);
1531 
1532 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1533 	    MTX_DEF | MTX_RECURSE);
1534 #ifndef BURN_BRIDGES
1535 	/*
1536 	 * Handle power management nonsense.
1537 	 */
1538 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1539 		u_int32_t		iobase, membase, irq;
1540 
1541 		/* Save important PCI config data. */
1542 		iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1543 		membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1544 		irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1545 
1546 		/* Reset the power state. */
1547 		printf("skc%d: chip is in D%d power mode "
1548 		    "-- setting to D0\n", unit,
1549 		    pci_get_powerstate(dev));
1550 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1551 
1552 		/* Restore PCI config data. */
1553 		pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1554 		pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1555 		pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1556 	}
1557 #endif
1558 	/*
1559 	 * Map control/status registers.
1560 	 */
1561 	pci_enable_busmaster(dev);
1562 
1563 	rid = SK_RID;
1564 	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1565 
1566 	if (sc->sk_res == NULL) {
1567 		printf("sk%d: couldn't map ports/memory\n", unit);
1568 		error = ENXIO;
1569 		goto fail;
1570 	}
1571 
1572 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1573 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1574 
1575 	/* Allocate interrupt */
1576 	rid = 0;
1577 	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1578 	    RF_SHAREABLE | RF_ACTIVE);
1579 
1580 	if (sc->sk_irq == NULL) {
1581 		printf("skc%d: couldn't map interrupt\n", unit);
1582 		error = ENXIO;
1583 		goto fail;
1584 	}
1585 
1586 	/* Set adapter type */
1587 	switch (pci_get_device(dev)) {
1588 	case DEVICEID_SK_V1:
1589 		sc->sk_type = SK_GENESIS;
1590 		break;
1591 	case DEVICEID_SK_V2:
1592 	case DEVICEID_3COM_3C940:
1593 	case DEVICEID_LINKSYS_EG1032:
1594 	case DEVICEID_DLINK_DGE530T:
1595 		sc->sk_type = SK_YUKON;
1596 		break;
1597 	default:
1598 		printf("skc%d: unknown device!\n", unit);
1599 		error = ENXIO;
1600 		goto fail;
1601 	}
1602 
1603 	/* Reset the adapter. */
1604 	sk_reset(sc);
1605 
1606 	sc->sk_unit = unit;
1607 
1608 	/* Read and save vital product data from EEPROM. */
1609 	sk_vpd_read(sc);
1610 
1611 	if (sc->sk_type == SK_GENESIS) {
1612 		/* Read and save RAM size and RAMbuffer offset */
1613 		switch(sk_win_read_1(sc, SK_EPROM0)) {
1614 		case SK_RAMSIZE_512K_64:
1615 			sc->sk_ramsize = 0x80000;
1616 			sc->sk_rboff = SK_RBOFF_0;
1617 			break;
1618 		case SK_RAMSIZE_1024K_64:
1619 			sc->sk_ramsize = 0x100000;
1620 			sc->sk_rboff = SK_RBOFF_80000;
1621 			break;
1622 		case SK_RAMSIZE_1024K_128:
1623 			sc->sk_ramsize = 0x100000;
1624 			sc->sk_rboff = SK_RBOFF_0;
1625 			break;
1626 		case SK_RAMSIZE_2048K_128:
1627 			sc->sk_ramsize = 0x200000;
1628 			sc->sk_rboff = SK_RBOFF_0;
1629 			break;
1630 		default:
1631 			printf("skc%d: unknown ram size: %d\n",
1632 			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1633 			error = ENXIO;
1634 			goto fail;
1635 		}
1636 	} else {
1637 		sc->sk_ramsize = 0x20000;
1638 		sc->sk_rboff = SK_RBOFF_0;
1639 	}
1640 
1641 	/* Read and save physical media type */
1642 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1643 	case SK_PMD_1000BASESX:
1644 		sc->sk_pmd = IFM_1000_SX;
1645 		break;
1646 	case SK_PMD_1000BASELX:
1647 		sc->sk_pmd = IFM_1000_LX;
1648 		break;
1649 	case SK_PMD_1000BASECX:
1650 		sc->sk_pmd = IFM_1000_CX;
1651 		break;
1652 	case SK_PMD_1000BASETX:
1653 		sc->sk_pmd = IFM_1000_T;
1654 		break;
1655 	default:
1656 		printf("skc%d: unknown media type: 0x%x\n",
1657 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1658 		error = ENXIO;
1659 		goto fail;
1660 	}
1661 
1662 	/* Announce the product name. */
1663 	if (sc->sk_vpd_prodname != NULL)
1664 	    printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1665 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1666 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1667 	*port = SK_PORT_A;
1668 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1669 
1670 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1671 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1672 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1673 		*port = SK_PORT_B;
1674 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1675 	}
1676 
1677 	/* Turn on the 'driver is loaded' LED. */
1678 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1679 
1680 	bus_generic_attach(dev);
1681 
1682 	/* Hook interrupt last to avoid having to lock softc */
1683 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1684 	    sk_intr, sc, &sc->sk_intrhand);
1685 
1686 	if (error) {
1687 		printf("skc%d: couldn't set up irq\n", unit);
1688 		goto fail;
1689 	}
1690 
1691 fail:
1692 	if (error)
1693 		skc_detach(dev);
1694 
1695 	return(error);
1696 }
1697 
1698 /*
1699  * Shutdown hardware and free up resources. This can be called any
1700  * time after the mutex has been initialized. It is called in both
1701  * the error case in attach and the normal detach case so it needs
1702  * to be careful about only freeing resources that have actually been
1703  * allocated.
