xref: /freebsd/sys/dev/sis/if_sis.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3  * Copyright (c) 1997, 1998, 1999
4  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39  * available from http://www.sis.com.tw.
40  *
41  * This driver also supports the NatSemi DP83815. Datasheets are
42  * available from http://www.national.com.
43  *
44  * Written by Bill Paul <wpaul@ee.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 /*
49  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50  * simple TX and RX descriptors of 3 longwords in size. The receiver
51  * has a single perfect filter entry for the station address and a
52  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53  * transceiver while the 7016 requires an external transceiver chip.
54  * Both chips offer the standard bit-bang MII interface as well as
55  * an enchanced PHY interface which simplifies accessing MII registers.
56  *
57  * The only downside to this chipset is that RX descriptors must be
58  * longword aligned.
59  */
60 
61 #ifdef HAVE_KERNEL_OPTION_HEADERS
62 #include "opt_device_polling.h"
63 #endif
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/bus.h>
68 #include <sys/endian.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/module.h>
74 #include <sys/socket.h>
75 #include <sys/sockio.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_dl.h>
82 #include <net/if_media.h>
83 #include <net/if_types.h>
84 #include <net/if_vlan_var.h>
85 
86 #include <net/bpf.h>
87 
88 #include <machine/bus.h>
89 #include <machine/resource.h>
90 #include <sys/bus.h>
91 #include <sys/rman.h>
92 
93 #include <dev/mii/mii.h>
94 #include <dev/mii/miivar.h>
95 
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 
99 #define SIS_USEIOSPACE
100 
101 #include <dev/sis/if_sisreg.h>
102 
103 MODULE_DEPEND(sis, pci, 1, 1, 1);
104 MODULE_DEPEND(sis, ether, 1, 1, 1);
105 MODULE_DEPEND(sis, miibus, 1, 1, 1);
106 
107 /* "device miibus" required.  See GENERIC if you get errors here. */
108 #include "miibus_if.h"
109 
110 #define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
111 #define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
112 #define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
113 
114 /*
115  * register space access macros
116  */
117 #define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
118 
119 #define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
120 
121 #define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
122 
123 /*
124  * Various supported device vendors/types and their names.
125  */
126 static struct sis_type sis_devs[] = {
127 	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
128 	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
129 	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
130 	{ 0, 0, NULL }
131 };
132 
133 static int sis_detach(device_t);
134 static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
135 static int sis_dma_alloc(struct sis_softc *);
136 static void sis_dma_free(struct sis_softc *);
137 static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
138     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
139 static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
140 #ifndef __NO_STRICT_ALIGNMENT
141 static __inline void sis_fixup_rx(struct mbuf *);
142 #endif
143 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
144 static int sis_ifmedia_upd(struct ifnet *);
145 static void sis_init(void *);
146 static void sis_initl(struct sis_softc *);
147 static void sis_intr(void *);
148 static int sis_ioctl(struct ifnet *, u_long, caddr_t);
149 static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
150 static int sis_resume(device_t);
151 static int sis_rxeof(struct sis_softc *);
152 static void sis_start(struct ifnet *);
153 static void sis_startl(struct ifnet *);
154 static void sis_stop(struct sis_softc *);
155 static int sis_suspend(device_t);
156 static void sis_add_sysctls(struct sis_softc *);
157 static void sis_watchdog(struct sis_softc *);
158 static void sis_wol(struct sis_softc *);
159 
160 
161 static struct resource_spec sis_res_spec[] = {
162 #ifdef SIS_USEIOSPACE
163 	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
164 #else
165 	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
166 #endif
167 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
168 	{ -1, 0 }
169 };
170 
171 #define SIS_SETBIT(sc, reg, x)				\
172 	CSR_WRITE_4(sc, reg,				\
173 		CSR_READ_4(sc, reg) | (x))
174 
175 #define SIS_CLRBIT(sc, reg, x)				\
176 	CSR_WRITE_4(sc, reg,				\
177 		CSR_READ_4(sc, reg) & ~(x))
178 
179 #define SIO_SET(x)					\
180 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
181 
182 #define SIO_CLR(x)					\
183 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
184 
185 /*
186  * Routine to reverse the bits in a word. Stolen almost
187  * verbatim from /usr/games/fortune.
188  */
189 static uint16_t
190 sis_reverse(uint16_t n)
191 {
192 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
193 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
194 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
195 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
196 
197 	return (n);
198 }
199 
200 static void
201 sis_delay(struct sis_softc *sc)
202 {
203 	int			idx;
204 
205 	for (idx = (300 / 33) + 1; idx > 0; idx--)
206 		CSR_READ_4(sc, SIS_CSR);
207 }
208 
209 static void
210 sis_eeprom_idle(struct sis_softc *sc)
211 {
212 	int		i;
213 
214 	SIO_SET(SIS_EECTL_CSEL);
215 	sis_delay(sc);
216 	SIO_SET(SIS_EECTL_CLK);
217 	sis_delay(sc);
218 
219 	for (i = 0; i < 25; i++) {
220 		SIO_CLR(SIS_EECTL_CLK);
221 		sis_delay(sc);
222 		SIO_SET(SIS_EECTL_CLK);
223 		sis_delay(sc);
224 	}
225 
226 	SIO_CLR(SIS_EECTL_CLK);
227 	sis_delay(sc);
228 	SIO_CLR(SIS_EECTL_CSEL);
229 	sis_delay(sc);
230 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
231 }
232 
233 /*
234  * Send a read command and address to the EEPROM, check for ACK.
235  */
236 static void
237 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
238 {
239 	int		d, i;
240 
241 	d = addr | SIS_EECMD_READ;
242 
243 	/*
244 	 * Feed in each bit and stobe the clock.
245 	 */
246 	for (i = 0x400; i; i >>= 1) {
247 		if (d & i) {
248 			SIO_SET(SIS_EECTL_DIN);
249 		} else {
250 			SIO_CLR(SIS_EECTL_DIN);
251 		}
252 		sis_delay(sc);
253 		SIO_SET(SIS_EECTL_CLK);
254 		sis_delay(sc);
255 		SIO_CLR(SIS_EECTL_CLK);
256 		sis_delay(sc);
257 	}
258 }
259 
260 /*
261  * Read a word of data stored in the EEPROM at address 'addr.'
262  */
263 static void
264 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
265 {
266 	int		i;
267 	uint16_t	word = 0;
268 
269 	/* Force EEPROM to idle state. */
270 	sis_eeprom_idle(sc);
271 
272 	/* Enter EEPROM access mode. */
273 	sis_delay(sc);
274 	SIO_CLR(SIS_EECTL_CLK);
275 	sis_delay(sc);
276 	SIO_SET(SIS_EECTL_CSEL);
277 	sis_delay(sc);
278 
279 	/*
280 	 * Send address of word we want to read.
281 	 */
282 	sis_eeprom_putbyte(sc, addr);
283 
284 	/*
285 	 * Start reading bits from EEPROM.
286 	 */
287 	for (i = 0x8000; i; i >>= 1) {
288 		SIO_SET(SIS_EECTL_CLK);
289 		sis_delay(sc);
290 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
291 			word |= i;
292 		sis_delay(sc);
293 		SIO_CLR(SIS_EECTL_CLK);
294 		sis_delay(sc);
295 	}
296 
297 	/* Turn off EEPROM access mode. */
298 	sis_eeprom_idle(sc);
299 
300 	*dest = word;
301 }
302 
303 /*
304  * Read a sequence of words from the EEPROM.
