xref: /freebsd/sys/dev/sk/if_sk.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
38  *
39  * Permission to use, copy, modify, and distribute this software for any
40  * purpose with or without fee is hereby granted, provided that the above
41  * copyright notice and this permission notice appear in all copies.
42  *
43  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
44  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
46  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
47  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
48  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
49  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
50  */
51 
52 #include <sys/cdefs.h>
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  https://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * https://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_var.h>
105 #include <net/if_arp.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_types.h>
109 #include <net/if_vlan_var.h>
110 
111 #include <netinet/in.h>
112 #include <netinet/in_systm.h>
113 #include <netinet/ip.h>
114 
115 #include <machine/bus.h>
116 #include <machine/in_cksum.h>
117 #include <machine/resource.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 #include <dev/mii/brgphyreg.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #if 0
128 #define SK_USEIOSPACE
129 #endif
130 
131 #include <dev/sk/if_skreg.h>
132 #include <dev/sk/xmaciireg.h>
133 #include <dev/sk/yukonreg.h>
134 
135 MODULE_DEPEND(sk, pci, 1, 1, 1);
136 MODULE_DEPEND(sk, ether, 1, 1, 1);
137 MODULE_DEPEND(sk, miibus, 1, 1, 1);
138 
139 /* "device miibus" required.  See GENERIC if you get errors here. */
140 #include "miibus_if.h"
141 
142 static const struct sk_type sk_devs[] = {
143 	{
144 		VENDORID_SK,
145 		DEVICEID_SK_V1,
146 		"SysKonnect Gigabit Ethernet (V1.0)"
147 	},
148 	{
149 		VENDORID_SK,
150 		DEVICEID_SK_V2,
151 		"SysKonnect Gigabit Ethernet (V2.0)"
152 	},
153 	{
154 		VENDORID_MARVELL,
155 		DEVICEID_SK_V2,
156 		"Marvell Gigabit Ethernet"
157 	},
158 	{
159 		VENDORID_MARVELL,
160 		DEVICEID_BELKIN_5005,
161 		"Belkin F5D5005 Gigabit Ethernet"
162 	},
163 	{
164 		VENDORID_3COM,
165 		DEVICEID_3COM_3C940,
166 		"3Com 3C940 Gigabit Ethernet"
167 	},
168 	{
169 		VENDORID_LINKSYS,
170 		DEVICEID_LINKSYS_EG1032,
171 		"Linksys EG1032 Gigabit Ethernet"
172 	},
173 	{
174 		VENDORID_DLINK,
175 		DEVICEID_DLINK_DGE530T_A1,
176 		"D-Link DGE-530T Gigabit Ethernet"
177 	},
178 	{
179 		VENDORID_DLINK,
180 		DEVICEID_DLINK_DGE530T_B1,
181 		"D-Link DGE-530T Gigabit Ethernet"
182 	},
183 	{ 0, 0, NULL }
184 };
185 
186 static int skc_probe(device_t);
187 static int skc_attach(device_t);
188 static int skc_detach(device_t);
189 static int skc_shutdown(device_t);
190 static int skc_suspend(device_t);
191 static int skc_resume(device_t);
192 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
193 static int sk_detach(device_t);
194 static int sk_probe(device_t);
195 static int sk_attach(device_t);
196 static void sk_tick(void *);
197 static void sk_yukon_tick(void *);
198 static void sk_intr(void *);
199 static void sk_intr_xmac(struct sk_if_softc *);
200 static void sk_intr_bcom(struct sk_if_softc *);
201 static void sk_intr_yukon(struct sk_if_softc *);
202 static __inline void sk_rxcksum(if_t, struct mbuf *, u_int32_t);
203 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
204 static void sk_rxeof(struct sk_if_softc *);
205 static void sk_jumbo_rxeof(struct sk_if_softc *);
206 static void sk_txeof(struct sk_if_softc *);
207 static void sk_txcksum(if_t, struct mbuf *, struct sk_tx_desc *);
208 static int sk_encap(struct sk_if_softc *, struct mbuf **);
209 static void sk_start(if_t);
210 static void sk_start_locked(if_t);
211 static int sk_ioctl(if_t, u_long, caddr_t);
212 static void sk_init(void *);
213 static void sk_init_locked(struct sk_if_softc *);
214 static void sk_init_xmac(struct sk_if_softc *);
215 static void sk_init_yukon(struct sk_if_softc *);
216 static void sk_stop(struct sk_if_softc *);
217 static void sk_watchdog(void *);
218 static int sk_ifmedia_upd(if_t);
219 static void sk_ifmedia_sts(if_t, struct ifmediareq *);
220 static void sk_reset(struct sk_softc *);
221 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
222 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
223 static int sk_newbuf(struct sk_if_softc *, int);
224 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
225 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
226 static int sk_dma_alloc(struct sk_if_softc *);
227 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
228 static void sk_dma_free(struct sk_if_softc *);
229 static void sk_dma_jumbo_free(struct sk_if_softc *);
230 static int sk_init_rx_ring(struct sk_if_softc *);
231 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
232 static void sk_init_tx_ring(struct sk_if_softc *);
233 static u_int32_t sk_win_read_4(struct sk_softc *, int);
234 static u_int16_t sk_win_read_2(struct sk_softc *, int);
235 static u_int8_t sk_win_read_1(struct sk_softc *, int);
236 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
237 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
238 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
239 
240 static int sk_miibus_readreg(device_t, int, int);
241 static int sk_miibus_writereg(device_t, int, int, int);
242 static void sk_miibus_statchg(device_t);
243 
244 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
245 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
246 						int);
247 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
248 
249 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
250 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
251 						int);
252 static void sk_marv_miibus_statchg(struct sk_if_softc *);
253 
254 static uint32_t sk_xmchash(const uint8_t *);
255 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
256 static void sk_rxfilter(struct sk_if_softc *);
257 static void sk_rxfilter_genesis(struct sk_if_softc *);
258 static void sk_rxfilter_yukon(struct sk_if_softc *);
259 
260 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
261 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
262 
263 /* Tunables. */
264 static int jumbo_disable = 0;
265 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
266 
267 /*
268  * It seems that SK-NET GENESIS supports very simple checksum offload
269  * capability for Tx and I believe it can generate 0 checksum value for
270  * UDP packets in Tx as the hardware can't differenciate UDP packets from
271  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
272  * means sender didn't perforam checksum computation. For the safety I
273  * disabled UDP checksum offload capability at the moment.
274  */
275 #define SK_CSUM_FEATURES	(CSUM_TCP)
276 
277 /*
278  * Note that we have newbus methods for both the GEnesis controller
279  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
280  * the miibus code is a child of the XMACs. We need to do it this way
281  * so that the miibus drivers can access the PHY registers on the
282  * right PHY. It's not quite what I had in mind, but it's the only
283  * design that achieves the desired effect.
284  */
285 static device_method_t skc_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		skc_probe),
288 	DEVMETHOD(device_attach,	skc_attach),
289 	DEVMETHOD(device_detach,	skc_detach),
290 	DEVMETHOD(device_suspend,	skc_suspend),
291 	DEVMETHOD(device_resume,	skc_resume),
292 	DEVMETHOD(device_shutdown,	skc_shutdown),
293 
294 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
295 
296 	DEVMETHOD_END
297 };
298 
299 static driver_t skc_driver = {
300 	"skc",
301 	skc_methods,
302 	sizeof(struct sk_softc)
303 };
304 
305 static device_method_t sk_methods[] = {
306 	/* Device interface */
307 	DEVMETHOD(device_probe,		sk_probe),
308 	DEVMETHOD(device_attach,	sk_attach),
309 	DEVMETHOD(device_detach,	sk_detach),
310 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
311 
312 	/* MII interface */
313 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
314 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
315 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
316 
317 	DEVMETHOD_END
318 };
319 
320 static driver_t sk_driver = {
321 	"sk",
322 	sk_methods,
323 	sizeof(struct sk_if_softc)
324 };
325 
326 DRIVER_MODULE(skc, pci, skc_driver, NULL, NULL);
327 DRIVER_MODULE(sk, skc, sk_driver, NULL, NULL);
328 DRIVER_MODULE(miibus, sk, miibus_driver, NULL, NULL);
329 
330 static struct resource_spec sk_res_spec_io[] = {
331 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
332 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
333 	{ -1,			0,		0 }
334 };
335 
336 static struct resource_spec sk_res_spec_mem[] = {
337 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
338 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
339 	{ -1,			0,		0 }
340 };
341 
342 #define SK_SETBIT(sc, reg, x)		\
343 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
344 
345 #define SK_CLRBIT(sc, reg, x)		\
346 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
347 
348 #define SK_WIN_SETBIT_4(sc, reg, x)	\
349 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
350 
351 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
352 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
353 
354 #define SK_WIN_SETBIT_2(sc, reg, x)	\
355 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
356 
357 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
358 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
359 
360 static u_int32_t
361 sk_win_read_4(struct sk_softc *sc, int reg)
362 {
363 #ifdef SK_USEIOSPACE
364 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
365 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
366 #else
367 	return(CSR_READ_4(sc, reg));
368 #endif
369 }
370 
371 static u_int16_t
372 sk_win_read_2(struct sk_softc *sc, int reg)
373 {
374 #ifdef SK_USEIOSPACE
375 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
376 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
377 #else
378 	return(CSR_READ_2(sc, reg));
379 #endif
380 }
381 
382 static u_int8_t
383 sk_win_read_1(struct sk_softc *sc, int reg)
384 {
385 #ifdef SK_USEIOSPACE
386 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
387 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
388 #else
389 	return(CSR_READ_1(sc, reg));
390 #endif
391 }
392 
393 static void
394 sk_win_write_4(struct sk_softc *sc, int reg, u_int32_t val)
395 {
396 #ifdef SK_USEIOSPACE
397 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
398 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
399 #else
400 	CSR_WRITE_4(sc, reg, val);
401 #endif
402 	return;
403 }
404 
405 static void
406 sk_win_write_2(struct sk_softc *sc, int reg, u_int32_t val)
407 {
408 #ifdef SK_USEIOSPACE
409 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
410 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
411 #else
412 	CSR_WRITE_2(sc, reg, val);
413 #endif
414 	return;
415 }
416 
417 static void
418 sk_win_write_1(struct sk_softc *sc, int reg, u_int32_t val)
419 {
420 #ifdef SK_USEIOSPACE
421 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
422 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
423 #else
424 	CSR_WRITE_1(sc, reg, val);
425 #endif
426 	return;
427 }
428 
429 static int
430 sk_miibus_readreg(device_t dev, int phy, int reg)
431 {
432 	struct sk_if_softc	*sc_if;
433 	int			v;
434 
435 	sc_if = device_get_softc(dev);
436 
437 	SK_IF_MII_LOCK(sc_if);
438 	switch(sc_if->sk_softc->sk_type) {
439 	case SK_GENESIS:
440 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
441 		break;
442 	case SK_YUKON:
443 	case SK_YUKON_LITE:
444 	case SK_YUKON_LP:
445 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
446 		break;
447 	default:
448 		v = 0;
449 		break;
450 	}
451 	SK_IF_MII_UNLOCK(sc_if);
452 
453 	return (v);
454 }
455 
456 static int
457 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
458 {
459 	struct sk_if_softc	*sc_if;
460 	int			v;
461 
462 	sc_if = device_get_softc(dev);
463 
464 	SK_IF_MII_LOCK(sc_if);
465 	switch(sc_if->sk_softc->sk_type) {
466 	case SK_GENESIS:
467 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
468 		break;
469 	case SK_YUKON:
470 	case SK_YUKON_LITE:
471 	case SK_YUKON_LP:
472 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
473 		break;
474 	default:
475 		v = 0;
476 		break;
477 	}
478 	SK_IF_MII_UNLOCK(sc_if);
479 
480 	return (v);
481 }
482 
483 static void
484 sk_miibus_statchg(device_t dev)
485 {
486 	struct sk_if_softc	*sc_if;
487 
488 	sc_if = device_get_softc(dev);
489 
490 	SK_IF_MII_LOCK(sc_if);
491 	switch(sc_if->sk_softc->sk_type) {
492 	case SK_GENESIS:
493 		sk_xmac_miibus_statchg(sc_if);
494 		break;
495 	case SK_YUKON:
496 	case SK_YUKON_LITE:
497 	case SK_YUKON_LP:
498 		sk_marv_miibus_statchg(sc_if);
499 		break;
500 	}
501 	SK_IF_MII_UNLOCK(sc_if);
502 
503 	return;
504 }
505 
506 static int
507 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
508 {
509 	int			i;
510 
511 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
512 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
513 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
514 		for (i = 0; i < SK_TIMEOUT; i++) {
515 			DELAY(1);
516 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
517 			    XM_MMUCMD_PHYDATARDY)
518 				break;
519 		}
520 
521 		if (i == SK_TIMEOUT) {
522 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
523 			return(0);
524 		}
525 	}
526 	DELAY(1);
527 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
528 
529 	return(i);
530 }
531 
532 static int
533 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
534 {
535 	int			i;
536 
537 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
538 	for (i = 0; i < SK_TIMEOUT; i++) {
539 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
540 			break;
541 	}
542 
543 	if (i == SK_TIMEOUT) {
544 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
545 		return (ETIMEDOUT);
546 	}
547 
548 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
549 	for (i = 0; i < SK_TIMEOUT; i++) {
550 		DELAY(1);
551 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
552 			break;
553 	}
554 	if (i == SK_TIMEOUT)
555 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
556 
557 	return(0);
558 }
559 
560 static void
561 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
562 {
563 	struct mii_data		*mii;
564 
565 	mii = device_get_softc(sc_if->sk_miibus);
566 
567 	/*
568 	 * If this is a GMII PHY, manually set the XMAC's
569 	 * duplex mode accordingly.