1704  */
1705 static int
1706 sk_detach(dev)
1707 	device_t		dev;
1708 {
1709 	struct sk_if_softc	*sc_if;
1710 	struct ifnet		*ifp;
1711 
1712 	sc_if = device_get_softc(dev);
1713 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1714 	    ("sk mutex not initialized in sk_detach"));
1715 	SK_IF_LOCK(sc_if);
1716 
1717 	ifp = &sc_if->arpcom.ac_if;
1718 	/* These should only be active if attach_xmac succeeded */
1719 	if (device_is_attached(dev)) {
1720 		sk_stop(sc_if);
1721 		ether_ifdetach(ifp);
1722 	}
1723 	if (sc_if->sk_miibus)
1724 		device_delete_child(dev, sc_if->sk_miibus);
1725 	bus_generic_detach(dev);
1726 	if (sc_if->sk_cdata.sk_jumbo_buf)
1727 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1728 	if (sc_if->sk_rdata) {
1729 		contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
1730 		    M_DEVBUF);
1731 	}
1732 	SK_IF_UNLOCK(sc_if);
1733 
1734 	return(0);
1735 }
1736 
1737 static int
1738 skc_detach(dev)
1739 	device_t		dev;
1740 {
1741 	struct sk_softc		*sc;
1742 
1743 	sc = device_get_softc(dev);
1744 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1745 	SK_LOCK(sc);
1746 
1747 	if (device_is_alive(dev)) {
1748 		if (sc->sk_devs[SK_PORT_A] != NULL)
1749 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1750 		if (sc->sk_devs[SK_PORT_B] != NULL)
1751 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1752 		bus_generic_detach(dev);
1753 	}
1754 
1755 	if (sc->sk_intrhand)
1756 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1757 	if (sc->sk_irq)
1758 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1759 	if (sc->sk_res)
1760 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1761 
1762 	SK_UNLOCK(sc);
1763 	mtx_destroy(&sc->sk_mtx);
1764 
1765 	return(0);
1766 }
1767 
1768 static int
1769 sk_encap(sc_if, m_head, txidx)
1770         struct sk_if_softc	*sc_if;
1771         struct mbuf		*m_head;
1772         u_int32_t		*txidx;
1773 {
1774 	struct sk_tx_desc	*f = NULL;
1775 	struct mbuf		*m;
1776 	u_int32_t		frag, cur, cnt = 0;
1777 
1778 	m = m_head;
1779 	cur = frag = *txidx;
1780 
1781 	/*
1782 	 * Start packing the mbufs in this chain into
1783 	 * the fragment pointers. Stop when we run out
1784 	 * of fragments or hit the end of the mbuf chain.