305  */
306 static void
307 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
308 {
309 	int			i;
310 	uint16_t		word = 0, *ptr;
311 
312 	for (i = 0; i < cnt; i++) {
313 		sis_eeprom_getword(sc, off + i, &word);
314 		ptr = (uint16_t *)(dest + (i * 2));
315 		if (swap)
316 			*ptr = ntohs(word);
317 		else
318 			*ptr = word;
319 	}
320 }
321 
322 #if defined(__i386__) || defined(__amd64__)
323 static device_t
324 sis_find_bridge(device_t dev)
325 {
326 	devclass_t		pci_devclass;
327 	device_t		*pci_devices;
328 	int			pci_count = 0;
329 	device_t		*pci_children;
330 	int			pci_childcount = 0;
331 	device_t		*busp, *childp;
332 	device_t		child = NULL;
333 	int			i, j;
334 
335 	if ((pci_devclass = devclass_find("pci")) == NULL)
336 		return (NULL);
337 
338 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
339 
340 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
341 		if (device_get_children(*busp, &pci_children, &pci_childcount))
342 			continue;
343 		for (j = 0, childp = pci_children;
344 		    j < pci_childcount; j++, childp++) {
345 			if (pci_get_vendor(*childp) == SIS_VENDORID &&
346 			    pci_get_device(*childp) == 0x0008) {
347 				child = *childp;
348 				free(pci_children, M_TEMP);
349 				goto done;
350 			}
351 		}
352 		free(pci_children, M_TEMP);
353 	}
354 
355 done:
356 	free(pci_devices, M_TEMP);
357 	return (child);
358 }
359 
360 static void
361 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
362 {
363 	device_t		bridge;
364 	uint8_t			reg;
365 	int			i;
366 	bus_space_tag_t		btag;
367 
368 	bridge = sis_find_bridge(dev);
369 	if (bridge == NULL)
370 		return;
371 	reg = pci_read_config(bridge, 0x48, 1);
372 	pci_write_config(bridge, 0x48, reg|0x40, 1);
373 
374 	/* XXX */
375 #if defined(__i386__)
376 	btag = I386_BUS_SPACE_IO;
377 #elif defined(__amd64__)
378 	btag = AMD64_BUS_SPACE_IO;
379 #endif
380 
381 	for (i = 0; i < cnt; i++) {
382 		bus_space_write_1(btag, 0x0, 0x70, i + off);
383 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
384 	}
385 
386 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
387 }
388 
389 static void
390 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
391 {
392 	uint32_t		filtsave, csrsave;
393 
394 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
395 	csrsave = CSR_READ_4(sc, SIS_CSR);
396 
397 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
398 	CSR_WRITE_4(sc, SIS_CSR, 0);
399 
400 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
401 
402 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
403 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
404 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
405 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
406 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
407 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
408 
409 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
410 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
411 }
412 #endif
413 
414 /*
415  * Sync the PHYs by setting data bit and strobing the clock 32 times.
416  */
417 static void
418 sis_mii_sync(struct sis_softc *sc)
419 {
420 	int		i;
421 
422  	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
423 
424  	for (i = 0; i < 32; i++) {
425  		SIO_SET(SIS_MII_CLK);
426  		DELAY(1);
427  		SIO_CLR(SIS_MII_CLK);
428  		DELAY(1);
429  	}
430 }
431 
432 /*
433  * Clock a series of bits through the MII.
434  */
435 static void
436 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
437 {
438 	int			i;
439 
440 	SIO_CLR(SIS_MII_CLK);
441 
442 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
443 		if (bits & i) {
444 			SIO_SET(SIS_MII_DATA);
445 		} else {
446 			SIO_CLR(SIS_MII_DATA);
447 		}
448 		DELAY(1);
449 		SIO_CLR(SIS_MII_CLK);
450 		DELAY(1);
451 		SIO_SET(SIS_MII_CLK);
452 	}
453 }
454 
455 /*
456  * Read an PHY register through the MII.
457  */
458 static int
459 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
460 {
461 	int			i, ack;
462 
463 	/*
464 	 * Set up frame for RX.
465 	 */
466 	frame->mii_stdelim = SIS_MII_STARTDELIM;
467 	frame->mii_opcode = SIS_MII_READOP;
468 	frame->mii_turnaround = 0;
469 	frame->mii_data = 0;
470 
471 	/*
472  	 * Turn on data xmit.
473 	 */
474 	SIO_SET(SIS_MII_DIR);
475 
476 	sis_mii_sync(sc);
477 
478 	/*
479 	 * Send command/address info.
480 	 */
481 	sis_mii_send(sc, frame->mii_stdelim, 2);
482 	sis_mii_send(sc, frame->mii_opcode, 2);
483 	sis_mii_send(sc, frame->mii_phyaddr, 5);
484 	sis_mii_send(sc, frame->mii_regaddr, 5);
485 
486 	/* Idle bit */
487 	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
488 	DELAY(1);
489 	SIO_SET(SIS_MII_CLK);
490 	DELAY(1);
491 
492 	/* Turn off xmit. */
493 	SIO_CLR(SIS_MII_DIR);
494 
495 	/* Check for ack */
496 	SIO_CLR(SIS_MII_CLK);
497 	DELAY(1);
498 	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
499 	SIO_SET(SIS_MII_CLK);
500 	DELAY(1);
501 
502 	/*
503 	 * Now try reading data bits. If the ack failed, we still
504 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
505 	 */
506 	if (ack) {
507 		for (i = 0; i < 16; i++) {
508 			SIO_CLR(SIS_MII_CLK);
509 			DELAY(1);
510 			SIO_SET(SIS_MII_CLK);
511 			DELAY(1);
512 		}
513 		goto fail;
514 	}
515 
516 	for (i = 0x8000; i; i >>= 1) {
517 		SIO_CLR(SIS_MII_CLK);
518 		DELAY(1);
519 		if (!ack) {
520 			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
521 				frame->mii_data |= i;
522 			DELAY(1);
523 		}
524 		SIO_SET(SIS_MII_CLK);
525 		DELAY(1);
526 	}
527 
528 fail:
529 
530 	SIO_CLR(SIS_MII_CLK);
531 	DELAY(1);
532 	SIO_SET(SIS_MII_CLK);
533 	DELAY(1);
534 
535 	if (ack)
536 		return (1);
537 	return (0);
538 }
539 
540 /*
541  * Write to a PHY register through the MII.
542  */
543 static int
544 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
545 {
546 
547  	/*
548  	 * Set up frame for TX.
549  	 */
550 
551  	frame->mii_stdelim = SIS_MII_STARTDELIM;
552  	frame->mii_opcode = SIS_MII_WRITEOP;
553  	frame->mii_turnaround = SIS_MII_TURNAROUND;
554 
555  	/*
556   	 * Turn on data output.
557  	 */
558  	SIO_SET(SIS_MII_DIR);
559 
560  	sis_mii_sync(sc);
561 
562  	sis_mii_send(sc, frame->mii_stdelim, 2);
563  	sis_mii_send(sc, frame->mii_opcode, 2);
564  	sis_mii_send(sc, frame->mii_phyaddr, 5);
565  	sis_mii_send(sc, frame->mii_regaddr, 5);
566  	sis_mii_send(sc, frame->mii_turnaround, 2);
567  	sis_mii_send(sc, frame->mii_data, 16);
568 
569  	/* Idle bit. */
570  	SIO_SET(SIS_MII_CLK);
571  	DELAY(1);
572  	SIO_CLR(SIS_MII_CLK);
573  	DELAY(1);
574 
575  	/*
576  	 * Turn off xmit.
