xref: /freebsd/sys/dev/sk/if_sk.c (revision 1eb3f15c149b9a2e5b6f5e10aed454fc85945bbd)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
38  *
39  * Permission to use, copy, modify, and distribute this software for any
40  * purpose with or without fee is hereby granted, provided that the above
41  * copyright notice and this permission notice appear in all copies.
42  *
43  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
44  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
46  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
47  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
48  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
49  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
50  */
51 
52 #include <sys/cdefs.h>
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  https://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * https://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_var.h>
105 #include <net/if_arp.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_types.h>
109 #include <net/if_vlan_var.h>
110 
111 #include <netinet/in.h>
112 #include <netinet/in_systm.h>
113 #include <netinet/ip.h>
114 
115 #include <machine/bus.h>
116 #include <machine/in_cksum.h>
117 #include <machine/resource.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 #include <dev/mii/brgphyreg.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #if 0
128 #define SK_USEIOSPACE
129 #endif
130 
131 #include <dev/sk/if_skreg.h>
132 #include <dev/sk/xmaciireg.h>
133 #include <dev/sk/yukonreg.h>
134 
135 MODULE_DEPEND(sk, pci, 1, 1, 1);
136 MODULE_DEPEND(sk, ether, 1, 1, 1);
137 MODULE_DEPEND(sk, miibus, 1, 1, 1);
138 
139 /* "device miibus" required.  See GENERIC if you get errors here. */
140 #include "miibus_if.h"
141 
142 static const struct sk_type sk_devs[] = {
143 	{
144 		VENDORID_SK,
145 		DEVICEID_SK_V1,
146 		"SysKonnect Gigabit Ethernet (V1.0)"
147 	},
148 	{
149 		VENDORID_SK,
150 		DEVICEID_SK_V2,
151 		"SysKonnect Gigabit Ethernet (V2.0)"
152 	},
153 	{
154 		VENDORID_MARVELL,
155 		DEVICEID_SK_V2,
156 		"Marvell Gigabit Ethernet"
157 	},
158 	{
159 		VENDORID_MARVELL,
160 		DEVICEID_BELKIN_5005,
161 		"Belkin F5D5005 Gigabit Ethernet"
162 	},
163 	{
164 		VENDORID_3COM,
165 		DEVICEID_3COM_3C940,
166 		"3Com 3C940 Gigabit Ethernet"
167 	},
168 	{
169 		VENDORID_LINKSYS,
170 		DEVICEID_LINKSYS_EG1032,
171 		"Linksys EG1032 Gigabit Ethernet"
172 	},
173 	{
174 		VENDORID_DLINK,
175 		DEVICEID_DLINK_DGE530T_A1,
176 		"D-Link DGE-530T Gigabit Ethernet"
177 	},
178 	{
179 		VENDORID_DLINK,
180 		DEVICEID_DLINK_DGE530T_B1,
181 		"D-Link DGE-530T Gigabit Ethernet"
182 	},
183 	{ 0, 0, NULL }
184 };
185 
186 static int skc_probe(device_t);
187 static int skc_attach(device_t);
188 static void skc_child_deleted(device_t, device_t);
189 static int skc_detach(device_t);
190 static int skc_shutdown(device_t);
191 static int skc_suspend(device_t);
192 static int skc_resume(device_t);
193 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
194 static int sk_detach(device_t);
195 static int sk_probe(device_t);
196 static int sk_attach(device_t);
197 static void sk_tick(void *);
198 static void sk_yukon_tick(void *);
199 static void sk_intr(void *);
200 static void sk_intr_xmac(struct sk_if_softc *);
201 static void sk_intr_bcom(struct sk_if_softc *);
202 static void sk_intr_yukon(struct sk_if_softc *);
203 static __inline void sk_rxcksum(if_t, struct mbuf *, u_int32_t);
204 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
205 static void sk_rxeof(struct sk_if_softc *);
206 static void sk_jumbo_rxeof(struct sk_if_softc *);
207 static void sk_txeof(struct sk_if_softc *);
208 static void sk_txcksum(if_t, struct mbuf *, struct sk_tx_desc *);
209 static int sk_encap(struct sk_if_softc *, struct mbuf **);
210 static void sk_start(if_t);
211 static void sk_start_locked(if_t);
212 static int sk_ioctl(if_t, u_long, caddr_t);
213 static void sk_init(void *);
214 static void sk_init_locked(struct sk_if_softc *);
215 static void sk_init_xmac(struct sk_if_softc *);
216 static void sk_init_yukon(struct sk_if_softc *);
217 static void sk_stop(struct sk_if_softc *);
218 static void sk_watchdog(void *);
219 static int sk_ifmedia_upd(if_t);
220 static void sk_ifmedia_sts(if_t, struct ifmediareq *);
221 static void sk_reset(struct sk_softc *);
222 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
223 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
224 static int sk_newbuf(struct sk_if_softc *, int);
225 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
226 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
227 static int sk_dma_alloc(struct sk_if_softc *);
228 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
229 static void sk_dma_free(struct sk_if_softc *);
230 static void sk_dma_jumbo_free(struct sk_if_softc *);
231 static int sk_init_rx_ring(struct sk_if_softc *);
232 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
233 static void sk_init_tx_ring(struct sk_if_softc *);
234 static u_int32_t sk_win_read_4(struct sk_softc *, int);
235 static u_int16_t sk_win_read_2(struct sk_softc *, int);
236 static u_int8_t sk_win_read_1(struct sk_softc *, int);
237 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
238 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
239 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
240 
241 static int sk_miibus_readreg(device_t, int, int);
242 static int sk_miibus_writereg(device_t, int, int, int);
243 static void sk_miibus_statchg(device_t);
244 
245 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
246 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
247 						int);
248 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
249 
250 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
251 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
252 						int);
253 static void sk_marv_miibus_statchg(struct sk_if_softc *);
254 
255 static uint32_t sk_xmchash(const uint8_t *);
256 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
257 static void sk_rxfilter(struct sk_if_softc *);
258 static void sk_rxfilter_genesis(struct sk_if_softc *);
259 static void sk_rxfilter_yukon(struct sk_if_softc *);
260 
261 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
262 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
263 
264 /* Tunables. */
265 static int jumbo_disable = 0;
266 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
267 
268 /*
269  * It seems that SK-NET GENESIS supports very simple checksum offload
270  * capability for Tx and I believe it can generate 0 checksum value for
271  * UDP packets in Tx as the hardware can't differenciate UDP packets from
272  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
273  * means sender didn't perforam checksum computation. For the safety I
274  * disabled UDP checksum offload capability at the moment.
275  */
276 #define SK_CSUM_FEATURES	(CSUM_TCP)
277 
278 /*
279  * Note that we have newbus methods for both the GEnesis controller
280  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
281  * the miibus code is a child of the XMACs. We need to do it this way
282  * so that the miibus drivers can access the PHY registers on the
283  * right PHY. It's not quite what I had in mind, but it's the only
284  * design that achieves the desired effect.
285  */
286 static device_method_t skc_methods[] = {
287 	/* Device interface */
288 	DEVMETHOD(device_probe,		skc_probe),
289 	DEVMETHOD(device_attach,	skc_attach),
290 	DEVMETHOD(device_detach,	skc_detach),
291 	DEVMETHOD(device_suspend,	skc_suspend),
292 	DEVMETHOD(device_resume,	skc_resume),
293 	DEVMETHOD(device_shutdown,	skc_shutdown),
294 
295 	DEVMETHOD(bus_child_deleted,	skc_child_deleted),
296 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
297 
298 	DEVMETHOD_END
299 };
300 
301 static driver_t skc_driver = {
302 	"skc",
303 	skc_methods,
304 	sizeof(struct sk_softc)
305 };
306 
307 static device_method_t sk_methods[] = {
308 	/* Device interface */
309 	DEVMETHOD(device_probe,		sk_probe),
310 	DEVMETHOD(device_attach,	sk_attach),
311 	DEVMETHOD(device_detach,	sk_detach),
312 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
313 
314 	/* MII interface */
315 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
316 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
317 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
318 
319 	DEVMETHOD_END
320 };
321 
322 static driver_t sk_driver = {
323 	"sk",
324 	sk_methods,
325 	sizeof(struct sk_if_softc)
326 };
327 
328 DRIVER_MODULE(skc, pci, skc_driver, NULL, NULL);
329 DRIVER_MODULE(sk, skc, sk_driver, NULL, NULL);
330 DRIVER_MODULE(miibus, sk, miibus_driver, NULL, NULL);
331 
332 static struct resource_spec sk_res_spec_io[] = {
333 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
334 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
335 	{ -1,			0,		0 }
336 };
337 
338 static struct resource_spec sk_res_spec_mem[] = {
339 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
340 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
341 	{ -1,			0,		0 }
342 };
343 
344 #define SK_SETBIT(sc, reg, x)		\
345 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
346 
347 #define SK_CLRBIT(sc, reg, x)		\
348 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
349 
350 #define SK_WIN_SETBIT_4(sc, reg, x)	\
351 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
352 
353 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
354 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
355 
356 #define SK_WIN_SETBIT_2(sc, reg, x)	\
357 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
358 
359 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
360 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
361 
362 static u_int32_t
363 sk_win_read_4(struct sk_softc *sc, int reg)
364 {
365 #ifdef SK_USEIOSPACE
366 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
367 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
368 #else
369 	return(CSR_READ_4(sc, reg));
370 #endif
371 }
372 
373 static u_int16_t
374 sk_win_read_2(struct sk_softc *sc, int reg)
375 {
376 #ifdef SK_USEIOSPACE
377 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
378 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
379 #else
380 	return(CSR_READ_2(sc, reg));
381 #endif
382 }
383 
384 static u_int8_t
385 sk_win_read_1(struct sk_softc *sc, int reg)
386 {
387 #ifdef SK_USEIOSPACE
388 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
389 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
390 #else
391 	return(CSR_READ_1(sc, reg));
392 #endif
393 }
394 
395 static void
396 sk_win_write_4(struct sk_softc *sc, int reg, u_int32_t val)
397 {
398 #ifdef SK_USEIOSPACE
399 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
400 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
401 #else
402 	CSR_WRITE_4(sc, reg, val);
403 #endif
404 	return;
405 }
406 
407 static void
408 sk_win_write_2(struct sk_softc *sc, int reg, u_int32_t val)
409 {
410 #ifdef SK_USEIOSPACE
411 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
412 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
413 #else
414 	CSR_WRITE_2(sc, reg, val);
415 #endif
416 	return;
417 }
418 
419 static void
420 sk_win_write_1(struct sk_softc *sc, int reg, u_int32_t val)
421 {
422 #ifdef SK_USEIOSPACE
423 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
424 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
425 #else
426 	CSR_WRITE_1(sc, reg, val);
427 #endif
428 	return;
429 }
430 
431 static int
432 sk_miibus_readreg(device_t dev, int phy, int reg)
433 {
434 	struct sk_if_softc	*sc_if;
435 	int			v;
436 
437 	sc_if = device_get_softc(dev);
438 
439 	SK_IF_MII_LOCK(sc_if);
440 	switch(sc_if->sk_softc->sk_type) {
441 	case SK_GENESIS:
442 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
443 		break;
444 	case SK_YUKON:
445 	case SK_YUKON_LITE:
446 	case SK_YUKON_LP:
447 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
448 		break;
449 	default:
450 		v = 0;
451 		break;
452 	}
453 	SK_IF_MII_UNLOCK(sc_if);
454 
455 	return (v);
456 }
457 
458 static int
459 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
460 {
461 	struct sk_if_softc	*sc_if;
462 	int			v;
463 
464 	sc_if = device_get_softc(dev);
465 
466 	SK_IF_MII_LOCK(sc_if);
467 	switch(sc_if->sk_softc->sk_type) {
468 	case SK_GENESIS:
469 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
470 		break;
471 	case SK_YUKON:
472 	case SK_YUKON_LITE:
473 	case SK_YUKON_LP:
474 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
475 		break;
476 	default:
477 		v = 0;
478 		break;
479 	}
480 	SK_IF_MII_UNLOCK(sc_if);
481 
482 	return (v);
483 }
484 
485 static void
486 sk_miibus_statchg(device_t dev)
487 {
488 	struct sk_if_softc	*sc_if;
489 
490 	sc_if = device_get_softc(dev);
491 
492 	SK_IF_MII_LOCK(sc_if);
493 	switch(sc_if->sk_softc->sk_type) {
494 	case SK_GENESIS:
495 		sk_xmac_miibus_statchg(sc_if);
496 		break;
497 	case SK_YUKON:
498 	case SK_YUKON_LITE:
499 	case SK_YUKON_LP:
500 		sk_marv_miibus_statchg(sc_if);
501 		break;
502 	}
503 	SK_IF_MII_UNLOCK(sc_if);
504 
505 	return;
506 }
507 
508 static int
509 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
510 {
511 	int			i;
512 
513 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
514 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
515 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
516 		for (i = 0; i < SK_TIMEOUT; i++) {
517 			DELAY(1);
518 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
519 			    XM_MMUCMD_PHYDATARDY)
520 				break;
521 		}
522 
523 		if (i == SK_TIMEOUT) {
524 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
525 			return(0);
526 		}
527 	}
528 	DELAY(1);
529 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
530 
531 	return(i);
532 }
533 
534 static int
535 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
536 {
537 	int			i;
538 
539 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
540 	for (i = 0; i < SK_TIMEOUT; i++) {
541 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
542 			break;
543 	}
544 
545 	if (i == SK_TIMEOUT) {
546 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
547 		return (ETIMEDOUT);
548 	}
549 
550 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
551 	for (i = 0; i < SK_TIMEOUT; i++) {
552 		DELAY(1);
553 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
554 			break;
555 	}
556 	if (i == SK_TIMEOUT)
557 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
558 
559 	return(0);
560 }
561 
562 static void
563 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
564 {
565 	struct mii_data		*mii;
566 
567 	mii = device_get_softc(sc_if->sk_miibus);
568 
569 	/*
570 	 * If this is a GMII PHY, manually set the XMAC's
571 	 * duplex mode accordingly.