1785 	 */
1786 	for (m = m_head; m != NULL; m = m->m_next) {
1787 		if (m->m_len != 0) {
1788 			if ((SK_TX_RING_CNT -
1789 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1790 				return(ENOBUFS);
1791 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1792 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1793 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1794 			if (cnt == 0)
1795 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1796 			else
1797 				f->sk_ctl |= SK_TXCTL_OWN;
1798 			cur = frag;
1799 			SK_INC(frag, SK_TX_RING_CNT);
1800 			cnt++;
1801 		}
1802 	}
1803 
1804 	if (m != NULL)
1805 		return(ENOBUFS);
1806 
1807 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1808 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1809 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1810 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1811 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1812 
1813 	*txidx = frag;
1814 
1815 	return(0);
1816 }
1817 
1818 static void
1819 sk_start(ifp)
1820 	struct ifnet		*ifp;
1821 {
1822         struct sk_softc		*sc;
1823         struct sk_if_softc	*sc_if;
1824         struct mbuf		*m_head = NULL;
1825         u_int32_t		idx;
1826 
1827 	sc_if = ifp->if_softc;
1828 	sc = sc_if->sk_softc;
1829 
1830 	SK_IF_LOCK(sc_if);
1831 
1832 	idx = sc_if->sk_cdata.sk_tx_prod;
1833 
1834 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1835 		IF_DEQUEUE(&ifp->if_snd, m_head);
1836 		if (m_head == NULL)
1837 			break;
1838 
1839 		/*
1840 		 * Pack the data into the transmit ring. If we
1841 		 * don't have room, set the OACTIVE flag and wait
1842 		 * for the NIC to drain the ring.
1843 		 */
1844 		if (sk_encap(sc_if, m_head, &idx)) {
1845 			IF_PREPEND(&ifp->if_snd, m_head);
1846 			ifp->if_flags |= IFF_OACTIVE;
1847 			break;
1848 		}
1849 
1850 		/*
1851 		 * If there's a BPF listener, bounce a copy of this frame
1852 		 * to him.
1853 		 */
1854 		BPF_MTAP(ifp, m_head);
1855 	}
1856 
1857 	/* Transmit */
1858 	sc_if->sk_cdata.sk_tx_prod = idx;
1859 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1860 
1861 	/* Set a timeout in case the chip goes out to lunch. */
1862 	ifp->if_timer = 5;
1863 	SK_IF_UNLOCK(sc_if);
1864 
1865 	return;
1866 }
1867 
1868 
1869 static void
1870 sk_watchdog(ifp)
1871 	struct ifnet		*ifp;
1872 {
1873 	struct sk_if_softc	*sc_if;
1874 
1875 	sc_if = ifp->if_softc;
1876 
1877 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1878 	sk_init(sc_if);
1879 
1880 	return;
1881 }
1882 
1883 static void
1884 skc_shutdown(dev)
1885 	device_t		dev;
1886 {
1887 	struct sk_softc		*sc;
1888 
1889 	sc = device_get_softc(dev);
1890 	SK_LOCK(sc);
1891 
1892 	/* Turn off the 'driver is loaded' LED. */
1893 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1894 
1895 	/*
1896 	 * Reset the GEnesis controller. Doing this should also
1897 	 * assert the resets on the attached XMAC(s).
1898 	 */
1899 	sk_reset(sc);
1900 	SK_UNLOCK(sc);
1901 
1902 	return;
1903 }
1904 
1905 static void
1906 sk_rxeof(sc_if)
1907 	struct sk_if_softc	*sc_if;
1908 {
1909 	struct sk_softc		*sc;
1910 	struct mbuf		*m;
1911 	struct ifnet		*ifp;
1912 	struct sk_chain		*cur_rx;
1913 	int			total_len = 0;
1914 	int			i;
1915 	u_int32_t		rxstat;
1916 
1917 	sc = sc_if->sk_softc;
1918 	ifp = &sc_if->arpcom.ac_if;
1919 	i = sc_if->sk_cdata.sk_rx_prod;
1920 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1921 
1922 	SK_LOCK_ASSERT(sc);
1923 
1924 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1925 
1926 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1927 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1928 		m = cur_rx->sk_mbuf;
1929 		cur_rx->sk_mbuf = NULL;
1930 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1931 		SK_INC(i, SK_RX_RING_CNT);
1932 
1933 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1934 			ifp->if_ierrors++;
1935 			sk_newbuf(sc_if, cur_rx, m);
1936 			continue;
1937 		}
1938 
1939 		/*
1940 		 * Try to allocate a new jumbo buffer. If that
1941 		 * fails, copy the packet to mbufs and put the
1942 		 * jumbo buffer back in the ring so it can be
1943 		 * re-used. If allocating mbufs fails, then we
1944 		 * have to drop the packet.