577  	 */
578  	SIO_CLR(SIS_MII_DIR);
579 
580  	return (0);
581 }
582 
583 static int
584 sis_miibus_readreg(device_t dev, int phy, int reg)
585 {
586 	struct sis_softc	*sc;
587 	struct sis_mii_frame    frame;
588 
589 	sc = device_get_softc(dev);
590 
591 	if (sc->sis_type == SIS_TYPE_83815) {
592 		if (phy != 0)
593 			return (0);
594 		/*
595 		 * The NatSemi chip can take a while after
596 		 * a reset to come ready, during which the BMSR
597 		 * returns a value of 0. This is *never* supposed
598 		 * to happen: some of the BMSR bits are meant to
599 		 * be hardwired in the on position, and this can
600 		 * confuse the miibus code a bit during the probe
601 		 * and attach phase. So we make an effort to check
602 		 * for this condition and wait for it to clear.
603 		 */
604 		if (!CSR_READ_4(sc, NS_BMSR))
605 			DELAY(1000);
606 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
607 	}
608 
609 	/*
610 	 * Chipsets < SIS_635 seem not to be able to read/write
611 	 * through mdio. Use the enhanced PHY access register
612 	 * again for them.
613 	 */
614 	if (sc->sis_type == SIS_TYPE_900 &&
615 	    sc->sis_rev < SIS_REV_635) {
616 		int i, val = 0;
617 
618 		if (phy != 0)
619 			return (0);
620 
621 		CSR_WRITE_4(sc, SIS_PHYCTL,
622 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
623 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
624 
625 		for (i = 0; i < SIS_TIMEOUT; i++) {
626 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
627 				break;
628 		}
629 
630 		if (i == SIS_TIMEOUT) {
631 			device_printf(sc->sis_dev, "PHY failed to come ready\n");
632 			return (0);
633 		}
634 
635 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
636 
637 		if (val == 0xFFFF)
638 			return (0);
639 
640 		return (val);
641 	} else {
642 		bzero((char *)&frame, sizeof(frame));
643 
644 		frame.mii_phyaddr = phy;
645 		frame.mii_regaddr = reg;
646 		sis_mii_readreg(sc, &frame);
647 
648 		return (frame.mii_data);
649 	}
650 }
651 
652 static int
653 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
654 {
655 	struct sis_softc	*sc;
656 	struct sis_mii_frame	frame;
657 
658 	sc = device_get_softc(dev);
659 
660 	if (sc->sis_type == SIS_TYPE_83815) {
661 		if (phy != 0)
662 			return (0);
663 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
664 		return (0);
665 	}
666 
667 	/*
668 	 * Chipsets < SIS_635 seem not to be able to read/write
669 	 * through mdio. Use the enhanced PHY access register
670 	 * again for them.
671 	 */
672 	if (sc->sis_type == SIS_TYPE_900 &&
673 	    sc->sis_rev < SIS_REV_635) {
674 		int i;
675 
676 		if (phy != 0)
677 			return (0);
678 
679 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
680 		    (reg << 6) | SIS_PHYOP_WRITE);
681 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
682 
683 		for (i = 0; i < SIS_TIMEOUT; i++) {
684 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
685 				break;
686 		}
687 
688 		if (i == SIS_TIMEOUT)
689 			device_printf(sc->sis_dev, "PHY failed to come ready\n");
690 	} else {
691 		bzero((char *)&frame, sizeof(frame));
692 
693 		frame.mii_phyaddr = phy;
694 		frame.mii_regaddr = reg;
695 		frame.mii_data = data;
696 		sis_mii_writereg(sc, &frame);
697 	}
698 	return (0);
699 }
700 
701 static void
702 sis_miibus_statchg(device_t dev)
703 {
704 	struct sis_softc	*sc;
705 	struct mii_data		*mii;
706 	struct ifnet		*ifp;
707 	uint32_t		reg;
708 
709 	sc = device_get_softc(dev);
710 	SIS_LOCK_ASSERT(sc);
711 
712 	mii = device_get_softc(sc->sis_miibus);
713 	ifp = sc->sis_ifp;
714 	if (mii == NULL || ifp == NULL ||
715 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
716 		return;
717 
718 	sc->sis_flags &= ~SIS_FLAG_LINK;
719 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
720 	    (IFM_ACTIVE | IFM_AVALID)) {
721 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
722 		case IFM_10_T:
723 			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
724 			sc->sis_flags |= SIS_FLAG_LINK;
725 			break;
726 		case IFM_100_TX:
727 			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
728 			sc->sis_flags |= SIS_FLAG_LINK;
729 			break;
730 		default:
731 			break;
732 		}
733 	}
734 
735 	if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
736 		/*
737 		 * Stopping MACs seem to reset SIS_TX_LISTPTR and
738 		 * SIS_RX_LISTPTR which in turn requires resetting
739 		 * TX/RX buffers.  So just don't do anything for
740 		 * lost link.
741 		 */
742 		return;
743 	}
744 
745 	/* Set full/half duplex mode. */
746 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
747 		SIS_SETBIT(sc, SIS_TX_CFG,
748 		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
749 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
750 	} else {
751 		SIS_CLRBIT(sc, SIS_TX_CFG,
752 		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
753 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
754 	}
755 
756 	if (sc->sis_type == SIS_TYPE_83816) {
757 		/*
758 		 * MPII03.D: Half Duplex Excessive Collisions.
759 		 * Also page 49 in 83816 manual
760 		 */
761 		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
762 	}
763 
764 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
765 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
766 		/*
767 		 * Short Cable Receive Errors (MP21.E)
768 		 */
769 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
770 		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
771 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
772 		DELAY(100);
773 		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
774 		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
775 			device_printf(sc->sis_dev,
776 			    "Applying short cable fix (reg=%x)\n", reg);
777 			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
778 			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
779 		}
780 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
781 	}
782 	/* Enable TX/RX MACs. */
783 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
784 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
785 }
786 
787 static uint32_t
788 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
789 {
790 	uint32_t		crc;
791 
792 	/* Compute CRC for the address value. */
793 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
794 
795 	/*
796 	 * return the filter bit position
797 	 *
798 	 * The NatSemi chip has a 512-bit filter, which is
799 	 * different than the SiS, so we special-case it.
800 	 */
801 	if (sc->sis_type == SIS_TYPE_83815)
802 		return (crc >> 23);
803 	else if (sc->sis_rev >= SIS_REV_635 ||
804 	    sc->sis_rev == SIS_REV_900B)
805 		return (crc >> 24);
806 	else
807 		return (crc >> 25);
808 }
809 
810 static void
811 sis_setmulti_ns(struct sis_softc *sc)
812 {
813 	struct ifnet		*ifp;
814 	struct ifmultiaddr	*ifma;
815 	uint32_t		h = 0, i, filtsave;
816 	int			bit, index;
817 
818 	ifp = sc->sis_ifp;
819 
820 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
821 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
822 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
823 		return;
824 	}
825 
826 	/*
827 	 * We have to explicitly enable the multicast hash table
828 	 * on the NatSemi chip if we want to use it, which we do.
