1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org> 5 * Copyright (c) 1997, 1998, 1999 6 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 /* 40 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are 41 * available from http://www.sis.com.tw. 42 * 43 * This driver also supports the NatSemi DP83815. Datasheets are 44 * available from http://www.national.com. 45 * 46 * Written by Bill Paul <wpaul@ee.columbia.edu> 47 * Electrical Engineering Department 48 * Columbia University, New York City 49 */ 50 /* 51 * The SiS 900 is a fairly simple chip. It uses bus master DMA with 52 * simple TX and RX descriptors of 3 longwords in size. The receiver 53 * has a single perfect filter entry for the station address and a 54 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based 55 * transceiver while the 7016 requires an external transceiver chip. 56 * Both chips offer the standard bit-bang MII interface as well as 57 * an enchanced PHY interface which simplifies accessing MII registers. 58 * 59 * The only downside to this chipset is that RX descriptors must be 60 * longword aligned. 61 */ 62 63 #ifdef HAVE_KERNEL_OPTION_HEADERS 64 #include "opt_device_polling.h" 65 #endif 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/bus.h> 70 #include <sys/endian.h> 71 #include <sys/kernel.h> 72 #include <sys/lock.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/module.h> 76 #include <sys/socket.h> 77 #include <sys/sockio.h> 78 #include <sys/sysctl.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_arp.h> 83 #include <net/ethernet.h> 84 #include <net/if_dl.h> 85 #include <net/if_media.h> 86 #include <net/if_types.h> 87 #include <net/if_vlan_var.h> 88 89 #include <net/bpf.h> 90 91 #include <machine/bus.h> 92 #include <machine/resource.h> 93 #include <sys/rman.h> 94 95 #include <dev/mii/mii.h> 96 #include <dev/mii/mii_bitbang.h> 97 #include <dev/mii/miivar.h> 98 99 #include <dev/pci/pcireg.h> 100 #include <dev/pci/pcivar.h> 101 102 #define SIS_USEIOSPACE 103 104 #include <dev/sis/if_sisreg.h> 105 106 MODULE_DEPEND(sis, pci, 1, 1, 1); 107 MODULE_DEPEND(sis, ether, 1, 1, 1); 108 MODULE_DEPEND(sis, miibus, 1, 1, 1); 109 110 /* "device miibus" required. See GENERIC if you get errors here. */ 111 #include "miibus_if.h" 112 113 #define SIS_LOCK(_sc) mtx_lock(&(_sc)->sis_mtx) 114 #define SIS_UNLOCK(_sc) mtx_unlock(&(_sc)->sis_mtx) 115 #define SIS_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sis_mtx, MA_OWNED) 116 117 /* 118 * register space access macros 119 */ 120 #define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sis_res[0], reg, val) 121 122 #define CSR_READ_4(sc, reg) bus_read_4(sc->sis_res[0], reg) 123 124 #define CSR_READ_2(sc, reg) bus_read_2(sc->sis_res[0], reg) 125 126 #define CSR_BARRIER(sc, reg, length, flags) \ 127 bus_barrier(sc->sis_res[0], reg, length, flags) 128 129 /* 130 * Various supported device vendors/types and their names. 131 */ 132 static const struct sis_type sis_devs[] = { 133 { SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" }, 134 { SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" }, 135 { NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" }, 136 { 0, 0, NULL } 137 }; 138 139 static int sis_detach(device_t); 140 static __inline void sis_discard_rxbuf(struct sis_rxdesc *); 141 static int sis_dma_alloc(struct sis_softc *); 142 static void sis_dma_free(struct sis_softc *); 143 static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t, 144 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 145 static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int); 146 #ifndef __NO_STRICT_ALIGNMENT 147 static __inline void sis_fixup_rx(struct mbuf *); 148 #endif 149 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *); 150 static int sis_ifmedia_upd(struct ifnet *); 151 static void sis_init(void *); 152 static void sis_initl(struct sis_softc *); 153 static void sis_intr(void *); 154 static int sis_ioctl(struct ifnet *, u_long, caddr_t); 155 static uint32_t sis_mii_bitbang_read(device_t); 156 static void sis_mii_bitbang_write(device_t, uint32_t); 157 static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *); 158 static int sis_resume(device_t); 159 static int sis_rxeof(struct sis_softc *); 160 static void sis_rxfilter(struct sis_softc *); 161 static void sis_rxfilter_ns(struct sis_softc *); 162 static void sis_rxfilter_sis(struct sis_softc *); 163 static void sis_start(struct ifnet *); 164 static void sis_startl(struct ifnet *); 165 static void sis_stop(struct sis_softc *); 166 static int sis_suspend(device_t); 167 static void sis_add_sysctls(struct sis_softc *); 168 static void sis_watchdog(struct sis_softc *); 169 static void sis_wol(struct sis_softc *); 170 171 /* 172 * MII bit-bang glue 173 */ 174 static const struct mii_bitbang_ops sis_mii_bitbang_ops = { 175 sis_mii_bitbang_read, 176 sis_mii_bitbang_write, 177 { 178 SIS_MII_DATA, /* MII_BIT_MDO */ 179 SIS_MII_DATA, /* MII_BIT_MDI */ 180 SIS_MII_CLK, /* MII_BIT_MDC */ 181 SIS_MII_DIR, /* MII_BIT_DIR_HOST_PHY */ 182 0, /* MII_BIT_DIR_PHY_HOST */ 183 } 184 }; 185 186 static struct resource_spec sis_res_spec[] = { 187 #ifdef SIS_USEIOSPACE 188 { SYS_RES_IOPORT, SIS_PCI_LOIO, RF_ACTIVE}, 189 #else 190 { SYS_RES_MEMORY, SIS_PCI_LOMEM, RF_ACTIVE}, 191 #endif 192 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE}, 193 { -1, 0 } 194 }; 195 196 #define SIS_SETBIT(sc, reg, x) \ 197 CSR_WRITE_4(sc, reg, \ 198 CSR_READ_4(sc, reg) | (x)) 199 200 #define SIS_CLRBIT(sc, reg, x) \ 201 CSR_WRITE_4(sc, reg, \ 202 CSR_READ_4(sc, reg) & ~(x)) 203 204 #define SIO_SET(x) \ 205 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x) 206 207 #define SIO_CLR(x) \ 208 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x) 209 210 /* 211 * Routine to reverse the bits in a word. Stolen almost 212 * verbatim from /usr/games/fortune. 213 */ 214 static uint16_t 215 sis_reverse(uint16_t n) 216 { 217 n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa); 218 n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc); 219 n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0); 220 n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00); 221 222 return (n); 223 } 224 225 static void 226 sis_delay(struct sis_softc *sc) 227 { 228 int idx; 229 230 for (idx = (300 / 33) + 1; idx > 0; idx--) 231 CSR_READ_4(sc, SIS_CSR); 232 } 233 234 static void 235 sis_eeprom_idle(struct sis_softc *sc) 236 { 237 int i; 238 239 SIO_SET(SIS_EECTL_CSEL); 240 sis_delay(sc); 241 SIO_SET(SIS_EECTL_CLK); 242 sis_delay(sc); 243 244 for (i = 0; i < 25; i++) { 245 SIO_CLR(SIS_EECTL_CLK); 246 sis_delay(sc); 247 SIO_SET(SIS_EECTL_CLK); 248 sis_delay(sc); 249 } 250 251 SIO_CLR(SIS_EECTL_CLK); 252 sis_delay(sc); 253 SIO_CLR(SIS_EECTL_CSEL); 254 sis_delay(sc); 255 CSR_WRITE_4(sc, SIS_EECTL, 0x00000000); 256 } 257 258 /* 259 * Send a read command and address to the EEPROM, check for ACK. 260 */ 261 static void 262 sis_eeprom_putbyte(struct sis_softc *sc, int addr) 263 { 264 int d, i; 265 266 d = addr | SIS_EECMD_READ; 267 268 /* 269 * Feed in each bit and stobe the clock. 270 */ 271 for (i = 0x400; i; i >>= 1) { 272 if (d & i) { 273 SIO_SET(SIS_EECTL_DIN); 274 } else { 275 SIO_CLR(SIS_EECTL_DIN); 276 } 277 sis_delay(sc); 278 SIO_SET(SIS_EECTL_CLK); 279 sis_delay(sc); 280 SIO_CLR(SIS_EECTL_CLK); 281 sis_delay(sc); 282 } 283 } 284 285 /* 286 * Read a word of data stored in the EEPROM at address 'addr.' 287 */ 288 static void 289 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest) 290 { 291 int i; 292 uint16_t word = 0; 293 294 /* Force EEPROM to idle state. */ 295 sis_eeprom_idle(sc); 296 297 /* Enter EEPROM access mode. */ 298 sis_delay(sc); 299 SIO_CLR(SIS_EECTL_CLK); 300 sis_delay(sc); 301 SIO_SET(SIS_EECTL_CSEL); 302 sis_delay(sc); 303 304 /* 305 * Send address of word we want to read. 306 */ 307 sis_eeprom_putbyte(sc, addr); 308 309 /* 310 * Start reading bits from EEPROM. 311 */ 312 for (i = 0x8000; i; i >>= 1) { 313 SIO_SET(SIS_EECTL_CLK); 314 sis_delay(sc); 315 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT) 316 word |= i; 317 sis_delay(sc); 318 SIO_CLR(SIS_EECTL_CLK); 319 sis_delay(sc); 320 } 321 322 /* Turn off EEPROM access mode. */ 323 sis_eeprom_idle(sc); 324 325 *dest = word; 326 } 327 328 /* 329 * Read a sequence of words from the EEPROM. 