570 	 */
571 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
572 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
573 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
574 		} else {
575 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
576 		}
577 	}
578 }
579 
580 static int
581 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
582 {
583 	u_int16_t		val;
584 	int			i;
585 
586 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
587 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
588 		return(0);
589 	}
590 
591         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
592 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
593 
594 	for (i = 0; i < SK_TIMEOUT; i++) {
595 		DELAY(1);
596 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
597 		if (val & YU_SMICR_READ_VALID)
598 			break;
599 	}
600 
601 	if (i == SK_TIMEOUT) {
602 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
603 		return(0);
604 	}
605 
606 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
607 
608 	return(val);
609 }
610 
611 static int
612 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
613 {
614 	int			i;
615 
616 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
617 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
618 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
619 
620 	for (i = 0; i < SK_TIMEOUT; i++) {
621 		DELAY(1);
622 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
623 			break;
624 	}
625 	if (i == SK_TIMEOUT)
626 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
627 
628 	return(0);
629 }
630 
631 static void
632 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
633 {
634 	return;
635 }
636 
637 #define HASH_BITS		6
638 
639 static u_int32_t
640 sk_xmchash(const uint8_t *addr)
641 {
642 	uint32_t crc;
643 
644 	/* Compute CRC for the address value. */
645 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
646 
647 	return (~crc & ((1 << HASH_BITS) - 1));
648 }
649 
650 static void
651 sk_setfilt(struct sk_if_softc *sc_if, u_int16_t *addr, int slot)
652 {
653 	int			base;
654 
655 	base = XM_RXFILT_ENTRY(slot);
656 
657 	SK_XM_WRITE_2(sc_if, base, addr[0]);
658 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
659 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
660 
661 	return;
662 }
663 
664 static void
665 sk_rxfilter(struct sk_if_softc *sc_if)
666 {
667 	struct sk_softc		*sc;
668 
669 	SK_IF_LOCK_ASSERT(sc_if);
670 
671 	sc = sc_if->sk_softc;
672 	if (sc->sk_type == SK_GENESIS)
673 		sk_rxfilter_genesis(sc_if);
674 	else
675 		sk_rxfilter_yukon(sc_if);
676 }
677 
678 struct sk_add_maddr_genesis_ctx {
679 	struct sk_if_softc *sc_if;
680 	uint32_t hashes[2];
681 	uint32_t mode;
682 };
683 
684 static u_int
685 sk_add_maddr_genesis(void *arg, struct sockaddr_dl *sdl, u_int cnt)
686 {
687 	struct sk_add_maddr_genesis_ctx *ctx = arg;
688 	int h;
689 
690 	/*
691 	 * Program the first XM_RXFILT_MAX multicast groups
692 	 * into the perfect filter.
693 	 */
694 	if (cnt + 1 < XM_RXFILT_MAX) {
695 		sk_setfilt(ctx->sc_if, (uint16_t *)LLADDR(sdl), cnt + 1);
696 		ctx->mode |= XM_MODE_RX_USE_PERFECT;
697 		return (1);
698 	}
699 	h = sk_xmchash((const uint8_t *)LLADDR(sdl));
700 	if (h < 32)
701 		ctx->hashes[0] |= (1 << h);
702 	else
703 		ctx->hashes[1] |= (1 << (h - 32));
704 	ctx->mode |= XM_MODE_RX_USE_HASH;
705 
706 	return (1);
707 }
708 
709 static void
710 sk_rxfilter_genesis(struct sk_if_softc *sc_if)
711 {
712 	if_t			ifp = sc_if->sk_ifp;
713 	struct sk_add_maddr_genesis_ctx ctx = { sc_if, { 0, 0 } };
714 	int			i;
715 	u_int16_t		dummy[] = { 0, 0, 0 };
716 
717 	SK_IF_LOCK_ASSERT(sc_if);
718 
719 	ctx.mode = SK_XM_READ_4(sc_if, XM_MODE);
720 	ctx.mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
721 	    XM_MODE_RX_USE_PERFECT);
722 	/* First, zot all the existing perfect filters. */
723 	for (i = 1; i < XM_RXFILT_MAX; i++)
724 		sk_setfilt(sc_if, dummy, i);
725 
726 	/* Now program new ones. */
727 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
728 		if (if_getflags(ifp) & IFF_ALLMULTI)
729 			ctx.mode |= XM_MODE_RX_USE_HASH;
730 		if (if_getflags(ifp) & IFF_PROMISC)
731 			ctx.mode |= XM_MODE_RX_PROMISC;
732 		ctx.hashes[0] = 0xFFFFFFFF;
733 		ctx.hashes[1] = 0xFFFFFFFF;
734 	} else
735 		/* XXX want to maintain reverse semantics */
736 		if_foreach_llmaddr(ifp, sk_add_maddr_genesis, &ctx);
737 
738 	SK_XM_WRITE_4(sc_if, XM_MODE, ctx.mode);
739 	SK_XM_WRITE_4(sc_if, XM_MAR0, ctx.hashes[0]);
740 	SK_XM_WRITE_4(sc_if, XM_MAR2, ctx.hashes[1]);
741 }
742 
743 static u_int
744 sk_hash_maddr_yukon(void *arg, struct sockaddr_dl *sdl, u_int cnt)
745 {
746 	uint32_t crc, *hashes = arg;
747 
748 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
749 	/* Just want the 6 least significant bits. */
750 	crc &= 0x3f;
751 	/* Set the corresponding bit in the hash table. */
752 	hashes[crc >> 5] |= 1 << (crc & 0x1f);
753 
754 	return (1);
755 }
756 
757 static void
758 sk_rxfilter_yukon(struct sk_if_softc *sc_if)
759 {
760 	if_t			ifp;
761 	uint32_t		hashes[2] = { 0, 0 }, mode;
762 
763 	SK_IF_LOCK_ASSERT(sc_if);
764 
765 	ifp = sc_if->sk_ifp;
766 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
767 	if (if_getflags(ifp) & IFF_PROMISC)
768 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
769 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
770 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
771 		hashes[0] = 0xFFFFFFFF;
772 		hashes[1] = 0xFFFFFFFF;
773 	} else {
774 		mode |= YU_RCR_UFLEN;
775 		if_foreach_llmaddr(ifp, sk_hash_maddr_yukon, hashes);
776 		if (hashes[0] != 0 || hashes[1] != 0)
777 			mode |= YU_RCR_MUFLEN;
778 	}
779 
780 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
781 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
782 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
783 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
784 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
785 }
786 
787 static int
788 sk_init_rx_ring(struct sk_if_softc *sc_if)
789 {
790 	struct sk_ring_data	*rd;
791 	bus_addr_t		addr;
792 	u_int32_t		csum_start;
793 	int			i;
794 
795 	sc_if->sk_cdata.sk_rx_cons = 0;
796 
797 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
798 	    ETHER_HDR_LEN;
799 	rd = &sc_if->sk_rdata;
800 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
801 	for (i = 0; i < SK_RX_RING_CNT; i++) {
802 		if (sk_newbuf(sc_if, i) != 0)
803 			return (ENOBUFS);
804 		if (i == (SK_RX_RING_CNT - 1))
805 			addr = SK_RX_RING_ADDR(sc_if, 0);
806 		else
807 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
808 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
809 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
810 	}
811 
812 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
813 	    sc_if->sk_cdata.sk_rx_ring_map,
814 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
815 
816 	return(0);
817 }
818 
819 static int
820 sk_init_jumbo_rx_ring(struct sk_if_softc *sc_if)
821 {
822 	struct sk_ring_data	*rd;
823 	bus_addr_t		addr;
824 	u_int32_t		csum_start;
825 	int			i;
826 
827 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
828 
829 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
830 	    ETHER_HDR_LEN;
831 	rd = &sc_if->sk_rdata;
832 	bzero(rd->sk_jumbo_rx_ring,
833 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
834 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
835 		if (sk_jumbo_newbuf(sc_if, i) != 0)
836 			return (ENOBUFS);
837 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
838 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
839 		else
840 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
841 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
842 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
843 	}
844 
845 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
846 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
847 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
848 
849 	return (0);
850 }
851 
852 static void
853 sk_init_tx_ring(struct sk_if_softc *sc_if)
854 {
855 	struct sk_ring_data	*rd;
856 	struct sk_txdesc	*txd;
857 	bus_addr_t		addr;
858 	int			i;
859 
860 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
861 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
862 
863 	sc_if->sk_cdata.sk_tx_prod = 0;
864 	sc_if->sk_cdata.sk_tx_cons = 0;
865 	sc_if->sk_cdata.sk_tx_cnt = 0;
866 
867 	rd = &sc_if->sk_rdata;
868 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
869 	for (i = 0; i < SK_TX_RING_CNT; i++) {
870 		if (i == (SK_TX_RING_CNT - 1))
871 			addr = SK_TX_RING_ADDR(sc_if, 0);
872 		else
873 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
874 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
875 		txd = &sc_if->sk_cdata.sk_txdesc[i];
876 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
877 	}
878 
879 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
880 	    sc_if->sk_cdata.sk_tx_ring_map,
881 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
882 }
883 
884 static __inline void
885 sk_discard_rxbuf(struct sk_if_softc *sc_if, int idx)
886 {
887 	struct sk_rx_desc	*r;
888 	struct sk_rxdesc	*rxd;
889 	struct mbuf		*m;
890 
891 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
892 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
893 	m = rxd->rx_m;
894 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
895 }
896 
897 static __inline void
898 sk_discard_jumbo_rxbuf(struct sk_if_softc *sc_if, int idx)
899 {
900 	struct sk_rx_desc	*r;
901 	struct sk_rxdesc	*rxd;
902 	struct mbuf		*m;
903 
904 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
905 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
906 	m = rxd->rx_m;
907 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
908 }
909 
910 static int
911 sk_newbuf(struct sk_if_softc *sc_if, int idx)
912 {
913 	struct sk_rx_desc	*r;
914 	struct sk_rxdesc	*rxd;
915 	struct mbuf		*m;
916 	bus_dma_segment_t	segs[1];
917 	bus_dmamap_t		map;
918 	int			nsegs;
919 
920 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
921 	if (m == NULL)
922 		return (ENOBUFS);
923 	m->m_len = m->m_pkthdr.len = MCLBYTES;
924 	m_adj(m, ETHER_ALIGN);
925 
926 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
927 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
928 		m_freem(m);
929 		return (ENOBUFS);
930 	}
931 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
932 
933 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
934 	if (rxd->rx_m != NULL) {
935 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
936 		    BUS_DMASYNC_POSTREAD);
937 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
938 	}
939 	map = rxd->rx_dmamap;
940 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
941 	sc_if->sk_cdata.sk_rx_sparemap = map;
942 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
943 	    BUS_DMASYNC_PREREAD);
944 	rxd->rx_m = m;
945 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
946 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
947 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
948 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
949 
950 	return (0);
951 }
952 
953 static int
954 sk_jumbo_newbuf(struct sk_if_softc *sc_if, int idx)
955 {
956 	struct sk_rx_desc	*r;
957 	struct sk_rxdesc	*rxd;
958 	struct mbuf		*m;
959 	bus_dma_segment_t	segs[1];
960 	bus_dmamap_t		map;
961 	int			nsegs;
962 
963 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
964 	if (m == NULL)
965 		return (ENOBUFS);
966 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
967 	/*
968 	 * Adjust alignment so packet payload begins on a
969 	 * longword boundary. Mandatory for Alpha, useful on
970 	 * x86 too.
971 	 */
972 	m_adj(m, ETHER_ALIGN);
973 
974 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
975 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
976 		m_freem(m);
977 		return (ENOBUFS);
978 	}
979 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
980 
981 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
982 	if (rxd->rx_m != NULL) {
983 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
984 		    BUS_DMASYNC_POSTREAD);
985 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
986 		    rxd->rx_dmamap);
987 	}
988 	map = rxd->rx_dmamap;
989 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
990 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
991 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
992 	    BUS_DMASYNC_PREREAD);
993 	rxd->rx_m = m;
994 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
995 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
996 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
997 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
998 
999 	return (0);
1000 }
1001 
1002 /*
1003  * Set media options.
1004  */
1005 static int
1006 sk_ifmedia_upd(if_t ifp)
1007 {
1008 	struct sk_if_softc	*sc_if = if_getsoftc(ifp);
1009 	struct mii_data		*mii;
1010 
1011 	mii = device_get_softc(sc_if->sk_miibus);
1012 	sk_init(sc_if);
1013 	mii_mediachg(mii);
1014 
1015 	return(0);
1016 }
1017 
1018 /*
1019  * Report current media status.