572 	 */
573 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
574 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
575 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
576 		} else {
577 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
578 		}
579 	}
580 }
581 
582 static int
583 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
584 {
585 	u_int16_t		val;
586 	int			i;
587 
588 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
589 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
590 		return(0);
591 	}
592 
593         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
594 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
595 
596 	for (i = 0; i < SK_TIMEOUT; i++) {
597 		DELAY(1);
598 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
599 		if (val & YU_SMICR_READ_VALID)
600 			break;
601 	}
602 
603 	if (i == SK_TIMEOUT) {
604 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
605 		return(0);
606 	}
607 
608 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
609 
610 	return(val);
611 }
612 
613 static int
614 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
615 {
616 	int			i;
617 
618 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
619 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
620 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
621 
622 	for (i = 0; i < SK_TIMEOUT; i++) {
623 		DELAY(1);
624 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
625 			break;
626 	}
627 	if (i == SK_TIMEOUT)
628 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
629 
630 	return(0);
631 }
632 
633 static void
634 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
635 {
636 	return;
637 }
638 
639 #define HASH_BITS		6
640 
641 static u_int32_t
642 sk_xmchash(const uint8_t *addr)
643 {
644 	uint32_t crc;
645 
646 	/* Compute CRC for the address value. */
647 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
648 
649 	return (~crc & ((1 << HASH_BITS) - 1));
650 }
651 
652 static void
653 sk_setfilt(struct sk_if_softc *sc_if, u_int16_t *addr, int slot)
654 {
655 	int			base;
656 
657 	base = XM_RXFILT_ENTRY(slot);
658 
659 	SK_XM_WRITE_2(sc_if, base, addr[0]);
660 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
661 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
662 
663 	return;
664 }
665 
666 static void
667 sk_rxfilter(struct sk_if_softc *sc_if)
668 {
669 	struct sk_softc		*sc;
670 
671 	SK_IF_LOCK_ASSERT(sc_if);
672 
673 	sc = sc_if->sk_softc;
674 	if (sc->sk_type == SK_GENESIS)
675 		sk_rxfilter_genesis(sc_if);
676 	else
677 		sk_rxfilter_yukon(sc_if);
678 }
679 
680 struct sk_add_maddr_genesis_ctx {
681 	struct sk_if_softc *sc_if;
682 	uint32_t hashes[2];
683 	uint32_t mode;
684 };
685 
686 static u_int
687 sk_add_maddr_genesis(void *arg, struct sockaddr_dl *sdl, u_int cnt)
688 {
689 	struct sk_add_maddr_genesis_ctx *ctx = arg;
690 	int h;
691 
692 	/*
693 	 * Program the first XM_RXFILT_MAX multicast groups
694 	 * into the perfect filter.
695 	 */
696 	if (cnt + 1 < XM_RXFILT_MAX) {
697 		sk_setfilt(ctx->sc_if, (uint16_t *)LLADDR(sdl), cnt + 1);
698 		ctx->mode |= XM_MODE_RX_USE_PERFECT;
699 		return (1);
700 	}
701 	h = sk_xmchash((const uint8_t *)LLADDR(sdl));
702 	if (h < 32)
703 		ctx->hashes[0] |= (1 << h);
704 	else
705 		ctx->hashes[1] |= (1 << (h - 32));
706 	ctx->mode |= XM_MODE_RX_USE_HASH;
707 
708 	return (1);
709 }
710 
711 static void
712 sk_rxfilter_genesis(struct sk_if_softc *sc_if)
713 {
714 	if_t			ifp = sc_if->sk_ifp;
715 	struct sk_add_maddr_genesis_ctx ctx = { sc_if, { 0, 0 } };
716 	int			i;
717 	u_int16_t		dummy[] = { 0, 0, 0 };
718 
719 	SK_IF_LOCK_ASSERT(sc_if);
720 
721 	ctx.mode = SK_XM_READ_4(sc_if, XM_MODE);
722 	ctx.mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
723 	    XM_MODE_RX_USE_PERFECT);
724 	/* First, zot all the existing perfect filters. */
725 	for (i = 1; i < XM_RXFILT_MAX; i++)
726 		sk_setfilt(sc_if, dummy, i);
727 
728 	/* Now program new ones. */
729 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
730 		if (if_getflags(ifp) & IFF_ALLMULTI)
731 			ctx.mode |= XM_MODE_RX_USE_HASH;
732 		if (if_getflags(ifp) & IFF_PROMISC)
733 			ctx.mode |= XM_MODE_RX_PROMISC;
734 		ctx.hashes[0] = 0xFFFFFFFF;
735 		ctx.hashes[1] = 0xFFFFFFFF;
736 	} else
737 		/* XXX want to maintain reverse semantics */
738 		if_foreach_llmaddr(ifp, sk_add_maddr_genesis, &ctx);
739 
740 	SK_XM_WRITE_4(sc_if, XM_MODE, ctx.mode);
741 	SK_XM_WRITE_4(sc_if, XM_MAR0, ctx.hashes[0]);
742 	SK_XM_WRITE_4(sc_if, XM_MAR2, ctx.hashes[1]);
743 }
744 
745 static u_int
746 sk_hash_maddr_yukon(void *arg, struct sockaddr_dl *sdl, u_int cnt)
747 {
748 	uint32_t crc, *hashes = arg;
749 
750 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
751 	/* Just want the 6 least significant bits. */
752 	crc &= 0x3f;
753 	/* Set the corresponding bit in the hash table. */
754 	hashes[crc >> 5] |= 1 << (crc & 0x1f);
755 
756 	return (1);
757 }
758 
759 static void
760 sk_rxfilter_yukon(struct sk_if_softc *sc_if)
761 {
762 	if_t			ifp;
763 	uint32_t		hashes[2] = { 0, 0 }, mode;
764 
765 	SK_IF_LOCK_ASSERT(sc_if);
766 
767 	ifp = sc_if->sk_ifp;
768 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
769 	if (if_getflags(ifp) & IFF_PROMISC)
770 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
771 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
772 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
773 		hashes[0] = 0xFFFFFFFF;
774 		hashes[1] = 0xFFFFFFFF;
775 	} else {
776 		mode |= YU_RCR_UFLEN;
777 		if_foreach_llmaddr(ifp, sk_hash_maddr_yukon, hashes);
778 		if (hashes[0] != 0 || hashes[1] != 0)
779 			mode |= YU_RCR_MUFLEN;
780 	}
781 
782 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
783 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
784 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
785 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
786 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
787 }
788 
789 static int
790 sk_init_rx_ring(struct sk_if_softc *sc_if)
791 {
792 	struct sk_ring_data	*rd;
793 	bus_addr_t		addr;
794 	u_int32_t		csum_start;
795 	int			i;
796 
797 	sc_if->sk_cdata.sk_rx_cons = 0;
798 
799 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
800 	    ETHER_HDR_LEN;
801 	rd = &sc_if->sk_rdata;
802 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
803 	for (i = 0; i < SK_RX_RING_CNT; i++) {
804 		if (sk_newbuf(sc_if, i) != 0)
805 			return (ENOBUFS);
806 		if (i == (SK_RX_RING_CNT - 1))
807 			addr = SK_RX_RING_ADDR(sc_if, 0);
808 		else
809 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
810 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
811 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
812 	}
813 
814 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
815 	    sc_if->sk_cdata.sk_rx_ring_map,
816 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
817 
818 	return(0);
819 }
820 
821 static int
822 sk_init_jumbo_rx_ring(struct sk_if_softc *sc_if)
823 {
824 	struct sk_ring_data	*rd;
825 	bus_addr_t		addr;
826 	u_int32_t		csum_start;
827 	int			i;
828 
829 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
830 
831 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
832 	    ETHER_HDR_LEN;
833 	rd = &sc_if->sk_rdata;
834 	bzero(rd->sk_jumbo_rx_ring,
835 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
836 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
837 		if (sk_jumbo_newbuf(sc_if, i) != 0)
838 			return (ENOBUFS);
839 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
840 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
841 		else
842 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
843 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
844 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
845 	}
846 
847 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
848 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
849 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
850 
851 	return (0);
852 }
853 
854 static void
855 sk_init_tx_ring(struct sk_if_softc *sc_if)
856 {
857 	struct sk_ring_data	*rd;
858 	struct sk_txdesc	*txd;
859 	bus_addr_t		addr;
860 	int			i;
861 
862 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
863 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
864 
865 	sc_if->sk_cdata.sk_tx_prod = 0;
866 	sc_if->sk_cdata.sk_tx_cons = 0;
867 	sc_if->sk_cdata.sk_tx_cnt = 0;
868 
869 	rd = &sc_if->sk_rdata;
870 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
871 	for (i = 0; i < SK_TX_RING_CNT; i++) {
872 		if (i == (SK_TX_RING_CNT - 1))
873 			addr = SK_TX_RING_ADDR(sc_if, 0);
874 		else
875 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
876 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
877 		txd = &sc_if->sk_cdata.sk_txdesc[i];
878 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
879 	}
880 
881 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
882 	    sc_if->sk_cdata.sk_tx_ring_map,
883 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
884 }
885 
886 static __inline void
887 sk_discard_rxbuf(struct sk_if_softc *sc_if, int idx)
888 {
889 	struct sk_rx_desc	*r;
890 	struct sk_rxdesc	*rxd;
891 	struct mbuf		*m;
892 
893 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
894 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
895 	m = rxd->rx_m;
896 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
897 }
898 
899 static __inline void
900 sk_discard_jumbo_rxbuf(struct sk_if_softc *sc_if, int idx)
901 {
902 	struct sk_rx_desc	*r;
903 	struct sk_rxdesc	*rxd;
904 	struct mbuf		*m;
905 
906 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
907 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
908 	m = rxd->rx_m;
909 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
910 }
911 
912 static int
913 sk_newbuf(struct sk_if_softc *sc_if, int idx)
914 {
915 	struct sk_rx_desc	*r;
916 	struct sk_rxdesc	*rxd;
917 	struct mbuf		*m;
918 	bus_dma_segment_t	segs[1];
919 	bus_dmamap_t		map;
920 	int			nsegs;
921 
922 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
923 	if (m == NULL)
924 		return (ENOBUFS);
925 	m->m_len = m->m_pkthdr.len = MCLBYTES;
926 	m_adj(m, ETHER_ALIGN);
927 
928 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
929 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
930 		m_freem(m);
931 		return (ENOBUFS);
932 	}
933 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
934 
935 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
936 	if (rxd->rx_m != NULL) {
937 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
938 		    BUS_DMASYNC_POSTREAD);
939 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
940 	}
941 	map = rxd->rx_dmamap;
942 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
943 	sc_if->sk_cdata.sk_rx_sparemap = map;
944 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
945 	    BUS_DMASYNC_PREREAD);
946 	rxd->rx_m = m;
947 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
948 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
949 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
950 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
951 
952 	return (0);
953 }
954 
955 static int
956 sk_jumbo_newbuf(struct sk_if_softc *sc_if, int idx)
957 {
958 	struct sk_rx_desc	*r;
959 	struct sk_rxdesc	*rxd;
960 	struct mbuf		*m;
961 	bus_dma_segment_t	segs[1];
962 	bus_dmamap_t		map;
963 	int			nsegs;
964 
965 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
966 	if (m == NULL)
967 		return (ENOBUFS);
968 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
969 	/*
970 	 * Adjust alignment so packet payload begins on a
971 	 * longword boundary. Mandatory for Alpha, useful on
972 	 * x86 too.
973 	 */
974 	m_adj(m, ETHER_ALIGN);
975 
976 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
977 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
978 		m_freem(m);
979 		return (ENOBUFS);
980 	}
981 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
982 
983 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
984 	if (rxd->rx_m != NULL) {
985 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
986 		    BUS_DMASYNC_POSTREAD);
987 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
988 		    rxd->rx_dmamap);
989 	}
990 	map = rxd->rx_dmamap;
991 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
992 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
993 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
994 	    BUS_DMASYNC_PREREAD);
995 	rxd->rx_m = m;
996 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
997 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
998 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
999 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1000 
1001 	return (0);
1002 }
1003 
1004 /*
1005  * Set media options.
1006  */
1007 static int
1008 sk_ifmedia_upd(if_t ifp)
1009 {
1010 	struct sk_if_softc	*sc_if = if_getsoftc(ifp);
1011 	struct mii_data		*mii;
1012 
1013 	mii = device_get_softc(sc_if->sk_miibus);
1014 	sk_init(sc_if);
1015 	mii_mediachg(mii);
1016 
1017 	return(0);
1018 }
1019 
1020 /*
1021  * Report current media status.