330 */ 331 static void 332 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap) 333 { 334 int i; 335 uint16_t word = 0, *ptr; 336 337 for (i = 0; i < cnt; i++) { 338 sis_eeprom_getword(sc, off + i, &word); 339 ptr = (uint16_t *)(dest + (i * 2)); 340 if (swap) 341 *ptr = ntohs(word); 342 else 343 *ptr = word; 344 } 345 } 346 347 #if defined(__i386__) || defined(__amd64__) 348 static device_t 349 sis_find_bridge(device_t dev) 350 { 351 devclass_t pci_devclass; 352 device_t *pci_devices; 353 int pci_count = 0; 354 device_t *pci_children; 355 int pci_childcount = 0; 356 device_t *busp, *childp; 357 device_t child = NULL; 358 int i, j; 359 360 if ((pci_devclass = devclass_find("pci")) == NULL) 361 return (NULL); 362 363 devclass_get_devices(pci_devclass, &pci_devices, &pci_count); 364 365 for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) { 366 if (device_get_children(*busp, &pci_children, &pci_childcount)) 367 continue; 368 for (j = 0, childp = pci_children; 369 j < pci_childcount; j++, childp++) { 370 if (pci_get_vendor(*childp) == SIS_VENDORID && 371 pci_get_device(*childp) == 0x0008) { 372 child = *childp; 373 free(pci_children, M_TEMP); 374 goto done; 375 } 376 } 377 free(pci_children, M_TEMP); 378 } 379 380 done: 381 free(pci_devices, M_TEMP); 382 return (child); 383 } 384 385 static void 386 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt) 387 { 388 device_t bridge; 389 uint8_t reg; 390 int i; 391 bus_space_tag_t btag; 392 393 bridge = sis_find_bridge(dev); 394 if (bridge == NULL) 395 return; 396 reg = pci_read_config(bridge, 0x48, 1); 397 pci_write_config(bridge, 0x48, reg|0x40, 1); 398 399 /* XXX */ 400 #if defined(__amd64__) || defined(__i386__) 401 btag = X86_BUS_SPACE_IO; 402 #endif 403 404 for (i = 0; i < cnt; i++) { 405 bus_space_write_1(btag, 0x0, 0x70, i + off); 406 *(dest + i) = bus_space_read_1(btag, 0x0, 0x71); 407 } 408 409 pci_write_config(bridge, 0x48, reg & ~0x40, 1); 410 } 411 412 static void 413 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest) 414 { 415 uint32_t filtsave, csrsave; 416 417 filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL); 418 csrsave = CSR_READ_4(sc, SIS_CSR); 419 420 CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave); 421 CSR_WRITE_4(sc, SIS_CSR, 0); 422 423 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE); 424 425 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); 426 ((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA); 427 CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1); 428 ((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA); 429 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); 430 ((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA); 431 432 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave); 433 CSR_WRITE_4(sc, SIS_CSR, csrsave); 434 } 435 #endif 436 437 /* 438 * Read the MII serial port for the MII bit-bang module. 439 */ 440 static uint32_t 441 sis_mii_bitbang_read(device_t dev) 442 { 443 struct sis_softc *sc; 444 uint32_t val; 445 446 sc = device_get_softc(dev); 447 448 val = CSR_READ_4(sc, SIS_EECTL); 449 CSR_BARRIER(sc, SIS_EECTL, 4, 450 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 451 return (val); 452 } 453 454 /* 455 * Write the MII serial port for the MII bit-bang module. 456 */ 457 static void 458 sis_mii_bitbang_write(device_t dev, uint32_t val) 459 { 460 struct sis_softc *sc; 461 462 sc = device_get_softc(dev); 463 464 CSR_WRITE_4(sc, SIS_EECTL, val); 465 CSR_BARRIER(sc, SIS_EECTL, 4, 466 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 467 } 468 469 static int 470 sis_miibus_readreg(device_t dev, int phy, int reg) 471 { 472 struct sis_softc *sc; 473 474 sc = device_get_softc(dev); 475 476 if (sc->sis_type == SIS_TYPE_83815) { 477 if (phy != 0) 478 return (0); 479 /* 480 * The NatSemi chip can take a while after 481 * a reset to come ready, during which the BMSR 482 * returns a value of 0. This is *never* supposed 483 * to happen: some of the BMSR bits are meant to 484 * be hardwired in the on position, and this can 485 * confuse the miibus code a bit during the probe 486 * and attach phase. So we make an effort to check 487 * for this condition and wait for it to clear. 488 */ 489 if (!CSR_READ_4(sc, NS_BMSR)) 490 DELAY(1000); 491 return CSR_READ_4(sc, NS_BMCR + (reg * 4)); 492 } 493 494 /* 495 * Chipsets < SIS_635 seem not to be able to read/write 496 * through mdio. Use the enhanced PHY access register 497 * again for them. 498 */ 499 if (sc->sis_type == SIS_TYPE_900 && 500 sc->sis_rev < SIS_REV_635) { 501 int i, val = 0; 502 503 if (phy != 0) 504 return (0); 505 506 CSR_WRITE_4(sc, SIS_PHYCTL, 507 (phy << 11) | (reg << 6) | SIS_PHYOP_READ); 508 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); 509 510 for (i = 0; i < SIS_TIMEOUT; i++) { 511 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) 512 break; 513 } 514 515 if (i == SIS_TIMEOUT) { 516 device_printf(sc->sis_dev, 517 "PHY failed to come ready\n"); 518 return (0); 519 } 520 521 val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF; 522 523 if (val == 0xFFFF) 524 return (0); 525 526 return (val); 527 } else 528 return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy, 529 reg)); 530 } 531 532 static int 533 sis_miibus_writereg(device_t dev, int phy, int reg, int data) 534 { 535 struct sis_softc *sc; 536 537 sc = device_get_softc(dev); 538 539 if (sc->sis_type == SIS_TYPE_83815) { 540 if (phy != 0) 541 return (0); 542 CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data); 543 return (0); 544 } 545 546 /* 547 * Chipsets < SIS_635 seem not to be able to read/write 548 * through mdio. Use the enhanced PHY access register 549 * again for them. 550 */ 551 if (sc->sis_type == SIS_TYPE_900 && 552 sc->sis_rev < SIS_REV_635) { 553 int i; 554 555 if (phy != 0) 556 return (0); 557 558 CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) | 559 (reg << 6) | SIS_PHYOP_WRITE); 560 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); 561 562 for (i = 0; i < SIS_TIMEOUT; i++) { 563 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) 564 break; 565 } 566 567 if (i == SIS_TIMEOUT) 568 device_printf(sc->sis_dev, 569 "PHY failed to come ready\n"); 570 } else 571 mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg, 572 data); 573 return (0); 574 } 575 576 static void 577 sis_miibus_statchg(device_t dev) 578 { 579 struct sis_softc *sc; 580 struct mii_data *mii; 581 struct ifnet *ifp; 582 uint32_t reg; 583 584 sc = device_get_softc(dev); 585 SIS_LOCK_ASSERT(sc); 586 587 mii = device_get_softc(sc->sis_miibus); 588 ifp = sc->sis_ifp; 589 if (mii == NULL || ifp == NULL || 590 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 591 return; 592 593 sc->sis_flags &= ~SIS_FLAG_LINK; 594 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 595 (IFM_ACTIVE | IFM_AVALID)) { 596 switch (IFM_SUBTYPE(mii->mii_media_active)) { 597 case IFM_10_T: 598 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10); 599 sc->sis_flags |= SIS_FLAG_LINK; 600 break; 601 case IFM_100_TX: 602 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); 603 sc->sis_flags |= SIS_FLAG_LINK; 604 break; 605 default: 606 break; 607 } 608 } 609 610 if ((sc->sis_flags & SIS_FLAG_LINK) == 0) { 611 /* 612 * Stopping MACs seem to reset SIS_TX_LISTPTR and 613 * SIS_RX_LISTPTR which in turn requires resetting 614 * TX/RX buffers. So just don't do anything for 615 * lost link. 616 */ 617 return; 618 } 619 620 /* Set full/half duplex mode. */ 621 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 622 SIS_SETBIT(sc, SIS_TX_CFG, 623 (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); 624 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); 625 } else { 626 SIS_CLRBIT(sc, SIS_TX_CFG, 627 (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); 628 SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); 629 } 630 631 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { 632 /* 633 * MPII03.D: Half Duplex Excessive Collisions. 