1020  */
1021 static void
1022 sk_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1023 {
1024 	struct sk_if_softc	*sc_if;
1025 	struct mii_data		*mii;
1026 
1027 	sc_if = if_getsoftc(ifp);
1028 	mii = device_get_softc(sc_if->sk_miibus);
1029 
1030 	mii_pollstat(mii);
1031 	ifmr->ifm_active = mii->mii_media_active;
1032 	ifmr->ifm_status = mii->mii_media_status;
1033 
1034 	return;
1035 }
1036 
1037 static int
1038 sk_ioctl(if_t ifp, u_long command, caddr_t data)
1039 {
1040 	struct sk_if_softc	*sc_if = if_getsoftc(ifp);
1041 	struct ifreq		*ifr = (struct ifreq *) data;
1042 	int			error, mask;
1043 	struct mii_data		*mii;
1044 
1045 	error = 0;
1046 	switch(command) {
1047 	case SIOCSIFMTU:
1048 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1049 			error = EINVAL;
1050 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1051 			if (sc_if->sk_jumbo_disable != 0 &&
1052 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1053 				error = EINVAL;
1054 			else {
1055 				SK_IF_LOCK(sc_if);
1056 				if_setmtu(ifp, ifr->ifr_mtu);
1057 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1058 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1059 					sk_init_locked(sc_if);
1060 				}
1061 				SK_IF_UNLOCK(sc_if);
1062 			}
1063 		}
1064 		break;
1065 	case SIOCSIFFLAGS:
1066 		SK_IF_LOCK(sc_if);
1067 		if (if_getflags(ifp) & IFF_UP) {
1068 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1069 				if ((if_getflags(ifp) ^ sc_if->sk_if_flags)
1070 				    & (IFF_PROMISC | IFF_ALLMULTI))
1071 					sk_rxfilter(sc_if);
1072 			} else
1073 				sk_init_locked(sc_if);
1074 		} else {
1075 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1076 				sk_stop(sc_if);
1077 		}
1078 		sc_if->sk_if_flags = if_getflags(ifp);
1079 		SK_IF_UNLOCK(sc_if);
1080 		break;
1081 	case SIOCADDMULTI:
1082 	case SIOCDELMULTI:
1083 		SK_IF_LOCK(sc_if);
1084 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1085 			sk_rxfilter(sc_if);
1086 		SK_IF_UNLOCK(sc_if);
1087 		break;
1088 	case SIOCGIFMEDIA:
1089 	case SIOCSIFMEDIA:
1090 		mii = device_get_softc(sc_if->sk_miibus);
1091 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1092 		break;
1093 	case SIOCSIFCAP:
1094 		SK_IF_LOCK(sc_if);
1095 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1096 			SK_IF_UNLOCK(sc_if);
1097 			break;
1098 		}
1099 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1100 		if ((mask & IFCAP_TXCSUM) != 0 &&
1101 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
1102 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1103 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1104 				if_sethwassistbits(ifp, SK_CSUM_FEATURES, 0);
1105 			else
1106 				if_sethwassistbits(ifp, 0, SK_CSUM_FEATURES);
1107 		}
1108 		if ((mask & IFCAP_RXCSUM) != 0 &&
1109 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0)
1110 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1111 		SK_IF_UNLOCK(sc_if);
1112 		break;
1113 	default:
1114 		error = ether_ioctl(ifp, command, data);
1115 		break;
1116 	}
1117 
1118 	return (error);
1119 }
1120 
1121 /*
1122  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1123  * IDs against our list and return a device name if we find a match.
1124  */
1125 static int
1126 skc_probe(device_t dev)
1127 {
1128 	const struct sk_type	*t = sk_devs;
1129 
1130 	while(t->sk_name != NULL) {
1131 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1132 		    (pci_get_device(dev) == t->sk_did)) {
1133 			/*
1134 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1135 			 * Rev. 3 is supported by re(4).
1136 			 */
1137 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1138 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1139 				(pci_get_subdevice(dev) !=
1140 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1141 				t++;
1142 				continue;
1143 			}
1144 			device_set_desc(dev, t->sk_name);
1145 			return (BUS_PROBE_DEFAULT);
1146 		}
1147 		t++;
1148 	}
1149 
1150 	return(ENXIO);
1151 }
1152 
1153 /*
1154  * Force the GEnesis into reset, then bring it out of reset.
1155  */
1156 static void
1157 sk_reset(struct sk_softc *sc)
1158 {
1159 
1160 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1161 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1162 	if (SK_YUKON_FAMILY(sc->sk_type))
1163 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1164 
1165 	DELAY(1000);
1166 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1167 	DELAY(2);
1168 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1169 	if (SK_YUKON_FAMILY(sc->sk_type))
1170 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1171 
1172 	if (sc->sk_type == SK_GENESIS) {
1173 		/* Configure packet arbiter */
1174 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1175 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1176 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1177 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1178 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1179 	}
1180 
1181 	/* Enable RAM interface */
1182 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1183 
1184 	/*
1185          * Configure interrupt moderation. The moderation timer
1186 	 * defers interrupts specified in the interrupt moderation
1187 	 * timer mask based on the timeout specified in the interrupt
1188 	 * moderation timer init register. Each bit in the timer
1189 	 * register represents one tick, so to specify a timeout in
1190 	 * microseconds, we have to multiply by the correct number of
1191 	 * ticks-per-microsecond.
1192 	 */
1193 	switch (sc->sk_type) {
1194 	case SK_GENESIS:
1195 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1196 		break;
1197 	default:
1198 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1199 		break;
1200 	}
1201 	if (bootverbose)
1202 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1203 		    sc->sk_int_mod);
1204 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1205 	    sc->sk_int_ticks));
1206 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1207 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1208 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1209 
1210 	return;
1211 }
1212 
1213 static int
1214 sk_probe(device_t dev)
1215 {
1216 	struct sk_softc		*sc;
1217 
1218 	sc = device_get_softc(device_get_parent(dev));
1219 
1220 	/*
1221 	 * Not much to do here. We always know there will be
1222 	 * at least one XMAC present, and if there are two,
1223 	 * skc_attach() will create a second device instance
1224 	 * for us.
1225 	 */
1226 	switch (sc->sk_type) {
1227 	case SK_GENESIS:
1228 		device_set_desc(dev, "XaQti Corp. XMAC II");
1229 		break;
1230 	case SK_YUKON:
1231 	case SK_YUKON_LITE:
1232 	case SK_YUKON_LP:
1233 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1234 		break;
1235 	}
1236 
1237 	return (BUS_PROBE_DEFAULT);
1238 }
1239 
1240 /*
1241  * Each XMAC chip is attached as a separate logical IP interface.
1242  * Single port cards will have only one logical interface of course.
1243  */
1244 static int
1245 sk_attach(device_t dev)
1246 {
1247 	struct sk_softc		*sc;
1248 	struct sk_if_softc	*sc_if;
1249 	if_t			ifp;
1250 	u_int32_t		r;
1251 	int			error, i, phy, port;
1252 	u_char			eaddr[6];
1253 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1254 
1255 	if (dev == NULL)
1256 		return(EINVAL);
1257 
1258 	error = 0;
1259 	sc_if = device_get_softc(dev);
1260 	sc = device_get_softc(device_get_parent(dev));
1261 	port = *(int *)device_get_ivars(dev);
1262 
1263 	sc_if->sk_if_dev = dev;
1264 	sc_if->sk_port = port;
1265 	sc_if->sk_softc = sc;
1266 	sc->sk_if[port] = sc_if;
1267 	if (port == SK_PORT_A)
1268 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1269 	if (port == SK_PORT_B)
1270 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1271 
1272 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1273 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1274 
1275 	if (sk_dma_alloc(sc_if) != 0) {
1276 		error = ENOMEM;
1277 		goto fail;
1278 	}
1279 	sk_dma_jumbo_alloc(sc_if);
1280 
1281 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1282 	if (ifp == NULL) {
1283 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1284 		error = ENOSPC;
1285 		goto fail;
1286 	}
1287 	if_setsoftc(ifp, sc_if);
1288 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1289 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1290 	/*
1291 	 * SK_GENESIS has a bug in checksum offload - From linux.
1292 	 */
1293 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1294 		if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM);
1295 		if_sethwassist(ifp, 0);
1296 	} else {
1297 		if_setcapabilities(ifp, 0);
1298 		if_sethwassist(ifp, 0);
1299 	}
1300 	if_setcapenable(ifp, if_getcapabilities(ifp));
1301 	/*
1302 	 * Some revision of Yukon controller generates corrupted
1303 	 * frame when TX checksum offloading is enabled.  The
1304 	 * frame has a valid checksum value so payload might be
1305 	 * modified during TX checksum calculation. Disable TX
1306 	 * checksum offloading but give users chance to enable it
1307 	 * when they know their controller works without problems
1308 	 * with TX checksum offloading.
1309 	 */
1310 	if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
1311 	if_setioctlfn(ifp, sk_ioctl);
1312 	if_setstartfn(ifp, sk_start);
1313 	if_setinitfn(ifp, sk_init);
1314 	if_setsendqlen(ifp, SK_TX_RING_CNT - 1);
1315 	if_setsendqready(ifp);
1316 
1317 	/*
1318 	 * Get station address for this interface. Note that
1319 	 * dual port cards actually come with three station
1320 	 * addresses: one for each port, plus an extra. The
1321 	 * extra one is used by the SysKonnect driver software
1322 	 * as a 'virtual' station address for when both ports
1323 	 * are operating in failover mode. Currently we don't
1324 	 * use this extra address.
1325 	 */
1326 	SK_IF_LOCK(sc_if);
1327 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1328 		eaddr[i] =
1329 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1330 
1331 	/* Verify whether the station address is invalid or not. */
1332 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1333 		device_printf(sc_if->sk_if_dev,
1334 		    "Generating random ethernet address\n");
1335 		r = arc4random();
1336 		/*
1337 		 * Set OUI to convenient locally assigned address.  'b'
1338 		 * is 0x62, which has the locally assigned bit set, and
1339 		 * the broadcast/multicast bit clear.
1340 		 */
1341 		eaddr[0] = 'b';
1342 		eaddr[1] = 's';
1343 		eaddr[2] = 'd';
1344 		eaddr[3] = (r >> 16) & 0xff;
1345 		eaddr[4] = (r >>  8) & 0xff;
1346 		eaddr[5] = (r >>  0) & 0xff;
1347 	}
1348 	/*
1349 	 * Set up RAM buffer addresses. The NIC will have a certain
1350 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1351 	 * need to divide this up a) between the transmitter and
1352  	 * receiver and b) between the two XMACs, if this is a
1353 	 * dual port NIC. Our algotithm is to divide up the memory
1354 	 * evenly so that everyone gets a fair share.
1355 	 *
1356 	 * Just to be contrary, Yukon2 appears to have separate memory
1357 	 * for each MAC.
1358 	 */
1359 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1360 		u_int32_t		chunk, val;
1361 
1362 		chunk = sc->sk_ramsize / 2;
1363 		val = sc->sk_rboff / sizeof(u_int64_t);
1364 		sc_if->sk_rx_ramstart = val;
1365 		val += (chunk / sizeof(u_int64_t));
1366 		sc_if->sk_rx_ramend = val - 1;
1367 		sc_if->sk_tx_ramstart = val;
1368 		val += (chunk / sizeof(u_int64_t));
1369 		sc_if->sk_tx_ramend = val - 1;
1370 	} else {
1371 		u_int32_t		chunk, val;
1372 
1373 		chunk = sc->sk_ramsize / 4;
1374 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1375 		    sizeof(u_int64_t);
1376 		sc_if->sk_rx_ramstart = val;
1377 		val += (chunk / sizeof(u_int64_t));
1378 		sc_if->sk_rx_ramend = val - 1;
1379 		sc_if->sk_tx_ramstart = val;
1380 		val += (chunk / sizeof(u_int64_t));
1381 		sc_if->sk_tx_ramend = val - 1;
1382 	}
1383 
1384 	/* Read and save PHY type and set PHY address */
1385 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1386 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1387 		switch(sc_if->sk_phytype) {
1388 		case SK_PHYTYPE_XMAC:
1389 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1390 			break;
1391 		case SK_PHYTYPE_BCOM:
1392 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1393 			break;
1394 		default:
1395 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1396 			    sc_if->sk_phytype);
1397 			error = ENODEV;
1398 			SK_IF_UNLOCK(sc_if);
1399 			goto fail;
1400 		}
1401 	} else {
1402 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1403 		    sc->sk_pmd != 'S') {
1404 			/* not initialized, punt */
1405 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1406 			sc->sk_coppertype = 1;
1407 		}
1408 
1409 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1410 
1411 		if (!(sc->sk_coppertype))
1412 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1413 	}
1414 
1415 	/*
1416 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1417 	 */
1418 	SK_IF_UNLOCK(sc_if);
1419 	ether_ifattach(ifp, eaddr);
1420 	SK_IF_LOCK(sc_if);
1421 
1422 	/*
1423 	 * The hardware should be ready for VLAN_MTU by default:
1424 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1425 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1426 	 *
1427 	 */
1428         if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
1429         if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
1430 	/*
1431 	 * Tell the upper layer(s) we support long frames.
1432 	 * Must appear after the call to ether_ifattach() because
1433 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1434 	 */
1435         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1436 
1437 	/*
1438 	 * Do miibus setup.
1439 	 */
1440 	phy = MII_PHY_ANY;
1441 	switch (sc->sk_type) {
1442 	case SK_GENESIS:
1443 		sk_init_xmac(sc_if);
1444 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1445 			phy = 0;
1446 		break;
1447 	case SK_YUKON:
1448 	case SK_YUKON_LITE:
1449 	case SK_YUKON_LP:
1450 		sk_init_yukon(sc_if);
1451 		phy = 0;
1452 		break;
1453 	}
1454 
1455 	SK_IF_UNLOCK(sc_if);
1456 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1457 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1458 	if (error != 0) {
1459 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1460 		ether_ifdetach(ifp);
1461 		goto fail;
1462 	}
1463 
1464 fail:
1465 	if (error) {
1466 		/* Access should be ok even though lock has been dropped */
1467 		sc->sk_if[port] = NULL;
1468 		sk_detach(dev);
1469 	}
1470 
1471 	return(error);
1472 }
1473 
1474 /*
1475  * Attach the interface. Allocate softc structures, do ifmedia
1476  * setup and ethernet/BPF attach.