1022  */
1023 static void
1024 sk_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1025 {
1026 	struct sk_if_softc	*sc_if;
1027 	struct mii_data		*mii;
1028 
1029 	sc_if = if_getsoftc(ifp);
1030 	mii = device_get_softc(sc_if->sk_miibus);
1031 
1032 	mii_pollstat(mii);
1033 	ifmr->ifm_active = mii->mii_media_active;
1034 	ifmr->ifm_status = mii->mii_media_status;
1035 
1036 	return;
1037 }
1038 
1039 static int
1040 sk_ioctl(if_t ifp, u_long command, caddr_t data)
1041 {
1042 	struct sk_if_softc	*sc_if = if_getsoftc(ifp);
1043 	struct ifreq		*ifr = (struct ifreq *) data;
1044 	int			error, mask;
1045 	struct mii_data		*mii;
1046 
1047 	error = 0;
1048 	switch(command) {
1049 	case SIOCSIFMTU:
1050 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1051 			error = EINVAL;
1052 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1053 			if (sc_if->sk_jumbo_disable != 0 &&
1054 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1055 				error = EINVAL;
1056 			else {
1057 				SK_IF_LOCK(sc_if);
1058 				if_setmtu(ifp, ifr->ifr_mtu);
1059 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1060 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1061 					sk_init_locked(sc_if);
1062 				}
1063 				SK_IF_UNLOCK(sc_if);
1064 			}
1065 		}
1066 		break;
1067 	case SIOCSIFFLAGS:
1068 		SK_IF_LOCK(sc_if);
1069 		if (if_getflags(ifp) & IFF_UP) {
1070 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1071 				if ((if_getflags(ifp) ^ sc_if->sk_if_flags)
1072 				    & (IFF_PROMISC | IFF_ALLMULTI))
1073 					sk_rxfilter(sc_if);
1074 			} else
1075 				sk_init_locked(sc_if);
1076 		} else {
1077 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1078 				sk_stop(sc_if);
1079 		}
1080 		sc_if->sk_if_flags = if_getflags(ifp);
1081 		SK_IF_UNLOCK(sc_if);
1082 		break;
1083 	case SIOCADDMULTI:
1084 	case SIOCDELMULTI:
1085 		SK_IF_LOCK(sc_if);
1086 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1087 			sk_rxfilter(sc_if);
1088 		SK_IF_UNLOCK(sc_if);
1089 		break;
1090 	case SIOCGIFMEDIA:
1091 	case SIOCSIFMEDIA:
1092 		mii = device_get_softc(sc_if->sk_miibus);
1093 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1094 		break;
1095 	case SIOCSIFCAP:
1096 		SK_IF_LOCK(sc_if);
1097 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1098 			SK_IF_UNLOCK(sc_if);
1099 			break;
1100 		}
1101 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1102 		if ((mask & IFCAP_TXCSUM) != 0 &&
1103 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
1104 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1105 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1106 				if_sethwassistbits(ifp, SK_CSUM_FEATURES, 0);
1107 			else
1108 				if_sethwassistbits(ifp, 0, SK_CSUM_FEATURES);
1109 		}
1110 		if ((mask & IFCAP_RXCSUM) != 0 &&
1111 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0)
1112 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1113 		SK_IF_UNLOCK(sc_if);
1114 		break;
1115 	default:
1116 		error = ether_ioctl(ifp, command, data);
1117 		break;
1118 	}
1119 
1120 	return (error);
1121 }
1122 
1123 /*
1124  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1125  * IDs against our list and return a device name if we find a match.
1126  */
1127 static int
1128 skc_probe(device_t dev)
1129 {
1130 	const struct sk_type	*t = sk_devs;
1131 
1132 	while(t->sk_name != NULL) {
1133 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1134 		    (pci_get_device(dev) == t->sk_did)) {
1135 			/*
1136 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1137 			 * Rev. 3 is supported by re(4).
1138 			 */
1139 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1140 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1141 				(pci_get_subdevice(dev) !=
1142 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1143 				t++;
1144 				continue;
1145 			}
1146 			device_set_desc(dev, t->sk_name);
1147 			return (BUS_PROBE_DEFAULT);
1148 		}
1149 		t++;
1150 	}
1151 
1152 	return(ENXIO);
1153 }
1154 
1155 /*
1156  * Force the GEnesis into reset, then bring it out of reset.
1157  */
1158 static void
1159 sk_reset(struct sk_softc *sc)
1160 {
1161 
1162 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1163 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1164 	if (SK_YUKON_FAMILY(sc->sk_type))
1165 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1166 
1167 	DELAY(1000);
1168 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1169 	DELAY(2);
1170 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1171 	if (SK_YUKON_FAMILY(sc->sk_type))
1172 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1173 
1174 	if (sc->sk_type == SK_GENESIS) {
1175 		/* Configure packet arbiter */
1176 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1177 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1178 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1179 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1180 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1181 	}
1182 
1183 	/* Enable RAM interface */
1184 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1185 
1186 	/*
1187          * Configure interrupt moderation. The moderation timer
1188 	 * defers interrupts specified in the interrupt moderation
1189 	 * timer mask based on the timeout specified in the interrupt
1190 	 * moderation timer init register. Each bit in the timer
1191 	 * register represents one tick, so to specify a timeout in
1192 	 * microseconds, we have to multiply by the correct number of
1193 	 * ticks-per-microsecond.
1194 	 */
1195 	switch (sc->sk_type) {
1196 	case SK_GENESIS:
1197 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1198 		break;
1199 	default:
1200 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1201 		break;
1202 	}
1203 	if (bootverbose)
1204 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1205 		    sc->sk_int_mod);
1206 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1207 	    sc->sk_int_ticks));
1208 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1209 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1210 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1211 
1212 	return;
1213 }
1214 
1215 static int
1216 sk_probe(device_t dev)
1217 {
1218 	struct sk_softc		*sc;
1219 
1220 	sc = device_get_softc(device_get_parent(dev));
1221 
1222 	/*
1223 	 * Not much to do here. We always know there will be
1224 	 * at least one XMAC present, and if there are two,
1225 	 * skc_attach() will create a second device instance
1226 	 * for us.
1227 	 */
1228 	switch (sc->sk_type) {
1229 	case SK_GENESIS:
1230 		device_set_desc(dev, "XaQti Corp. XMAC II");
1231 		break;
1232 	case SK_YUKON:
1233 	case SK_YUKON_LITE:
1234 	case SK_YUKON_LP:
1235 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1236 		break;
1237 	}
1238 
1239 	return (BUS_PROBE_DEFAULT);
1240 }
1241 
1242 /*
1243  * Each XMAC chip is attached as a separate logical IP interface.
1244  * Single port cards will have only one logical interface of course.
1245  */
1246 static int
1247 sk_attach(device_t dev)
1248 {
1249 	struct sk_softc		*sc;
1250 	struct sk_if_softc	*sc_if;
1251 	if_t			ifp;
1252 	u_int32_t		r;
1253 	int			error, i, phy, port;
1254 	u_char			eaddr[6];
1255 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1256 
1257 	if (dev == NULL)
1258 		return(EINVAL);
1259 
1260 	error = 0;
1261 	sc_if = device_get_softc(dev);
1262 	sc = device_get_softc(device_get_parent(dev));
1263 	port = *(int *)device_get_ivars(dev);
1264 
1265 	sc_if->sk_if_dev = dev;
1266 	sc_if->sk_port = port;
1267 	sc_if->sk_softc = sc;
1268 	sc->sk_if[port] = sc_if;
1269 	if (port == SK_PORT_A)
1270 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1271 	if (port == SK_PORT_B)
1272 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1273 
1274 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1275 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1276 
1277 	if (sk_dma_alloc(sc_if) != 0) {
1278 		error = ENOMEM;
1279 		goto fail;
1280 	}
1281 	sk_dma_jumbo_alloc(sc_if);
1282 
1283 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1284 	if_setsoftc(ifp, sc_if);
1285 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1286 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1287 	/*
1288 	 * SK_GENESIS has a bug in checksum offload - From linux.
1289 	 */
1290 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1291 		if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM);
1292 		if_sethwassist(ifp, 0);
1293 	} else {
1294 		if_setcapabilities(ifp, 0);
1295 		if_sethwassist(ifp, 0);
1296 	}
1297 	if_setcapenable(ifp, if_getcapabilities(ifp));
1298 	/*
1299 	 * Some revision of Yukon controller generates corrupted
1300 	 * frame when TX checksum offloading is enabled.  The
1301 	 * frame has a valid checksum value so payload might be
1302 	 * modified during TX checksum calculation. Disable TX
1303 	 * checksum offloading but give users chance to enable it
1304 	 * when they know their controller works without problems
1305 	 * with TX checksum offloading.
1306 	 */
1307 	if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
1308 	if_setioctlfn(ifp, sk_ioctl);
1309 	if_setstartfn(ifp, sk_start);
1310 	if_setinitfn(ifp, sk_init);
1311 	if_setsendqlen(ifp, SK_TX_RING_CNT - 1);
1312 	if_setsendqready(ifp);
1313 
1314 	/*
1315 	 * Get station address for this interface. Note that
1316 	 * dual port cards actually come with three station
1317 	 * addresses: one for each port, plus an extra. The
1318 	 * extra one is used by the SysKonnect driver software
1319 	 * as a 'virtual' station address for when both ports
1320 	 * are operating in failover mode. Currently we don't
1321 	 * use this extra address.
1322 	 */
1323 	SK_IF_LOCK(sc_if);
1324 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1325 		eaddr[i] =
1326 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1327 
1328 	/* Verify whether the station address is invalid or not. */
1329 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1330 		device_printf(sc_if->sk_if_dev,
1331 		    "Generating random ethernet address\n");
1332 		r = arc4random();
1333 		/*
1334 		 * Set OUI to convenient locally assigned address.  'b'
1335 		 * is 0x62, which has the locally assigned bit set, and
1336 		 * the broadcast/multicast bit clear.
1337 		 */
1338 		eaddr[0] = 'b';
1339 		eaddr[1] = 's';
1340 		eaddr[2] = 'd';
1341 		eaddr[3] = (r >> 16) & 0xff;
1342 		eaddr[4] = (r >>  8) & 0xff;
1343 		eaddr[5] = (r >>  0) & 0xff;
1344 	}
1345 	/*
1346 	 * Set up RAM buffer addresses. The NIC will have a certain
1347 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1348 	 * need to divide this up a) between the transmitter and
1349  	 * receiver and b) between the two XMACs, if this is a
1350 	 * dual port NIC. Our algotithm is to divide up the memory
1351 	 * evenly so that everyone gets a fair share.
1352 	 *
1353 	 * Just to be contrary, Yukon2 appears to have separate memory
1354 	 * for each MAC.
1355 	 */
1356 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1357 		u_int32_t		chunk, val;
1358 
1359 		chunk = sc->sk_ramsize / 2;
1360 		val = sc->sk_rboff / sizeof(u_int64_t);
1361 		sc_if->sk_rx_ramstart = val;
1362 		val += (chunk / sizeof(u_int64_t));
1363 		sc_if->sk_rx_ramend = val - 1;
1364 		sc_if->sk_tx_ramstart = val;
1365 		val += (chunk / sizeof(u_int64_t));
1366 		sc_if->sk_tx_ramend = val - 1;
1367 	} else {
1368 		u_int32_t		chunk, val;
1369 
1370 		chunk = sc->sk_ramsize / 4;
1371 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1372 		    sizeof(u_int64_t);
1373 		sc_if->sk_rx_ramstart = val;
1374 		val += (chunk / sizeof(u_int64_t));
1375 		sc_if->sk_rx_ramend = val - 1;
1376 		sc_if->sk_tx_ramstart = val;
1377 		val += (chunk / sizeof(u_int64_t));
1378 		sc_if->sk_tx_ramend = val - 1;
1379 	}
1380 
1381 	/* Read and save PHY type and set PHY address */
1382 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1383 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1384 		switch(sc_if->sk_phytype) {
1385 		case SK_PHYTYPE_XMAC:
1386 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1387 			break;
1388 		case SK_PHYTYPE_BCOM:
1389 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1390 			break;
1391 		default:
1392 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1393 			    sc_if->sk_phytype);
1394 			error = ENODEV;
1395 			SK_IF_UNLOCK(sc_if);
1396 			goto fail;
1397 		}
1398 	} else {
1399 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1400 		    sc->sk_pmd != 'S') {
1401 			/* not initialized, punt */
1402 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1403 			sc->sk_coppertype = 1;
1404 		}
1405 
1406 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1407 
1408 		if (!(sc->sk_coppertype))
1409 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1410 	}
1411 
1412 	/*
1413 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1414 	 */
1415 	SK_IF_UNLOCK(sc_if);
1416 	ether_ifattach(ifp, eaddr);
1417 	SK_IF_LOCK(sc_if);
1418 
1419 	/*
1420 	 * The hardware should be ready for VLAN_MTU by default:
1421 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1422 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1423 	 *
1424 	 */
1425         if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
1426         if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
1427 	/*
1428 	 * Tell the upper layer(s) we support long frames.
1429 	 * Must appear after the call to ether_ifattach() because
1430 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1431 	 */
1432         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1433 
1434 	/*
1435 	 * Do miibus setup.
1436 	 */
1437 	phy = MII_PHY_ANY;
1438 	switch (sc->sk_type) {
1439 	case SK_GENESIS:
1440 		sk_init_xmac(sc_if);
1441 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1442 			phy = 0;
1443 		break;
1444 	case SK_YUKON:
1445 	case SK_YUKON_LITE:
1446 	case SK_YUKON_LP:
1447 		sk_init_yukon(sc_if);
1448 		phy = 0;
1449 		break;
1450 	}
1451 
1452 	SK_IF_UNLOCK(sc_if);
1453 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1454 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1455 	if (error != 0) {
1456 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1457 		ether_ifdetach(ifp);
1458 		goto fail;
1459 	}
1460 
1461 fail:
1462 	if (error) {
1463 		/* Access should be ok even though lock has been dropped */
1464 		sc->sk_if[port] = NULL;
1465 		sk_detach(dev);
1466 	}
1467 
1468 	return(error);
1469 }
1470 
1471 /*
1472  * Attach the interface. Allocate softc structures, do ifmedia
1473  * setup and ethernet/BPF attach.