634 * Also page 49 in 83816 manual 635 */ 636 SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D); 637 } 638 639 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A && 640 IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { 641 /* 642 * Short Cable Receive Errors (MP21.E) 643 */ 644 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); 645 reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff; 646 CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000); 647 DELAY(100); 648 reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff; 649 if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) { 650 device_printf(sc->sis_dev, 651 "Applying short cable fix (reg=%x)\n", reg); 652 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8); 653 SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20); 654 } 655 CSR_WRITE_4(sc, NS_PHY_PAGE, 0); 656 } 657 /* Enable TX/RX MACs. */ 658 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); 659 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE); 660 } 661 662 static uint32_t 663 sis_mchash(struct sis_softc *sc, const uint8_t *addr) 664 { 665 uint32_t crc; 666 667 /* Compute CRC for the address value. */ 668 crc = ether_crc32_be(addr, ETHER_ADDR_LEN); 669 670 /* 671 * return the filter bit position 672 * 673 * The NatSemi chip has a 512-bit filter, which is 674 * different than the SiS, so we special-case it. 675 */ 676 if (sc->sis_type == SIS_TYPE_83815) 677 return (crc >> 23); 678 else if (sc->sis_rev >= SIS_REV_635 || 679 sc->sis_rev == SIS_REV_900B) 680 return (crc >> 24); 681 else 682 return (crc >> 25); 683 } 684 685 static void 686 sis_rxfilter(struct sis_softc *sc) 687 { 688 689 SIS_LOCK_ASSERT(sc); 690 691 if (sc->sis_type == SIS_TYPE_83815) 692 sis_rxfilter_ns(sc); 693 else 694 sis_rxfilter_sis(sc); 695 } 696 697 static void 698 sis_rxfilter_ns(struct sis_softc *sc) 699 { 700 struct ifnet *ifp; 701 struct ifmultiaddr *ifma; 702 uint32_t h, i, filter; 703 int bit, index; 704 705 ifp = sc->sis_ifp; 706 filter = CSR_READ_4(sc, SIS_RXFILT_CTL); 707 if (filter & SIS_RXFILTCTL_ENABLE) { 708 /* 709 * Filter should be disabled to program other bits. 710 */ 711 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE); 712 CSR_READ_4(sc, SIS_RXFILT_CTL); 713 } 714 filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT | 715 NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD | 716 SIS_RXFILTCTL_ALLMULTI); 717 718 if (ifp->if_flags & IFF_BROADCAST) 719 filter |= SIS_RXFILTCTL_BROAD; 720 /* 721 * For the NatSemi chip, we have to explicitly enable the 722 * reception of ARP frames, as well as turn on the 'perfect 723 * match' filter where we store the station address, otherwise 724 * we won't receive unicasts meant for this host. 725 */ 726 filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT; 727 728 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { 729 filter |= SIS_RXFILTCTL_ALLMULTI; 730 if (ifp->if_flags & IFF_PROMISC) 731 filter |= SIS_RXFILTCTL_ALLPHYS; 732 } else { 733 /* 734 * We have to explicitly enable the multicast hash table 735 * on the NatSemi chip if we want to use it, which we do. 736 */ 737 filter |= NS_RXFILTCTL_MCHASH; 738 739 /* first, zot all the existing hash bits */ 740 for (i = 0; i < 32; i++) { 741 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + 742 (i * 2)); 743 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0); 744 } 745 746 if_maddr_rlock(ifp); 747 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 748 if (ifma->ifma_addr->sa_family != AF_LINK) 749 continue; 750 h = sis_mchash(sc, 751 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 752 index = h >> 3; 753 bit = h & 0x1F; 754 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + 755 index); 756 if (bit > 0xF) 757 bit -= 0x10; 758 SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit)); 759 } 760 if_maddr_runlock(ifp); 761 } 762 763 /* Turn the receive filter on */ 764 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE); 765 CSR_READ_4(sc, SIS_RXFILT_CTL); 766 } 767 768 static void 769 sis_rxfilter_sis(struct sis_softc *sc) 770 { 771 struct ifnet *ifp; 772 struct ifmultiaddr *ifma; 773 uint32_t filter, h, i, n; 774 uint16_t hashes[16]; 775 776 ifp = sc->sis_ifp; 777 778 /* hash table size */ 779 if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) 780 n = 16; 781 else 782 n = 8; 783 784 filter = CSR_READ_4(sc, SIS_RXFILT_CTL); 785 if (filter & SIS_RXFILTCTL_ENABLE) { 786 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE); 787 CSR_READ_4(sc, SIS_RXFILT_CTL); 788 } 789 filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD | 790 SIS_RXFILTCTL_ALLMULTI); 791 if (ifp->if_flags & IFF_BROADCAST) 792 filter |= SIS_RXFILTCTL_BROAD; 793 794 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { 795 filter |= SIS_RXFILTCTL_ALLMULTI; 796 if (ifp->if_flags & IFF_PROMISC) 797 filter |= SIS_RXFILTCTL_ALLPHYS; 798 for (i = 0; i < n; i++) 799 hashes[i] = ~0; 800 } else { 801 for (i = 0; i < n; i++) 802 hashes[i] = 0; 803 i = 0; 804 if_maddr_rlock(ifp); 805 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 806 if (ifma->ifma_addr->sa_family != AF_LINK) 807 continue; 808 h = sis_mchash(sc, 809 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 810 hashes[h >> 4] |= 1 << (h & 0xf); 811 i++; 812 } 813 if_maddr_runlock(ifp); 814 if (i > n) { 815 filter |= SIS_RXFILTCTL_ALLMULTI; 816 for (i = 0; i < n; i++) 817 hashes[i] = ~0; 818 } 819 } 820 821 for (i = 0; i < n; i++) { 822 CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16); 823 CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]); 824 } 825 826 /* Turn the receive filter on */ 827 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE); 828 CSR_READ_4(sc, SIS_RXFILT_CTL); 829 } 830 831 static void 832 sis_reset(struct sis_softc *sc) 833 { 834 int i; 835 836 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET); 837 838 for (i = 0; i < SIS_TIMEOUT; i++) { 839 if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET)) 840 break; 841 } 842 843 if (i == SIS_TIMEOUT) 844 device_printf(sc->sis_dev, "reset never completed\n"); 845 846 /* Wait a little while for the chip to get its brains in order. */ 847 DELAY(1000); 848 849 /* 850 * If this is a NetSemi chip, make sure to clear 851 * PME mode. 852 */ 853 if (sc->sis_type == SIS_TYPE_83815) { 854 CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS); 855 CSR_WRITE_4(sc, NS_CLKRUN, 0); 856 } else { 857 /* Disable WOL functions. */ 858 CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0); 859 } 860 } 861 862 /* 863 * Probe for an SiS chip. Check the PCI vendor and device 864 * IDs against our list and return a device name if we find a match. 865 */ 866 static int 867 sis_probe(device_t dev) 868 { 869 const struct sis_type *t; 870 871 t = sis_devs; 872 873 while (t->sis_name != NULL) { 874 if ((pci_get_vendor(dev) == t->sis_vid) && 875 (pci_get_device(dev) == t->sis_did)) { 876 device_set_desc(dev, t->sis_name); 877 return (BUS_PROBE_DEFAULT); 878 } 879 t++; 880 } 881 882 return (ENXIO); 883 } 884 885 /* 886 * Attach the interface. Allocate softc structures, do ifmedia 887 * setup and ethernet/BPF attach. 888 */ 889 static int 890 sis_attach(device_t dev) 891 { 892 u_char eaddr[ETHER_ADDR_LEN]; 893 struct sis_softc *sc; 894 struct ifnet *ifp; 895 int error = 0, pmc, waittime = 0; 896 897 waittime = 0; 898 sc = device_get_softc(dev); 899 900 sc->sis_dev = dev; 901 902 mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 903 MTX_DEF); 904 callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0); 905 906 if (pci_get_device(dev) == SIS_DEVICEID_900) 907 sc->sis_type = SIS_TYPE_900; 908 if (pci_get_device(dev) == SIS_DEVICEID_7016) 909 sc->sis_type = SIS_TYPE_7016; 910 if (pci_get_vendor(dev) == NS_VENDORID) 911 sc->sis_type = SIS_TYPE_83815; 912 913 sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1); 914 /* 915 * Map control/status registers. 916 */ 917 pci_enable_busmaster(dev); 918 919 error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res); 920 if (error) { 921 device_printf(dev, "couldn't allocate resources\n"); 922 goto fail; 923 } 924 925 /* Reset the adapter. */ 926 sis_reset(sc); 927 928 if (sc->sis_type == SIS_TYPE_900 && 929 (sc->sis_rev == SIS_REV_635 || 930 sc->sis_rev == SIS_REV_900B)) { 931 SIO_SET(SIS_CFG_RND_CNT); 932 SIO_SET(SIS_CFG_PERR_DETECT); 933 } 934 935 /* 936 * Get station address from the EEPROM. 937 */ 938 switch (pci_get_vendor(dev)) { 939 case NS_VENDORID: 940 sc->sis_srr = CSR_READ_4(sc, NS_SRR); 941 942 /* We can't update the device description, so spew */ 943 if (sc->sis_srr == NS_SRR_15C) 944 device_printf(dev, "Silicon Revision: DP83815C\n"); 945 else if (sc->sis_srr == NS_SRR_15D) 946 device_printf(dev, "Silicon Revision: DP83815D\n"); 947 else if (sc->sis_srr == NS_SRR_16A) 948 device_printf(dev, "Silicon Revision: DP83816A\n"); 949 else 950 device_printf(dev, "Silicon Revision %x\n", sc->sis_srr); 951 952 /* 953 * Reading the MAC address out of the EEPROM on 954 * the NatSemi chip takes a bit more work than 955 * you'd expect. The address spans 4 16-bit words, 956 * with the first word containing only a single bit. 957 * You have to shift everything over one bit to 958 * get it aligned properly. Also, the bits are 959 * stored backwards (the LSB is really the MSB, 960 * and so on) so you have to reverse them in order 961 * to get the MAC address into the form we want. 962 * Why? Who the hell knows. 