1477  */
1478 static int
1479 skc_attach(device_t dev)
1480 {
1481 	struct sk_softc		*sc;
1482 	int			error = 0, *port;
1483 	uint8_t			skrs;
1484 	const char		*pname = NULL;
1485 	char			*revstr;
1486 
1487 	sc = device_get_softc(dev);
1488 	sc->sk_dev = dev;
1489 
1490 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1491 	    MTX_DEF);
1492 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1493 	/*
1494 	 * Map control/status registers.
1495 	 */
1496 	pci_enable_busmaster(dev);
1497 
1498 	/* Allocate resources */
1499 #ifdef SK_USEIOSPACE
1500 	sc->sk_res_spec = sk_res_spec_io;
1501 #else
1502 	sc->sk_res_spec = sk_res_spec_mem;
1503 #endif
1504 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1505 	if (error) {
1506 		if (sc->sk_res_spec == sk_res_spec_mem)
1507 			sc->sk_res_spec = sk_res_spec_io;
1508 		else
1509 			sc->sk_res_spec = sk_res_spec_mem;
1510 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1511 		if (error) {
1512 			device_printf(dev, "couldn't allocate %s resources\n",
1513 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1514 			    "I/O");
1515 			goto fail;
1516 		}
1517 	}
1518 
1519 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1520 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1521 
1522 	/* Bail out if chip is not recognized. */
1523 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1524 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1525 		    sc->sk_type, sc->sk_rev);
1526 		error = ENXIO;
1527 		goto fail;
1528 	}
1529 
1530 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1531 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1532 		OID_AUTO, "int_mod",
1533 		CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1534 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1535 		"SK interrupt moderation");
1536 
1537 	/* Pull in device tunables. */
1538 	sc->sk_int_mod = SK_IM_DEFAULT;
1539 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1540 		"int_mod", &sc->sk_int_mod);
1541 	if (error == 0) {
1542 		if (sc->sk_int_mod < SK_IM_MIN ||
1543 		    sc->sk_int_mod > SK_IM_MAX) {
1544 			device_printf(dev, "int_mod value out of range; "
1545 			    "using default: %d\n", SK_IM_DEFAULT);
1546 			sc->sk_int_mod = SK_IM_DEFAULT;
1547 		}
1548 	}
1549 
1550 	/* Reset the adapter. */
1551 	sk_reset(sc);
1552 
1553 	skrs = sk_win_read_1(sc, SK_EPROM0);
1554 	if (sc->sk_type == SK_GENESIS) {
1555 		/* Read and save RAM size and RAMbuffer offset */
1556 		switch(skrs) {
1557 		case SK_RAMSIZE_512K_64:
1558 			sc->sk_ramsize = 0x80000;
1559 			sc->sk_rboff = SK_RBOFF_0;
1560 			break;
1561 		case SK_RAMSIZE_1024K_64:
1562 			sc->sk_ramsize = 0x100000;
1563 			sc->sk_rboff = SK_RBOFF_80000;
1564 			break;
1565 		case SK_RAMSIZE_1024K_128:
1566 			sc->sk_ramsize = 0x100000;
1567 			sc->sk_rboff = SK_RBOFF_0;
1568 			break;
1569 		case SK_RAMSIZE_2048K_128:
1570 			sc->sk_ramsize = 0x200000;
1571 			sc->sk_rboff = SK_RBOFF_0;
1572 			break;
1573 		default:
1574 			device_printf(dev, "unknown ram size: %d\n", skrs);
1575 			error = ENXIO;
1576 			goto fail;
1577 		}
1578 	} else { /* SK_YUKON_FAMILY */
1579 		if (skrs == 0x00)
1580 			sc->sk_ramsize = 0x20000;
1581 		else
1582 			sc->sk_ramsize = skrs * (1<<12);
1583 		sc->sk_rboff = SK_RBOFF_0;
1584 	}
1585 
1586 	/* Read and save physical media type */
1587 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1588 
1589 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1590 		 sc->sk_coppertype = 1;
1591 	 else
1592 		 sc->sk_coppertype = 0;
1593 
1594 	/* Determine whether to name it with VPD PN or just make it up.
1595 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1596 	switch (pci_get_device(dev)) {
1597 	case DEVICEID_SK_V1:
1598 	case DEVICEID_BELKIN_5005:
1599 	case DEVICEID_3COM_3C940:
1600 	case DEVICEID_LINKSYS_EG1032:
1601 	case DEVICEID_DLINK_DGE530T_A1:
1602 	case DEVICEID_DLINK_DGE530T_B1:
1603 		/* Stay with VPD PN. */
1604 		(void) pci_get_vpd_ident(dev, &pname);
1605 		break;
1606 	case DEVICEID_SK_V2:
1607 		/* YUKON VPD PN might bear no resemblance to reality. */
1608 		switch (sc->sk_type) {
1609 		case SK_GENESIS:
1610 			/* Stay with VPD PN. */
1611 			(void) pci_get_vpd_ident(dev, &pname);
1612 			break;
1613 		case SK_YUKON:
1614 			pname = "Marvell Yukon Gigabit Ethernet";
1615 			break;
1616 		case SK_YUKON_LITE:
1617 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1618 			break;
1619 		case SK_YUKON_LP:
1620 			pname = "Marvell Yukon LP Gigabit Ethernet";
1621 			break;
1622 		default:
1623 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1624 			break;
1625 		}
1626 
1627 		/* Yukon Lite Rev. A0 needs special test. */
1628 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1629 			u_int32_t far;
1630 			u_int8_t testbyte;
1631 
1632 			/* Save flash address register before testing. */
1633 			far = sk_win_read_4(sc, SK_EP_ADDR);
1634 
1635 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1636 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1637 
1638 			if (testbyte != 0x00) {
1639 				/* Yukon Lite Rev. A0 detected. */
1640 				sc->sk_type = SK_YUKON_LITE;
1641 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1642 				/* Restore flash address register. */
1643 				sk_win_write_4(sc, SK_EP_ADDR, far);
1644 			}
1645 		}
1646 		break;
1647 	default:
1648 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1649 			"chipver=%02x, rev=%x\n",
1650 			pci_get_vendor(dev), pci_get_device(dev),
1651 			sc->sk_type, sc->sk_rev);
1652 		error = ENXIO;
1653 		goto fail;
1654 	}
1655 
1656 	if (sc->sk_type == SK_YUKON_LITE) {
1657 		switch (sc->sk_rev) {
1658 		case SK_YUKON_LITE_REV_A0:
1659 			revstr = "A0";
1660 			break;
1661 		case SK_YUKON_LITE_REV_A1:
1662 			revstr = "A1";
1663 			break;
1664 		case SK_YUKON_LITE_REV_A3:
1665 			revstr = "A3";
1666 			break;
1667 		default:
1668 			revstr = "";
1669 			break;
1670 		}
1671 	} else {
1672 		revstr = "";
1673 	}
1674 
1675 	/* Announce the product name and more VPD data if there. */
1676 	if (pname != NULL)
1677 		device_printf(dev, "%s rev. %s(0x%x)\n",
1678 			pname, revstr, sc->sk_rev);
1679 
1680 	if (bootverbose) {
1681 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1682 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1683 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1684 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1685 	}
1686 
1687 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1688 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1689 		device_printf(dev, "failed to add child for PORT_A\n");
1690 		error = ENXIO;
1691 		goto fail;
1692 	}
1693 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1694 	if (port == NULL) {
1695 		device_printf(dev, "failed to allocate memory for "
1696 		    "ivars of PORT_A\n");
1697 		error = ENXIO;
1698 		goto fail;
1699 	}
1700 	*port = SK_PORT_A;
1701 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1702 
1703 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1704 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1705 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1706 			device_printf(dev, "failed to add child for PORT_B\n");
1707 			error = ENXIO;
1708 			goto fail;
1709 		}
1710 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1711 		if (port == NULL) {
1712 			device_printf(dev, "failed to allocate memory for "
1713 			    "ivars of PORT_B\n");
1714 			error = ENXIO;
1715 			goto fail;
1716 		}
1717 		*port = SK_PORT_B;
1718 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1719 	}
1720 
1721 	/* Turn on the 'driver is loaded' LED. */
1722 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1723 
1724 	error = bus_generic_attach(dev);
1725 	if (error) {
1726 		device_printf(dev, "failed to attach port(s)\n");
1727 		goto fail;
1728 	}
1729 
1730 	/* Hook interrupt last to avoid having to lock softc */
1731 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1732 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1733 
1734 	if (error) {
1735 		device_printf(dev, "couldn't set up irq\n");
1736 		goto fail;
1737 	}
1738 
1739 fail:
1740 	if (error)
1741 		skc_detach(dev);
1742 
1743 	return(error);
1744 }
1745 
1746 /*
1747  * Shutdown hardware and free up resources. This can be called any
1748  * time after the mutex has been initialized. It is called in both
1749  * the error case in attach and the normal detach case so it needs
1750  * to be careful about only freeing resources that have actually been
1751  * allocated.
1752  */
1753 static int
1754 sk_detach(device_t dev)
1755 {
1756 	struct sk_if_softc	*sc_if;
1757 	if_t			ifp;
1758 
1759 	sc_if = device_get_softc(dev);
1760 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1761 	    ("sk mutex not initialized in sk_detach"));
1762 	SK_IF_LOCK(sc_if);
1763 
1764 	ifp = sc_if->sk_ifp;
1765 	/* These should only be active if attach_xmac succeeded */
1766 	if (device_is_attached(dev)) {
1767 		sk_stop(sc_if);
1768 		/* Can't hold locks while calling detach */
1769 		SK_IF_UNLOCK(sc_if);
1770 		callout_drain(&sc_if->sk_tick_ch);
1771 		callout_drain(&sc_if->sk_watchdog_ch);
1772 		ether_ifdetach(ifp);
1773 		SK_IF_LOCK(sc_if);
1774 	}
1775 	/*
1776 	 * We're generally called from skc_detach() which is using
1777 	 * device_delete_child() to get to here. It's already trashed
1778 	 * miibus for us, so don't do it here or we'll panic.
1779 	 */
1780 	/*
1781 	if (sc_if->sk_miibus != NULL)
1782 		device_delete_child(dev, sc_if->sk_miibus);
1783 	*/
1784 	bus_generic_detach(dev);
1785 	sk_dma_jumbo_free(sc_if);
1786 	sk_dma_free(sc_if);
1787 	SK_IF_UNLOCK(sc_if);
1788 	if (ifp)
1789 		if_free(ifp);
1790 
1791 	return(0);
1792 }
1793 
1794 static int
1795 skc_detach(device_t dev)
1796 {
1797 	struct sk_softc		*sc;
1798 
1799 	sc = device_get_softc(dev);
1800 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1801 
1802 	if (device_is_alive(dev)) {
1803 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1804 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1805 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1806 		}
1807 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1808 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1809 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1810 		}
1811 		bus_generic_detach(dev);
1812 	}
1813 
1814 	if (sc->sk_intrhand)
1815 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1816 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1817 
1818 	mtx_destroy(&sc->sk_mii_mtx);
1819 	mtx_destroy(&sc->sk_mtx);
1820 
1821 	return(0);
1822 }
1823 
1824 static bus_dma_tag_t
1825 skc_get_dma_tag(device_t bus, device_t child __unused)
1826 {
1827 
1828 	return (bus_get_dma_tag(bus));
1829 }
1830 
1831 struct sk_dmamap_arg {
1832 	bus_addr_t	sk_busaddr;
1833 };
1834 
1835 static void
1836 sk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1837 {
1838 	struct sk_dmamap_arg	*ctx;
1839 
1840 	if (error != 0)
1841 		return;
1842 
1843 	ctx = arg;
1844 	ctx->sk_busaddr = segs[0].ds_addr;
1845 }
1846 
1847 /*
1848  * Allocate jumbo buffer storage. The SysKonnect adapters support
1849  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1850  * use them in their drivers. In order for us to use them, we need
1851  * large 9K receive buffers, however standard mbuf clusters are only
1852  * 2048 bytes in size. Consequently, we need to allocate and manage
1853  * our own jumbo buffer pool. Fortunately, this does not require an
1854  * excessive amount of additional code.
1855  */
1856 static int
1857 sk_dma_alloc(struct sk_if_softc *sc_if)
1858 {
1859 	struct sk_dmamap_arg	ctx;
1860 	struct sk_txdesc	*txd;
1861 	struct sk_rxdesc	*rxd;
1862 	int			error, i;
1863 
1864 	/* create parent tag */
1865 	/*
1866 	 * XXX
1867 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1868 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1869 	 * However bz@ reported that it does not work on amd64 with > 4GB
1870 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1871 	 * by limiting DMA address to be in 32bit address space.