1474  */
1475 static int
1476 skc_attach(device_t dev)
1477 {
1478 	struct sk_softc		*sc;
1479 	int			error = 0, *port;
1480 	uint8_t			skrs;
1481 	const char		*pname = NULL;
1482 	char			*revstr;
1483 
1484 	sc = device_get_softc(dev);
1485 	sc->sk_dev = dev;
1486 
1487 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1488 	    MTX_DEF);
1489 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1490 	/*
1491 	 * Map control/status registers.
1492 	 */
1493 	pci_enable_busmaster(dev);
1494 
1495 	/* Allocate resources */
1496 #ifdef SK_USEIOSPACE
1497 	sc->sk_res_spec = sk_res_spec_io;
1498 #else
1499 	sc->sk_res_spec = sk_res_spec_mem;
1500 #endif
1501 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1502 	if (error) {
1503 		if (sc->sk_res_spec == sk_res_spec_mem)
1504 			sc->sk_res_spec = sk_res_spec_io;
1505 		else
1506 			sc->sk_res_spec = sk_res_spec_mem;
1507 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1508 		if (error) {
1509 			device_printf(dev, "couldn't allocate %s resources\n",
1510 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1511 			    "I/O");
1512 			goto fail;
1513 		}
1514 	}
1515 
1516 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1517 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1518 
1519 	/* Bail out if chip is not recognized. */
1520 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1521 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1522 		    sc->sk_type, sc->sk_rev);
1523 		error = ENXIO;
1524 		goto fail;
1525 	}
1526 
1527 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1528 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1529 		OID_AUTO, "int_mod",
1530 		CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1531 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1532 		"SK interrupt moderation");
1533 
1534 	/* Pull in device tunables. */
1535 	sc->sk_int_mod = SK_IM_DEFAULT;
1536 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1537 		"int_mod", &sc->sk_int_mod);
1538 	if (error == 0) {
1539 		if (sc->sk_int_mod < SK_IM_MIN ||
1540 		    sc->sk_int_mod > SK_IM_MAX) {
1541 			device_printf(dev, "int_mod value out of range; "
1542 			    "using default: %d\n", SK_IM_DEFAULT);
1543 			sc->sk_int_mod = SK_IM_DEFAULT;
1544 		}
1545 	}
1546 
1547 	/* Reset the adapter. */
1548 	sk_reset(sc);
1549 
1550 	skrs = sk_win_read_1(sc, SK_EPROM0);
1551 	if (sc->sk_type == SK_GENESIS) {
1552 		/* Read and save RAM size and RAMbuffer offset */
1553 		switch(skrs) {
1554 		case SK_RAMSIZE_512K_64:
1555 			sc->sk_ramsize = 0x80000;
1556 			sc->sk_rboff = SK_RBOFF_0;
1557 			break;
1558 		case SK_RAMSIZE_1024K_64:
1559 			sc->sk_ramsize = 0x100000;
1560 			sc->sk_rboff = SK_RBOFF_80000;
1561 			break;
1562 		case SK_RAMSIZE_1024K_128:
1563 			sc->sk_ramsize = 0x100000;
1564 			sc->sk_rboff = SK_RBOFF_0;
1565 			break;
1566 		case SK_RAMSIZE_2048K_128:
1567 			sc->sk_ramsize = 0x200000;
1568 			sc->sk_rboff = SK_RBOFF_0;
1569 			break;
1570 		default:
1571 			device_printf(dev, "unknown ram size: %d\n", skrs);
1572 			error = ENXIO;
1573 			goto fail;
1574 		}
1575 	} else { /* SK_YUKON_FAMILY */
1576 		if (skrs == 0x00)
1577 			sc->sk_ramsize = 0x20000;
1578 		else
1579 			sc->sk_ramsize = skrs * (1<<12);
1580 		sc->sk_rboff = SK_RBOFF_0;
1581 	}
1582 
1583 	/* Read and save physical media type */
1584 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1585 
1586 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1587 		 sc->sk_coppertype = 1;
1588 	 else
1589 		 sc->sk_coppertype = 0;
1590 
1591 	/* Determine whether to name it with VPD PN or just make it up.
1592 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1593 	switch (pci_get_device(dev)) {
1594 	case DEVICEID_SK_V1:
1595 	case DEVICEID_BELKIN_5005:
1596 	case DEVICEID_3COM_3C940:
1597 	case DEVICEID_LINKSYS_EG1032:
1598 	case DEVICEID_DLINK_DGE530T_A1:
1599 	case DEVICEID_DLINK_DGE530T_B1:
1600 		/* Stay with VPD PN. */
1601 		(void) pci_get_vpd_ident(dev, &pname);
1602 		break;
1603 	case DEVICEID_SK_V2:
1604 		/* YUKON VPD PN might bear no resemblance to reality. */
1605 		switch (sc->sk_type) {
1606 		case SK_GENESIS:
1607 			/* Stay with VPD PN. */
1608 			(void) pci_get_vpd_ident(dev, &pname);
1609 			break;
1610 		case SK_YUKON:
1611 			pname = "Marvell Yukon Gigabit Ethernet";
1612 			break;
1613 		case SK_YUKON_LITE:
1614 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1615 			break;
1616 		case SK_YUKON_LP:
1617 			pname = "Marvell Yukon LP Gigabit Ethernet";
1618 			break;
1619 		default:
1620 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1621 			break;
1622 		}
1623 
1624 		/* Yukon Lite Rev. A0 needs special test. */
1625 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1626 			u_int32_t far;
1627 			u_int8_t testbyte;
1628 
1629 			/* Save flash address register before testing. */
1630 			far = sk_win_read_4(sc, SK_EP_ADDR);
1631 
1632 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1633 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1634 
1635 			if (testbyte != 0x00) {
1636 				/* Yukon Lite Rev. A0 detected. */
1637 				sc->sk_type = SK_YUKON_LITE;
1638 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1639 				/* Restore flash address register. */
1640 				sk_win_write_4(sc, SK_EP_ADDR, far);
1641 			}
1642 		}
1643 		break;
1644 	default:
1645 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1646 			"chipver=%02x, rev=%x\n",
1647 			pci_get_vendor(dev), pci_get_device(dev),
1648 			sc->sk_type, sc->sk_rev);
1649 		error = ENXIO;
1650 		goto fail;
1651 	}
1652 
1653 	if (sc->sk_type == SK_YUKON_LITE) {
1654 		switch (sc->sk_rev) {
1655 		case SK_YUKON_LITE_REV_A0:
1656 			revstr = "A0";
1657 			break;
1658 		case SK_YUKON_LITE_REV_A1:
1659 			revstr = "A1";
1660 			break;
1661 		case SK_YUKON_LITE_REV_A3:
1662 			revstr = "A3";
1663 			break;
1664 		default:
1665 			revstr = "";
1666 			break;
1667 		}
1668 	} else {
1669 		revstr = "";
1670 	}
1671 
1672 	/* Announce the product name and more VPD data if there. */
1673 	if (pname != NULL)
1674 		device_printf(dev, "%s rev. %s(0x%x)\n",
1675 			pname, revstr, sc->sk_rev);
1676 
1677 	if (bootverbose) {
1678 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1679 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1680 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1681 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1682 	}
1683 
1684 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", DEVICE_UNIT_ANY);
1685 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1686 		device_printf(dev, "failed to add child for PORT_A\n");
1687 		error = ENXIO;
1688 		goto fail;
1689 	}
1690 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1691 	if (port == NULL) {
1692 		device_printf(dev, "failed to allocate memory for "
1693 		    "ivars of PORT_A\n");
1694 		error = ENXIO;
1695 		goto fail;
1696 	}
1697 	*port = SK_PORT_A;
1698 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1699 
1700 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1701 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", DEVICE_UNIT_ANY);
1702 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1703 			device_printf(dev, "failed to add child for PORT_B\n");
1704 			error = ENXIO;
1705 			goto fail;
1706 		}
1707 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1708 		if (port == NULL) {
1709 			device_printf(dev, "failed to allocate memory for "
1710 			    "ivars of PORT_B\n");
1711 			error = ENXIO;
1712 			goto fail;
1713 		}
1714 		*port = SK_PORT_B;
1715 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1716 	}
1717 
1718 	/* Turn on the 'driver is loaded' LED. */
1719 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1720 
1721 	error = bus_generic_attach(dev);
1722 	if (error) {
1723 		device_printf(dev, "failed to attach port(s)\n");
1724 		goto fail;
1725 	}
1726 
1727 	/* Hook interrupt last to avoid having to lock softc */
1728 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1729 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1730 
1731 	if (error) {
1732 		device_printf(dev, "couldn't set up irq\n");
1733 		goto fail;
1734 	}
1735 
1736 fail:
1737 	if (error)
1738 		skc_detach(dev);
1739 
1740 	return(error);
1741 }
1742 
1743 static void
1744 skc_child_deleted(device_t dev, device_t child)
1745 {
1746 	free(device_get_ivars(child), M_DEVBUF);
1747 }
1748 
1749 /*
1750  * Shutdown hardware and free up resources. This can be called any
1751  * time after the mutex has been initialized. It is called in both
1752  * the error case in attach and the normal detach case so it needs
1753  * to be careful about only freeing resources that have actually been
1754  * allocated.
1755  */
1756 static int
1757 sk_detach(device_t dev)
1758 {
1759 	struct sk_if_softc	*sc_if;
1760 	if_t			ifp;
1761 
1762 	sc_if = device_get_softc(dev);
1763 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1764 	    ("sk mutex not initialized in sk_detach"));
1765 	SK_IF_LOCK(sc_if);
1766 
1767 	ifp = sc_if->sk_ifp;
1768 	/* These should only be active if attach_xmac succeeded */
1769 	if (device_is_attached(dev)) {
1770 		sk_stop(sc_if);
1771 		/* Can't hold locks while calling detach */
1772 		SK_IF_UNLOCK(sc_if);
1773 		callout_drain(&sc_if->sk_tick_ch);
1774 		callout_drain(&sc_if->sk_watchdog_ch);
1775 		ether_ifdetach(ifp);
1776 		SK_IF_LOCK(sc_if);
1777 	}
1778 	/*
1779 	 * We're generally called from skc_detach() which is using
1780 	 * device_delete_child() to get to here. It's already trashed
1781 	 * miibus for us, so don't do it here or we'll panic.
1782 	 */
1783 	/*
1784 	if (sc_if->sk_miibus != NULL)
1785 		device_delete_child(dev, sc_if->sk_miibus);
1786 	*/
1787 	bus_generic_detach(dev);
1788 	sk_dma_jumbo_free(sc_if);
1789 	sk_dma_free(sc_if);
1790 	SK_IF_UNLOCK(sc_if);
1791 	if (ifp)
1792 		if_free(ifp);
1793 
1794 	return(0);
1795 }
1796 
1797 static int
1798 skc_detach(device_t dev)
1799 {
1800 	struct sk_softc		*sc;
1801 
1802 	sc = device_get_softc(dev);
1803 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1804 
1805 	if (device_is_alive(dev)) {
1806 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1807 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1808 		}
1809 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1810 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1811 		}
1812 		bus_generic_detach(dev);
1813 	}
1814 
1815 	if (sc->sk_intrhand)
1816 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1817 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1818 
1819 	mtx_destroy(&sc->sk_mii_mtx);
1820 	mtx_destroy(&sc->sk_mtx);
1821 
1822 	return(0);
1823 }
1824 
1825 static bus_dma_tag_t
1826 skc_get_dma_tag(device_t bus, device_t child __unused)
1827 {
1828 
1829 	return (bus_get_dma_tag(bus));
1830 }
1831 
1832 struct sk_dmamap_arg {
1833 	bus_addr_t	sk_busaddr;
1834 };
1835 
1836 static void
1837 sk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1838 {
1839 	struct sk_dmamap_arg	*ctx;
1840 
1841 	if (error != 0)
1842 		return;
1843 
1844 	ctx = arg;
1845 	ctx->sk_busaddr = segs[0].ds_addr;
1846 }
1847 
1848 /*
1849  * Allocate jumbo buffer storage. The SysKonnect adapters support
1850  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1851  * use them in their drivers. In order for us to use them, we need
1852  * large 9K receive buffers, however standard mbuf clusters are only
1853  * 2048 bytes in size. Consequently, we need to allocate and manage
1854  * our own jumbo buffer pool. Fortunately, this does not require an
1855  * excessive amount of additional code.
1856  */
1857 static int
1858 sk_dma_alloc(struct sk_if_softc *sc_if)
1859 {
1860 	struct sk_dmamap_arg	ctx;
1861 	struct sk_txdesc	*txd;
1862 	struct sk_rxdesc	*rxd;
1863 	int			error, i;
1864 
1865 	/* create parent tag */
1866 	/*
1867 	 * XXX
1868 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1869 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1870 	 * However bz@ reported that it does not work on amd64 with > 4GB
1871 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1872 	 * by limiting DMA address to be in 32bit address space.