963 */ 964 { 965 uint16_t tmp[4]; 966 967 sis_read_eeprom(sc, (caddr_t)&tmp, 968 NS_EE_NODEADDR, 4, 0); 969 970 /* Shift everything over one bit. */ 971 tmp[3] = tmp[3] >> 1; 972 tmp[3] |= tmp[2] << 15; 973 tmp[2] = tmp[2] >> 1; 974 tmp[2] |= tmp[1] << 15; 975 tmp[1] = tmp[1] >> 1; 976 tmp[1] |= tmp[0] << 15; 977 978 /* Now reverse all the bits. */ 979 tmp[3] = sis_reverse(tmp[3]); 980 tmp[2] = sis_reverse(tmp[2]); 981 tmp[1] = sis_reverse(tmp[1]); 982 983 eaddr[0] = (tmp[1] >> 0) & 0xFF; 984 eaddr[1] = (tmp[1] >> 8) & 0xFF; 985 eaddr[2] = (tmp[2] >> 0) & 0xFF; 986 eaddr[3] = (tmp[2] >> 8) & 0xFF; 987 eaddr[4] = (tmp[3] >> 0) & 0xFF; 988 eaddr[5] = (tmp[3] >> 8) & 0xFF; 989 } 990 break; 991 case SIS_VENDORID: 992 default: 993 #if defined(__i386__) || defined(__amd64__) 994 /* 995 * If this is a SiS 630E chipset with an embedded 996 * SiS 900 controller, we have to read the MAC address 997 * from the APC CMOS RAM. Our method for doing this 998 * is very ugly since we have to reach out and grab 999 * ahold of hardware for which we cannot properly 1000 * allocate resources. This code is only compiled on 1001 * the i386 architecture since the SiS 630E chipset 1002 * is for x86 motherboards only. Note that there are 1003 * a lot of magic numbers in this hack. These are 1004 * taken from SiS's Linux driver. I'd like to replace 1005 * them with proper symbolic definitions, but that 1006 * requires some datasheets that I don't have access 1007 * to at the moment. 1008 */ 1009 if (sc->sis_rev == SIS_REV_630S || 1010 sc->sis_rev == SIS_REV_630E || 1011 sc->sis_rev == SIS_REV_630EA1) 1012 sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6); 1013 1014 else if (sc->sis_rev == SIS_REV_635 || 1015 sc->sis_rev == SIS_REV_630ET) 1016 sis_read_mac(sc, dev, (caddr_t)&eaddr); 1017 else if (sc->sis_rev == SIS_REV_96x) { 1018 /* Allow to read EEPROM from LAN. It is shared 1019 * between a 1394 controller and the NIC and each 1020 * time we access it, we need to set SIS_EECMD_REQ. 1021 */ 1022 SIO_SET(SIS_EECMD_REQ); 1023 for (waittime = 0; waittime < SIS_TIMEOUT; 1024 waittime++) { 1025 /* Force EEPROM to idle state. */ 1026 sis_eeprom_idle(sc); 1027 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) { 1028 sis_read_eeprom(sc, (caddr_t)&eaddr, 1029 SIS_EE_NODEADDR, 3, 0); 1030 break; 1031 } 1032 DELAY(1); 1033 } 1034 /* 1035 * Set SIS_EECTL_CLK to high, so a other master 1036 * can operate on the i2c bus. 1037 */ 1038 SIO_SET(SIS_EECTL_CLK); 1039 /* Refuse EEPROM access by LAN */ 1040 SIO_SET(SIS_EECMD_DONE); 1041 } else 1042 #endif 1043 sis_read_eeprom(sc, (caddr_t)&eaddr, 1044 SIS_EE_NODEADDR, 3, 0); 1045 break; 1046 } 1047 1048 sis_add_sysctls(sc); 1049 1050 /* Allocate DMA'able memory. */ 1051 if ((error = sis_dma_alloc(sc)) != 0) 1052 goto fail; 1053 1054 ifp = sc->sis_ifp = if_alloc(IFT_ETHER); 1055 if (ifp == NULL) { 1056 device_printf(dev, "can not if_alloc()\n"); 1057 error = ENOSPC; 1058 goto fail; 1059 } 1060 ifp->if_softc = sc; 1061 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1062 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1063 ifp->if_ioctl = sis_ioctl; 1064 ifp->if_start = sis_start; 1065 ifp->if_init = sis_init; 1066 IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1); 1067 ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1; 1068 IFQ_SET_READY(&ifp->if_snd); 1069 1070 if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) { 1071 if (sc->sis_type == SIS_TYPE_83815) 1072 ifp->if_capabilities |= IFCAP_WOL; 1073 else 1074 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 1075 ifp->if_capenable = ifp->if_capabilities; 1076 } 1077 1078 /* 1079 * Do MII setup. 1080 */ 1081 error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd, 1082 sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); 1083 if (error != 0) { 1084 device_printf(dev, "attaching PHYs failed\n"); 1085 goto fail; 1086 } 1087 1088 /* 1089 * Call MI attach routine. 1090 */ 1091 ether_ifattach(ifp, eaddr); 1092 1093 /* 1094 * Tell the upper layer(s) we support long frames. 1095 */ 1096 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 1097 ifp->if_capabilities |= IFCAP_VLAN_MTU; 1098 ifp->if_capenable = ifp->if_capabilities; 1099 #ifdef DEVICE_POLLING 1100 ifp->if_capabilities |= IFCAP_POLLING; 1101 #endif 1102 1103 /* Hook interrupt last to avoid having to lock softc */ 1104 error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE, 1105 NULL, sis_intr, sc, &sc->sis_intrhand); 1106 1107 if (error) { 1108 device_printf(dev, "couldn't set up irq\n"); 1109 ether_ifdetach(ifp); 1110 goto fail; 1111 } 1112 1113 fail: 1114 if (error) 1115 sis_detach(dev); 1116 1117 return (error); 1118 } 1119 1120 /* 1121 * Shutdown hardware and free up resources. This can be called any 1122 * time after the mutex has been initialized. It is called in both 1123 * the error case in attach and the normal detach case so it needs 1124 * to be careful about only freeing resources that have actually been 1125 * allocated. 1126 */ 1127 static int 1128 sis_detach(device_t dev) 1129 { 1130 struct sis_softc *sc; 1131 struct ifnet *ifp; 1132 1133 sc = device_get_softc(dev); 1134 KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized")); 1135 ifp = sc->sis_ifp; 1136 1137 #ifdef DEVICE_POLLING 1138 if (ifp->if_capenable & IFCAP_POLLING) 1139 ether_poll_deregister(ifp); 1140 #endif 1141 1142 /* These should only be active if attach succeeded. */ 1143 if (device_is_attached(dev)) { 1144 SIS_LOCK(sc); 1145 sis_stop(sc); 1146 SIS_UNLOCK(sc); 1147 callout_drain(&sc->sis_stat_ch); 1148 ether_ifdetach(ifp); 1149 } 1150 if (sc->sis_miibus) 1151 device_delete_child(dev, sc->sis_miibus); 1152 bus_generic_detach(dev); 1153 1154 if (sc->sis_intrhand) 1155 bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand); 1156 bus_release_resources(dev, sis_res_spec, sc->sis_res); 1157 1158 if (ifp) 1159 if_free(ifp); 1160 1161 sis_dma_free(sc); 1162 1163 mtx_destroy(&sc->sis_mtx); 1164 1165 return (0); 1166 } 1167 1168 struct sis_dmamap_arg { 1169 bus_addr_t sis_busaddr; 1170 }; 1171 1172 static void 1173 sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1174 { 1175 struct sis_dmamap_arg *ctx; 1176 1177 if (error != 0) 1178 return; 1179 1180 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1181 1182 ctx = (struct sis_dmamap_arg *)arg; 1183 ctx->sis_busaddr = segs[0].ds_addr; 1184 } 1185 1186 static int 1187 sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment, 1188 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 1189 bus_addr_t *paddr, const char *msg) 1190 { 1191 struct sis_dmamap_arg ctx; 1192 int error; 1193 1194 error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0, 1195 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1, 1196 maxsize, 0, NULL, NULL, tag); 1197 if (error != 0) { 1198 device_printf(sc->sis_dev, 1199 "could not create %s dma tag\n", msg); 1200 return (ENOMEM); 1201 } 1202 /* Allocate DMA'able memory for ring. */ 1203 error = bus_dmamem_alloc(*tag, (void **)ring, 1204 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 1205 if (error != 0) { 1206 device_printf(sc->sis_dev, 1207 "could not allocate DMA'able memory for %s\n", msg); 1208 return (ENOMEM); 1209 } 1210 /* Load the address of the ring. */ 1211 ctx.sis_busaddr = 0; 1212 error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb, 1213 &ctx, BUS_DMA_NOWAIT); 1214 if (error != 0) { 1215 device_printf(sc->sis_dev, 1216 "could not load DMA'able memory for %s\n", msg); 1217 return (ENOMEM); 1218 } 1219 *paddr = ctx.sis_busaddr; 1220 return (0); 1221 } 1222 1223 static int 1224 sis_dma_alloc(struct sis_softc *sc) 1225 { 1226 struct sis_rxdesc *rxd; 1227 struct sis_txdesc *txd; 1228 int error, i; 1229 1230 /* Allocate the parent bus DMA tag appropriate for PCI. */ 1231 error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev), 1232 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1233 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 1234 0, NULL, NULL, &sc->sis_parent_tag); 1235 if (error != 0) { 1236 device_printf(sc->sis_dev, 1237 "could not allocate parent dma tag\n"); 1238 return (ENOMEM); 1239 } 1240 1241 /* Create RX ring. */ 1242 