1872 	 */
1873 	error = bus_dma_tag_create(
1874 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1875 		    1, 0,			/* algnmnt, boundary */
1876 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1877 		    BUS_SPACE_MAXADDR,		/* highaddr */
1878 		    NULL, NULL,			/* filter, filterarg */
1879 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1880 		    0,				/* nsegments */
1881 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1882 		    0,				/* flags */
1883 		    NULL, NULL,			/* lockfunc, lockarg */
1884 		    &sc_if->sk_cdata.sk_parent_tag);
1885 	if (error != 0) {
1886 		device_printf(sc_if->sk_if_dev,
1887 		    "failed to create parent DMA tag\n");
1888 		goto fail;
1889 	}
1890 
1891 	/* create tag for Tx ring */
1892 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1893 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1894 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1895 		    BUS_SPACE_MAXADDR,		/* highaddr */
1896 		    NULL, NULL,			/* filter, filterarg */
1897 		    SK_TX_RING_SZ,		/* maxsize */
1898 		    1,				/* nsegments */
1899 		    SK_TX_RING_SZ,		/* maxsegsize */
1900 		    0,				/* flags */
1901 		    NULL, NULL,			/* lockfunc, lockarg */
1902 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1903 	if (error != 0) {
1904 		device_printf(sc_if->sk_if_dev,
1905 		    "failed to allocate Tx ring DMA tag\n");
1906 		goto fail;
1907 	}
1908 
1909 	/* create tag for Rx ring */
1910 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1911 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1912 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1913 		    BUS_SPACE_MAXADDR,		/* highaddr */
1914 		    NULL, NULL,			/* filter, filterarg */
1915 		    SK_RX_RING_SZ,		/* maxsize */
1916 		    1,				/* nsegments */
1917 		    SK_RX_RING_SZ,		/* maxsegsize */
1918 		    0,				/* flags */
1919 		    NULL, NULL,			/* lockfunc, lockarg */
1920 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1921 	if (error != 0) {
1922 		device_printf(sc_if->sk_if_dev,
1923 		    "failed to allocate Rx ring DMA tag\n");
1924 		goto fail;
1925 	}
1926 
1927 	/* create tag for Tx buffers */
1928 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1929 		    1, 0,			/* algnmnt, boundary */
1930 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1931 		    BUS_SPACE_MAXADDR,		/* highaddr */
1932 		    NULL, NULL,			/* filter, filterarg */
1933 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
1934 		    SK_MAXTXSEGS,		/* nsegments */
1935 		    MCLBYTES,			/* maxsegsize */
1936 		    0,				/* flags */
1937 		    NULL, NULL,			/* lockfunc, lockarg */
1938 		    &sc_if->sk_cdata.sk_tx_tag);
1939 	if (error != 0) {
1940 		device_printf(sc_if->sk_if_dev,
1941 		    "failed to allocate Tx DMA tag\n");
1942 		goto fail;
1943 	}
1944 
1945 	/* create tag for Rx buffers */
1946 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1947 		    1, 0,			/* algnmnt, boundary */
1948 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1949 		    BUS_SPACE_MAXADDR,		/* highaddr */
1950 		    NULL, NULL,			/* filter, filterarg */
1951 		    MCLBYTES,			/* maxsize */
1952 		    1,				/* nsegments */
1953 		    MCLBYTES,			/* maxsegsize */
1954 		    0,				/* flags */
1955 		    NULL, NULL,			/* lockfunc, lockarg */
1956 		    &sc_if->sk_cdata.sk_rx_tag);
1957 	if (error != 0) {
1958 		device_printf(sc_if->sk_if_dev,
1959 		    "failed to allocate Rx DMA tag\n");
1960 		goto fail;
1961 	}
1962 
1963 	/* allocate DMA'able memory and load the DMA map for Tx ring */
1964 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
1965 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
1966 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
1967 	if (error != 0) {
1968 		device_printf(sc_if->sk_if_dev,
1969 		    "failed to allocate DMA'able memory for Tx ring\n");
1970 		goto fail;
1971 	}
1972 
1973 	ctx.sk_busaddr = 0;
1974 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
1975 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
1976 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1977 	if (error != 0) {
1978 		device_printf(sc_if->sk_if_dev,
1979 		    "failed to load DMA'able memory for Tx ring\n");
1980 		goto fail;
1981 	}
1982 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
1983 
1984 	/* allocate DMA'able memory and load the DMA map for Rx ring */
1985 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
1986 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
1987 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
1988 	if (error != 0) {
1989 		device_printf(sc_if->sk_if_dev,
1990 		    "failed to allocate DMA'able memory for Rx ring\n");
1991 		goto fail;
1992 	}
1993 
1994 	ctx.sk_busaddr = 0;
1995 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
1996 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
1997 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1998 	if (error != 0) {
1999 		device_printf(sc_if->sk_if_dev,
2000 		    "failed to load DMA'able memory for Rx ring\n");
2001 		goto fail;
2002 	}
2003 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2004 
2005 	/* create DMA maps for Tx buffers */
2006 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2007 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2008 		txd->tx_m = NULL;
2009 		txd->tx_dmamap = NULL;
2010 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2011 		    &txd->tx_dmamap);
2012 		if (error != 0) {
2013 			device_printf(sc_if->sk_if_dev,
2014 			    "failed to create Tx dmamap\n");
2015 			goto fail;
2016 		}
2017 	}
2018 
2019 	/* create DMA maps for Rx buffers */
2020 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2021 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2022 		device_printf(sc_if->sk_if_dev,
2023 		    "failed to create spare Rx dmamap\n");
2024 		goto fail;
2025 	}
2026 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2027 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2028 		rxd->rx_m = NULL;
2029 		rxd->rx_dmamap = NULL;
2030 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2031 		    &rxd->rx_dmamap);
2032 		if (error != 0) {
2033 			device_printf(sc_if->sk_if_dev,
2034 			    "failed to create Rx dmamap\n");
2035 			goto fail;
2036 		}
2037 	}
2038 
2039 fail:
2040 	return (error);
2041 }
2042 
2043 static int
2044 sk_dma_jumbo_alloc(struct sk_if_softc *sc_if)
2045 {
2046 	struct sk_dmamap_arg	ctx;
2047 	struct sk_rxdesc	*jrxd;
2048 	int			error, i;
2049 
2050 	if (jumbo_disable != 0) {
2051 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2052 		sc_if->sk_jumbo_disable = 1;
2053 		return (0);
2054 	}
2055 	/* create tag for jumbo Rx ring */
2056 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2057 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2058 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2059 		    BUS_SPACE_MAXADDR,		/* highaddr */
2060 		    NULL, NULL,			/* filter, filterarg */
2061 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2062 		    1,				/* nsegments */
2063 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2064 		    0,				/* flags */
2065 		    NULL, NULL,			/* lockfunc, lockarg */
2066 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2067 	if (error != 0) {
2068 		device_printf(sc_if->sk_if_dev,
2069 		    "failed to allocate jumbo Rx ring DMA tag\n");
2070 		goto jumbo_fail;
2071 	}
2072 
2073 	/* create tag for jumbo Rx buffers */
2074 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2075 		    1, 0,			/* algnmnt, boundary */
2076 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2077 		    BUS_SPACE_MAXADDR,		/* highaddr */
2078 		    NULL, NULL,			/* filter, filterarg */
2079 		    MJUM9BYTES,			/* maxsize */
2080 		    1,				/* nsegments */
2081 		    MJUM9BYTES,			/* maxsegsize */
2082 		    0,				/* flags */
2083 		    NULL, NULL,			/* lockfunc, lockarg */
2084 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2085 	if (error != 0) {
2086 		device_printf(sc_if->sk_if_dev,
2087 		    "failed to allocate jumbo Rx DMA tag\n");
2088 		goto jumbo_fail;
2089 	}
2090 
2091 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2092 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2093 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2094 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2095 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2096 	if (error != 0) {
2097 		device_printf(sc_if->sk_if_dev,
2098 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2099 		goto jumbo_fail;
2100 	}
2101 
2102 	ctx.sk_busaddr = 0;
2103 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2104 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2105 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2106 	    &ctx, BUS_DMA_NOWAIT);
2107 	if (error != 0) {
2108 		device_printf(sc_if->sk_if_dev,
2109 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2110 		goto jumbo_fail;
2111 	}
2112 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2113 
2114 	/* create DMA maps for jumbo Rx buffers */
2115 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2116 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2117 		device_printf(sc_if->sk_if_dev,
2118 		    "failed to create spare jumbo Rx dmamap\n");
2119 		goto jumbo_fail;
2120 	}
2121 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2122 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2123 		jrxd->rx_m = NULL;
2124 		jrxd->rx_dmamap = NULL;
2125 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2126 		    &jrxd->rx_dmamap);
2127 		if (error != 0) {
2128 			device_printf(sc_if->sk_if_dev,
2129 			    "failed to create jumbo Rx dmamap\n");
2130 			goto jumbo_fail;
2131 		}
2132 	}
2133 
2134 	return (0);
2135 
2136 jumbo_fail:
2137 	sk_dma_jumbo_free(sc_if);
2138 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2139 	    "resource shortage\n");
2140 	sc_if->sk_jumbo_disable = 1;
2141 	return (0);
2142 }
2143 
2144 static void
2145 sk_dma_free(struct sk_if_softc *sc_if)
2146 {
2147 	struct sk_txdesc	*txd;
2148 	struct sk_rxdesc	*rxd;
2149 	int			i;
2150 
2151 	/* Tx ring */
2152 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2153 		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2154 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2155 			    sc_if->sk_cdata.sk_tx_ring_map);
2156 		if (sc_if->sk_rdata.sk_tx_ring)
2157 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2158 			    sc_if->sk_rdata.sk_tx_ring,
2159 			    sc_if->sk_cdata.sk_tx_ring_map);
2160 		sc_if->sk_rdata.sk_tx_ring = NULL;
2161 		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2162 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2163 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2164 	}
2165 	/* Rx ring */
2166 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2167 		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2168 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2169 			    sc_if->sk_cdata.sk_rx_ring_map);
2170 		if (sc_if->sk_rdata.sk_rx_ring)
2171 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2172 			    sc_if->sk_rdata.sk_rx_ring,
2173 			    sc_if->sk_cdata.sk_rx_ring_map);
2174 		sc_if->sk_rdata.sk_rx_ring = NULL;
2175 		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2176 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2177 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2178 	}
2179 	/* Tx buffers */
2180 	if (sc_if->sk_cdata.sk_tx_tag) {
2181 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2182 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2183 			if (txd->tx_dmamap) {
2184 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2185 				    txd->tx_dmamap);
2186 				txd->tx_dmamap = NULL;
2187 			}
2188 		}
2189 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2190 		sc_if->sk_cdata.sk_tx_tag = NULL;
2191 	}
2192 	/* Rx buffers */
2193 	if (sc_if->sk_cdata.sk_rx_tag) {
2194 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2195 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2196 			if (rxd->rx_dmamap) {
2197 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2198 				    rxd->rx_dmamap);
2199 				rxd->rx_dmamap = NULL;
2200 			}
2201 		}
2202 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2203 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2204 			    sc_if->sk_cdata.sk_rx_sparemap);
2205 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2206 		}
2207 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2208 		sc_if->sk_cdata.sk_rx_tag = NULL;
2209 	}
2210 
2211 	if (sc_if->sk_cdata.sk_parent_tag) {
2212 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2213 		sc_if->sk_cdata.sk_parent_tag = NULL;
2214 	}
2215 }
2216 
2217 static void
2218 sk_dma_jumbo_free(struct sk_if_softc *sc_if)
2219 {
2220 	struct sk_rxdesc	*jrxd;
2221 	int			i;
2222 
2223 	/* jumbo Rx ring */
2224 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2225 		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2226 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2227 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2228 		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2229 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2230 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2231 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2232 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2233 		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2234 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2235 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2236 	}
2237 
2238 	/* jumbo Rx buffers */
2239 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2240 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2241 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2242 			if (jrxd->rx_dmamap) {
2243 				bus_dmamap_destroy(
2244 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2245 				    jrxd->rx_dmamap);
2246 				jrxd->rx_dmamap = NULL;
2247 			}
2248 		}
2249 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2250 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2251 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2252 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2253 		}
2254 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2255 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2256 	}
2257 }
2258 
2259 static void
2260 sk_txcksum(if_t ifp, struct mbuf *m, struct sk_tx_desc *f)
2261 {
2262 	struct ip		*ip;
2263 	u_int16_t		offset;
2264 	u_int8_t 		*p;
2265 
2266 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2267 	for(; m && m->m_len == 0; m = m->m_next)
2268 		;
2269 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2270 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2271 		/* checksum may be corrupted */
2272 		goto sendit;
2273 	}
2274 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2275 		if (m->m_len != ETHER_HDR_LEN) {
2276 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2277 			    __func__);
2278 			/* checksum may be corrupted */
2279 			goto sendit;
2280 		}
2281 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2282 			;
2283 		if (m == NULL) {
2284 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2285 			/* checksum may be corrupted */
2286 			goto sendit;
2287 		}
2288 		ip = mtod(m, struct ip *);
2289 	} else {
2290 		p = mtod(m, u_int8_t *);
2291 		p += ETHER_HDR_LEN;
2292 		ip = (struct ip *)p;
2293 	}
2294 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2295 
2296 sendit:
2297 	f->sk_csum_startval = 0;
2298 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2299 	    (offset << 16));
2300 }
2301 
2302 static int
2303 sk_encap(struct sk_if_softc *sc_if, struct mbuf **m_head)
2304 {
2305 	struct sk_txdesc	*txd;
2306 	struct sk_tx_desc	*f = NULL;
2307 	struct mbuf		*m;
2308 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2309 	u_int32_t		cflags, frag, si, sk_ctl;
2310 	int			error, i, nseg;
2311 
2312 	SK_IF_LOCK_ASSERT(sc_if);
2313 
2314 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2315 		return (ENOBUFS);
2316 
2317 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2318 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2319 	if (error == EFBIG) {
2320 		m = m_defrag(*m_head, M_NOWAIT);
2321 		if (m == NULL) {
2322 			m_freem(*m_head);
2323 			*m_head = NULL;
2324 			return (ENOMEM);
2325 		}
2326 		*m_head = m;
2327 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2328 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2329 		if (error != 0) {
2330 			m_freem(*m_head);
2331 			*m_head = NULL;
2332 			return (error);
2333 		}
2334 	} else if (error != 0)
2335 		return (error);
2336 	if (nseg == 0) {
2337 		m_freem(*m_head);
2338 		*m_head = NULL;
2339 		return (EIO);
2340 	}
2341 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2342 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2343 		return (ENOBUFS);
2344 	}
2345 
2346 	m = *m_head;
2347 	if ((m->m_pkthdr.csum_flags & if_gethwassist(sc_if->sk_ifp)) != 0)
2348 		cflags = SK_OPCODE_CSUM;
2349 	else
2350 		cflags = SK_OPCODE_DEFAULT;
2351 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2352 	for (i = 0; i < nseg; i++) {
2353 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2354 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2355 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2356 		sk_ctl = txsegs[i].ds_len | cflags;
2357 		if (i == 0) {
2358 			if (cflags == SK_OPCODE_CSUM)
2359 				sk_txcksum(sc_if->sk_ifp, m, f);
2360 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2361 		} else
2362 			sk_ctl |= SK_TXCTL_OWN;
2363 		f->sk_ctl = htole32(sk_ctl);
2364 		sc_if->sk_cdata.sk_tx_cnt++;
2365 		SK_INC(frag, SK_TX_RING_CNT);
2366 	}
2367 	sc_if->sk_cdata.sk_tx_prod = frag;
2368 
2369 	/* set EOF on the last descriptor */
2370 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2371 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2372 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2373 
2374 	/* turn the first descriptor ownership to NIC */
2375 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2376 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2377 
2378 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2379 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2380 	txd->tx_m = m;
2381 
2382 	/* sync descriptors */
2383 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2384 	    BUS_DMASYNC_PREWRITE);
2385 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2386 	    sc_if->sk_cdata.sk_tx_ring_map,
2387 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2388 
2389 	return (0);
2390 }
2391 
2392 static void
2393 sk_start(if_t ifp)
2394 {
2395 	struct sk_if_softc *sc_if;
2396 
2397 	sc_if = if_getsoftc(ifp);
2398 
2399 	SK_IF_LOCK(sc_if);
2400 	sk_start_locked(ifp);
2401 	SK_IF_UNLOCK(sc_if);
2402 
2403 	return;
2404 }
2405 
2406 static void
2407 sk_start_locked(if_t ifp)
2408 {
2409         struct sk_softc		*sc;
2410         struct sk_if_softc	*sc_if;
2411         struct mbuf		*m_head;
2412 	int			enq;
2413 
2414 	sc_if = if_getsoftc(ifp);
2415 	sc = sc_if->sk_softc;
2416 
2417 	SK_IF_LOCK_ASSERT(sc_if);
2418 
2419 	for (enq = 0; !if_sendq_empty(ifp) &&
2420 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2421 		m_head = if_dequeue(ifp);
2422 		if (m_head == NULL)
2423 			break;
2424 
2425 		/*
2426 		 * Pack the data into the transmit ring. If we
2427 		 * don't have room, set the OACTIVE flag and wait
2428 		 * for the NIC to drain the ring.