1873 	 */
1874 	error = bus_dma_tag_create(
1875 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1876 		    1, 0,			/* algnmnt, boundary */
1877 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1878 		    BUS_SPACE_MAXADDR,		/* highaddr */
1879 		    NULL, NULL,			/* filter, filterarg */
1880 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1881 		    0,				/* nsegments */
1882 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1883 		    0,				/* flags */
1884 		    NULL, NULL,			/* lockfunc, lockarg */
1885 		    &sc_if->sk_cdata.sk_parent_tag);
1886 	if (error != 0) {
1887 		device_printf(sc_if->sk_if_dev,
1888 		    "failed to create parent DMA tag\n");
1889 		goto fail;
1890 	}
1891 
1892 	/* create tag for Tx ring */
1893 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1894 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1895 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1896 		    BUS_SPACE_MAXADDR,		/* highaddr */
1897 		    NULL, NULL,			/* filter, filterarg */
1898 		    SK_TX_RING_SZ,		/* maxsize */
1899 		    1,				/* nsegments */
1900 		    SK_TX_RING_SZ,		/* maxsegsize */
1901 		    0,				/* flags */
1902 		    NULL, NULL,			/* lockfunc, lockarg */
1903 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1904 	if (error != 0) {
1905 		device_printf(sc_if->sk_if_dev,
1906 		    "failed to allocate Tx ring DMA tag\n");
1907 		goto fail;
1908 	}
1909 
1910 	/* create tag for Rx ring */
1911 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1912 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1913 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1914 		    BUS_SPACE_MAXADDR,		/* highaddr */
1915 		    NULL, NULL,			/* filter, filterarg */
1916 		    SK_RX_RING_SZ,		/* maxsize */
1917 		    1,				/* nsegments */
1918 		    SK_RX_RING_SZ,		/* maxsegsize */
1919 		    0,				/* flags */
1920 		    NULL, NULL,			/* lockfunc, lockarg */
1921 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1922 	if (error != 0) {
1923 		device_printf(sc_if->sk_if_dev,
1924 		    "failed to allocate Rx ring DMA tag\n");
1925 		goto fail;
1926 	}
1927 
1928 	/* create tag for Tx buffers */
1929 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1930 		    1, 0,			/* algnmnt, boundary */
1931 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1932 		    BUS_SPACE_MAXADDR,		/* highaddr */
1933 		    NULL, NULL,			/* filter, filterarg */
1934 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
1935 		    SK_MAXTXSEGS,		/* nsegments */
1936 		    MCLBYTES,			/* maxsegsize */
1937 		    0,				/* flags */
1938 		    NULL, NULL,			/* lockfunc, lockarg */
1939 		    &sc_if->sk_cdata.sk_tx_tag);
1940 	if (error != 0) {
1941 		device_printf(sc_if->sk_if_dev,
1942 		    "failed to allocate Tx DMA tag\n");
1943 		goto fail;
1944 	}
1945 
1946 	/* create tag for Rx buffers */
1947 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1948 		    1, 0,			/* algnmnt, boundary */
1949 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1950 		    BUS_SPACE_MAXADDR,		/* highaddr */
1951 		    NULL, NULL,			/* filter, filterarg */
1952 		    MCLBYTES,			/* maxsize */
1953 		    1,				/* nsegments */
1954 		    MCLBYTES,			/* maxsegsize */
1955 		    0,				/* flags */
1956 		    NULL, NULL,			/* lockfunc, lockarg */
1957 		    &sc_if->sk_cdata.sk_rx_tag);
1958 	if (error != 0) {
1959 		device_printf(sc_if->sk_if_dev,
1960 		    "failed to allocate Rx DMA tag\n");
1961 		goto fail;
1962 	}
1963 
1964 	/* allocate DMA'able memory and load the DMA map for Tx ring */
1965 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
1966 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
1967 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
1968 	if (error != 0) {
1969 		device_printf(sc_if->sk_if_dev,
1970 		    "failed to allocate DMA'able memory for Tx ring\n");
1971 		goto fail;
1972 	}
1973 
1974 	ctx.sk_busaddr = 0;
1975 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
1976 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
1977 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1978 	if (error != 0) {
1979 		device_printf(sc_if->sk_if_dev,
1980 		    "failed to load DMA'able memory for Tx ring\n");
1981 		goto fail;
1982 	}
1983 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
1984 
1985 	/* allocate DMA'able memory and load the DMA map for Rx ring */
1986 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
1987 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
1988 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
1989 	if (error != 0) {
1990 		device_printf(sc_if->sk_if_dev,
1991 		    "failed to allocate DMA'able memory for Rx ring\n");
1992 		goto fail;
1993 	}
1994 
1995 	ctx.sk_busaddr = 0;
1996 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
1997 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
1998 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1999 	if (error != 0) {
2000 		device_printf(sc_if->sk_if_dev,
2001 		    "failed to load DMA'able memory for Rx ring\n");
2002 		goto fail;
2003 	}
2004 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2005 
2006 	/* create DMA maps for Tx buffers */
2007 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2008 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2009 		txd->tx_m = NULL;
2010 		txd->tx_dmamap = NULL;
2011 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2012 		    &txd->tx_dmamap);
2013 		if (error != 0) {
2014 			device_printf(sc_if->sk_if_dev,
2015 			    "failed to create Tx dmamap\n");
2016 			goto fail;
2017 		}
2018 	}
2019 
2020 	/* create DMA maps for Rx buffers */
2021 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2022 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2023 		device_printf(sc_if->sk_if_dev,
2024 		    "failed to create spare Rx dmamap\n");
2025 		goto fail;
2026 	}
2027 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2028 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2029 		rxd->rx_m = NULL;
2030 		rxd->rx_dmamap = NULL;
2031 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2032 		    &rxd->rx_dmamap);
2033 		if (error != 0) {
2034 			device_printf(sc_if->sk_if_dev,
2035 			    "failed to create Rx dmamap\n");
2036 			goto fail;
2037 		}
2038 	}
2039 
2040 fail:
2041 	return (error);
2042 }
2043 
2044 static int
2045 sk_dma_jumbo_alloc(struct sk_if_softc *sc_if)
2046 {
2047 	struct sk_dmamap_arg	ctx;
2048 	struct sk_rxdesc	*jrxd;
2049 	int			error, i;
2050 
2051 	if (jumbo_disable != 0) {
2052 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2053 		sc_if->sk_jumbo_disable = 1;
2054 		return (0);
2055 	}
2056 	/* create tag for jumbo Rx ring */
2057 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2058 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2059 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2060 		    BUS_SPACE_MAXADDR,		/* highaddr */
2061 		    NULL, NULL,			/* filter, filterarg */
2062 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2063 		    1,				/* nsegments */
2064 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2065 		    0,				/* flags */
2066 		    NULL, NULL,			/* lockfunc, lockarg */
2067 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2068 	if (error != 0) {
2069 		device_printf(sc_if->sk_if_dev,
2070 		    "failed to allocate jumbo Rx ring DMA tag\n");
2071 		goto jumbo_fail;
2072 	}
2073 
2074 	/* create tag for jumbo Rx buffers */
2075 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2076 		    1, 0,			/* algnmnt, boundary */
2077 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2078 		    BUS_SPACE_MAXADDR,		/* highaddr */
2079 		    NULL, NULL,			/* filter, filterarg */
2080 		    MJUM9BYTES,			/* maxsize */
2081 		    1,				/* nsegments */
2082 		    MJUM9BYTES,			/* maxsegsize */
2083 		    0,				/* flags */
2084 		    NULL, NULL,			/* lockfunc, lockarg */
2085 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2086 	if (error != 0) {
2087 		device_printf(sc_if->sk_if_dev,
2088 		    "failed to allocate jumbo Rx DMA tag\n");
2089 		goto jumbo_fail;
2090 	}
2091 
2092 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2093 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2094 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2095 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2096 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2097 	if (error != 0) {
2098 		device_printf(sc_if->sk_if_dev,
2099 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2100 		goto jumbo_fail;
2101 	}
2102 
2103 	ctx.sk_busaddr = 0;
2104 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2105 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2106 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2107 	    &ctx, BUS_DMA_NOWAIT);
2108 	if (error != 0) {
2109 		device_printf(sc_if->sk_if_dev,
2110 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2111 		goto jumbo_fail;
2112 	}
2113 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2114 
2115 	/* create DMA maps for jumbo Rx buffers */
2116 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2117 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2118 		device_printf(sc_if->sk_if_dev,
2119 		    "failed to create spare jumbo Rx dmamap\n");
2120 		goto jumbo_fail;
2121 	}
2122 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2123 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2124 		jrxd->rx_m = NULL;
2125 		jrxd->rx_dmamap = NULL;
2126 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2127 		    &jrxd->rx_dmamap);
2128 		if (error != 0) {
2129 			device_printf(sc_if->sk_if_dev,
2130 			    "failed to create jumbo Rx dmamap\n");
2131 			goto jumbo_fail;
2132 		}
2133 	}
2134 
2135 	return (0);
2136 
2137 jumbo_fail:
2138 	sk_dma_jumbo_free(sc_if);
2139 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2140 	    "resource shortage\n");
2141 	sc_if->sk_jumbo_disable = 1;
2142 	return (0);
2143 }
2144 
2145 static void
2146 sk_dma_free(struct sk_if_softc *sc_if)
2147 {
2148 	struct sk_txdesc	*txd;
2149 	struct sk_rxdesc	*rxd;
2150 	int			i;
2151 
2152 	/* Tx ring */
2153 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2154 		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2155 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2156 			    sc_if->sk_cdata.sk_tx_ring_map);
2157 		if (sc_if->sk_rdata.sk_tx_ring)
2158 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2159 			    sc_if->sk_rdata.sk_tx_ring,
2160 			    sc_if->sk_cdata.sk_tx_ring_map);
2161 		sc_if->sk_rdata.sk_tx_ring = NULL;
2162 		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2163 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2164 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2165 	}
2166 	/* Rx ring */
2167 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2168 		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2169 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2170 			    sc_if->sk_cdata.sk_rx_ring_map);
2171 		if (sc_if->sk_rdata.sk_rx_ring)
2172 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2173 			    sc_if->sk_rdata.sk_rx_ring,
2174 			    sc_if->sk_cdata.sk_rx_ring_map);
2175 		sc_if->sk_rdata.sk_rx_ring = NULL;
2176 		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2177 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2178 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2179 	}
2180 	/* Tx buffers */
2181 	if (sc_if->sk_cdata.sk_tx_tag) {
2182 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2183 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2184 			if (txd->tx_dmamap) {
2185 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2186 				    txd->tx_dmamap);
2187 				txd->tx_dmamap = NULL;
2188 			}
2189 		}
2190 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2191 		sc_if->sk_cdata.sk_tx_tag = NULL;
2192 	}
2193 	/* Rx buffers */
2194 	if (sc_if->sk_cdata.sk_rx_tag) {
2195 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2196 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2197 			if (rxd->rx_dmamap) {
2198 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2199 				    rxd->rx_dmamap);
2200 				rxd->rx_dmamap = NULL;
2201 			}
2202 		}
2203 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2204 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2205 			    sc_if->sk_cdata.sk_rx_sparemap);
2206 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2207 		}
2208 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2209 		sc_if->sk_cdata.sk_rx_tag = NULL;
2210 	}
2211 
2212 	if (sc_if->sk_cdata.sk_parent_tag) {
2213 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2214 		sc_if->sk_cdata.sk_parent_tag = NULL;
2215 	}
2216 }
2217 
2218 static void
2219 sk_dma_jumbo_free(struct sk_if_softc *sc_if)
2220 {
2221 	struct sk_rxdesc	*jrxd;
2222 	int			i;
2223 
2224 	/* jumbo Rx ring */
2225 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2226 		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2227 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2228 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2229 		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2230 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2231 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2232 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2233 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2234 		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2235 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2236 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2237 	}
2238 
2239 	/* jumbo Rx buffers */
2240 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2241 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2242 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2243 			if (jrxd->rx_dmamap) {
2244 				bus_dmamap_destroy(
2245 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2246 				    jrxd->rx_dmamap);
2247 				jrxd->rx_dmamap = NULL;
2248 			}
2249 		}
2250 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2251 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2252 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2253 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2254 		}
2255 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2256 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2257 	}
2258 }
2259 
2260 static void
2261 sk_txcksum(if_t ifp, struct mbuf *m, struct sk_tx_desc *f)
2262 {
2263 	struct ip		*ip;
2264 	u_int16_t		offset;
2265 	u_int8_t 		*p;
2266 
2267 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2268 	for(; m && m->m_len == 0; m = m->m_next)
2269 		;
2270 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2271 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2272 		/* checksum may be corrupted */
2273 		goto sendit;
2274 	}
2275 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2276 		if (m->m_len != ETHER_HDR_LEN) {
2277 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2278 			    __func__);
2279 			/* checksum may be corrupted */
2280 			goto sendit;
2281 		}
2282 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2283 			;
2284 		if (m == NULL) {
2285 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2286 			/* checksum may be corrupted */
2287 			goto sendit;
2288 		}
2289 		ip = mtod(m, struct ip *);
2290 	} else {
2291 		p = mtod(m, u_int8_t *);
2292 		p += ETHER_HDR_LEN;
2293 		ip = (struct ip *)p;
2294 	}
2295 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2296 
2297 sendit:
2298 	f->sk_csum_startval = 0;
2299 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2300 	    (offset << 16));
2301 }
2302 
2303 static int
2304 sk_encap(struct sk_if_softc *sc_if, struct mbuf **m_head)
2305 {
2306 	struct sk_txdesc	*txd;
2307 	struct sk_tx_desc	*f = NULL;
2308 	struct mbuf		*m;
2309 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2310 	u_int32_t		cflags, frag, si, sk_ctl;
2311 	int			error, i, nseg;
2312 
2313 	SK_IF_LOCK_ASSERT(sc_if);
2314 
2315 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2316 		return (ENOBUFS);
2317 
2318 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2319 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2320 	if (error == EFBIG) {
2321 		m = m_defrag(*m_head, M_NOWAIT);
2322 		if (m == NULL) {
2323 			m_freem(*m_head);
2324 			*m_head = NULL;
2325 			return (ENOMEM);
2326 		}
2327 		*m_head = m;
2328 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2329 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2330 		if (error != 0) {
2331 			m_freem(*m_head);
2332 			*m_head = NULL;
2333 			return (error);
2334 		}
2335 	} else if (error != 0)
2336 		return (error);
2337 	if (nseg == 0) {
2338 		m_freem(*m_head);
2339 		*m_head = NULL;
2340 		return (EIO);
2341 	}
2342 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2343 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2344 		return (ENOBUFS);
2345 	}
2346 
2347 	m = *m_head;
2348 	if ((m->m_pkthdr.csum_flags & if_gethwassist(sc_if->sk_ifp)) != 0)
2349 		cflags = SK_OPCODE_CSUM;
2350 	else
2351 		cflags = SK_OPCODE_DEFAULT;
2352 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2353 	for (i = 0; i < nseg; i++) {
2354 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2355 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2356 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2357 		sk_ctl = txsegs[i].ds_len | cflags;
2358 		if (i == 0) {
2359 			if (cflags == SK_OPCODE_CSUM)
2360 				sk_txcksum(sc_if->sk_ifp, m, f);
2361 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2362 		} else
2363 			sk_ctl |= SK_TXCTL_OWN;
2364 		f->sk_ctl = htole32(sk_ctl);
2365 		sc_if->sk_cdata.sk_tx_cnt++;
2366 		SK_INC(frag, SK_TX_RING_CNT);
2367 	}
2368 	sc_if->sk_cdata.sk_tx_prod = frag;
2369 
2370 	/* set EOF on the last descriptor */
2371 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2372 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2373 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2374 
2375 	/* turn the first descriptor ownership to NIC */
2376 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2377 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2378 
2379 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2380 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2381 	txd->tx_m = m;
2382 
2383 	/* sync descriptors */
2384 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2385 	    BUS_DMASYNC_PREWRITE);
2386 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2387 	    sc_if->sk_cdata.sk_tx_ring_map,
2388 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2389 
2390 	return (0);
2391 }
2392 
2393 static void
2394 sk_start(if_t ifp)
2395 {
2396 	struct sk_if_softc *sc_if;
2397 
2398 	sc_if = if_getsoftc(ifp);
2399 
2400 	SK_IF_LOCK(sc_if);
2401 	sk_start_locked(ifp);
2402 	SK_IF_UNLOCK(sc_if);
2403 
2404 	return;
2405 }
2406 
2407 static void
2408 sk_start_locked(if_t ifp)
2409 {
2410         struct sk_softc		*sc;
2411         struct sk_if_softc	*sc_if;
2412         struct mbuf		*m_head;
2413 	int			enq;
2414 
2415 	sc_if = if_getsoftc(ifp);
2416 	sc = sc_if->sk_softc;
2417 
2418 	SK_IF_LOCK_ASSERT(sc_if);
2419 
2420 	for (enq = 0; !if_sendq_empty(ifp) &&
2421 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2422 		m_head = if_dequeue(ifp);
2423 		if (m_head == NULL)
2424 			break;
2425 
2426 		/*
2427 		 * Pack the data into the transmit ring. If we
2428 		 * don't have room, set the OACTIVE flag and wait
2429 		 * for the NIC to drain the ring.