1945 		 */
1946 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1947 			struct mbuf		*m0;
1948 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
1949 			    ifp, NULL);
1950 			sk_newbuf(sc_if, cur_rx, m);
1951 			if (m0 == NULL) {
1952 				printf("sk%d: no receive buffers "
1953 				    "available -- packet dropped!\n",
1954 				    sc_if->sk_unit);
1955 				ifp->if_ierrors++;
1956 				continue;
1957 			}
1958 			m = m0;
1959 		} else {
1960 			m->m_pkthdr.rcvif = ifp;
1961 			m->m_pkthdr.len = m->m_len = total_len;
1962 		}
1963 
1964 		ifp->if_ipackets++;
1965 		SK_UNLOCK(sc);
1966 		(*ifp->if_input)(ifp, m);
1967 		SK_LOCK(sc);
1968 	}
1969 
1970 	sc_if->sk_cdata.sk_rx_prod = i;
1971 
1972 	return;
1973 }
1974 
1975 static void
1976 sk_txeof(sc_if)
1977 	struct sk_if_softc	*sc_if;
1978 {
1979 	struct sk_tx_desc	*cur_tx = NULL;
1980 	struct ifnet		*ifp;
1981 	u_int32_t		idx;
1982 
1983 	ifp = &sc_if->arpcom.ac_if;
1984 
1985 	/*
1986 	 * Go through our tx ring and free mbufs for those
1987 	 * frames that have been sent.
1988 	 */
1989 	idx = sc_if->sk_cdata.sk_tx_cons;
1990 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1991 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1992 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1993 			break;
1994 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1995 			ifp->if_opackets++;
1996 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1997 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1998 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1999 		}
2000 		sc_if->sk_cdata.sk_tx_cnt--;
2001 		SK_INC(idx, SK_TX_RING_CNT);
2002 		ifp->if_timer = 0;
2003 	}
2004 
2005 	sc_if->sk_cdata.sk_tx_cons = idx;
2006 
2007 	if (cur_tx != NULL)
2008 		ifp->if_flags &= ~IFF_OACTIVE;
2009 
2010 	return;
2011 }
2012 
2013 static void
2014 sk_tick(xsc_if)
2015 	void			*xsc_if;
2016 {
2017 	struct sk_if_softc	*sc_if;
2018 	struct mii_data		*mii;
2019 	struct ifnet		*ifp;
2020 	int			i;
2021 
2022 	sc_if = xsc_if;
2023 	SK_IF_LOCK(sc_if);
2024 	ifp = &sc_if->arpcom.ac_if;
2025 	mii = device_get_softc(sc_if->sk_miibus);
2026 
2027 	if (!(ifp->if_flags & IFF_UP)) {
2028 		SK_IF_UNLOCK(sc_if);
2029 		return;
2030 	}
2031 
2032 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2033 		sk_intr_bcom(sc_if);
2034 		SK_IF_UNLOCK(sc_if);
2035 		return;
2036 	}
2037 
2038 	/*
2039 	 * According to SysKonnect, the correct way to verify that
2040 	 * the link has come back up is to poll bit 0 of the GPIO
2041 	 * register three times. This pin has the signal from the
2042 	 * link_sync pin connected to it; if we read the same link
2043 	 * state 3 times in a row, we know the link is up.
2044 	 */
2045 	for (i = 0; i < 3; i++) {
2046 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2047 			break;
2048 	}
2049 
2050 	if (i != 3) {
2051 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2052 		SK_IF_UNLOCK(sc_if);
2053 		return;
2054 	}
2055 
2056 	/* Turn the GP0 interrupt back on. */
2057 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2058 	SK_XM_READ_2(sc_if, XM_ISR);
2059 	mii_tick(mii);
2060 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2061 
2062 	SK_IF_UNLOCK(sc_if);
2063 	return;
2064 }
2065 
2066 static void
2067 sk_intr_bcom(sc_if)
2068 	struct sk_if_softc	*sc_if;
2069 {
2070 	struct mii_data		*mii;
2071 	struct ifnet		*ifp;
2072 	int			status;
2073 	mii = device_get_softc(sc_if->sk_miibus);
2074 	ifp = &sc_if->arpcom.ac_if;
2075 
2076 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2077 
2078 	/*
2079 	 * Read the PHY interrupt register to make sure
2080 	 * we clear any pending interrupts.