2429 		 */
2430 		if (sk_encap(sc_if, &m_head)) {
2431 			if (m_head == NULL)
2432 				break;
2433 			if_sendq_prepend(ifp, m_head);
2434 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2435 			break;
2436 		}
2437 
2438 		enq++;
2439 		/*
2440 		 * If there's a BPF listener, bounce a copy of this frame
2441 		 * to him.
2442 		 */
2443 		BPF_MTAP(ifp, m_head);
2444 	}
2445 
2446 	if (enq > 0) {
2447 		/* Transmit */
2448 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2449 
2450 		/* Set a timeout in case the chip goes out to lunch. */
2451 		sc_if->sk_watchdog_timer = 5;
2452 	}
2453 }
2454 
2455 static void
2456 sk_watchdog(void *arg)
2457 {
2458 	struct sk_if_softc	*sc_if;
2459 	if_t			ifp;
2460 
2461 	ifp = arg;
2462 	sc_if = if_getsoftc(ifp);
2463 
2464 	SK_IF_LOCK_ASSERT(sc_if);
2465 
2466 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2467 		goto done;
2468 
2469 	/*
2470 	 * Reclaim first as there is a possibility of losing Tx completion
2471 	 * interrupts.
2472 	 */
2473 	sk_txeof(sc_if);
2474 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2475 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2476 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2477 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2478 		sk_init_locked(sc_if);
2479 	}
2480 
2481 done:
2482 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2483 
2484 	return;
2485 }
2486 
2487 static int
2488 skc_shutdown(device_t dev)
2489 {
2490 	struct sk_softc		*sc;
2491 
2492 	sc = device_get_softc(dev);
2493 	SK_LOCK(sc);
2494 
2495 	/* Turn off the 'driver is loaded' LED. */
2496 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2497 
2498 	/*
2499 	 * Reset the GEnesis controller. Doing this should also
2500 	 * assert the resets on the attached XMAC(s).
2501 	 */
2502 	sk_reset(sc);
2503 	SK_UNLOCK(sc);
2504 
2505 	return (0);
2506 }
2507 
2508 static int
2509 skc_suspend(device_t dev)
2510 {
2511 	struct sk_softc		*sc;
2512 	struct sk_if_softc	*sc_if0, *sc_if1;
2513 	if_t			ifp0 = NULL, ifp1 = NULL;
2514 
2515 	sc = device_get_softc(dev);
2516 
2517 	SK_LOCK(sc);
2518 
2519 	sc_if0 = sc->sk_if[SK_PORT_A];
2520 	sc_if1 = sc->sk_if[SK_PORT_B];
2521 	if (sc_if0 != NULL)
2522 		ifp0 = sc_if0->sk_ifp;
2523 	if (sc_if1 != NULL)
2524 		ifp1 = sc_if1->sk_ifp;
2525 	if (ifp0 != NULL)
2526 		sk_stop(sc_if0);
2527 	if (ifp1 != NULL)
2528 		sk_stop(sc_if1);
2529 	sc->sk_suspended = 1;
2530 
2531 	SK_UNLOCK(sc);
2532 
2533 	return (0);
2534 }
2535 
2536 static int
2537 skc_resume(device_t dev)
2538 {
2539 	struct sk_softc		*sc;
2540 	struct sk_if_softc	*sc_if0, *sc_if1;
2541 	if_t			ifp0 = NULL, ifp1 = NULL;
2542 
2543 	sc = device_get_softc(dev);
2544 
2545 	SK_LOCK(sc);
2546 
2547 	sc_if0 = sc->sk_if[SK_PORT_A];
2548 	sc_if1 = sc->sk_if[SK_PORT_B];
2549 	if (sc_if0 != NULL)
2550 		ifp0 = sc_if0->sk_ifp;
2551 	if (sc_if1 != NULL)
2552 		ifp1 = sc_if1->sk_ifp;
2553 	if (ifp0 != NULL && if_getflags(ifp0) & IFF_UP)
2554 		sk_init_locked(sc_if0);
2555 	if (ifp1 != NULL && if_getflags(ifp1) & IFF_UP)
2556 		sk_init_locked(sc_if1);
2557 	sc->sk_suspended = 0;
2558 
2559 	SK_UNLOCK(sc);
2560 
2561 	return (0);
2562 }
2563 
2564 /*
2565  * According to the data sheet from SK-NET GENESIS the hardware can compute
2566  * two Rx checksums at the same time(Each checksum start position is
2567  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2568  * does not work at least on my Yukon hardware. I tried every possible ways
2569  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2570  * checksum offload was disabled at the moment and only IP checksum offload
2571  * was enabled.
2572  * As normal IP header size is 20 bytes I can't expect it would give an
2573  * increase in throughput. However it seems it doesn't hurt performance in
2574  * my testing. If there is a more detailed information for checksum secret
2575  * of the hardware in question please contact yongari@FreeBSD.org to add
2576  * TCP/UDP checksum offload support.
2577  */
2578 static __inline void
2579 sk_rxcksum(if_t ifp, struct mbuf *m, u_int32_t csum)
2580 {
2581 	struct ether_header	*eh;
2582 	struct ip		*ip;
2583 	int32_t			hlen, len, pktlen;
2584 	u_int16_t		csum1, csum2, ipcsum;
2585 
2586 	pktlen = m->m_pkthdr.len;
2587 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2588 		return;
2589 	eh = mtod(m, struct ether_header *);
2590 	if (eh->ether_type != htons(ETHERTYPE_IP))
2591 		return;
2592 	ip = (struct ip *)(eh + 1);
2593 	if (ip->ip_v != IPVERSION)
2594 		return;
2595 	hlen = ip->ip_hl << 2;
2596 	pktlen -= sizeof(struct ether_header);
2597 	if (hlen < sizeof(struct ip))
2598 		return;
2599 	if (ntohs(ip->ip_len) < hlen)
2600 		return;
2601 	if (ntohs(ip->ip_len) != pktlen)
2602 		return;
2603 
2604 	csum1 = htons(csum & 0xffff);
2605 	csum2 = htons((csum >> 16) & 0xffff);
2606 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2607 	/* checksum fixup for IP options */
2608 	len = hlen - sizeof(struct ip);
2609 	if (len > 0) {
2610 		/*
2611 		 * If the second checksum value is correct we can compute IP
2612 		 * checksum with simple math. Unfortunately the second checksum
2613 		 * value is wrong so we can't verify the checksum from the
2614 		 * value(It seems there is some magic here to get correct
2615 		 * value). If the second checksum value is correct it also
2616 		 * means we can get TCP/UDP checksum) here. However, it still
2617 		 * needs pseudo header checksum calculation due to hardware
2618 		 * limitations.
2619 		 */
2620 		return;
2621 	}
2622 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2623 	if (ipcsum == 0xffff)
2624 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2625 }
2626 
2627 static __inline int
2628 sk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
2629 {
2630 
2631 	if (sc->sk_type == SK_GENESIS) {
2632 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2633 		    XM_RXSTAT_BYTES(stat) != len)
2634 			return (0);
2635 	} else {
2636 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2637 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2638 		    YU_RXSTAT_JABBER)) != 0 ||
2639 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2640 		    YU_RXSTAT_BYTES(stat) != len)
2641 			return (0);
2642 	}
2643 
2644 	return (1);
2645 }
2646 
2647 static void
2648 sk_rxeof(struct sk_if_softc *sc_if)
2649 {
2650 	struct sk_softc		*sc;
2651 	struct mbuf		*m;
2652 	if_t			ifp;
2653 	struct sk_rx_desc	*cur_rx;
2654 	struct sk_rxdesc	*rxd;
2655 	int			cons, prog;
2656 	u_int32_t		csum, rxstat, sk_ctl;
2657 
2658 	sc = sc_if->sk_softc;
2659 	ifp = sc_if->sk_ifp;
2660 
2661 	SK_IF_LOCK_ASSERT(sc_if);
2662 
2663 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2664 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2665 
2666 	prog = 0;
2667 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2668 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2669 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2670 		sk_ctl = le32toh(cur_rx->sk_ctl);
2671 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2672 			break;
2673 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2674 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2675 
2676 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2677 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2678 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2679 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2680 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2681 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2682 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2683 			sk_discard_rxbuf(sc_if, cons);
2684 			continue;
2685 		}
2686 
2687 		m = rxd->rx_m;
2688 		csum = le32toh(cur_rx->sk_csum);
2689 		if (sk_newbuf(sc_if, cons) != 0) {
2690 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2691 			/* reuse old buffer */
2692 			sk_discard_rxbuf(sc_if, cons);
2693 			continue;
2694 		}
2695 		m->m_pkthdr.rcvif = ifp;
2696 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2697 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2698 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2699 			sk_rxcksum(ifp, m, csum);
2700 		SK_IF_UNLOCK(sc_if);
2701 		if_input(ifp, m);
2702 		SK_IF_LOCK(sc_if);
2703 	}
2704 
2705 	if (prog > 0) {
2706 		sc_if->sk_cdata.sk_rx_cons = cons;
2707 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2708 		    sc_if->sk_cdata.sk_rx_ring_map,
2709 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2710 	}
2711 }
2712 
2713 static void
2714 sk_jumbo_rxeof(struct sk_if_softc *sc_if)
2715 {
2716 	struct sk_softc		*sc;
2717 	struct mbuf		*m;
2718 	if_t			ifp;
2719 	struct sk_rx_desc	*cur_rx;
2720 	struct sk_rxdesc	*jrxd;
2721 	int			cons, prog;
2722 	u_int32_t		csum, rxstat, sk_ctl;
2723 
2724 	sc = sc_if->sk_softc;
2725 	ifp = sc_if->sk_ifp;
2726 
2727 	SK_IF_LOCK_ASSERT(sc_if);
2728 
2729 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2730 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2731 
2732 	prog = 0;
2733 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2734 	    prog < SK_JUMBO_RX_RING_CNT;
2735 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2736 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2737 		sk_ctl = le32toh(cur_rx->sk_ctl);
2738 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2739 			break;
2740 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2741 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2742 
2743 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2744 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2745 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2746 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2747 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2748 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2749 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2750 			sk_discard_jumbo_rxbuf(sc_if, cons);
2751 			continue;
2752 		}
2753 
2754 		m = jrxd->rx_m;
2755 		csum = le32toh(cur_rx->sk_csum);
2756 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2757 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2758 			/* reuse old buffer */
2759 			sk_discard_jumbo_rxbuf(sc_if, cons);
2760 			continue;
2761 		}
2762 		m->m_pkthdr.rcvif = ifp;
2763 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2764 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2765 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2766 			sk_rxcksum(ifp, m, csum);
2767 		SK_IF_UNLOCK(sc_if);
2768 		if_input(ifp, m);
2769 		SK_IF_LOCK(sc_if);
2770 	}
2771 
2772 	if (prog > 0) {
2773 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2774 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2775 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2776 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2777 	}
2778 }
2779 
2780 static void
2781 sk_txeof(struct sk_if_softc *sc_if)
2782 {
2783 	struct sk_txdesc	*txd;
2784 	struct sk_tx_desc	*cur_tx;
2785 	if_t			ifp;
2786 	u_int32_t		idx, sk_ctl;
2787 
2788 	ifp = sc_if->sk_ifp;
2789 
2790 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2791 	if (txd == NULL)
2792 		return;
2793 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2794 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2795 	/*
2796 	 * Go through our tx ring and free mbufs for those
2797 	 * frames that have been sent.