829 	 */
830 	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
831 	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
832 
833 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
834 
835 	/* first, zot all the existing hash bits */
836 	for (i = 0; i < 32; i++) {
837 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
838 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
839 	}
840 
841 	if_maddr_rlock(ifp);
842 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
843 		if (ifma->ifma_addr->sa_family != AF_LINK)
844 			continue;
845 		h = sis_mchash(sc,
846 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
847 		index = h >> 3;
848 		bit = h & 0x1F;
849 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
850 		if (bit > 0xF)
851 			bit -= 0x10;
852 		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
853 	}
854 	if_maddr_runlock(ifp);
855 
856 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
857 }
858 
859 static void
860 sis_setmulti_sis(struct sis_softc *sc)
861 {
862 	struct ifnet		*ifp;
863 	struct ifmultiaddr	*ifma;
864 	uint32_t		h, i, n, ctl;
865 	uint16_t		hashes[16];
866 
867 	ifp = sc->sis_ifp;
868 
869 	/* hash table size */
870 	if (sc->sis_rev >= SIS_REV_635 ||
871 	    sc->sis_rev == SIS_REV_900B)
872 		n = 16;
873 	else
874 		n = 8;
875 
876 	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
877 
878 	if (ifp->if_flags & IFF_BROADCAST)
879 		ctl |= SIS_RXFILTCTL_BROAD;
880 
881 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
882 		ctl |= SIS_RXFILTCTL_ALLMULTI;
883 		if (ifp->if_flags & IFF_PROMISC)
884 			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
885 		for (i = 0; i < n; i++)
886 			hashes[i] = ~0;
887 	} else {
888 		for (i = 0; i < n; i++)
889 			hashes[i] = 0;
890 		i = 0;
891 		if_maddr_rlock(ifp);
892 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
893 			if (ifma->ifma_addr->sa_family != AF_LINK)
894 			continue;
895 			h = sis_mchash(sc,
896 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
897 			hashes[h >> 4] |= 1 << (h & 0xf);
898 			i++;
899 		}
900 		if_maddr_runlock(ifp);
901 		if (i > n) {
902 			ctl |= SIS_RXFILTCTL_ALLMULTI;
903 			for (i = 0; i < n; i++)
904 				hashes[i] = ~0;
905 		}
906 	}
907 
908 	for (i = 0; i < n; i++) {
909 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
910 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
911 	}
912 
913 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
914 }
915 
916 static void
917 sis_reset(struct sis_softc *sc)
918 {
919 	int		i;
920 
921 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
922 
923 	for (i = 0; i < SIS_TIMEOUT; i++) {
924 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
925 			break;
926 	}
927 
928 	if (i == SIS_TIMEOUT)
929 		device_printf(sc->sis_dev, "reset never completed\n");
930 
931 	/* Wait a little while for the chip to get its brains in order. */
932 	DELAY(1000);
933 
934 	/*
935 	 * If this is a NetSemi chip, make sure to clear
936 	 * PME mode.
937 	 */
938 	if (sc->sis_type == SIS_TYPE_83815) {
939 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
940 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
941 	} else {
942 		/* Disable WOL functions. */
943 		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
944 	}
945 }
946 
947 /*
948  * Probe for an SiS chip. Check the PCI vendor and device
949  * IDs against our list and return a device name if we find a match.
950  */
951 static int
952 sis_probe(device_t dev)
953 {
954 	struct sis_type		*t;
955 
956 	t = sis_devs;
957 
958 	while (t->sis_name != NULL) {
959 		if ((pci_get_vendor(dev) == t->sis_vid) &&
960 		    (pci_get_device(dev) == t->sis_did)) {
961 			device_set_desc(dev, t->sis_name);
962 			return (BUS_PROBE_DEFAULT);
963 		}
964 		t++;
965 	}
966 
967 	return (ENXIO);
968 }
969 
970 /*
971  * Attach the interface. Allocate softc structures, do ifmedia
972  * setup and ethernet/BPF attach.
973  */
974 static int
975 sis_attach(device_t dev)
976 {
977 	u_char			eaddr[ETHER_ADDR_LEN];
978 	struct sis_softc	*sc;
979 	struct ifnet		*ifp;
980 	int			error = 0, pmc, waittime = 0;
981 
982 	waittime = 0;
983 	sc = device_get_softc(dev);
984 
985 	sc->sis_dev = dev;
986 
987 	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
988 	    MTX_DEF);
989 	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
990 
991 	if (pci_get_device(dev) == SIS_DEVICEID_900)
992 		sc->sis_type = SIS_TYPE_900;
993 	if (pci_get_device(dev) == SIS_DEVICEID_7016)
994 		sc->sis_type = SIS_TYPE_7016;
995 	if (pci_get_vendor(dev) == NS_VENDORID)
996 		sc->sis_type = SIS_TYPE_83815;
997 
998 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
999 	/*
1000 	 * Map control/status registers.
1001 	 */
1002 	pci_enable_busmaster(dev);
1003 
1004 	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
1005 	if (error) {
1006 		device_printf(dev, "couldn't allocate resources\n");
1007 		goto fail;
1008 	}
1009 
1010 	/* Reset the adapter. */
1011 	sis_reset(sc);
1012 
1013 	if (sc->sis_type == SIS_TYPE_900 &&
1014 	    (sc->sis_rev == SIS_REV_635 ||
1015 	    sc->sis_rev == SIS_REV_900B)) {
1016 		SIO_SET(SIS_CFG_RND_CNT);
1017 		SIO_SET(SIS_CFG_PERR_DETECT);
1018 	}
1019 
1020 	/*
1021 	 * Get station address from the EEPROM.
1022 	 */
1023 	switch (pci_get_vendor(dev)) {
1024 	case NS_VENDORID:
1025 		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
1026 
1027 		/* We can't update the device description, so spew */
1028 		if (sc->sis_srr == NS_SRR_15C)
1029 			device_printf(dev, "Silicon Revision: DP83815C\n");
1030 		else if (sc->sis_srr == NS_SRR_15D)
1031 			device_printf(dev, "Silicon Revision: DP83815D\n");
1032 		else if (sc->sis_srr == NS_SRR_16A)
1033 			device_printf(dev, "Silicon Revision: DP83816A\n");
1034 		else
1035 			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
1036 
1037 		/*
1038 		 * Reading the MAC address out of the EEPROM on
1039 		 * the NatSemi chip takes a bit more work than
1040 		 * you'd expect. The address spans 4 16-bit words,
1041 		 * with the first word containing only a single bit.
1042 		 * You have to shift everything over one bit to
1043 		 * get it aligned properly. Also, the bits are
1044 		 * stored backwards (the LSB is really the MSB,
1045 		 * and so on) so you have to reverse them in order
1046 		 * to get the MAC address into the form we want.
1047 		 * Why? Who the hell knows.
1048 		 */
1049 		{
1050 			uint16_t		tmp[4];
1051 
1052 			sis_read_eeprom(sc, (caddr_t)&tmp,
1053 			    NS_EE_NODEADDR, 4, 0);
1054 
1055 			/* Shift everything over one bit. */
1056 			tmp[3] = tmp[3] >> 1;
1057 			tmp[3] |= tmp[2] << 15;
1058 			tmp[2] = tmp[2] >> 1;
1059 			tmp[2] |= tmp[1] << 15;
1060 			tmp[1] = tmp[1] >> 1;
1061 			tmp[1] |= tmp[0] << 15;
1062 
1063 			/* Now reverse all the bits. */
1064 			tmp[3] = sis_reverse(tmp[3]);
1065 			tmp[2] = sis_reverse(tmp[2]);
1066 			tmp[1] = sis_reverse(tmp[1]);
1067 
1068 			eaddr[0] = (tmp[1] >> 0) & 0xFF;
1069 			eaddr[1] = (tmp[1] >> 8) & 0xFF;
1070 			eaddr[2] = (tmp[2] >> 0) & 0xFF;
1071 			eaddr[3] = (tmp[2] >> 8) & 0xFF;
1072 			eaddr[4] = (tmp[3] >> 0) & 0xFF;
1073 			eaddr[5] = (tmp[3] >> 8) & 0xFF;
1074 		}
1075 		break;
1076 	case SIS_VENDORID:
1077 	default:
1078 #if defined(__i386__) || defined(__amd64__)
1079 		/*
1080 		 * If this is a SiS 630E chipset with an embedded
1081 		 * SiS 900 controller, we have to read the MAC address
1082 		 * from the APC CMOS RAM. Our method for doing this
1083 		 * is very ugly since we have to reach out and grab
1084 		 * ahold of hardware for which we cannot properly
1085 		 * allocate resources. This code is only compiled on
1086 		 * the i386 architecture since the SiS 630E chipset
1087 		 * is for x86 motherboards only. Note that there are
1088 		 * a lot of magic numbers in this hack. These are
1089 		 * taken from SiS's Linux driver. I'd like to replace
1090 		 * them with proper symbolic definitions, but that
1091 		 * requires some datasheets that I don't have access
1092 		 * to at the moment.