2081 	 */
2082 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2083 
2084 	if (!(ifp->if_flags & IFF_RUNNING)) {
2085 		sk_init_xmac(sc_if);
2086 		return;
2087 	}
2088 
2089 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2090 		int			lstat;
2091 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2092 		    BRGPHY_MII_AUXSTS);
2093 
2094 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2095 			mii_mediachg(mii);
2096 			/* Turn off the link LED. */
2097 			SK_IF_WRITE_1(sc_if, 0,
2098 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2099 			sc_if->sk_link = 0;
2100 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2101 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2102 	    		    BRGPHY_MII_IMR, 0xFF00);
2103 			mii_tick(mii);
2104 			sc_if->sk_link = 1;
2105 			/* Turn on the link LED. */
2106 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2107 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2108 			    SK_LINKLED_BLINK_OFF);
2109 		} else {
2110 			mii_tick(mii);
2111 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2112 		}
2113 	}
2114 
2115 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2116 
2117 	return;
2118 }
2119 
2120 static void
2121 sk_intr_xmac(sc_if)
2122 	struct sk_if_softc	*sc_if;
2123 {
2124 	struct sk_softc		*sc;
2125 	u_int16_t		status;
2126 
2127 	sc = sc_if->sk_softc;
2128 	status = SK_XM_READ_2(sc_if, XM_ISR);
2129 
2130 	/*
2131 	 * Link has gone down. Start MII tick timeout to
2132 	 * watch for link resync.
2133 	 */
2134 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2135 		if (status & XM_ISR_GP0_SET) {
2136 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2137 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2138 		}
2139 
2140 		if (status & XM_ISR_AUTONEG_DONE) {
2141 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2142 		}
2143 	}
2144 
2145 	if (status & XM_IMR_TX_UNDERRUN)
2146 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2147 
2148 	if (status & XM_IMR_RX_OVERRUN)
2149 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2150 
2151 	status = SK_XM_READ_2(sc_if, XM_ISR);
2152 
2153 	return;
2154 }
2155 
2156 static void
2157 sk_intr_yukon(sc_if)
2158 	struct sk_if_softc	*sc_if;
2159 {
2160 	int status;
2161 
2162 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2163 
2164 	return;
2165 }
2166 
2167 static void
2168 sk_intr(xsc)
2169 	void			*xsc;
2170 {
2171 	struct sk_softc		*sc = xsc;
2172 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2173 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2174 	u_int32_t		status;
2175 
2176 	SK_LOCK(sc);
2177 
2178 	sc_if0 = sc->sk_if[SK_PORT_A];
2179 	sc_if1 = sc->sk_if[SK_PORT_B];
2180 
2181 	if (sc_if0 != NULL)
2182 		ifp0 = &sc_if0->arpcom.ac_if;
2183 	if (sc_if1 != NULL)
2184 		ifp1 = &sc_if1->arpcom.ac_if;
2185 
2186 	for (;;) {
2187 		status = CSR_READ_4(sc, SK_ISSR);
2188 		if (!(status & sc->sk_intrmask))
2189 			break;
2190 
2191 		/* Handle receive interrupts first. */
2192 		if (status & SK_ISR_RX1_EOF) {
2193 			sk_rxeof(sc_if0);
2194 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2195 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2196 		}
2197 		if (status & SK_ISR_RX2_EOF) {
2198 			sk_rxeof(sc_if1);
2199 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2200 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2201 		}
2202 
2203 		/* Then transmit interrupts. */
2204 		if (status & SK_ISR_TX1_S_EOF) {
2205 			sk_txeof(sc_if0);
2206 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2207 			    SK_TXBMU_CLR_IRQ_EOF);
2208 		}
2209 		if (status & SK_ISR_TX2_S_EOF) {
2210 			sk_txeof(sc_if1);
2211 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2212 			    SK_TXBMU_CLR_IRQ_EOF);
2213 		}
2214 
2215 		/* Then MAC interrupts. */
2216 		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2217 			if (sc->sk_type == SK_GENESIS)
2218 				sk_intr_xmac(sc_if0);
2219 			else
2220 				sk_intr_yukon(sc_if0);
2221 		}
2222 
2223 		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2224 			if (sc->sk_type == SK_GENESIS)
2225 				sk_intr_xmac(sc_if1);
2226 			else
2227 				sk_intr_yukon(sc_if1);
2228 		}
2229 
2230 		if (status & SK_ISR_EXTERNAL_REG) {
2231 			if (ifp0 != NULL &&
2232 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2233 				sk_intr_bcom(sc_if0);
2234 			if (ifp1 != NULL &&
2235 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2236 				sk_intr_bcom(sc_if1);
2237 		}
2238 	}
2239 
2240 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2241 