2430 		 */
2431 		if (sk_encap(sc_if, &m_head)) {
2432 			if (m_head == NULL)
2433 				break;
2434 			if_sendq_prepend(ifp, m_head);
2435 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2436 			break;
2437 		}
2438 
2439 		enq++;
2440 		/*
2441 		 * If there's a BPF listener, bounce a copy of this frame
2442 		 * to him.
2443 		 */
2444 		BPF_MTAP(ifp, m_head);
2445 	}
2446 
2447 	if (enq > 0) {
2448 		/* Transmit */
2449 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2450 
2451 		/* Set a timeout in case the chip goes out to lunch. */
2452 		sc_if->sk_watchdog_timer = 5;
2453 	}
2454 }
2455 
2456 static void
2457 sk_watchdog(void *arg)
2458 {
2459 	struct sk_if_softc	*sc_if;
2460 	if_t			ifp;
2461 
2462 	ifp = arg;
2463 	sc_if = if_getsoftc(ifp);
2464 
2465 	SK_IF_LOCK_ASSERT(sc_if);
2466 
2467 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2468 		goto done;
2469 
2470 	/*
2471 	 * Reclaim first as there is a possibility of losing Tx completion
2472 	 * interrupts.
2473 	 */
2474 	sk_txeof(sc_if);
2475 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2476 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2477 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2478 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2479 		sk_init_locked(sc_if);
2480 	}
2481 
2482 done:
2483 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2484 
2485 	return;
2486 }
2487 
2488 static int
2489 skc_shutdown(device_t dev)
2490 {
2491 	struct sk_softc		*sc;
2492 
2493 	sc = device_get_softc(dev);
2494 	SK_LOCK(sc);
2495 
2496 	/* Turn off the 'driver is loaded' LED. */
2497 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2498 
2499 	/*
2500 	 * Reset the GEnesis controller. Doing this should also
2501 	 * assert the resets on the attached XMAC(s).
2502 	 */
2503 	sk_reset(sc);
2504 	SK_UNLOCK(sc);
2505 
2506 	return (0);
2507 }
2508 
2509 static int
2510 skc_suspend(device_t dev)
2511 {
2512 	struct sk_softc		*sc;
2513 	struct sk_if_softc	*sc_if0, *sc_if1;
2514 	if_t			ifp0 = NULL, ifp1 = NULL;
2515 
2516 	sc = device_get_softc(dev);
2517 
2518 	SK_LOCK(sc);
2519 
2520 	sc_if0 = sc->sk_if[SK_PORT_A];
2521 	sc_if1 = sc->sk_if[SK_PORT_B];
2522 	if (sc_if0 != NULL)
2523 		ifp0 = sc_if0->sk_ifp;
2524 	if (sc_if1 != NULL)
2525 		ifp1 = sc_if1->sk_ifp;
2526 	if (ifp0 != NULL)
2527 		sk_stop(sc_if0);
2528 	if (ifp1 != NULL)
2529 		sk_stop(sc_if1);
2530 	sc->sk_suspended = 1;
2531 
2532 	SK_UNLOCK(sc);
2533 
2534 	return (0);
2535 }
2536 
2537 static int
2538 skc_resume(device_t dev)
2539 {
2540 	struct sk_softc		*sc;
2541 	struct sk_if_softc	*sc_if0, *sc_if1;
2542 	if_t			ifp0 = NULL, ifp1 = NULL;
2543 
2544 	sc = device_get_softc(dev);
2545 
2546 	SK_LOCK(sc);
2547 
2548 	sc_if0 = sc->sk_if[SK_PORT_A];
2549 	sc_if1 = sc->sk_if[SK_PORT_B];
2550 	if (sc_if0 != NULL)
2551 		ifp0 = sc_if0->sk_ifp;
2552 	if (sc_if1 != NULL)
2553 		ifp1 = sc_if1->sk_ifp;
2554 	if (ifp0 != NULL && if_getflags(ifp0) & IFF_UP)
2555 		sk_init_locked(sc_if0);
2556 	if (ifp1 != NULL && if_getflags(ifp1) & IFF_UP)
2557 		sk_init_locked(sc_if1);
2558 	sc->sk_suspended = 0;
2559 
2560 	SK_UNLOCK(sc);
2561 
2562 	return (0);
2563 }
2564 
2565 /*
2566  * According to the data sheet from SK-NET GENESIS the hardware can compute
2567  * two Rx checksums at the same time(Each checksum start position is
2568  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2569  * does not work at least on my Yukon hardware. I tried every possible ways
2570  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2571  * checksum offload was disabled at the moment and only IP checksum offload
2572  * was enabled.
2573  * As normal IP header size is 20 bytes I can't expect it would give an
2574  * increase in throughput. However it seems it doesn't hurt performance in
2575  * my testing. If there is a more detailed information for checksum secret
2576  * of the hardware in question please contact yongari@FreeBSD.org to add
2577  * TCP/UDP checksum offload support.
2578  */
2579 static __inline void
2580 sk_rxcksum(if_t ifp, struct mbuf *m, u_int32_t csum)
2581 {
2582 	struct ether_header	*eh;
2583 	struct ip		*ip;
2584 	int32_t			hlen, len, pktlen;
2585 	u_int16_t		csum1, csum2, ipcsum;
2586 
2587 	pktlen = m->m_pkthdr.len;
2588 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2589 		return;
2590 	eh = mtod(m, struct ether_header *);
2591 	if (eh->ether_type != htons(ETHERTYPE_IP))
2592 		return;
2593 	ip = (struct ip *)(eh + 1);
2594 	if (ip->ip_v != IPVERSION)
2595 		return;
2596 	hlen = ip->ip_hl << 2;
2597 	pktlen -= sizeof(struct ether_header);
2598 	if (hlen < sizeof(struct ip))
2599 		return;
2600 	if (ntohs(ip->ip_len) < hlen)
2601 		return;
2602 	if (ntohs(ip->ip_len) != pktlen)
2603 		return;
2604 
2605 	csum1 = htons(csum & 0xffff);
2606 	csum2 = htons((csum >> 16) & 0xffff);
2607 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2608 	/* checksum fixup for IP options */
2609 	len = hlen - sizeof(struct ip);
2610 	if (len > 0) {
2611 		/*
2612 		 * If the second checksum value is correct we can compute IP
2613 		 * checksum with simple math. Unfortunately the second checksum
2614 		 * value is wrong so we can't verify the checksum from the
2615 		 * value(It seems there is some magic here to get correct
2616 		 * value). If the second checksum value is correct it also
2617 		 * means we can get TCP/UDP checksum) here. However, it still
2618 		 * needs pseudo header checksum calculation due to hardware
2619 		 * limitations.
2620 		 */
2621 		return;
2622 	}
2623 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2624 	if (ipcsum == 0xffff)
2625 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2626 }
2627 
2628 static __inline int
2629 sk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
2630 {
2631 
2632 	if (sc->sk_type == SK_GENESIS) {
2633 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2634 		    XM_RXSTAT_BYTES(stat) != len)
2635 			return (0);
2636 	} else {
2637 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2638 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2639 		    YU_RXSTAT_JABBER)) != 0 ||
2640 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2641 		    YU_RXSTAT_BYTES(stat) != len)
2642 			return (0);
2643 	}
2644 
2645 	return (1);
2646 }
2647 
2648 static void
2649 sk_rxeof(struct sk_if_softc *sc_if)
2650 {
2651 	struct sk_softc		*sc;
2652 	struct mbuf		*m;
2653 	if_t			ifp;
2654 	struct sk_rx_desc	*cur_rx;
2655 	struct sk_rxdesc	*rxd;
2656 	int			cons, prog;
2657 	u_int32_t		csum, rxstat, sk_ctl;
2658 
2659 	sc = sc_if->sk_softc;
2660 	ifp = sc_if->sk_ifp;
2661 
2662 	SK_IF_LOCK_ASSERT(sc_if);
2663 
2664 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2665 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2666 
2667 	prog = 0;
2668 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2669 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2670 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2671 		sk_ctl = le32toh(cur_rx->sk_ctl);
2672 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2673 			break;
2674 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2675 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2676 
2677 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2678 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2679 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2680 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2681 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2682 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2683 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2684 			sk_discard_rxbuf(sc_if, cons);
2685 			continue;
2686 		}
2687 
2688 		m = rxd->rx_m;
2689 		csum = le32toh(cur_rx->sk_csum);
2690 		if (sk_newbuf(sc_if, cons) != 0) {
2691 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2692 			/* reuse old buffer */
2693 			sk_discard_rxbuf(sc_if, cons);
2694 			continue;
2695 		}
2696 		m->m_pkthdr.rcvif = ifp;
2697 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2698 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2699 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2700 			sk_rxcksum(ifp, m, csum);
2701 		SK_IF_UNLOCK(sc_if);
2702 		if_input(ifp, m);
2703 		SK_IF_LOCK(sc_if);
2704 	}
2705 
2706 	if (prog > 0) {
2707 		sc_if->sk_cdata.sk_rx_cons = cons;
2708 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2709 		    sc_if->sk_cdata.sk_rx_ring_map,
2710 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2711 	}
2712 }
2713 
2714 static void
2715 sk_jumbo_rxeof(struct sk_if_softc *sc_if)
2716 {
2717 	struct sk_softc		*sc;
2718 	struct mbuf		*m;
2719 	if_t			ifp;
2720 	struct sk_rx_desc	*cur_rx;
2721 	struct sk_rxdesc	*jrxd;
2722 	int			cons, prog;
2723 	u_int32_t		csum, rxstat, sk_ctl;
2724 
2725 	sc = sc_if->sk_softc;
2726 	ifp = sc_if->sk_ifp;
2727 
2728 	SK_IF_LOCK_ASSERT(sc_if);
2729 
2730 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2731 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2732 
2733 	prog = 0;
2734 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2735 	    prog < SK_JUMBO_RX_RING_CNT;
2736 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2737 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2738 		sk_ctl = le32toh(cur_rx->sk_ctl);
2739 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2740 			break;
2741 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2742 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2743 
2744 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2745 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2746 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2747 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2748 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2749 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2750 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2751 			sk_discard_jumbo_rxbuf(sc_if, cons);
2752 			continue;
2753 		}
2754 
2755 		m = jrxd->rx_m;
2756 		csum = le32toh(cur_rx->sk_csum);
2757 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2758 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2759 			/* reuse old buffer */
2760 			sk_discard_jumbo_rxbuf(sc_if, cons);
2761 			continue;
2762 		}
2763 		m->m_pkthdr.rcvif = ifp;
2764 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2765 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2766 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2767 			sk_rxcksum(ifp, m, csum);
2768 		SK_IF_UNLOCK(sc_if);
2769 		if_input(ifp, m);
2770 		SK_IF_LOCK(sc_if);
2771 	}
2772 
2773 	if (prog > 0) {
2774 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2775 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2776 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2777 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2778 	}
2779 }
2780 
2781 static void
2782 sk_txeof(struct sk_if_softc *sc_if)
2783 {
2784 	struct sk_txdesc	*txd;
2785 	struct sk_tx_desc	*cur_tx;
2786 	if_t			ifp;
2787 	u_int32_t		idx, sk_ctl;
2788 
2789 	ifp = sc_if->sk_ifp;
2790 
2791 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2792 	if (txd == NULL)
2793 		return;
2794 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2795 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2796 	/*
2797 	 * Go through our tx ring and free mbufs for those
2798 	 * frames that have been sent.