1093 		 */
1094 		if (sc->sis_rev == SIS_REV_630S ||
1095 		    sc->sis_rev == SIS_REV_630E ||
1096 		    sc->sis_rev == SIS_REV_630EA1)
1097 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1098 
1099 		else if (sc->sis_rev == SIS_REV_635 ||
1100 			 sc->sis_rev == SIS_REV_630ET)
1101 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1102 		else if (sc->sis_rev == SIS_REV_96x) {
1103 			/* Allow to read EEPROM from LAN. It is shared
1104 			 * between a 1394 controller and the NIC and each
1105 			 * time we access it, we need to set SIS_EECMD_REQ.
1106 			 */
1107 			SIO_SET(SIS_EECMD_REQ);
1108 			for (waittime = 0; waittime < SIS_TIMEOUT;
1109 			    waittime++) {
1110 				/* Force EEPROM to idle state. */
1111 				sis_eeprom_idle(sc);
1112 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1113 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1114 					    SIS_EE_NODEADDR, 3, 0);
1115 					break;
1116 				}
1117 				DELAY(1);
1118 			}
1119 			/*
1120 			 * Set SIS_EECTL_CLK to high, so a other master
1121 			 * can operate on the i2c bus.
1122 			 */
1123 			SIO_SET(SIS_EECTL_CLK);
1124 			/* Refuse EEPROM access by LAN */
1125 			SIO_SET(SIS_EECMD_DONE);
1126 		} else
1127 #endif
1128 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1129 			    SIS_EE_NODEADDR, 3, 0);
1130 		break;
1131 	}
1132 
1133 	sis_add_sysctls(sc);
1134 
1135 	/* Allocate DMA'able memory. */
1136 	if ((error = sis_dma_alloc(sc)) != 0)
1137 		goto fail;
1138 
1139 	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1140 	if (ifp == NULL) {
1141 		device_printf(dev, "can not if_alloc()\n");
1142 		error = ENOSPC;
1143 		goto fail;
1144 	}
1145 	ifp->if_softc = sc;
1146 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1147 	ifp->if_mtu = ETHERMTU;
1148 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1149 	ifp->if_ioctl = sis_ioctl;
1150 	ifp->if_start = sis_start;
1151 	ifp->if_init = sis_init;
1152 	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1153 	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1154 	IFQ_SET_READY(&ifp->if_snd);
1155 
1156 	if (pci_find_extcap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
1157 		if (sc->sis_type == SIS_TYPE_83815)
1158 			ifp->if_capabilities |= IFCAP_WOL;
1159 		else
1160 			ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1161 		ifp->if_capenable = ifp->if_capabilities;
1162 	}
1163 
1164 	/*
1165 	 * Do MII setup.
1166 	 */
1167 	error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
1168 	    sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1169 	if (error != 0) {
1170 		device_printf(dev, "attaching PHYs failed\n");
1171 		goto fail;
1172 	}
1173 
1174 	/*
1175 	 * Call MI attach routine.
1176 	 */
1177 	ether_ifattach(ifp, eaddr);
1178 
1179 	/*
1180 	 * Tell the upper layer(s) we support long frames.
1181 	 */
1182 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1183 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1184 	ifp->if_capenable = ifp->if_capabilities;
1185 #ifdef DEVICE_POLLING
1186 	ifp->if_capabilities |= IFCAP_POLLING;
1187 #endif
1188 
1189 	/* Hook interrupt last to avoid having to lock softc */
1190 	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1191 	    NULL, sis_intr, sc, &sc->sis_intrhand);
1192 
1193 	if (error) {
1194 		device_printf(dev, "couldn't set up irq\n");
1195 		ether_ifdetach(ifp);
1196 		goto fail;
1197 	}
1198 
1199 fail:
1200 	if (error)
1201 		sis_detach(dev);
1202 
1203 	return (error);
1204 }
1205 
1206 /*
1207  * Shutdown hardware and free up resources. This can be called any
1208  * time after the mutex has been initialized. It is called in both
1209  * the error case in attach and the normal detach case so it needs
1210  * to be careful about only freeing resources that have actually been
1211  * allocated.
1212  */
1213 static int
1214 sis_detach(device_t dev)
1215 {
1216 	struct sis_softc	*sc;
1217 	struct ifnet		*ifp;
1218 
1219 	sc = device_get_softc(dev);
1220 	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1221 	ifp = sc->sis_ifp;
1222 
1223 #ifdef DEVICE_POLLING
1224 	if (ifp->if_capenable & IFCAP_POLLING)
1225 		ether_poll_deregister(ifp);
1226 #endif
1227 
1228 	/* These should only be active if attach succeeded. */
1229 	if (device_is_attached(dev)) {
1230 		SIS_LOCK(sc);
1231 		sis_stop(sc);
1232 		SIS_UNLOCK(sc);
1233 		callout_drain(&sc->sis_stat_ch);
1234 		ether_ifdetach(ifp);
1235 	}
1236 	if (sc->sis_miibus)
1237 		device_delete_child(dev, sc->sis_miibus);
1238 	bus_generic_detach(dev);
1239 
1240 	if (sc->sis_intrhand)
1241 		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1242 	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1243 
1244 	if (ifp)
1245 		if_free(ifp);
1246 
1247 	sis_dma_free(sc);
1248 
1249 	mtx_destroy(&sc->sis_mtx);
1250 
1251 	return (0);
1252 }
1253 
1254 struct sis_dmamap_arg {
1255 	bus_addr_t	sis_busaddr;
1256 };
1257 
1258 static void
1259 sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1260 {
1261 	struct sis_dmamap_arg	*ctx;
1262 
1263 	if (error != 0)
1264 		return;
1265 
1266 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1267 
1268 	ctx = (struct sis_dmamap_arg *)arg;
1269 	ctx->sis_busaddr = segs[0].ds_addr;
1270 }
1271 
1272 static int
1273 sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
1274     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
1275     bus_addr_t *paddr, const char *msg)
1276 {
1277 	struct sis_dmamap_arg	ctx;
1278 	int			error;
1279 
1280 	error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
1281 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
1282 	    maxsize, 0, NULL, NULL, tag);
1283 	if (error != 0) {
1284 		device_printf(sc->sis_dev,
1285 		    "could not create %s dma tag\n", msg);
1286 		return (ENOMEM);
1287 	}
1288 	/* Allocate DMA'able memory for ring. */
1289 	error = bus_dmamem_alloc(*tag, (void **)ring,
1290 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1291 	if (error != 0) {
1292 		device_printf(sc->sis_dev,
1293 		    "could not allocate DMA'able memory for %s\n", msg);
1294 		return (ENOMEM);
1295 	}
1296 	/* Load the address of the ring. */
1297 	ctx.sis_busaddr = 0;
1298 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
1299 	    &ctx, BUS_DMA_NOWAIT);
1300 	if (error != 0) {
1301 		device_printf(sc->sis_dev,
1302 		    "could not load DMA'able memory for %s\n", msg);
1303 		return (ENOMEM);
1304 	}
1305 	*paddr = ctx.sis_busaddr;
1306 	return (0);
1307 }
1308 
1309 static int
1310 sis_dma_alloc(struct sis_softc *sc)
1311 {
1312 	struct sis_rxdesc	*rxd;
1313 	struct sis_txdesc	*txd;
1314 	int			error, i;
1315 
1316 	/* Allocate the parent bus DMA tag appropriate for PCI. */
1317 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1318 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1319 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
1320 	    0, NULL, NULL, &sc->sis_parent_tag);
1321 	if (error != 0) {
1322 		device_printf(sc->sis_dev,
1323 		    "could not allocate parent dma tag\n");
1324 		return (ENOMEM);
1325 	}
1326 
1327 	/* Create RX ring. */
1328 	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
1329 	    &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
1330 	    &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