error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ, 1243 &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list, 1244 &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring"); 1245 if (error) 1246 return (error); 1247 1248 /* Create TX ring. */ 1249 error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ, 1250 &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list, 1251 &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring"); 1252 if (error) 1253 return (error); 1254 1255 /* Create tag for RX mbufs. */ 1256 error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0, 1257 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, 1258 MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag); 1259 if (error) { 1260 device_printf(sc->sis_dev, "could not allocate RX dma tag\n"); 1261 return (error); 1262 } 1263 1264 /* Create tag for TX mbufs. */ 1265 error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0, 1266 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1267 MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL, 1268 &sc->sis_tx_tag); 1269 if (error) { 1270 device_printf(sc->sis_dev, "could not allocate TX dma tag\n"); 1271 return (error); 1272 } 1273 1274 /* Create DMA maps for RX buffers. */ 1275 error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap); 1276 if (error) { 1277 device_printf(sc->sis_dev, 1278 "can't create spare DMA map for RX\n"); 1279 return (error); 1280 } 1281 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1282 rxd = &sc->sis_rxdesc[i]; 1283 rxd->rx_m = NULL; 1284 error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap); 1285 if (error) { 1286 device_printf(sc->sis_dev, 1287 "can't create DMA map for RX\n"); 1288 return (error); 1289 } 1290 } 1291 1292 /* Create DMA maps for TX buffers. */ 1293 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1294 txd = &sc->sis_txdesc[i]; 1295 txd->tx_m = NULL; 1296 error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap); 1297 if (error) { 1298 device_printf(sc->sis_dev, 1299 "can't create DMA map for TX\n"); 1300 return (error); 1301 } 1302 } 1303 1304 return (0); 1305 } 1306 1307 static void 1308 sis_dma_free(struct sis_softc *sc) 1309 { 1310 struct sis_rxdesc *rxd; 1311 struct sis_txdesc *txd; 1312 int i; 1313 1314 /* Destroy DMA maps for RX buffers. */ 1315 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1316 rxd = &sc->sis_rxdesc[i]; 1317 if (rxd->rx_dmamap) 1318 bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap); 1319 } 1320 if (sc->sis_rx_sparemap) 1321 bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap); 1322 1323 /* Destroy DMA maps for TX buffers. */ 1324 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1325 txd = &sc->sis_txdesc[i]; 1326 if (txd->tx_dmamap) 1327 bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap); 1328 } 1329 1330 if (sc->sis_rx_tag) 1331 bus_dma_tag_destroy(sc->sis_rx_tag); 1332 if (sc->sis_tx_tag) 1333 bus_dma_tag_destroy(sc->sis_tx_tag); 1334 1335 /* Destroy RX ring. */ 1336 if (sc->sis_rx_paddr) 1337 bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map); 1338 if (sc->sis_rx_list) 1339 bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list, 1340 sc->sis_rx_list_map); 1341 1342 if (sc->sis_rx_list_tag) 1343 bus_dma_tag_destroy(sc->sis_rx_list_tag); 1344 1345 /* Destroy TX ring. */ 1346 if (sc->sis_tx_paddr) 1347 bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map); 1348 1349 if (sc->sis_tx_list) 1350 bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list, 1351 sc->sis_tx_list_map); 1352 1353 if (sc->sis_tx_list_tag) 1354 bus_dma_tag_destroy(sc->sis_tx_list_tag); 1355 1356 /* Destroy the parent tag. */ 1357 if (sc->sis_parent_tag) 1358 bus_dma_tag_destroy(sc->sis_parent_tag); 1359 } 1360 1361 /* 1362 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that 1363 * we arrange the descriptors in a closed ring, so that the last descriptor 1364 * points back to the first. 1365 */ 1366 static int 1367 sis_ring_init(struct sis_softc *sc) 1368 { 1369 struct sis_rxdesc *rxd; 1370 struct sis_txdesc *txd; 1371 bus_addr_t next; 1372 int error, i; 1373 1374 bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ); 1375 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1376 txd = &sc->sis_txdesc[i]; 1377 txd->tx_m = NULL; 1378 if (i == SIS_TX_LIST_CNT - 1) 1379 next = SIS_TX_RING_ADDR(sc, 0); 1380 else 1381 next = SIS_TX_RING_ADDR(sc, i + 1); 1382 sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next)); 1383 } 1384 sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0; 1385 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, 1386 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1387 1388 sc->sis_rx_cons = 0; 1389 bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ); 1390 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1391 rxd = &sc->sis_rxdesc[i]; 1392 rxd->rx_desc = &sc->sis_rx_list[i]; 1393 if (i == SIS_RX_LIST_CNT - 1) 1394 next = SIS_RX_RING_ADDR(sc, 0); 1395 else 1396 next = SIS_RX_RING_ADDR(sc, i + 1); 1397 rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next)); 1398 error = sis_newbuf(sc, rxd); 1399 if (error) 1400 return (error); 1401 } 1402 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, 1403 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1404 1405 return (0); 1406 } 1407 1408 /* 1409 * Initialize an RX descriptor and attach an MBUF cluster. 1410 */ 1411 static int 1412 sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd) 1413 { 1414 struct mbuf *m; 1415 bus_dma_segment_t segs[1]; 1416 bus_dmamap_t map; 1417 int nsegs; 1418 1419 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1420 if (m == NULL) 1421 return (ENOBUFS); 1422 m->m_len = m->m_pkthdr.len = SIS_RXLEN; 1423 #ifndef __NO_STRICT_ALIGNMENT 1424 m_adj(m, SIS_RX_BUF_ALIGN); 1425 #endif 1426 1427 if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m, 1428 segs, &nsegs, 0) != 0) { 1429 m_freem(m); 1430 return (ENOBUFS); 1431 } 1432 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1433 1434 if (rxd->rx_m != NULL) { 1435 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, 1436 BUS_DMASYNC_POSTREAD); 1437 bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap); 1438 } 1439 map = rxd->rx_dmamap; 1440 rxd->rx_dmamap = sc->sis_rx_sparemap; 1441 sc->sis_rx_sparemap = map; 1442 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); 1443 rxd->rx_m = m; 1444 rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr)); 1445 rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN); 1446 return (0); 1447 } 1448 1449 static __inline void 1450 sis_discard_rxbuf(struct sis_rxdesc *rxd) 1451 { 1452 1453 rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN); 1454 } 1455 1456 #ifndef __NO_STRICT_ALIGNMENT 1457 static __inline void 1458 sis_fixup_rx(struct mbuf *m) 1459 { 1460 uint16_t *src, *dst; 1461 int i; 1462 1463 src = mtod(m, uint16_t *); 1464 dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src); 1465 1466 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1467 *dst++ = *src++; 1468 1469 m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN; 1470 } 1471 #endif 1472 1473 /* 1474 * A frame has been uploaded: pass the resulting mbuf chain up to 1475 * the higher level protocols. 1476 */ 1477 static int 1478 sis_rxeof(struct sis_softc *sc) 1479 { 1480 struct mbuf *m; 1481 struct ifnet *ifp; 1482 struct sis_rxdesc *rxd; 1483 struct sis_desc *cur_rx; 1484 int prog, rx_cons, rx_npkts = 0, total_len; 1485 uint32_t rxstat; 1486 1487 SIS_LOCK_ASSERT(sc); 1488 1489 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, 1490 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1491 1492 rx_cons = sc->sis_rx_cons; 1493 ifp = sc->sis_ifp; 1494 1495 for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; 1496 SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) { 1497 #ifdef DEVICE_POLLING 1498 if (ifp->if_capenable & IFCAP_POLLING) { 1499 if (sc->rxcycles <= 0) 1500 break; 1501 sc->rxcycles--; 1502 } 1503 #endif 1504 cur_rx = &sc->sis_rx_list[rx_cons]; 1505 rxstat = le32toh(cur_rx->sis_cmdsts); 1506 if ((rxstat & SIS_CMDSTS_OWN) == 0) 1507 break; 1508 rxd = &sc->sis_rxdesc[rx_cons]; 1509 1510 total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN; 1511 if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 && 1512 total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN - 1513 ETHER_CRC_LEN)) 1514 rxstat &= ~SIS_RXSTAT_GIANT; 1515 if (SIS_RXSTAT_ERROR(rxstat) != 0) { 1516 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1517 if (rxstat & SIS_RXSTAT_COLL) 1518 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1519 sis_discard_rxbuf(rxd); 1520 continue; 1521 } 1522 1523 /* Add a new receive buffer to the ring. */ 1524 m = rxd->rx_m; 1525 if (sis_newbuf(sc, rxd) != 0) { 1526 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1527 sis_discard_rxbuf(rxd); 1528 continue; 1529 } 1530 1531 /* No errors; receive the packet. */ 1532 m->m_pkthdr.len = m->m_len = total_len; 1533 #ifndef __NO_STRICT_ALIGNMENT 1534 /* 1535 * On architectures without alignment problems we try to 1536 * allocate a new buffer for the receive ring, and pass up 1537 * the one where the packet is already, saving the expensive 1538 * copy operation. 