2242 	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
2243 		sk_start(ifp0);
2244 	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
2245 		sk_start(ifp1);
2246 
2247 	SK_UNLOCK(sc);
2248 
2249 	return;
2250 }
2251 
2252 static void
2253 sk_init_xmac(sc_if)
2254 	struct sk_if_softc	*sc_if;
2255 {
2256 	struct sk_softc		*sc;
2257 	struct ifnet		*ifp;
2258 	struct sk_bcom_hack	bhack[] = {
2259 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2260 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2261 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2262 	{ 0, 0 } };
2263 
2264 	sc = sc_if->sk_softc;
2265 	ifp = &sc_if->arpcom.ac_if;
2266 
2267 	/* Unreset the XMAC. */
2268 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2269 	DELAY(1000);
2270 
2271 	/* Reset the XMAC's internal state. */
2272 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2273 
2274 	/* Save the XMAC II revision */
2275 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2276 
2277 	/*
2278 	 * Perform additional initialization for external PHYs,
2279 	 * namely for the 1000baseTX cards that use the XMAC's
2280 	 * GMII mode.
2281 	 */
2282 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2283 		int			i = 0;
2284 		u_int32_t		val;
2285 
2286 		/* Take PHY out of reset. */
2287 		val = sk_win_read_4(sc, SK_GPIO);
2288 		if (sc_if->sk_port == SK_PORT_A)
2289 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2290 		else
2291 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2292 		sk_win_write_4(sc, SK_GPIO, val);
2293 
2294 		/* Enable GMII mode on the XMAC. */
2295 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2296 
2297 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2298 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2299 		DELAY(10000);
2300 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2301 		    BRGPHY_MII_IMR, 0xFFF0);
2302 
2303 		/*
2304 		 * Early versions of the BCM5400 apparently have
2305 		 * a bug that requires them to have their reserved
2306 		 * registers initialized to some magic values. I don't
2307 		 * know what the numbers do, I'm just the messenger.
2308 		 */
2309 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2310 		    == 0x6041) {
2311 			while(bhack[i].reg) {
2312 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2313 				    bhack[i].reg, bhack[i].val);
2314 				i++;
2315 			}
2316 		}
2317 	}
2318 
2319 	/* Set station address */
2320 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2321 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2322 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2323 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2324 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2325 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2326 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2327 
2328 	if (ifp->if_flags & IFF_BROADCAST) {
2329 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2330 	} else {
2331 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2332 	}
2333 
2334 	/* We don't need the FCS appended to the packet. */
2335 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2336 
2337 	/* We want short frames padded to 60 bytes. */
2338 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2339 
2340 	/*
2341 	 * Enable the reception of all error frames. This is is
2342 	 * a necessary evil due to the design of the XMAC. The
2343 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2344 	 * frames can be up to 9000 bytes in length. When bad
2345 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2346 	 * in 'store and forward' mode. For this to work, the
2347 	 * entire frame has to fit into the FIFO, but that means
2348 	 * that jumbo frames larger than 8192 bytes will be
2349 	 * truncated. Disabling all bad frame filtering causes
2350 	 * the RX FIFO to operate in streaming mode, in which
2351 	 * case the XMAC will start transfering frames out of the
2352 	 * RX FIFO as soon as the FIFO threshold is reached.
2353 	 */
2354 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2355 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2356 	    XM_MODE_RX_INRANGELEN);
2357 
2358 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2359 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2360 	else
2361 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2362 
2363 	/*
2364 	 * Bump up the transmit threshold. This helps hold off transmit
2365 	 * underruns when we're blasting traffic from both ports at once.