1331 	if (error)
1332 		return (error);
1333 
1334 	/* Create TX ring. */
1335 	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
1336 	    &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
1337 	    &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
1338 	if (error)
1339 		return (error);
1340 
1341 	/* Create tag for RX mbufs. */
1342 	error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
1343 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1344 	    MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
1345 	if (error) {
1346 		device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
1347 		return (error);
1348 	}
1349 
1350 	/* Create tag for TX mbufs. */
1351 	error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
1352 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1353 	    MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1354 	    &sc->sis_tx_tag);
1355 	if (error) {
1356 		device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
1357 		return (error);
1358 	}
1359 
1360 	/* Create DMA maps for RX buffers. */
1361 	error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
1362 	if (error) {
1363 		device_printf(sc->sis_dev,
1364 		    "can't create spare DMA map for RX\n");
1365 		return (error);
1366 	}
1367 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1368 		rxd = &sc->sis_rxdesc[i];
1369 		rxd->rx_m = NULL;
1370 		error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
1371 		if (error) {
1372 			device_printf(sc->sis_dev,
1373 			    "can't create DMA map for RX\n");
1374 			return (error);
1375 		}
1376 	}
1377 
1378 	/* Create DMA maps for TX buffers. */
1379 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1380 		txd = &sc->sis_txdesc[i];
1381 		txd->tx_m = NULL;
1382 		error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
1383 		if (error) {
1384 			device_printf(sc->sis_dev,
1385 			    "can't create DMA map for TX\n");
1386 			return (error);
1387 		}
1388 	}
1389 
1390 	return (0);
1391 }
1392 
1393 static void
1394 sis_dma_free(struct sis_softc *sc)
1395 {
1396 	struct sis_rxdesc	*rxd;
1397 	struct sis_txdesc	*txd;
1398 	int			i;
1399 
1400 	/* Destroy DMA maps for RX buffers. */
1401 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1402 		rxd = &sc->sis_rxdesc[i];
1403 		if (rxd->rx_dmamap)
1404 			bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
1405 	}
1406 	if (sc->sis_rx_sparemap)
1407 		bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
1408 
1409 	/* Destroy DMA maps for TX buffers. */
1410 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1411 		txd = &sc->sis_txdesc[i];
1412 		if (txd->tx_dmamap)
1413 			bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
1414 	}
1415 
1416 	if (sc->sis_rx_tag)
1417 		bus_dma_tag_destroy(sc->sis_rx_tag);
1418 	if (sc->sis_tx_tag)
1419 		bus_dma_tag_destroy(sc->sis_tx_tag);
1420 
1421 	/* Destroy RX ring. */
1422 	if (sc->sis_rx_list_map)
1423 		bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
1424 	if (sc->sis_rx_list_map && sc->sis_rx_list)
1425 		bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
1426 		    sc->sis_rx_list_map);
1427 
1428 	if (sc->sis_rx_list_tag)
1429 		bus_dma_tag_destroy(sc->sis_rx_list_tag);
1430 
1431 	/* Destroy TX ring. */
1432 	if (sc->sis_tx_list_map)
1433 		bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
1434 
1435 	if (sc->sis_tx_list_map && sc->sis_tx_list)
1436 		bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
1437 		    sc->sis_tx_list_map);
1438 
1439 	if (sc->sis_tx_list_tag)
1440 		bus_dma_tag_destroy(sc->sis_tx_list_tag);
1441 
1442 	/* Destroy the parent tag. */
1443 	if (sc->sis_parent_tag)
1444 		bus_dma_tag_destroy(sc->sis_parent_tag);
1445 }
1446 
1447 /*
1448  * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1449  * we arrange the descriptors in a closed ring, so that the last descriptor
1450  * points back to the first.
1451  */
1452 static int
1453 sis_ring_init(struct sis_softc *sc)
1454 {
1455 	struct sis_rxdesc	*rxd;
1456 	struct sis_txdesc	*txd;
1457 	bus_addr_t		next;
1458 	int			error, i;
1459 
1460 	bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
1461 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1462 		txd = &sc->sis_txdesc[i];
1463 		txd->tx_m = NULL;
1464 		if (i == SIS_TX_LIST_CNT - 1)
1465 			next = SIS_TX_RING_ADDR(sc, 0);
1466 		else
1467 			next = SIS_TX_RING_ADDR(sc, i + 1);
1468 		sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
1469 	}
1470 	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1471 	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1472 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1473 
1474 	sc->sis_rx_cons = 0;
1475 	bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
1476 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1477 		rxd = &sc->sis_rxdesc[i];
1478 		rxd->rx_desc = &sc->sis_rx_list[i];
1479 		if (i == SIS_RX_LIST_CNT - 1)
1480 			next = SIS_RX_RING_ADDR(sc, 0);
1481 		else
1482 			next = SIS_RX_RING_ADDR(sc, i + 1);
1483 		rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
1484 		error = sis_newbuf(sc, rxd);
1485 		if (error)
1486 			return (error);
1487 	}
1488 	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1489 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1490 
1491 	return (0);
1492 }
1493 
1494 /*
1495  * Initialize an RX descriptor and attach an MBUF cluster.
1496  */
1497 static int
1498 sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
1499 {
1500 	struct mbuf		*m;
1501 	bus_dma_segment_t	segs[1];
1502 	bus_dmamap_t		map;
1503 	int nsegs;
1504 
1505 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1506 	if (m == NULL)
1507 		return (ENOBUFS);
1508 	m->m_len = m->m_pkthdr.len = SIS_RXLEN;
1509 #ifndef __NO_STRICT_ALIGNMENT
1510 	m_adj(m, SIS_RX_BUF_ALIGN);
1511 #endif
1512 
1513 	if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
1514 	    segs, &nsegs, 0) != 0) {
1515 		m_freem(m);
1516 		return (ENOBUFS);
1517 	}
1518 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1519 
1520 	if (rxd->rx_m != NULL) {
1521 		bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
1522 		    BUS_DMASYNC_POSTREAD);
1523 		bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
1524 	}
1525 	map = rxd->rx_dmamap;
1526 	rxd->rx_dmamap = sc->sis_rx_sparemap;
1527 	sc->sis_rx_sparemap = map;
1528 	bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
1529 	rxd->rx_m = m;
1530 	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1531 	rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
1532 	return (0);
1533 }
1534 
1535 static __inline void
1536 sis_discard_rxbuf(struct sis_rxdesc *rxd)
1537 {
1538 
1539 	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1540 }
1541 
1542 #ifndef __NO_STRICT_ALIGNMENT
1543 static __inline void
1544 sis_fixup_rx(struct mbuf *m)
1545 {
1546 	uint16_t		*src, *dst;
1547 	int			i;
1548 
1549 	src = mtod(m, uint16_t *);
1550 	dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
1551 
1552 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1553 		*dst++ = *src++;
1554 
1555 	m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
1556 }
1557 #endif
1558 
1559 /*
1560  * A frame has been uploaded: pass the resulting mbuf chain up to
1561  * the higher level protocols.