1539 */ 1540 sis_fixup_rx(m); 1541 #endif 1542 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1543 m->m_pkthdr.rcvif = ifp; 1544 1545 SIS_UNLOCK(sc); 1546 (*ifp->if_input)(ifp, m); 1547 SIS_LOCK(sc); 1548 rx_npkts++; 1549 } 1550 1551 if (prog > 0) { 1552 sc->sis_rx_cons = rx_cons; 1553 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, 1554 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1555 } 1556 1557 return (rx_npkts); 1558 } 1559 1560 /* 1561 * A frame was downloaded to the chip. It's safe for us to clean up 1562 * the list buffers. 1563 */ 1564 1565 static void 1566 sis_txeof(struct sis_softc *sc) 1567 { 1568 struct ifnet *ifp; 1569 struct sis_desc *cur_tx; 1570 struct sis_txdesc *txd; 1571 uint32_t cons, txstat; 1572 1573 SIS_LOCK_ASSERT(sc); 1574 1575 cons = sc->sis_tx_cons; 1576 if (cons == sc->sis_tx_prod) 1577 return; 1578 1579 ifp = sc->sis_ifp; 1580 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, 1581 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1582 1583 /* 1584 * Go through our tx list and free mbufs for those 1585 * frames that have been transmitted. 1586 */ 1587 for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) { 1588 cur_tx = &sc->sis_tx_list[cons]; 1589 txstat = le32toh(cur_tx->sis_cmdsts); 1590 if ((txstat & SIS_CMDSTS_OWN) != 0) 1591 break; 1592 txd = &sc->sis_txdesc[cons]; 1593 if (txd->tx_m != NULL) { 1594 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, 1595 BUS_DMASYNC_POSTWRITE); 1596 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); 1597 m_freem(txd->tx_m); 1598 txd->tx_m = NULL; 1599 if ((txstat & SIS_CMDSTS_PKT_OK) != 0) { 1600 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1601 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1602 (txstat & SIS_TXSTAT_COLLCNT) >> 16); 1603 } else { 1604 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1605 if (txstat & SIS_TXSTAT_EXCESSCOLLS) 1606 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1607 if (txstat & SIS_TXSTAT_OUTOFWINCOLL) 1608 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1609 } 1610 } 1611 sc->sis_tx_cnt--; 1612 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1613 } 1614 sc->sis_tx_cons = cons; 1615 if (sc->sis_tx_cnt == 0) 1616 sc->sis_watchdog_timer = 0; 1617 } 1618 1619 static void 1620 sis_tick(void *xsc) 1621 { 1622 struct sis_softc *sc; 1623 struct mii_data *mii; 1624 1625 sc = xsc; 1626 SIS_LOCK_ASSERT(sc); 1627 1628 mii = device_get_softc(sc->sis_miibus); 1629 mii_tick(mii); 1630 sis_watchdog(sc); 1631 if ((sc->sis_flags & SIS_FLAG_LINK) == 0) 1632 sis_miibus_statchg(sc->sis_dev); 1633 callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc); 1634 } 1635 1636 #ifdef DEVICE_POLLING 1637 static poll_handler_t sis_poll; 1638 1639 static int 1640 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1641 { 1642 struct sis_softc *sc = ifp->if_softc; 1643 int rx_npkts = 0; 1644 1645 SIS_LOCK(sc); 1646 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1647 SIS_UNLOCK(sc); 1648 return (rx_npkts); 1649 } 1650 1651 /* 1652 * On the sis, reading the status register also clears it. 1653 * So before returning to intr mode we must make sure that all 1654 * possible pending sources of interrupts have been served. 1655 * In practice this means run to completion the *eof routines, 1656 * and then call the interrupt routine 1657 */ 1658 sc->rxcycles = count; 1659 rx_npkts = sis_rxeof(sc); 1660 sis_txeof(sc); 1661 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1662 sis_startl(ifp); 1663 1664 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) { 1665 uint32_t status; 1666 1667 /* Reading the ISR register clears all interrupts. */ 1668 status = CSR_READ_4(sc, SIS_ISR); 1669 1670 if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW)) 1671 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1672 1673 if (status & (SIS_ISR_RX_IDLE)) 1674 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); 1675 1676 if (status & SIS_ISR_SYSERR) { 1677 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1678 sis_initl(sc); 1679 } 1680 } 1681 1682 SIS_UNLOCK(sc); 1683 return (rx_npkts); 1684 } 1685 #endif /* DEVICE_POLLING */ 1686 1687 static void 1688 sis_intr(void *arg) 1689 { 1690 struct sis_softc *sc; 1691 struct ifnet *ifp; 1692 uint32_t status; 1693 1694 sc = arg; 1695 ifp = sc->sis_ifp; 1696 1697 SIS_LOCK(sc); 1698 #ifdef DEVICE_POLLING 1699 if (ifp->if_capenable & IFCAP_POLLING) { 1700 SIS_UNLOCK(sc); 1701 return; 1702 } 1703 #endif 1704 1705 /* Reading the ISR register clears all interrupts. */ 1706 status = CSR_READ_4(sc, SIS_ISR); 1707 if ((status & SIS_INTRS) == 0) { 1708 /* Not ours. */ 1709 SIS_UNLOCK(sc); 1710 return; 1711 } 1712 1713 /* Disable interrupts. */ 1714 CSR_WRITE_4(sc, SIS_IER, 0); 1715 1716 for (;(status & SIS_INTRS) != 0;) { 1717 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1718 break; 1719 if (status & 1720 (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | 1721 SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) ) 1722 sis_txeof(sc); 1723 1724 if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | 1725 SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE)) 1726 sis_rxeof(sc); 1727 1728 if (status & SIS_ISR_RX_OFLOW) 1729 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1730 1731 if (status & (SIS_ISR_RX_IDLE)) 1732 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); 1733 1734 if (status & SIS_ISR_SYSERR) { 1735 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1736 sis_initl(sc); 1737 SIS_UNLOCK(sc); 1738 return; 1739 } 1740 status = CSR_READ_4(sc, SIS_ISR); 1741 } 1742 1743 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1744 /* Re-enable interrupts. */ 1745 CSR_WRITE_4(sc, SIS_IER, 1); 1746 1747 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1748 sis_startl(ifp); 1749 } 1750 1751 SIS_UNLOCK(sc); 1752 } 1753 1754 /* 1755 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1756 * pointers to the fragment pointers. 1757 */ 1758 static int 1759 sis_encap(struct sis_softc *sc, struct mbuf **m_head) 1760 { 1761 struct mbuf *m; 1762 struct sis_txdesc *txd; 1763 struct sis_desc *f; 1764 bus_dma_segment_t segs[SIS_MAXTXSEGS]; 1765 bus_dmamap_t map; 1766 int error, i, frag, nsegs, prod; 1767 int padlen; 1768 1769 prod = sc->sis_tx_prod; 1770 txd = &sc->sis_txdesc[prod]; 1771 if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 && 1772 (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) { 1773 m = *m_head; 1774 padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len; 1775 if (M_WRITABLE(m) == 0) { 1776 /* Get a writable copy. */ 1777 m = m_dup(*m_head, M_NOWAIT); 1778 m_freem(*m_head); 1779 if (m == NULL) { 1780 *m_head = NULL; 1781 return (ENOBUFS); 1782 } 1783 *m_head = m; 1784 } 1785 if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) { 1786 m = m_defrag(m, M_NOWAIT); 1787 if (m == NULL) { 1788 m_freem(*m_head); 1789 *m_head = NULL; 1790 return (ENOBUFS); 1791 } 1792 } 1793 /* 1794 * Manually pad short frames, and zero the pad space 1795 * to avoid leaking data. 1796 */ 1797 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); 1798 m->m_pkthdr.len += padlen; 1799 m->m_len = m->m_pkthdr.len; 1800 *m_head = m; 1801 } 1802 error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap, 1803 *m_head, segs, &nsegs, 0); 1804 if (error == EFBIG) { 1805 m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS); 1806 if (m == NULL) { 1807 m_freem(*m_head); 1808 *m_head = NULL; 1809 return (ENOBUFS); 1810 } 1811 *m_head = m; 1812 error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap, 1813 *m_head, segs, &nsegs, 0); 1814 if (error != 0) { 1815 m_freem(*m_head); 1816 *m_head = NULL; 1817 return (error); 1818 } 1819 } else if (error != 0) 1820 