2798 	 */
2799 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2800 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2801 			break;
2802 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2803 		sk_ctl = le32toh(cur_tx->sk_ctl);
2804 		if (sk_ctl & SK_TXCTL_OWN)
2805 			break;
2806 		sc_if->sk_cdata.sk_tx_cnt--;
2807 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2808 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2809 			continue;
2810 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2811 		    BUS_DMASYNC_POSTWRITE);
2812 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2813 
2814 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2815 		m_freem(txd->tx_m);
2816 		txd->tx_m = NULL;
2817 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2818 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2819 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2820 	}
2821 	sc_if->sk_cdata.sk_tx_cons = idx;
2822 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2823 
2824 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2825 	    sc_if->sk_cdata.sk_tx_ring_map,
2826 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2827 }
2828 
2829 static void
2830 sk_tick(void *xsc_if)
2831 {
2832 	struct sk_if_softc	*sc_if;
2833 	struct mii_data		*mii;
2834 	if_t			ifp;
2835 	int			i;
2836 
2837 	sc_if = xsc_if;
2838 	ifp = sc_if->sk_ifp;
2839 	mii = device_get_softc(sc_if->sk_miibus);
2840 
2841 	if (!(if_getflags(ifp) & IFF_UP))
2842 		return;
2843 
2844 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2845 		sk_intr_bcom(sc_if);
2846 		return;
2847 	}
2848 
2849 	/*
2850 	 * According to SysKonnect, the correct way to verify that
2851 	 * the link has come back up is to poll bit 0 of the GPIO
2852 	 * register three times. This pin has the signal from the
2853 	 * link_sync pin connected to it; if we read the same link
2854 	 * state 3 times in a row, we know the link is up.
2855 	 */
2856 	for (i = 0; i < 3; i++) {
2857 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2858 			break;
2859 	}
2860 
2861 	if (i != 3) {
2862 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2863 		return;
2864 	}
2865 
2866 	/* Turn the GP0 interrupt back on. */
2867 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2868 	SK_XM_READ_2(sc_if, XM_ISR);
2869 	mii_tick(mii);
2870 	callout_stop(&sc_if->sk_tick_ch);
2871 }
2872 
2873 static void
2874 sk_yukon_tick(void *xsc_if)
2875 {
2876 	struct sk_if_softc	*sc_if;
2877 	struct mii_data		*mii;
2878 
2879 	sc_if = xsc_if;
2880 	mii = device_get_softc(sc_if->sk_miibus);
2881 
2882 	mii_tick(mii);
2883 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2884 }
2885 
2886 static void
2887 sk_intr_bcom(struct sk_if_softc *sc_if)
2888 {
2889 	struct mii_data		*mii;
2890 	if_t			ifp;
2891 	int			status;
2892 	mii = device_get_softc(sc_if->sk_miibus);
2893 	ifp = sc_if->sk_ifp;
2894 
2895 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2896 
2897 	/*
2898 	 * Read the PHY interrupt register to make sure
2899 	 * we clear any pending interrupts.
2900 	 */
2901 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2902 
2903 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
2904 		sk_init_xmac(sc_if);
2905 		return;
2906 	}
2907 
2908 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2909 		int			lstat;
2910 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2911 		    BRGPHY_MII_AUXSTS);
2912 
2913 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2914 			mii_mediachg(mii);
2915 			/* Turn off the link LED. */
2916 			SK_IF_WRITE_1(sc_if, 0,
2917 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2918 			sc_if->sk_link = 0;
2919 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2920 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2921 	    		    BRGPHY_MII_IMR, 0xFF00);
2922 			mii_tick(mii);
2923 			sc_if->sk_link = 1;
2924 			/* Turn on the link LED. */
2925 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2926 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2927 			    SK_LINKLED_BLINK_OFF);
2928 		} else {
2929 			mii_tick(mii);
2930 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2931 		}
2932 	}
2933 
2934 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2935 
2936 	return;
2937 }
2938 
2939 static void
2940 sk_intr_xmac(struct sk_if_softc *sc_if)
2941 {
2942 	u_int16_t		status;
2943 
2944 	status = SK_XM_READ_2(sc_if, XM_ISR);
2945 
2946 	/*
2947 	 * Link has gone down. Start MII tick timeout to
2948 	 * watch for link resync.
2949 	 */
2950 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2951 		if (status & XM_ISR_GP0_SET) {
2952 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2953 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2954 		}
2955 
2956 		if (status & XM_ISR_AUTONEG_DONE) {
2957 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2958 		}
2959 	}
2960 
2961 	if (status & XM_IMR_TX_UNDERRUN)
2962 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2963 
2964 	if (status & XM_IMR_RX_OVERRUN)
2965 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2966 
2967 	status = SK_XM_READ_2(sc_if, XM_ISR);
2968 
2969 	return;
2970 }
2971 
2972 static void
2973 sk_intr_yukon(struct sk_if_softc *sc_if)
2974 {
2975 	u_int8_t status;
2976 
2977 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2978 	/* RX overrun */
2979 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2980 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2981 		    SK_RFCTL_RX_FIFO_OVER);
2982 	}
2983 	/* TX underrun */
2984 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2985 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2986 		    SK_TFCTL_TX_FIFO_UNDER);
2987 	}
2988 }
2989 
2990 static void
2991 sk_intr(void *xsc)
2992 {
2993 	struct sk_softc		*sc = xsc;
2994 	struct sk_if_softc	*sc_if0, *sc_if1;
2995 	if_t			ifp0 = NULL, ifp1 = NULL;
2996 	u_int32_t		status;
2997 
2998 	SK_LOCK(sc);
2999 
3000 	status = CSR_READ_4(sc, SK_ISSR);
3001 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3002 		goto done_locked;
3003 
3004 	sc_if0 = sc->sk_if[SK_PORT_A];
3005 	sc_if1 = sc->sk_if[SK_PORT_B];
3006 
3007 	if (sc_if0 != NULL)
3008 		ifp0 = sc_if0->sk_ifp;
3009 	if (sc_if1 != NULL)
3010 		ifp1 = sc_if1->sk_ifp;
3011 
3012 	for (; (status &= sc->sk_intrmask) != 0;) {
3013 		/* Handle receive interrupts first. */
3014 		if (status & SK_ISR_RX1_EOF) {
3015 			if (if_getmtu(ifp0) > SK_MAX_FRAMELEN)
3016 				sk_jumbo_rxeof(sc_if0);
3017 			else
3018 				sk_rxeof(sc_if0);
3019 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3020 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3021 		}
3022 		if (status & SK_ISR_RX2_EOF) {
3023 			if (if_getflags(ifp1) > SK_MAX_FRAMELEN)
3024 				sk_jumbo_rxeof(sc_if1);
3025 			else
3026 				sk_rxeof(sc_if1);
3027 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3028 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3029 		}
3030 
3031 		/* Then transmit interrupts. */
3032 		if (status & SK_ISR_TX1_S_EOF) {
3033 			sk_txeof(sc_if0);
3034 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3035 		}
3036 		if (status & SK_ISR_TX2_S_EOF) {
3037 			sk_txeof(sc_if1);
3038 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3039 		}
3040 
3041 		/* Then MAC interrupts. */
3042 		if (status & SK_ISR_MAC1 &&
3043 		    if_getdrvflags(ifp0) & IFF_DRV_RUNNING) {
3044 			if (sc->sk_type == SK_GENESIS)
3045 				sk_intr_xmac(sc_if0);
3046 			else
3047 				sk_intr_yukon(sc_if0);
3048 		}
3049 
3050 		if (status & SK_ISR_MAC2 &&
3051 		    if_getdrvflags(ifp1) & IFF_DRV_RUNNING) {
3052 			if (sc->sk_type == SK_GENESIS)
3053 				sk_intr_xmac(sc_if1);
3054 			else
3055 				sk_intr_yukon(sc_if1);
3056 		}
3057 
3058 		if (status & SK_ISR_EXTERNAL_REG) {
3059 			if (ifp0 != NULL &&
3060 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3061 				sk_intr_bcom(sc_if0);
3062 			if (ifp1 != NULL &&
3063 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3064 				sk_intr_bcom(sc_if1);
3065 		}
3066 		status = CSR_READ_4(sc, SK_ISSR);
3067 	}
3068 
3069 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3070 
3071 	if (ifp0 != NULL && !if_sendq_empty(ifp0))
3072 		sk_start_locked(ifp0);
3073 	if (ifp1 != NULL && !if_sendq_empty(ifp1))
3074 		sk_start_locked(ifp1);
3075 
3076 done_locked:
3077 	SK_UNLOCK(sc);
3078 }
3079 
3080 static void
3081 sk_init_xmac(struct sk_if_softc *sc_if)
3082 {
3083 	struct sk_softc		*sc;
3084 	if_t			ifp;
3085 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3086 	static const struct sk_bcom_hack bhack[] = {
3087 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3088 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3089 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3090 	{ 0, 0 } };
3091 
3092 	SK_IF_LOCK_ASSERT(sc_if);
3093 
3094 	sc = sc_if->sk_softc;
3095 	ifp = sc_if->sk_ifp;
3096 
3097 	/* Unreset the XMAC. */
3098 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3099 	DELAY(1000);
3100 
3101 	/* Reset the XMAC's internal state. */
3102 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3103 
3104 	/* Save the XMAC II revision */
3105 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3106 
3107 	/*
3108 	 * Perform additional initialization for external PHYs,
3109 	 * namely for the 1000baseTX cards that use the XMAC's
3110 	 * GMII mode.
3111 	 */
3112 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3113 		int			i = 0;
3114 		u_int32_t		val;
3115 
3116 		/* Take PHY out of reset. */
3117 		val = sk_win_read_4(sc, SK_GPIO);
3118 		if (sc_if->sk_port == SK_PORT_A)
3119 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3120 		else
3121 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3122 		sk_win_write_4(sc, SK_GPIO, val);
3123 
3124 		/* Enable GMII mode on the XMAC. */
3125 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3126 
3127 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3128 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3129 		DELAY(10000);
3130 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3131 		    BRGPHY_MII_IMR, 0xFFF0);
3132 
3133 		/*
3134 		 * Early versions of the BCM5400 apparently have
3135 		 * a bug that requires them to have their reserved
3136 		 * registers initialized to some magic values. I don't
3137 		 * know what the numbers do, I'm just the messenger.
3138 		 */
3139 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3140 		    == 0x6041) {
3141 			while(bhack[i].reg) {
3142 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3143 				    bhack[i].reg, bhack[i].val);
3144 				i++;
3145 			}
3146 		}
3147 	}
3148 
3149 	/* Set station address */
3150 	bcopy(if_getlladdr(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3151 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3152 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3153 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3154 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3155 
3156 	if (if_getflags(ifp) & IFF_BROADCAST) {
3157 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3158 	} else {
3159 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3160 	}
3161 
3162 	/* We don't need the FCS appended to the packet. */
3163 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3164 
3165 	/* We want short frames padded to 60 bytes. */
3166 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3167 
3168 	/*
3169 	 * Enable the reception of all error frames. This is is
3170 	 * a necessary evil due to the design of the XMAC. The
3171 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3172 	 * frames can be up to 9000 bytes in length. When bad
3173 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3174 	 * in 'store and forward' mode. For this to work, the
3175 	 * entire frame has to fit into the FIFO, but that means
3176 	 * that jumbo frames larger than 8192 bytes will be
3177 	 * truncated. Disabling all bad frame filtering causes
3178 	 * the RX FIFO to operate in streaming mode, in which
3179 	 * case the XMAC will start transferring frames out of the
3180 	 * RX FIFO as soon as the FIFO threshold is reached.
3181 	 */
3182 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN) {
3183 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3184 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3185 		    XM_MODE_RX_INRANGELEN);
3186 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3187 	} else
3188 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3189 
3190 	/*
3191 	 * Bump up the transmit threshold. This helps hold off transmit
3192 	 * underruns when we're blasting traffic from both ports at once.
3193 	 */
3194 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3195 
3196 	/* Set Rx filter */
3197 	sk_rxfilter_genesis(sc_if);
3198 
3199 	/* Clear and enable interrupts */
3200 	SK_XM_READ_2(sc_if, XM_ISR);
3201 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3202 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3203 	else
3204 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3205 
3206 	/* Configure MAC arbiter */
3207 	switch(sc_if->sk_xmac_rev) {
3208 	case XM_XMAC_REV_B2:
3209 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3210 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3211 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3212 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3213 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3214 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3215 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3216 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3217 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3218 		break;
3219 	case XM_XMAC_REV_C1:
3220 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3221 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3222 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3223 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3224 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3225 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3226 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3227 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3228 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3229 		break;
3230 	default:
3231 		break;
3232 	}
3233 	sk_win_write_2(sc, SK_MACARB_CTL,
3234 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3235 
3236 	sc_if->sk_link = 1;
3237 
3238 	return;
3239 }
3240 
3241 static void
3242 sk_init_yukon(struct sk_if_softc *sc_if)
3243 {
3244 	u_int32_t		phy, v;
3245 	u_int16_t		reg;
3246 	struct sk_softc		*sc;
3247 	if_t			ifp;
3248 	u_int8_t		*eaddr;
3249 	int			i;
3250 
3251 	SK_IF_LOCK_ASSERT(sc_if);
3252 
3253 	sc = sc_if->sk_softc;
3254 	ifp = sc_if->sk_ifp;
3255 
3256 	if (sc->sk_type == SK_YUKON_LITE &&
3257 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3258 		/*
3259 		 * Workaround code for COMA mode, set PHY reset.