1562  */
1563 static int
1564 sis_rxeof(struct sis_softc *sc)
1565 {
1566 	struct mbuf		*m;
1567 	struct ifnet		*ifp;
1568 	struct sis_rxdesc	*rxd;
1569 	struct sis_desc		*cur_rx;
1570 	int			prog, rx_cons, rx_npkts = 0, total_len;
1571 	uint32_t		rxstat;
1572 
1573 	SIS_LOCK_ASSERT(sc);
1574 
1575 	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1576 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1577 
1578 	rx_cons = sc->sis_rx_cons;
1579 	ifp = sc->sis_ifp;
1580 
1581 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1582 	    SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
1583 #ifdef DEVICE_POLLING
1584 		if (ifp->if_capenable & IFCAP_POLLING) {
1585 			if (sc->rxcycles <= 0)
1586 				break;
1587 			sc->rxcycles--;
1588 		}
1589 #endif
1590 		cur_rx = &sc->sis_rx_list[rx_cons];
1591 		rxstat = le32toh(cur_rx->sis_cmdsts);
1592 		if ((rxstat & SIS_CMDSTS_OWN) == 0)
1593 			break;
1594 		rxd = &sc->sis_rxdesc[rx_cons];
1595 
1596 		total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
1597 		if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1598 		    total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1599 		    ETHER_CRC_LEN))
1600 			rxstat &= ~SIS_RXSTAT_GIANT;
1601 		if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1602 			ifp->if_ierrors++;
1603 			if (rxstat & SIS_RXSTAT_COLL)
1604 				ifp->if_collisions++;
1605 			sis_discard_rxbuf(rxd);
1606 			continue;
1607 		}
1608 
1609 		/* Add a new receive buffer to the ring. */
1610 		m = rxd->rx_m;
1611 		if (sis_newbuf(sc, rxd) != 0) {
1612 			ifp->if_iqdrops++;
1613 			sis_discard_rxbuf(rxd);
1614 			continue;
1615 		}
1616 
1617 		/* No errors; receive the packet. */
1618 		m->m_pkthdr.len = m->m_len = total_len;
1619 #ifndef __NO_STRICT_ALIGNMENT
1620 		/*
1621 		 * On architectures without alignment problems we try to
1622 		 * allocate a new buffer for the receive ring, and pass up
1623 		 * the one where the packet is already, saving the expensive
1624 		 * copy operation.
1625 		 */
1626 		sis_fixup_rx(m);
1627 #endif
1628 		ifp->if_ipackets++;
1629 		m->m_pkthdr.rcvif = ifp;
1630 
1631 		SIS_UNLOCK(sc);
1632 		(*ifp->if_input)(ifp, m);
1633 		SIS_LOCK(sc);
1634 		rx_npkts++;
1635 	}
1636 
1637 	if (prog > 0) {
1638 		sc->sis_rx_cons = rx_cons;
1639 		bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1640 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1641 	}
1642 
1643 	return (rx_npkts);
1644 }
1645 
1646 /*
1647  * A frame was downloaded to the chip. It's safe for us to clean up
1648  * the list buffers.
1649  */
1650 
1651 static void
1652 sis_txeof(struct sis_softc *sc)
1653 {
1654 	struct ifnet		*ifp;
1655 	struct sis_desc		*cur_tx;
1656 	struct sis_txdesc	*txd;
1657 	uint32_t		cons, txstat;
1658 
1659 	SIS_LOCK_ASSERT(sc);
1660 
1661 	cons = sc->sis_tx_cons;
1662 	if (cons == sc->sis_tx_prod)
1663 		return;
1664 
1665 	ifp = sc->sis_ifp;
1666 	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1667 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1668 
1669 	/*
1670 	 * Go through our tx list and free mbufs for those
1671 	 * frames that have been transmitted.
1672 	 */
1673 	for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
1674 		cur_tx = &sc->sis_tx_list[cons];
1675 		txstat = le32toh(cur_tx->sis_cmdsts);
1676 		if ((txstat & SIS_CMDSTS_OWN) != 0)
1677 			break;
1678 		txd = &sc->sis_txdesc[cons];
1679 		if (txd->tx_m != NULL) {
1680 			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
1681 			    BUS_DMASYNC_POSTWRITE);
1682 			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1683 			m_freem(txd->tx_m);
1684 			txd->tx_m = NULL;
1685 			if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
1686 				ifp->if_opackets++;
1687 				ifp->if_collisions +=
1688 				    (txstat & SIS_TXSTAT_COLLCNT) >> 16;
1689 			} else {
1690 				ifp->if_oerrors++;
1691 				if (txstat & SIS_TXSTAT_EXCESSCOLLS)
1692 					ifp->if_collisions++;
1693 				if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
1694 					ifp->if_collisions++;
1695 			}
1696 		}
1697 		sc->sis_tx_cnt--;
1698 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1699 	}
1700 	sc->sis_tx_cons = cons;
1701 	if (sc->sis_tx_cnt == 0)
1702 		sc->sis_watchdog_timer = 0;
1703 }
1704 
1705 static void
1706 sis_tick(void *xsc)
1707 {
1708 	struct sis_softc	*sc;
1709 	struct mii_data		*mii;
1710 	struct ifnet		*ifp;
1711 
1712 	sc = xsc;
1713 	SIS_LOCK_ASSERT(sc);
1714 	ifp = sc->sis_ifp;
1715 
1716 	mii = device_get_softc(sc->sis_miibus);
1717 	mii_tick(mii);
1718 	sis_watchdog(sc);
1719 	if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
1720 		sis_miibus_statchg(sc->sis_dev);
1721 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1722 }
1723 
1724 #ifdef DEVICE_POLLING
1725 static poll_handler_t sis_poll;
1726 
1727 static int
1728 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1729 {
1730 	struct	sis_softc *sc = ifp->if_softc;
1731 	int rx_npkts = 0;
1732 
1733 	SIS_LOCK(sc);
1734 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1735 		SIS_UNLOCK(sc);
1736 		return (rx_npkts);
1737 	}
1738 
1739 	/*
1740 	 * On the sis, reading the status register also clears it.
1741 	 * So before returning to intr mode we must make sure that all
1742 	 * possible pending sources of interrupts have been served.