return (error); 1821 1822 /* Check for descriptor overruns. */ 1823 if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) { 1824 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); 1825 return (ENOBUFS); 1826 } 1827 1828 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); 1829 1830 frag = prod; 1831 for (i = 0; i < nsegs; i++) { 1832 f = &sc->sis_tx_list[prod]; 1833 if (i == 0) 1834 f->sis_cmdsts = htole32(segs[i].ds_len | 1835 SIS_CMDSTS_MORE); 1836 else 1837 f->sis_cmdsts = htole32(segs[i].ds_len | 1838 SIS_CMDSTS_OWN | SIS_CMDSTS_MORE); 1839 f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr)); 1840 SIS_INC(prod, SIS_TX_LIST_CNT); 1841 sc->sis_tx_cnt++; 1842 } 1843 1844 /* Update producer index. */ 1845 sc->sis_tx_prod = prod; 1846 1847 /* Remove MORE flag on the last descriptor. */ 1848 prod = (prod - 1) & (SIS_TX_LIST_CNT - 1); 1849 f = &sc->sis_tx_list[prod]; 1850 f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE); 1851 1852 /* Lastly transfer ownership of packet to the controller. */ 1853 f = &sc->sis_tx_list[frag]; 1854 f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN); 1855 1856 /* Swap the last and the first dmamaps. */ 1857 map = txd->tx_dmamap; 1858 txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap; 1859 sc->sis_txdesc[prod].tx_dmamap = map; 1860 sc->sis_txdesc[prod].tx_m = *m_head; 1861 1862 return (0); 1863 } 1864 1865 static void 1866 sis_start(struct ifnet *ifp) 1867 { 1868 struct sis_softc *sc; 1869 1870 sc = ifp->if_softc; 1871 SIS_LOCK(sc); 1872 sis_startl(ifp); 1873 SIS_UNLOCK(sc); 1874 } 1875 1876 static void 1877 sis_startl(struct ifnet *ifp) 1878 { 1879 struct sis_softc *sc; 1880 struct mbuf *m_head; 1881 int queued; 1882 1883 sc = ifp->if_softc; 1884 1885 SIS_LOCK_ASSERT(sc); 1886 1887 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1888 IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0) 1889 return; 1890 1891 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 1892 sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) { 1893 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1894 if (m_head == NULL) 1895 break; 1896 1897 if (sis_encap(sc, &m_head) != 0) { 1898 if (m_head == NULL) 1899 break; 1900 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1901 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1902 break; 1903 } 1904 1905 queued++; 1906 1907 /* 1908 * If there's a BPF listener, bounce a copy of this frame 1909 * to him. 1910 */ 1911 BPF_MTAP(ifp, m_head); 1912 } 1913 1914 if (queued) { 1915 /* Transmit */ 1916 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, 1917 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1918 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE); 1919 1920 /* 1921 * Set a timeout in case the chip goes out to lunch. 1922 */ 1923 sc->sis_watchdog_timer = 5; 1924 } 1925 } 1926 1927 static void 1928 sis_init(void *xsc) 1929 { 1930 struct sis_softc *sc = xsc; 1931 1932 SIS_LOCK(sc); 1933 sis_initl(sc); 1934 SIS_UNLOCK(sc); 1935 } 1936 1937 static void 1938 sis_initl(struct sis_softc *sc) 1939 { 1940 struct ifnet *ifp = sc->sis_ifp; 1941 struct mii_data *mii; 1942 uint8_t *eaddr; 1943 1944 SIS_LOCK_ASSERT(sc); 1945 1946 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1947 return; 1948 1949 /* 1950 * Cancel pending I/O and free all RX/TX buffers. 1951 */ 1952 sis_stop(sc); 1953 /* 1954 * Reset the chip to a known state. 1955 */ 1956 sis_reset(sc); 1957 #ifdef notyet 1958 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { 1959 /* 1960 * Configure 400usec of interrupt holdoff. This is based 1961 * on emperical tests on a Soekris 4801. 1962 */ 1963 CSR_WRITE_4(sc, NS_IHR, 0x100 | 4); 1964 } 1965 #endif 1966 1967 mii = device_get_softc(sc->sis_miibus); 1968 1969 /* Set MAC address */ 1970 eaddr = IF_LLADDR(sc->sis_ifp); 1971 if (sc->sis_type == SIS_TYPE_83815) { 1972 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0); 1973 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8); 1974 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1); 1975 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8); 1976 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2); 1977 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8); 1978 } else { 1979 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); 1980 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8); 1981 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); 1982 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8); 1983 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); 1984 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8); 1985 } 1986 1987 /* Init circular TX/RX lists. */ 1988 if (sis_ring_init(sc) != 0) { 1989 device_printf(sc->sis_dev, 1990 "initialization failed: no memory for rx buffers\n"); 1991 sis_stop(sc); 1992 return; 1993 } 1994 1995 if (sc->sis_type == SIS_TYPE_83815) { 1996 if (sc->sis_manual_pad != 0) 1997 sc->sis_flags |= SIS_FLAG_MANUAL_PAD; 1998 else 1999 sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD; 2000 } 2001 2002 /* 2003 * Short Cable Receive Errors (MP21.E) 2004 * also: Page 78 of the DP83815 data sheet (september 2002 version) 2005 * recommends the following register settings "for optimum 2006 * performance." for rev 15C. Set this also for 15D parts as 2007 * they require it in practice. 2008 */ 2009 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) { 2010 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); 2011 CSR_WRITE_4(sc, NS_PHY_CR, 0x189C); 2012 /* set val for c2 */ 2013 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000); 2014 /* load/kill c2 */ 2015 CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040); 2016 /* rais SD off, from 4 to c */ 2017 CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C); 2018 CSR_WRITE_4(sc, NS_PHY_PAGE, 0); 2019 } 2020 2021 sis_rxfilter(sc); 2022 2023 /* 2024 * Load the address of the RX and TX lists. 2025 */ 2026 CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr)); 2027 CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr)); 2028 2029 /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of 2030 * the PCI bus. When this bit is set, the Max DMA Burst Size 2031 * for TX/RX DMA should be no larger than 16 double words. 2032 */ 2033 if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) { 2034 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64); 2035 } else { 2036 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256); 2037 } 2038 2039 /* Accept Long Packets for VLAN support */ 2040 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER); 2041 2042 /* 2043 * Assume 100Mbps link, actual MAC configuration is done 2044 * after getting a valid link. 2045 */ 2046 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); 2047 2048 /* 2049 * Enable interrupts. 2050 */ 2051 CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS); 2052 #ifdef DEVICE_POLLING 2053 /* 2054 * ... only enable interrupts if we are not polling, make sure 2055 * they are off otherwise. 2056 */ 2057 if (ifp->if_capenable & IFCAP_POLLING) 2058 CSR_WRITE_4(sc, SIS_IER, 0); 2059 else 2060 #endif 2061 CSR_WRITE_4(sc, SIS_IER, 1); 2062 2063 /* Clear MAC disable. */ 2064 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); 2065 2066 sc->sis_flags &= ~SIS_FLAG_LINK; 2067 mii_mediachg(mii); 2068 2069 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2070 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2071 2072 callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc); 2073 } 2074 2075 /* 2076 * Set media options. 2077 */ 2078 static int 2079 sis_ifmedia_upd(struct ifnet *ifp) 2080 { 2081 struct sis_softc *sc; 2082 struct mii_data *mii; 2083 struct mii_softc *miisc; 2084 int error; 2085 2086 sc = ifp->if_softc; 2087 2088 SIS_LOCK(sc); 2089 mii = device_get_softc(sc->sis_miibus); 2090 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2091 PHY_RESET(miisc); 2092 error = mii_mediachg(mii); 2093 SIS_UNLOCK(sc); 2094 2095 return (error); 2096 } 2097 2098 /* 2099 * Report current media status. 