3260 		 * Otherwise it will not correctly take chip out of
3261 		 * powerdown (coma)
3262 		 */
3263 		v = sk_win_read_4(sc, SK_GPIO);
3264 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3265 		sk_win_write_4(sc, SK_GPIO, v);
3266 	}
3267 
3268 	/* GMAC and GPHY Reset */
3269 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3270 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3271 	DELAY(1000);
3272 
3273 	if (sc->sk_type == SK_YUKON_LITE &&
3274 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3275 		/*
3276 		 * Workaround code for COMA mode, clear PHY reset
3277 		 */
3278 		v = sk_win_read_4(sc, SK_GPIO);
3279 		v |= SK_GPIO_DIR9;
3280 		v &= ~SK_GPIO_DAT9;
3281 		sk_win_write_4(sc, SK_GPIO, v);
3282 	}
3283 
3284 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3285 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3286 
3287 	if (sc->sk_coppertype)
3288 		phy |= SK_GPHY_COPPER;
3289 	else
3290 		phy |= SK_GPHY_FIBER;
3291 
3292 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3293 	DELAY(1000);
3294 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3295 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3296 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3297 
3298 	/* unused read of the interrupt source register */
3299 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3300 
3301 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3302 
3303 	/* MIB Counter Clear Mode set */
3304 	reg |= YU_PAR_MIB_CLR;
3305 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3306 
3307 	/* MIB Counter Clear Mode clear */
3308 	reg &= ~YU_PAR_MIB_CLR;
3309 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3310 
3311 	/* receive control reg */
3312 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3313 
3314 	/* transmit parameter register */
3315 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3316 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3317 
3318 	/* serial mode register */
3319 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3320 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN)
3321 		reg |= YU_SMR_MFL_JUMBO;
3322 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3323 
3324 	/* Setup Yukon's station address */
3325 	eaddr = if_getlladdr(sc_if->sk_ifp);
3326 	for (i = 0; i < 3; i++)
3327 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3328 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3329 	/* Set GMAC source address of flow control. */
3330 	for (i = 0; i < 3; i++)
3331 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3332 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3333 	/* Set GMAC virtual address. */
3334 	for (i = 0; i < 3; i++)
3335 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3336 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3337 
3338 	/* Set Rx filter */
3339 	sk_rxfilter_yukon(sc_if);
3340 
3341 	/* enable interrupt mask for counter overflows */
3342 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3343 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3344 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3345 
3346 	/* Configure RX MAC FIFO Flush Mask */
3347 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3348 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3349 	    YU_RXSTAT_JABBER;
3350 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3351 
3352 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3353 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3354 		v = SK_TFCTL_OPERATION_ON;
3355 	else
3356 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3357 	/* Configure RX MAC FIFO */
3358 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3359 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3360 
3361 	/* Increase flush threshould to 64 bytes */
3362 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3363 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3364 
3365 	/* Configure TX MAC FIFO */
3366 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3367 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3368 }
3369 
3370 /*
3371  * Note that to properly initialize any part of the GEnesis chip,
3372  * you first have to take it out of reset mode.
3373  */
3374 static void
3375 sk_init(void *xsc)
3376 {
3377 	struct sk_if_softc	*sc_if = xsc;
3378 
3379 	SK_IF_LOCK(sc_if);
3380 	sk_init_locked(sc_if);
3381 	SK_IF_UNLOCK(sc_if);
3382 
3383 	return;
3384 }
3385 
3386 static void
3387 sk_init_locked(struct sk_if_softc *sc_if)
3388 {
3389 	struct sk_softc		*sc;
3390 	if_t			ifp;
3391 	struct mii_data		*mii;
3392 	u_int16_t		reg;
3393 	u_int32_t		imr;
3394 	int			error;
3395 
3396 	SK_IF_LOCK_ASSERT(sc_if);
3397 
3398 	ifp = sc_if->sk_ifp;
3399 	sc = sc_if->sk_softc;
3400 	mii = device_get_softc(sc_if->sk_miibus);
3401 
3402 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3403 		return;
3404 
3405 	/* Cancel pending I/O and free all RX/TX buffers. */
3406 	sk_stop(sc_if);
3407 
3408 	if (sc->sk_type == SK_GENESIS) {
3409 		/* Configure LINK_SYNC LED */
3410 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3411 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3412 			SK_LINKLED_LINKSYNC_ON);
3413 
3414 		/* Configure RX LED */
3415 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3416 			SK_RXLEDCTL_COUNTER_START);
3417 
3418 		/* Configure TX LED */
3419 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3420 			SK_TXLEDCTL_COUNTER_START);
3421 	}
3422 
3423 	/*
3424 	 * Configure descriptor poll timer
3425 	 *
3426 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3427 	 * transmit command due to CPU/cache related interim storage problems
3428 	 * under certain conditions. The document recommends a polling
3429 	 * mechanism to send a Start transmit command to initiate transfer
3430 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3431 	 * enables descriptor poll timer to initiate descriptor processing
3432 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3433 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3434 	 * command instead of waiting for next descriptor polling time.
3435 	 * The same rule may apply to Rx side too but it seems that is not
3436 	 * needed at the moment.
3437 	 * Since sk(4) uses descriptor polling as a last resort there is no
3438 	 * need to set smaller polling time than maximum allowable one.
3439 	 */
3440 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3441 
3442 	/* Configure I2C registers */
3443 
3444 	/* Configure XMAC(s) */
3445 	switch (sc->sk_type) {
3446 	case SK_GENESIS:
3447 		sk_init_xmac(sc_if);
3448 		break;
3449 	case SK_YUKON:
3450 	case SK_YUKON_LITE:
3451 	case SK_YUKON_LP:
3452 		sk_init_yukon(sc_if);
3453 		break;
3454 	}
3455 	mii_mediachg(mii);
3456 
3457 	if (sc->sk_type == SK_GENESIS) {
3458 		/* Configure MAC FIFOs */
3459 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3460 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3461 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3462 
3463 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3464 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3465 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3466 	}
3467 
3468 	/* Configure transmit arbiter(s) */
3469 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3470 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3471 
3472 	/* Configure RAMbuffers */
3473 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3474 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3475 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3476 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3477 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3478 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3479 
3480 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3481 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3482 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3483 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3484 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3485 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3486 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3487 
3488 	/* Configure BMUs */
3489 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3490 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN) {
3491 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3492 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3493 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3494 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3495 	} else {
3496 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3497 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3498 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3499 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3500 	}
3501 
3502 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3503 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3504 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3505 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3506 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3507 
3508 	/* Init descriptors */
3509 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN)
3510 		error = sk_init_jumbo_rx_ring(sc_if);
3511 	else
3512 		error = sk_init_rx_ring(sc_if);
3513 	if (error != 0) {
3514 		device_printf(sc_if->sk_if_dev,
3515 		    "initialization failed: no memory for rx buffers\n");
3516 		sk_stop(sc_if);
3517 		return;
3518 	}
3519 	sk_init_tx_ring(sc_if);
3520 
3521 	/* Set interrupt moderation if changed via sysctl. */
3522 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3523 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3524 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3525 		    sc->sk_int_ticks));
3526 		if (bootverbose)
3527 			device_printf(sc_if->sk_if_dev,
3528 			    "interrupt moderation is %d us.\n",
3529 			    sc->sk_int_mod);
3530 	}
3531 
3532 	/* Configure interrupt handling */
3533 	CSR_READ_4(sc, SK_ISSR);
3534 	if (sc_if->sk_port == SK_PORT_A)
3535 		sc->sk_intrmask |= SK_INTRS1;
3536 	else
3537 		sc->sk_intrmask |= SK_INTRS2;
3538 
3539 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3540 
3541 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3542 
3543 	/* Start BMUs. */
3544 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3545 
3546 	switch(sc->sk_type) {
3547 	case SK_GENESIS:
3548 		/* Enable XMACs TX and RX state machines */
3549 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3550 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3551 		break;
3552 	case SK_YUKON:
3553 	case SK_YUKON_LITE:
3554 	case SK_YUKON_LP:
3555 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3556 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3557 #if 0
3558 		/* XXX disable 100Mbps and full duplex mode? */
3559 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3560 #endif
3561 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3562 	}
3563 
3564 	/* Activate descriptor polling timer */
3565 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3566 	/* start transfer of Tx descriptors */
3567 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3568 
3569 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3570 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3571 
3572 	switch (sc->sk_type) {
3573 	case SK_YUKON:
3574 	case SK_YUKON_LITE:
3575 	case SK_YUKON_LP:
3576 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3577 		break;
3578 	}
3579 
3580 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3581 
3582 	return;
3583 }
3584 
3585 static void
3586 sk_stop(struct sk_if_softc *sc_if)
3587 {
3588 	int			i;
3589 	struct sk_softc		*sc;
3590 	struct sk_txdesc	*txd;
3591 	struct sk_rxdesc	*rxd;
3592 	struct sk_rxdesc	*jrxd;
3593 	if_t			ifp;
3594 	u_int32_t		val;
3595 
3596 	SK_IF_LOCK_ASSERT(sc_if);
3597 	sc = sc_if->sk_softc;
3598 	ifp = sc_if->sk_ifp;
3599 
3600 	callout_stop(&sc_if->sk_tick_ch);
3601 	callout_stop(&sc_if->sk_watchdog_ch);
3602 
3603 	/* stop Tx descriptor polling timer */
3604 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3605 	/* stop transfer of Tx descriptors */
3606 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3607 	for (i = 0; i < SK_TIMEOUT; i++) {
3608 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3609 		if ((val & SK_TXBMU_TX_STOP) == 0)
3610 			break;
3611 		DELAY(1);
3612 	}
3613 	if (i == SK_TIMEOUT)
3614 		device_printf(sc_if->sk_if_dev,
3615 		    "can not stop transfer of Tx descriptor\n");
3616 	/* stop transfer of Rx descriptors */
3617 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3618 	for (i = 0; i < SK_TIMEOUT; i++) {
3619 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3620 		if ((val & SK_RXBMU_RX_STOP) == 0)
3621 			break;
3622 		DELAY(1);
3623 	}
3624 	if (i == SK_TIMEOUT)
3625 		device_printf(sc_if->sk_if_dev,
3626 		    "can not stop transfer of Rx descriptor\n");
3627 
3628 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3629 		/* Put PHY back into reset. */
3630 		val = sk_win_read_4(sc, SK_GPIO);
3631 		if (sc_if->sk_port == SK_PORT_A) {
3632 			val |= SK_GPIO_DIR0;
3633 			val &= ~SK_GPIO_DAT0;
3634 		} else {
3635 			val |= SK_GPIO_DIR2;
3636 			val &= ~SK_GPIO_DAT2;
3637 		}
3638 		sk_win_write_4(sc, SK_GPIO, val);
3639 	}
3640 
3641 	/* Turn off various components of this interface. */
3642 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3643 	switch (sc->sk_type) {
3644 	case SK_GENESIS:
3645 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3646 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3647 		break;
3648 	case SK_YUKON:
3649 	case SK_YUKON_LITE:
3650 	case SK_YUKON_LP:
3651 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3652 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3653 		break;
3654 	}
3655 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3656 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3657 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3658 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3659 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3660 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3661 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3662 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3663 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3664 
3665 	/* Disable interrupts */
3666 	if (sc_if->sk_port == SK_PORT_A)
3667 		sc->sk_intrmask &= ~SK_INTRS1;
3668 	else
3669 		sc->sk_intrmask &= ~SK_INTRS2;
3670 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3671 
3672 	SK_XM_READ_2(sc_if, XM_ISR);
3673 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3674 
3675 	/* Free RX and TX mbufs still in the queues. */
3676 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3677 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3678 		if (rxd->rx_m != NULL) {
3679 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3680 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3681 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3682 			    rxd->rx_dmamap);
3683 			m_freem(rxd->rx_m);
3684 			rxd->rx_m = NULL;
3685 		}
3686 	}
3687 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3688 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3689 		if (jrxd->rx_m != NULL) {
3690 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3691 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3692 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3693 			    jrxd->rx_dmamap);
3694 			m_freem(jrxd->rx_m);
3695 			jrxd->rx_m = NULL;
3696 		}
3697 	}
3698 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3699 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3700 		if (txd->tx_m != NULL) {
3701 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3702 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3703 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3704 			    txd->tx_dmamap);
3705 			m_freem(txd->tx_m);
3706 			txd->tx_m = NULL;
3707 		}
3708 	}
3709 
3710 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING|IFF_DRV_OACTIVE));
3711 
3712 	return;
3713 }
3714 
3715 static int
3716 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3717 {
3718 	int error, value;
3719 
3720 	if (!arg1)
3721 		return (EINVAL);
3722 	value = *(int *)arg1;
3723 	error = sysctl_handle_int(oidp, &value, 0, req);
3724 	if (error || !req->newptr)
3725 		return (error);
3726 	if (value < low || value > high)
3727 		return (EINVAL);
3728 	*(int *)arg1 = value;
3729 	return (0);
3730 }
3731 
3732 static int
3733 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3734 {
3735 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3736 }
3737