2799 	 */
2800 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2801 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2802 			break;
2803 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2804 		sk_ctl = le32toh(cur_tx->sk_ctl);
2805 		if (sk_ctl & SK_TXCTL_OWN)
2806 			break;
2807 		sc_if->sk_cdata.sk_tx_cnt--;
2808 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2809 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2810 			continue;
2811 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2812 		    BUS_DMASYNC_POSTWRITE);
2813 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2814 
2815 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2816 		m_freem(txd->tx_m);
2817 		txd->tx_m = NULL;
2818 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2819 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2820 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2821 	}
2822 	sc_if->sk_cdata.sk_tx_cons = idx;
2823 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2824 
2825 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2826 	    sc_if->sk_cdata.sk_tx_ring_map,
2827 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2828 }
2829 
2830 static void
2831 sk_tick(void *xsc_if)
2832 {
2833 	struct sk_if_softc	*sc_if;
2834 	struct mii_data		*mii;
2835 	if_t			ifp;
2836 	int			i;
2837 
2838 	sc_if = xsc_if;
2839 	ifp = sc_if->sk_ifp;
2840 	mii = device_get_softc(sc_if->sk_miibus);
2841 
2842 	if (!(if_getflags(ifp) & IFF_UP))
2843 		return;
2844 
2845 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2846 		sk_intr_bcom(sc_if);
2847 		return;
2848 	}
2849 
2850 	/*
2851 	 * According to SysKonnect, the correct way to verify that
2852 	 * the link has come back up is to poll bit 0 of the GPIO
2853 	 * register three times. This pin has the signal from the
2854 	 * link_sync pin connected to it; if we read the same link
2855 	 * state 3 times in a row, we know the link is up.
2856 	 */
2857 	for (i = 0; i < 3; i++) {
2858 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2859 			break;
2860 	}
2861 
2862 	if (i != 3) {
2863 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2864 		return;
2865 	}
2866 
2867 	/* Turn the GP0 interrupt back on. */
2868 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2869 	SK_XM_READ_2(sc_if, XM_ISR);
2870 	mii_tick(mii);
2871 	callout_stop(&sc_if->sk_tick_ch);
2872 }
2873 
2874 static void
2875 sk_yukon_tick(void *xsc_if)
2876 {
2877 	struct sk_if_softc	*sc_if;
2878 	struct mii_data		*mii;
2879 
2880 	sc_if = xsc_if;
2881 	mii = device_get_softc(sc_if->sk_miibus);
2882 
2883 	mii_tick(mii);
2884 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2885 }
2886 
2887 static void
2888 sk_intr_bcom(struct sk_if_softc *sc_if)
2889 {
2890 	struct mii_data		*mii;
2891 	if_t			ifp;
2892 	int			status;
2893 	mii = device_get_softc(sc_if->sk_miibus);
2894 	ifp = sc_if->sk_ifp;
2895 
2896 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2897 
2898 	/*
2899 	 * Read the PHY interrupt register to make sure
2900 	 * we clear any pending interrupts.
2901 	 */
2902 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2903 
2904 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
2905 		sk_init_xmac(sc_if);
2906 		return;
2907 	}
2908 
2909 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2910 		int			lstat;
2911 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2912 		    BRGPHY_MII_AUXSTS);
2913 
2914 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2915 			mii_mediachg(mii);
2916 			/* Turn off the link LED. */
2917 			SK_IF_WRITE_1(sc_if, 0,
2918 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2919 			sc_if->sk_link = 0;
2920 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2921 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2922 	    		    BRGPHY_MII_IMR, 0xFF00);
2923 			mii_tick(mii);
2924 			sc_if->sk_link = 1;
2925 			/* Turn on the link LED. */
2926 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2927 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2928 			    SK_LINKLED_BLINK_OFF);
2929 		} else {
2930 			mii_tick(mii);
2931 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2932 		}
2933 	}
2934 
2935 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2936 
2937 	return;
2938 }
2939 
2940 static void
2941 sk_intr_xmac(struct sk_if_softc *sc_if)
2942 {
2943 	u_int16_t		status;
2944 
2945 	status = SK_XM_READ_2(sc_if, XM_ISR);
2946 
2947 	/*
2948 	 * Link has gone down. Start MII tick timeout to
2949 	 * watch for link resync.
2950 	 */
2951 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2952 		if (status & XM_ISR_GP0_SET) {
2953 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2954 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2955 		}
2956 
2957 		if (status & XM_ISR_AUTONEG_DONE) {
2958 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2959 		}
2960 	}
2961 
2962 	if (status & XM_IMR_TX_UNDERRUN)
2963 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2964 
2965 	if (status & XM_IMR_RX_OVERRUN)
2966 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2967 
2968 	status = SK_XM_READ_2(sc_if, XM_ISR);
2969 
2970 	return;
2971 }
2972 
2973 static void
2974 sk_intr_yukon(struct sk_if_softc *sc_if)
2975 {
2976 	u_int8_t status;
2977 
2978 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2979 	/* RX overrun */
2980 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2981 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2982 		    SK_RFCTL_RX_FIFO_OVER);
2983 	}
2984 	/* TX underrun */
2985 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2986 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2987 		    SK_TFCTL_TX_FIFO_UNDER);
2988 	}
2989 }
2990 
2991 static void
2992 sk_intr(void *xsc)
2993 {
2994 	struct sk_softc		*sc = xsc;
2995 	struct sk_if_softc	*sc_if0, *sc_if1;
2996 	if_t			ifp0 = NULL, ifp1 = NULL;
2997 	u_int32_t		status;
2998 
2999 	SK_LOCK(sc);
3000 
3001 	status = CSR_READ_4(sc, SK_ISSR);
3002 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3003 		goto done_locked;
3004 
3005 	sc_if0 = sc->sk_if[SK_PORT_A];
3006 	sc_if1 = sc->sk_if[SK_PORT_B];
3007 
3008 	if (sc_if0 != NULL)
3009 		ifp0 = sc_if0->sk_ifp;
3010 	if (sc_if1 != NULL)
3011 		ifp1 = sc_if1->sk_ifp;
3012 
3013 	for (; (status &= sc->sk_intrmask) != 0;) {
3014 		/* Handle receive interrupts first. */
3015 		if (status & SK_ISR_RX1_EOF) {
3016 			if (if_getmtu(ifp0) > SK_MAX_FRAMELEN)
3017 				sk_jumbo_rxeof(sc_if0);
3018 			else
3019 				sk_rxeof(sc_if0);
3020 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3021 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3022 		}
3023 		if (status & SK_ISR_RX2_EOF) {
3024 			if (if_getflags(ifp1) > SK_MAX_FRAMELEN)
3025 				sk_jumbo_rxeof(sc_if1);
3026 			else
3027 				sk_rxeof(sc_if1);
3028 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3029 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3030 		}
3031 
3032 		/* Then transmit interrupts. */
3033 		if (status & SK_ISR_TX1_S_EOF) {
3034 			sk_txeof(sc_if0);
3035 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3036 		}
3037 		if (status & SK_ISR_TX2_S_EOF) {
3038 			sk_txeof(sc_if1);
3039 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3040 		}
3041 
3042 		/* Then MAC interrupts. */
3043 		if (status & SK_ISR_MAC1 &&
3044 		    if_getdrvflags(ifp0) & IFF_DRV_RUNNING) {
3045 			if (sc->sk_type == SK_GENESIS)
3046 				sk_intr_xmac(sc_if0);
3047 			else
3048 				sk_intr_yukon(sc_if0);
3049 		}
3050 
3051 		if (status & SK_ISR_MAC2 &&
3052 		    if_getdrvflags(ifp1) & IFF_DRV_RUNNING) {
3053 			if (sc->sk_type == SK_GENESIS)
3054 				sk_intr_xmac(sc_if1);
3055 			else
3056 				sk_intr_yukon(sc_if1);
3057 		}
3058 
3059 		if (status & SK_ISR_EXTERNAL_REG) {
3060 			if (ifp0 != NULL &&
3061 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3062 				sk_intr_bcom(sc_if0);
3063 			if (ifp1 != NULL &&
3064 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3065 				sk_intr_bcom(sc_if1);
3066 		}
3067 		status = CSR_READ_4(sc, SK_ISSR);
3068 	}
3069 
3070 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3071 
3072 	if (ifp0 != NULL && !if_sendq_empty(ifp0))
3073 		sk_start_locked(ifp0);
3074 	if (ifp1 != NULL && !if_sendq_empty(ifp1))
3075 		sk_start_locked(ifp1);
3076 
3077 done_locked:
3078 	SK_UNLOCK(sc);
3079 }
3080 
3081 static void
3082 sk_init_xmac(struct sk_if_softc *sc_if)
3083 {
3084 	struct sk_softc		*sc;
3085 	if_t			ifp;
3086 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3087 	static const struct sk_bcom_hack bhack[] = {
3088 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3089 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3090 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3091 	{ 0, 0 } };
3092 
3093 	SK_IF_LOCK_ASSERT(sc_if);
3094 
3095 	sc = sc_if->sk_softc;
3096 	ifp = sc_if->sk_ifp;
3097 
3098 	/* Unreset the XMAC. */
3099 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3100 	DELAY(1000);
3101 
3102 	/* Reset the XMAC's internal state. */
3103 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3104 
3105 	/* Save the XMAC II revision */
3106 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3107 
3108 	/*
3109 	 * Perform additional initialization for external PHYs,
3110 	 * namely for the 1000baseTX cards that use the XMAC's
3111 	 * GMII mode.
3112 	 */
3113 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3114 		int			i = 0;
3115 		u_int32_t		val;
3116 
3117 		/* Take PHY out of reset. */
3118 		val = sk_win_read_4(sc, SK_GPIO);
3119 		if (sc_if->sk_port == SK_PORT_A)
3120 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3121 		else
3122 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3123 		sk_win_write_4(sc, SK_GPIO, val);
3124 
3125 		/* Enable GMII mode on the XMAC. */
3126 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3127 
3128 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3129 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3130 		DELAY(10000);
3131 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3132 		    BRGPHY_MII_IMR, 0xFFF0);
3133 
3134 		/*
3135 		 * Early versions of the BCM5400 apparently have
3136 		 * a bug that requires them to have their reserved
3137 		 * registers initialized to some magic values. I don't
3138 		 * know what the numbers do, I'm just the messenger.
3139 		 */
3140 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3141 		    == 0x6041) {
3142 			while(bhack[i].reg) {
3143 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3144 				    bhack[i].reg, bhack[i].val);
3145 				i++;
3146 			}
3147 		}
3148 	}
3149 
3150 	/* Set station address */
3151 	bcopy(if_getlladdr(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3152 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3153 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3154 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3155 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3156 
3157 	if (if_getflags(ifp) & IFF_BROADCAST) {
3158 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3159 	} else {
3160 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3161 	}
3162 
3163 	/* We don't need the FCS appended to the packet. */
3164 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3165 
3166 	/* We want short frames padded to 60 bytes. */
3167 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3168 
3169 	/*
3170 	 * Enable the reception of all error frames. This is is
3171 	 * a necessary evil due to the design of the XMAC. The
3172 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3173 	 * frames can be up to 9000 bytes in length. When bad
3174 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3175 	 * in 'store and forward' mode. For this to work, the
3176 	 * entire frame has to fit into the FIFO, but that means
3177 	 * that jumbo frames larger than 8192 bytes will be
3178 	 * truncated. Disabling all bad frame filtering causes
3179 	 * the RX FIFO to operate in streaming mode, in which
3180 	 * case the XMAC will start transferring frames out of the
3181 	 * RX FIFO as soon as the FIFO threshold is reached.
3182 	 */
3183 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN) {
3184 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3185 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3186 		    XM_MODE_RX_INRANGELEN);
3187 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3188 	} else
3189 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3190 
3191 	/*
3192 	 * Bump up the transmit threshold. This helps hold off transmit
3193 	 * underruns when we're blasting traffic from both ports at once.
3194 	 */
3195 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3196 
3197 	/* Set Rx filter */
3198 	sk_rxfilter_genesis(sc_if);
3199 
3200 	/* Clear and enable interrupts */
3201 	SK_XM_READ_2(sc_if, XM_ISR);
3202 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3203 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3204 	else
3205 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3206 
3207 	/* Configure MAC arbiter */
3208 	switch(sc_if->sk_xmac_rev) {
3209 	case XM_XMAC_REV_B2:
3210 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3211 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3212 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3213 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3214 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3215 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3216 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3217 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3218 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3219 		break;
3220 	case XM_XMAC_REV_C1:
3221 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3222 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3223 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3224 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3225 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3226 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3227 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3228 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3229 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3230 		break;
3231 	default:
3232 		break;
3233 	}
3234 	sk_win_write_2(sc, SK_MACARB_CTL,
3235 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3236 
3237 	sc_if->sk_link = 1;
3238 
3239 	return;
3240 }
3241 
3242 static void
3243 sk_init_yukon(struct sk_if_softc *sc_if)
3244 {
3245 	u_int32_t		phy, v;
3246 	u_int16_t		reg;
3247 	struct sk_softc		*sc;
3248 	if_t			ifp;
3249 	u_int8_t		*eaddr;
3250 	int			i;
3251 
3252 	SK_IF_LOCK_ASSERT(sc_if);
3253 
3254 	sc = sc_if->sk_softc;
3255 	ifp = sc_if->sk_ifp;
3256 
3257 	if (sc->sk_type == SK_YUKON_LITE &&
3258 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3259 		/*
3260 		 * Workaround code for COMA mode, set PHY reset.