2366 	 */
2367 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2368 
2369 	/* Set promiscuous mode */
2370 	sk_setpromisc(sc_if);
2371 
2372 	/* Set multicast filter */
2373 	sk_setmulti(sc_if);
2374 
2375 	/* Clear and enable interrupts */
2376 	SK_XM_READ_2(sc_if, XM_ISR);
2377 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2378 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2379 	else
2380 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2381 
2382 	/* Configure MAC arbiter */
2383 	switch(sc_if->sk_xmac_rev) {
2384 	case XM_XMAC_REV_B2:
2385 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2386 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2387 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2388 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2389 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2390 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2391 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2392 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2393 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2394 		break;
2395 	case XM_XMAC_REV_C1:
2396 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2397 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2398 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2399 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2400 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2401 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2402 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2403 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2404 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2405 		break;
2406 	default:
2407 		break;
2408 	}
2409 	sk_win_write_2(sc, SK_MACARB_CTL,
2410 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2411 
2412 	sc_if->sk_link = 1;
2413 
2414 	return;
2415 }
2416 
2417 static void sk_init_yukon(sc_if)
2418 	struct sk_if_softc	*sc_if;
2419 {
2420 	u_int32_t		phy;
2421 	u_int16_t		reg;
2422 	int			i;
2423 
2424 	/* GMAC and GPHY Reset */
2425 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2426 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2427 	DELAY(1000);
2428 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2429 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2430 	DELAY(1000);
2431 
2432 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2433 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2434 
2435 	switch(sc_if->sk_softc->sk_pmd) {
2436 	case IFM_1000_SX:
2437 	case IFM_1000_LX:
2438 		phy |= SK_GPHY_FIBER;
2439 		break;
2440 
2441 	case IFM_1000_CX:
2442 	case IFM_1000_T:
2443 		phy |= SK_GPHY_COPPER;
2444 		break;
2445 	}
2446 
2447 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2448 	DELAY(1000);
2449 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2450 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2451 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2452 
2453 	/* unused read of the interrupt source register */
2454 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2455 
2456 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2457 
2458 	/* MIB Counter Clear Mode set */
2459 	reg |= YU_PAR_MIB_CLR;
2460 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2461 
2462 	/* MIB Counter Clear Mode clear */
2463 	reg &= ~YU_PAR_MIB_CLR;
2464 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2465 
2466 	/* receive control reg */
2467 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2468 
2469 	/* transmit parameter register */
2470 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2471 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2472 
2473 	/* serial mode register */
2474 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2475 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2476 
2477 	/* Setup Yukon's address */
2478 	for (i = 0; i < 3; i++) {
2479 		/* Write Source Address 1 (unicast filter) */
2480 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2481 			      sc_if->arpcom.ac_enaddr[i * 2] |
2482 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2483 	}
2484 
2485 	for (i = 0; i < 3; i++) {
2486 		reg = sk_win_read_2(sc_if->sk_softc,
2487 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2488 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2489 	}
2490 
2491 	/* Set promiscuous mode */
2492 	sk_setpromisc(sc_if);
2493 
2494 	/* Set multicast filter */
2495 	sk_setmulti(sc_if);
2496 
2497 	/* enable interrupt mask for counter overflows */
2498 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2499 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2500 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2501 
2502 	/* Configure RX MAC FIFO */
2503 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2504 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2505 
2506 	/* Configure TX MAC FIFO */
2507 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2508 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2509 }
2510 
2511 /*
2512  * Note that to properly initialize any part of the GEnesis chip,
2513  * you first have to take it out of reset mode.