2100 */ 2101 static void 2102 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2103 { 2104 struct sis_softc *sc; 2105 struct mii_data *mii; 2106 2107 sc = ifp->if_softc; 2108 2109 SIS_LOCK(sc); 2110 mii = device_get_softc(sc->sis_miibus); 2111 mii_pollstat(mii); 2112 ifmr->ifm_active = mii->mii_media_active; 2113 ifmr->ifm_status = mii->mii_media_status; 2114 SIS_UNLOCK(sc); 2115 } 2116 2117 static int 2118 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2119 { 2120 struct sis_softc *sc = ifp->if_softc; 2121 struct ifreq *ifr = (struct ifreq *) data; 2122 struct mii_data *mii; 2123 int error = 0, mask; 2124 2125 switch (command) { 2126 case SIOCSIFFLAGS: 2127 SIS_LOCK(sc); 2128 if (ifp->if_flags & IFF_UP) { 2129 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2130 ((ifp->if_flags ^ sc->sis_if_flags) & 2131 (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2132 sis_rxfilter(sc); 2133 else 2134 sis_initl(sc); 2135 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2136 sis_stop(sc); 2137 sc->sis_if_flags = ifp->if_flags; 2138 SIS_UNLOCK(sc); 2139 break; 2140 case SIOCADDMULTI: 2141 case SIOCDELMULTI: 2142 SIS_LOCK(sc); 2143 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2144 sis_rxfilter(sc); 2145 SIS_UNLOCK(sc); 2146 break; 2147 case SIOCGIFMEDIA: 2148 case SIOCSIFMEDIA: 2149 mii = device_get_softc(sc->sis_miibus); 2150 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2151 break; 2152 case SIOCSIFCAP: 2153 SIS_LOCK(sc); 2154 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2155 #ifdef DEVICE_POLLING 2156 if ((mask & IFCAP_POLLING) != 0 && 2157 (IFCAP_POLLING & ifp->if_capabilities) != 0) { 2158 ifp->if_capenable ^= IFCAP_POLLING; 2159 if ((IFCAP_POLLING & ifp->if_capenable) != 0) { 2160 error = ether_poll_register(sis_poll, ifp); 2161 if (error != 0) { 2162 SIS_UNLOCK(sc); 2163 break; 2164 } 2165 /* Disable interrupts. */ 2166 CSR_WRITE_4(sc, SIS_IER, 0); 2167 } else { 2168 error = ether_poll_deregister(ifp); 2169 /* Enable interrupts. */ 2170 CSR_WRITE_4(sc, SIS_IER, 1); 2171 } 2172 } 2173 #endif /* DEVICE_POLLING */ 2174 if ((mask & IFCAP_WOL) != 0 && 2175 (ifp->if_capabilities & IFCAP_WOL) != 0) { 2176 if ((mask & IFCAP_WOL_UCAST) != 0) 2177 ifp->if_capenable ^= IFCAP_WOL_UCAST; 2178 if ((mask & IFCAP_WOL_MCAST) != 0) 2179 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2180 if ((mask & IFCAP_WOL_MAGIC) != 0) 2181 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2182 } 2183 SIS_UNLOCK(sc); 2184 break; 2185 default: 2186 error = ether_ioctl(ifp, command, data); 2187 break; 2188 } 2189 2190 return (error); 2191 } 2192 2193 static void 2194 sis_watchdog(struct sis_softc *sc) 2195 { 2196 2197 SIS_LOCK_ASSERT(sc); 2198 2199 if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0) 2200 return; 2201 2202 device_printf(sc->sis_dev, "watchdog timeout\n"); 2203 if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1); 2204 2205 sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2206 sis_initl(sc); 2207 2208 if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd)) 2209 sis_startl(sc->sis_ifp); 2210 } 2211 2212 /* 2213 * Stop the adapter and free any mbufs allocated to the 2214 * RX and TX lists. 2215 */ 2216 static void 2217 sis_stop(struct sis_softc *sc) 2218 { 2219 struct ifnet *ifp; 2220 struct sis_rxdesc *rxd; 2221 struct sis_txdesc *txd; 2222 int i; 2223 2224 SIS_LOCK_ASSERT(sc); 2225 2226 ifp = sc->sis_ifp; 2227 sc->sis_watchdog_timer = 0; 2228 2229 callout_stop(&sc->sis_stat_ch); 2230 2231 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2232 CSR_WRITE_4(sc, SIS_IER, 0); 2233 CSR_WRITE_4(sc, SIS_IMR, 0); 2234 CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */ 2235 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE); 2236 DELAY(1000); 2237 CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0); 2238 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); 2239 2240 sc->sis_flags &= ~SIS_FLAG_LINK; 2241 2242 /* 2243 * Free data in the RX lists. 2244 */ 2245 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 2246 rxd = &sc->sis_rxdesc[i]; 2247 if (rxd->rx_m != NULL) { 2248 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, 2249 BUS_DMASYNC_POSTREAD); 2250 bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap); 2251 m_freem(rxd->rx_m); 2252 rxd->rx_m = NULL; 2253 } 2254 } 2255 2256 /* 2257 * Free the TX list buffers. 2258 */ 2259 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 2260 txd = &sc->sis_txdesc[i]; 2261 if (txd->tx_m != NULL) { 2262 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, 2263 BUS_DMASYNC_POSTWRITE); 2264 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); 2265 m_freem(txd->tx_m); 2266 txd->tx_m = NULL; 2267 } 2268 } 2269 } 2270 2271 /* 2272 * Stop all chip I/O so that the kernel's probe routines don't 2273 * get confused by errant DMAs when rebooting. 2274 */ 2275 static int 2276 sis_shutdown(device_t dev) 2277 { 2278 2279 return (sis_suspend(dev)); 2280 } 2281 2282 static int 2283 sis_suspend(device_t dev) 2284 { 2285 struct sis_softc *sc; 2286 2287 sc = device_get_softc(dev); 2288 SIS_LOCK(sc); 2289 sis_stop(sc); 2290 sis_wol(sc); 2291 SIS_UNLOCK(sc); 2292 return (0); 2293 } 2294 2295 static int 2296 sis_resume(device_t dev) 2297 { 2298 struct sis_softc *sc; 2299 struct ifnet *ifp; 2300 2301 sc = device_get_softc(dev); 2302 SIS_LOCK(sc); 2303 ifp = sc->sis_ifp; 2304 if ((ifp->if_flags & IFF_UP) != 0) { 2305 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2306 sis_initl(sc); 2307 } 2308 SIS_UNLOCK(sc); 2309 return (0); 2310 } 2311 2312 static void 2313 sis_wol(struct sis_softc *sc) 2314 { 2315 struct ifnet *ifp; 2316 uint32_t val; 2317 uint16_t pmstat; 2318 int pmc; 2319 2320 ifp = sc->sis_ifp; 2321 if ((ifp->if_capenable & IFCAP_WOL) == 0) 2322 return; 2323 2324 if (sc->sis_type == SIS_TYPE_83815) { 2325 /* Reset RXDP. */ 2326 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); 2327 2328 /* Configure WOL events. */ 2329 CSR_READ_4(sc, NS_WCSR); 2330 val = 0; 2331 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 2332 val |= NS_WCSR_WAKE_UCAST; 2333 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 2334 val |= NS_WCSR_WAKE_MCAST; 2335 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2336 val |= NS_WCSR_WAKE_MAGIC; 2337 CSR_WRITE_4(sc, NS_WCSR, val); 2338 /* Enable PME and clear PMESTS. */ 2339 val = CSR_READ_4(sc, NS_CLKRUN); 2340 val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS; 2341 CSR_WRITE_4(sc, NS_CLKRUN, val); 2342 /* Enable silent RX mode. */ 2343 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); 2344 } else { 2345 if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0) 2346 return; 2347 val = 0; 2348 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2349 val |= SIS_PWRMAN_WOL_MAGIC; 2350 CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val); 2351 /* Request PME. */ 2352 pmstat = pci_read_config(sc->sis_dev, 2353 pmc + PCIR_POWER_STATUS, 2); 2354 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 2355 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2356 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 2357 pci_write_config(sc->sis_dev, 2358 pmc + PCIR_POWER_STATUS, pmstat, 2); 2359 } 2360 } 2361 2362 static void 2363 sis_add_sysctls(struct sis_softc *sc) 2364 { 2365 struct sysctl_ctx_list *ctx; 2366 struct sysctl_oid_list *children; 2367 int unit; 2368 2369 ctx = device_get_sysctl_ctx(sc->sis_dev); 2370 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev)); 2371 2372 unit = device_get_unit(sc->sis_dev); 2373 /* 2374 * Unlike most other controllers, NS DP83815/DP83816 controllers 2375 * seem to pad with 0xFF when it encounter short frames. According 2376 * to RFC 1042 the pad bytes should be 0x00. Turning this tunable 2377 * on will have driver pad manully but it's disabled by default 2378 * because it will consume extra CPU cycles for short frames. 2379 */ 2380 sc->sis_manual_pad = 0; 2381 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad", 2382 CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames"); 2383 } 2384 2385 static device_method_t sis_methods[] = { 2386 /* Device interface */ 2387 DEVMETHOD(device_probe, sis_probe), 2388 DEVMETHOD(device_attach, sis_attach), 2389 DEVMETHOD(device_detach, sis_detach), 2390 DEVMETHOD(device_shutdown, sis_shutdown), 2391 DEVMETHOD(device_suspend, sis_suspend), 2392 DEVMETHOD(device_resume, sis_resume), 2393 2394 /* MII interface */ 2395 DEVMETHOD(miibus_readreg, sis_miibus_readreg), 2396 DEVMETHOD(miibus_writereg, sis_miibus_writereg), 2397 DEVMETHOD(miibus_statchg, sis_miibus_statchg), 2398 2399 DEVMETHOD_END 2400 }; 2401 2402 static driver_t sis_driver = { 2403 "sis", 2404 sis_methods, 2405 sizeof(struct sis_softc) 2406 }; 2407 2408 static devclass_t sis_devclass; 2409 2410 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0); 2411 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0); 2412