3261 		 * Otherwise it will not correctly take chip out of
3262 		 * powerdown (coma)
3263 		 */
3264 		v = sk_win_read_4(sc, SK_GPIO);
3265 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3266 		sk_win_write_4(sc, SK_GPIO, v);
3267 	}
3268 
3269 	/* GMAC and GPHY Reset */
3270 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3271 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3272 	DELAY(1000);
3273 
3274 	if (sc->sk_type == SK_YUKON_LITE &&
3275 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3276 		/*
3277 		 * Workaround code for COMA mode, clear PHY reset
3278 		 */
3279 		v = sk_win_read_4(sc, SK_GPIO);
3280 		v |= SK_GPIO_DIR9;
3281 		v &= ~SK_GPIO_DAT9;
3282 		sk_win_write_4(sc, SK_GPIO, v);
3283 	}
3284 
3285 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3286 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3287 
3288 	if (sc->sk_coppertype)
3289 		phy |= SK_GPHY_COPPER;
3290 	else
3291 		phy |= SK_GPHY_FIBER;
3292 
3293 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3294 	DELAY(1000);
3295 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3296 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3297 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3298 
3299 	/* unused read of the interrupt source register */
3300 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3301 
3302 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3303 
3304 	/* MIB Counter Clear Mode set */
3305 	reg |= YU_PAR_MIB_CLR;
3306 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3307 
3308 	/* MIB Counter Clear Mode clear */
3309 	reg &= ~YU_PAR_MIB_CLR;
3310 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3311 
3312 	/* receive control reg */
3313 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3314 
3315 	/* transmit parameter register */
3316 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3317 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3318 
3319 	/* serial mode register */
3320 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3321 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN)
3322 		reg |= YU_SMR_MFL_JUMBO;
3323 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3324 
3325 	/* Setup Yukon's station address */
3326 	eaddr = if_getlladdr(sc_if->sk_ifp);
3327 	for (i = 0; i < 3; i++)
3328 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3329 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3330 	/* Set GMAC source address of flow control. */
3331 	for (i = 0; i < 3; i++)
3332 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3333 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3334 	/* Set GMAC virtual address. */
3335 	for (i = 0; i < 3; i++)
3336 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3337 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3338 
3339 	/* Set Rx filter */
3340 	sk_rxfilter_yukon(sc_if);
3341 
3342 	/* enable interrupt mask for counter overflows */
3343 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3344 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3345 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3346 
3347 	/* Configure RX MAC FIFO Flush Mask */
3348 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3349 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3350 	    YU_RXSTAT_JABBER;
3351 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3352 
3353 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3354 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3355 		v = SK_TFCTL_OPERATION_ON;
3356 	else
3357 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3358 	/* Configure RX MAC FIFO */
3359 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3360 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3361 
3362 	/* Increase flush threshould to 64 bytes */
3363 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3364 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3365 
3366 	/* Configure TX MAC FIFO */
3367 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3368 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3369 }
3370 
3371 /*
3372  * Note that to properly initialize any part of the GEnesis chip,
3373  * you first have to take it out of reset mode.
3374  */
3375 static void
3376 sk_init(void *xsc)
3377 {
3378 	struct sk_if_softc	*sc_if = xsc;
3379 
3380 	SK_IF_LOCK(sc_if);
3381 	sk_init_locked(sc_if);
3382 	SK_IF_UNLOCK(sc_if);
3383 
3384 	return;
3385 }
3386 
3387 static void
3388 sk_init_locked(struct sk_if_softc *sc_if)
3389 {
3390 	struct sk_softc		*sc;
3391 	if_t			ifp;
3392 	struct mii_data		*mii;
3393 	u_int16_t		reg;
3394 	u_int32_t		imr;
3395 	int			error;
3396 
3397 	SK_IF_LOCK_ASSERT(sc_if);
3398 
3399 	ifp = sc_if->sk_ifp;
3400 	sc = sc_if->sk_softc;
3401 	mii = device_get_softc(sc_if->sk_miibus);
3402 
3403 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3404 		return;
3405 
3406 	/* Cancel pending I/O and free all RX/TX buffers. */
3407 	sk_stop(sc_if);
3408 
3409 	if (sc->sk_type == SK_GENESIS) {
3410 		/* Configure LINK_SYNC LED */
3411 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3412 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3413 			SK_LINKLED_LINKSYNC_ON);
3414 
3415 		/* Configure RX LED */
3416 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3417 			SK_RXLEDCTL_COUNTER_START);
3418 
3419 		/* Configure TX LED */
3420 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3421 			SK_TXLEDCTL_COUNTER_START);
3422 	}
3423 
3424 	/*
3425 	 * Configure descriptor poll timer
3426 	 *
3427 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3428 	 * transmit command due to CPU/cache related interim storage problems
3429 	 * under certain conditions. The document recommends a polling
3430 	 * mechanism to send a Start transmit command to initiate transfer
3431 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3432 	 * enables descriptor poll timer to initiate descriptor processing
3433 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3434 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3435 	 * command instead of waiting for next descriptor polling time.
3436 	 * The same rule may apply to Rx side too but it seems that is not
3437 	 * needed at the moment.
3438 	 * Since sk(4) uses descriptor polling as a last resort there is no
3439 	 * need to set smaller polling time than maximum allowable one.
3440 	 */
3441 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3442 
3443 	/* Configure I2C registers */
3444 
3445 	/* Configure XMAC(s) */
3446 	switch (sc->sk_type) {
3447 	case SK_GENESIS:
3448 		sk_init_xmac(sc_if);
3449 		break;
3450 	case SK_YUKON:
3451 	case SK_YUKON_LITE:
3452 	case SK_YUKON_LP:
3453 		sk_init_yukon(sc_if);
3454 		break;
3455 	}
3456 	mii_mediachg(mii);
3457 
3458 	if (sc->sk_type == SK_GENESIS) {
3459 		/* Configure MAC FIFOs */
3460 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3461 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3462 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3463 
3464 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3465 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3466 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3467 	}
3468 
3469 	/* Configure transmit arbiter(s) */
3470 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3471 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3472 
3473 	/* Configure RAMbuffers */
3474 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3475 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3476 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3477 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3478 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3479 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3480 
3481 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3482 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3483 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3484 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3485 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3486 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3487 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3488 
3489 	/* Configure BMUs */
3490 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3491 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN) {
3492 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3493 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3494 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3495 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3496 	} else {
3497 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3498 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3499 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3500 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3501 	}
3502 
3503 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3504 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3505 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3506 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3507 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3508 
3509 	/* Init descriptors */
3510 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN)
3511 		error = sk_init_jumbo_rx_ring(sc_if);
3512 	else
3513 		error = sk_init_rx_ring(sc_if);
3514 	if (error != 0) {
3515 		device_printf(sc_if->sk_if_dev,
3516 		    "initialization failed: no memory for rx buffers\n");
3517 		sk_stop(sc_if);
3518 		return;
3519 	}
3520 	sk_init_tx_ring(sc_if);
3521 
3522 	/* Set interrupt moderation if changed via sysctl. */
3523 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3524 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3525 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3526 		    sc->sk_int_ticks));
3527 		if (bootverbose)
3528 			device_printf(sc_if->sk_if_dev,
3529 			    "interrupt moderation is %d us.\n",
3530 			    sc->sk_int_mod);
3531 	}
3532 
3533 	/* Configure interrupt handling */
3534 	CSR_READ_4(sc, SK_ISSR);
3535 	if (sc_if->sk_port == SK_PORT_A)
3536 		sc->sk_intrmask |= SK_INTRS1;
3537 	else
3538 		sc->sk_intrmask |= SK_INTRS2;
3539 
3540 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3541 
3542 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3543 
3544 	/* Start BMUs. */
3545 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3546 
3547 	switch(sc->sk_type) {
3548 	case SK_GENESIS:
3549 		/* Enable XMACs TX and RX state machines */
3550 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3551 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3552 		break;
3553 	case SK_YUKON:
3554 	case SK_YUKON_LITE:
3555 	case SK_YUKON_LP:
3556 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3557 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3558 #if 0
3559 		/* XXX disable 100Mbps and full duplex mode? */
3560 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3561 #endif
3562 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3563 	}
3564 
3565 	/* Activate descriptor polling timer */
3566 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3567 	/* start transfer of Tx descriptors */
3568 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3569 
3570 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3571 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3572 
3573 	switch (sc->sk_type) {
3574 	case SK_YUKON:
3575 	case SK_YUKON_LITE:
3576 	case SK_YUKON_LP:
3577 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3578 		break;
3579 	}
3580 
3581 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3582 
3583 	return;
3584 }
3585 
3586 static void
3587 sk_stop(struct sk_if_softc *sc_if)
3588 {
3589 	int			i;
3590 	struct sk_softc		*sc;
3591 	struct sk_txdesc	*txd;
3592 	struct sk_rxdesc	*rxd;
3593 	struct sk_rxdesc	*jrxd;
3594 	if_t			ifp;
3595 	u_int32_t		val;
3596 
3597 	SK_IF_LOCK_ASSERT(sc_if);
3598 	sc = sc_if->sk_softc;
3599 	ifp = sc_if->sk_ifp;
3600 
3601 	callout_stop(&sc_if->sk_tick_ch);
3602 	callout_stop(&sc_if->sk_watchdog_ch);
3603 
3604 	/* stop Tx descriptor polling timer */
3605 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3606 	/* stop transfer of Tx descriptors */
3607 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3608 	for (i = 0; i < SK_TIMEOUT; i++) {
3609 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3610 		if ((val & SK_TXBMU_TX_STOP) == 0)
3611 			break;
3612 		DELAY(1);
3613 	}
3614 	if (i == SK_TIMEOUT)
3615 		device_printf(sc_if->sk_if_dev,
3616 		    "can not stop transfer of Tx descriptor\n");
3617 	/* stop transfer of Rx descriptors */
3618 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3619 	for (i = 0; i < SK_TIMEOUT; i++) {
3620 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3621 		if ((val & SK_RXBMU_RX_STOP) == 0)
3622 			break;
3623 		DELAY(1);
3624 	}
3625 	if (i == SK_TIMEOUT)
3626 		device_printf(sc_if->sk_if_dev,
3627 		    "can not stop transfer of Rx descriptor\n");
3628 
3629 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3630 		/* Put PHY back into reset. */
3631 		val = sk_win_read_4(sc, SK_GPIO);
3632 		if (sc_if->sk_port == SK_PORT_A) {
3633 			val |= SK_GPIO_DIR0;
3634 			val &= ~SK_GPIO_DAT0;
3635 		} else {
3636 			val |= SK_GPIO_DIR2;
3637 			val &= ~SK_GPIO_DAT2;
3638 		}
3639 		sk_win_write_4(sc, SK_GPIO, val);
3640 	}
3641 
3642 	/* Turn off various components of this interface. */
3643 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3644 	switch (sc->sk_type) {
3645 	case SK_GENESIS:
3646 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3647 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3648 		break;
3649 	case SK_YUKON:
3650 	case SK_YUKON_LITE:
3651 	case SK_YUKON_LP:
3652 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3653 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3654 		break;
3655 	}
3656 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3657 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3658 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3659 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3660 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3661 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3662 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3663 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3664 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3665 
3666 	/* Disable interrupts */
3667 	if (sc_if->sk_port == SK_PORT_A)
3668 		sc->sk_intrmask &= ~SK_INTRS1;
3669 	else
3670 		sc->sk_intrmask &= ~SK_INTRS2;
3671 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3672 
3673 	SK_XM_READ_2(sc_if, XM_ISR);
3674 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3675 
3676 	/* Free RX and TX mbufs still in the queues. */
3677 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3678 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3679 		if (rxd->rx_m != NULL) {
3680 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3681 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3682 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3683 			    rxd->rx_dmamap);
3684 			m_freem(rxd->rx_m);
3685 			rxd->rx_m = NULL;
3686 		}
3687 	}
3688 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3689 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3690 		if (jrxd->rx_m != NULL) {
3691 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3692 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3693 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3694 			    jrxd->rx_dmamap);
3695 			m_freem(jrxd->rx_m);
3696 			jrxd->rx_m = NULL;
3697 		}
3698 	}
3699 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3700 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3701 		if (txd->tx_m != NULL) {
3702 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3703 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3704 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3705 			    txd->tx_dmamap);
3706 			m_freem(txd->tx_m);
3707 			txd->tx_m = NULL;
3708 		}
3709 	}
3710 
3711 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING|IFF_DRV_OACTIVE));
3712 
3713 	return;
3714 }
3715 
3716 static int
3717 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3718 {
3719 	int error, value;
3720 
3721 	if (!arg1)
3722 		return (EINVAL);
3723 	value = *(int *)arg1;
3724 	error = sysctl_handle_int(oidp, &value, 0, req);
3725 	if (error || !req->newptr)
3726 		return (error);
3727 	if (value < low || value > high)
3728 		return (EINVAL);
3729 	*(int *)arg1 = value;
3730 	return (0);
3731 }
3732 
3733 static int
3734 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3735 {
3736 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3737 }
3738