2514  */
2515 static void
2516 sk_init(xsc)
2517 	void			*xsc;
2518 {
2519 	struct sk_if_softc	*sc_if = xsc;
2520 	struct sk_softc		*sc;
2521 	struct ifnet		*ifp;
2522 	struct mii_data		*mii;
2523 	u_int16_t		reg;
2524 
2525 	SK_IF_LOCK(sc_if);
2526 
2527 	ifp = &sc_if->arpcom.ac_if;
2528 	sc = sc_if->sk_softc;
2529 	mii = device_get_softc(sc_if->sk_miibus);
2530 
2531 	/* Cancel pending I/O and free all RX/TX buffers. */
2532 	sk_stop(sc_if);
2533 
2534 	if (sc->sk_type == SK_GENESIS) {
2535 		/* Configure LINK_SYNC LED */
2536 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2537 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2538 			SK_LINKLED_LINKSYNC_ON);
2539 
2540 		/* Configure RX LED */
2541 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2542 			SK_RXLEDCTL_COUNTER_START);
2543 
2544 		/* Configure TX LED */
2545 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2546 			SK_TXLEDCTL_COUNTER_START);
2547 	}
2548 
2549 	/* Configure I2C registers */
2550 
2551 	/* Configure XMAC(s) */
2552 	switch (sc->sk_type) {
2553 	case SK_GENESIS:
2554 		sk_init_xmac(sc_if);
2555 		break;
2556 	case SK_YUKON:
2557 		sk_init_yukon(sc_if);
2558 		break;
2559 	}
2560 	mii_mediachg(mii);
2561 
2562 	if (sc->sk_type == SK_GENESIS) {
2563 		/* Configure MAC FIFOs */
2564 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2565 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2566 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2567 
2568 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2569 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2570 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2571 	}
2572 
2573 	/* Configure transmit arbiter(s) */
2574 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2575 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2576 
2577 	/* Configure RAMbuffers */
2578 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2579 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2580 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2581 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2582 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2583 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2584 
2585 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2586 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2587 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2588 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2589 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2590 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2591 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2592 
2593 	/* Configure BMUs */
2594 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2595 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2596 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2597 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2598 
2599 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2600 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2601 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2602 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2603 
2604 	/* Init descriptors */
2605 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2606 		printf("sk%d: initialization failed: no "
2607 		    "memory for rx buffers\n", sc_if->sk_unit);
2608 		sk_stop(sc_if);
2609 		SK_IF_UNLOCK(sc_if);
2610 		return;
2611 	}
2612 	sk_init_tx_ring(sc_if);
2613 
2614 	/* Configure interrupt handling */
2615 	CSR_READ_4(sc, SK_ISSR);
2616 	if (sc_if->sk_port == SK_PORT_A)
2617 		sc->sk_intrmask |= SK_INTRS1;
2618 	else
2619 		sc->sk_intrmask |= SK_INTRS2;
2620 
2621 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2622 
2623 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2624 
2625 	/* Start BMUs. */
2626 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2627 
2628 	switch(sc->sk_type) {
2629 	case SK_GENESIS:
2630 		/* Enable XMACs TX and RX state machines */
2631 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2632 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2633 		break;
2634 	case SK_YUKON:
2635 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2636 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2637 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2638 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2639 	}
2640 
2641 	ifp->if_flags |= IFF_RUNNING;
2642 	ifp->if_flags &= ~IFF_OACTIVE;
2643 
2644 	SK_IF_UNLOCK(sc_if);
2645 
2646 	return;
2647 }
2648 
2649 static void
2650 sk_stop(sc_if)
2651 	struct sk_if_softc	*sc_if;
2652 {
2653 	int			i;
2654 	struct sk_softc		*sc;
2655 	struct ifnet		*ifp;
2656 
2657 	SK_IF_LOCK(sc_if);
2658 	sc = sc_if->sk_softc;
2659 	ifp = &sc_if->arpcom.ac_if;
2660 
2661 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2662 
2663 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2664 		u_int32_t		val;
2665 
2666 		/* Put PHY back into reset. */
2667 		val = sk_win_read_4(sc, SK_GPIO);
2668 		if (sc_if->sk_port == SK_PORT_A) {
2669 			val |= SK_GPIO_DIR0;
2670 			val &= ~SK_GPIO_DAT0;
2671 		} else {
2672 			val |= SK_GPIO_DIR2;
2673 			val &= ~SK_GPIO_DAT2;
2674 		}
2675 		sk_win_write_4(sc, SK_GPIO, val);
2676 	}
2677 
2678 	/* Turn off various components of this interface. */
2679 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2680 	switch (sc->sk_type) {
2681 	case SK_GENESIS:
2682 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2683 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2684 		break;
2685 	case SK_YUKON:
2686 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2687 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2688 		break;
2689 	}
2690 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2691 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2692 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2693 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2694 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2695 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2696 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2697 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2698 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2699 
2700 	/* Disable interrupts */
2701 	if (sc_if->sk_port == SK_PORT_A)
2702 		sc->sk_intrmask &= ~SK_INTRS1;
2703 	else
2704 		sc->sk_intrmask &= ~SK_INTRS2;
2705 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2706 
2707 	SK_XM_READ_2(sc_if, XM_ISR);
2708 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2709 
2710 	/* Free RX and TX mbufs still in the queues. */
2711 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2712 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2713 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2714 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2715 		}
2716 	}
2717 
2718 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2719 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2720 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2721 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2722 		}
2723 	}
2724 
2725 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2726 	SK_IF_UNLOCK(sc_if);
2727 	return;
2728 }
2729