1743 	 * In practice this means run to completion the *eof routines,
1744 	 * and then call the interrupt routine
1745 	 */
1746 	sc->rxcycles = count;
1747 	rx_npkts = sis_rxeof(sc);
1748 	sis_txeof(sc);
1749 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1750 		sis_startl(ifp);
1751 
1752 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1753 		uint32_t	status;
1754 
1755 		/* Reading the ISR register clears all interrupts. */
1756 		status = CSR_READ_4(sc, SIS_ISR);
1757 
1758 		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1759 			ifp->if_ierrors++;
1760 
1761 		if (status & (SIS_ISR_RX_IDLE))
1762 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1763 
1764 		if (status & SIS_ISR_SYSERR) {
1765 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1766 			sis_initl(sc);
1767 		}
1768 	}
1769 
1770 	SIS_UNLOCK(sc);
1771 	return (rx_npkts);
1772 }
1773 #endif /* DEVICE_POLLING */
1774 
1775 static void
1776 sis_intr(void *arg)
1777 {
1778 	struct sis_softc	*sc;
1779 	struct ifnet		*ifp;
1780 	uint32_t		status;
1781 
1782 	sc = arg;
1783 	ifp = sc->sis_ifp;
1784 
1785 	SIS_LOCK(sc);
1786 #ifdef DEVICE_POLLING
1787 	if (ifp->if_capenable & IFCAP_POLLING) {
1788 		SIS_UNLOCK(sc);
1789 		return;
1790 	}
1791 #endif
1792 
1793 	/* Reading the ISR register clears all interrupts. */
1794 	status = CSR_READ_4(sc, SIS_ISR);
1795 	if ((status & SIS_INTRS) == 0) {
1796 		/* Not ours. */
1797 		SIS_UNLOCK(sc);
1798 		return;
1799 	}
1800 
1801 	/* Disable interrupts. */
1802 	CSR_WRITE_4(sc, SIS_IER, 0);
1803 
1804 	for (;(status & SIS_INTRS) != 0;) {
1805 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1806 			break;
1807 		if (status &
1808 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1809 		    SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1810 			sis_txeof(sc);
1811 
1812 		if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1813 		    SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1814 			sis_rxeof(sc);
1815 
1816 		if (status & SIS_ISR_RX_OFLOW)
1817 			ifp->if_ierrors++;
1818 
1819 		if (status & (SIS_ISR_RX_IDLE))
1820 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1821 
1822 		if (status & SIS_ISR_SYSERR) {
1823 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1824 			sis_initl(sc);
1825 			SIS_UNLOCK(sc);
1826 			return;
1827 		}
1828 		status = CSR_READ_4(sc, SIS_ISR);
1829 	}
1830 
1831 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1832 		/* Re-enable interrupts. */
1833 		CSR_WRITE_4(sc, SIS_IER, 1);
1834 
1835 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1836 			sis_startl(ifp);
1837 	}
1838 
1839 	SIS_UNLOCK(sc);
1840 }
1841 
1842 /*
1843  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1844  * pointers to the fragment pointers.
1845  */
1846 static int
1847 sis_encap(struct sis_softc *sc, struct mbuf **m_head)
1848 {
1849 	struct mbuf		*m;
1850 	struct sis_txdesc	*txd;
1851 	struct sis_desc		*f;
1852 	bus_dma_segment_t	segs[SIS_MAXTXSEGS];
1853 	bus_dmamap_t		map;
1854 	int			error, i, frag, nsegs, prod;
1855 	int			padlen;
1856 
1857 	prod = sc->sis_tx_prod;
1858 	txd = &sc->sis_txdesc[prod];
1859 	if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
1860 	    (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
1861 		m = *m_head;
1862 		padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
1863 		if (M_WRITABLE(m) == 0) {
1864 			/* Get a writable copy. */
1865 			m = m_dup(*m_head, M_DONTWAIT);
1866 			m_freem(*m_head);
1867 			if (m == NULL) {
1868 				*m_head = NULL;
1869 				return (ENOBUFS);
1870 			}
1871 			*m_head = m;
1872 		}
1873 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1874 			m = m_defrag(m, M_DONTWAIT);
1875 			if (m == NULL) {
1876 				m_freem(*m_head);
1877 				*m_head = NULL;
1878 				return (ENOBUFS);
1879 			}
1880 		}
1881 		/*
1882 		 * Manually pad short frames, and zero the pad space
1883 		 * to avoid leaking data.
1884 		 */
1885 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1886 		m->m_pkthdr.len += padlen;
1887 		m->m_len = m->m_pkthdr.len;
1888 		*m_head = m;
1889 	}
1890 	error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1891 	    *m_head, segs, &nsegs, 0);
1892 	if (error == EFBIG) {
1893 		m = m_collapse(*m_head, M_DONTWAIT, SIS_MAXTXSEGS);
1894 		if (m == NULL) {
1895 			m_freem(*m_head);
1896 			*m_head = NULL;
1897 			return (ENOBUFS);
1898 		}
1899 		*m_head = m;
1900 		error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1901 		    *m_head, segs, &nsegs, 0);
1902 		if (error != 0) {
1903 			m_freem(*m_head);
1904 			*m_head = NULL;
1905 			return (error);
1906 		}
1907 	} else if (error != 0)
1908 		return (error);
1909 
1910 	/* Check for descriptor overruns. */
1911 	if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
1912 		bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1913 		return (ENOBUFS);
1914 	}
1915 
1916 	bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
1917 
1918 	frag = prod;
1919 	for (i = 0; i < nsegs; i++) {
1920 		f = &sc->sis_tx_list[prod];
1921 		if (i == 0)
1922 			f->sis_cmdsts = htole32(segs[i].ds_len |
1923 			    SIS_CMDSTS_MORE);
1924 		else
1925 			f->sis_cmdsts = htole32(segs[i].ds_len |
1926 			    SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
1927 		f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
1928 		SIS_INC(prod, SIS_TX_LIST_CNT);
1929 		sc->sis_tx_cnt++;
1930 	}
1931 
1932 	/* Update producer index. */
1933 	sc->sis_tx_prod = prod;
1934 
1935 	/* Remove MORE flag on the last descriptor. */
1936 	prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
1937 	f = &sc->sis_tx_list[prod];
1938 	f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
1939 
1940 	/* Lastly transfer ownership of packet to the controller. */
1941 	f = &sc->sis_tx_list[frag];
1942 	f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
1943 
1944 	/* Swap the last and the first dmamaps. */
1945 	map = txd->tx_dmamap;
1946 	txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
1947 	sc->sis_txdesc[prod].tx_dmamap = map;
1948 	sc->sis_txdesc[prod].tx_m = *m_head;
1949 
1950 	return (0);
1951 }
1952 
1953 static void
1954 sis_start(struct ifnet *ifp)
1955 {
1956 	struct sis_softc	*sc;
1957 
1958 	sc = ifp->if_softc;
1959 	SIS_LOCK(sc);
1960 	sis_startl(ifp);
1961 	SIS_UNLOCK(sc);
1962 }
1963 
1964 static void
1965 sis_startl(struct ifnet *ifp)
1966 {
1967 	struct sis_softc	*sc;
1968 	struct mbuf		*m_head;
1969 	int			queued;
1970 
1971 	sc = ifp->if_softc;
1972 
1973 	SIS_LOCK_ASSERT(sc);
1974 
1975 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1976 	    IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
1977 		return;
1978 
1979 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1980 	    sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
1981 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1982 		if (m_head == NULL)
1983 			break;
1984 
1985 		if (sis_encap(sc, &m_head) != 0) {
1986 			if (m_head == NULL)
1987 				break;
1988 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1989 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1990 			break;
1991 		}
1992 
1993 		queued++;
1994 
1995 		/*
1996 		 * If there's a BPF listener, bounce a copy of this frame
1997 		 * to him.
1998 		 */
1999 		BPF_MTAP(ifp, m_head);
2000 	}
2001 
2002 	if (queued) {
2003 		/* Transmit */
2004 		bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
2005 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2006 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
2007 
2008 		/*
2009 		 * Set a timeout in case the chip goes out to lunch.
2010 		 */
2011 		sc->sis_watchdog_timer = 5;
2012 	}
2013 }
2014 
2015 static void
2016 sis_init(void *xsc)
2017 {
2018 	struct sis_softc	*sc = xsc;
2019 
2020 	SIS_LOCK(sc);
2021 	sis_initl(sc);
2022 	SIS_UNLOCK(sc);
2023 }
2024 
2025 static void
2026 sis_initl(struct sis_softc *sc)
2027 {
2028 	struct ifnet		*ifp = sc->sis_ifp;
2029 	struct mii_data		*mii;
2030 	uint8_t			*eaddr;
2031 
2032 	SIS_LOCK_ASSERT(sc);
2033 
2034 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2035 		return;
2036 
2037 	/*
2038 	 * Cancel pending I/O and free all RX/TX buffers.
2039 	 */
2040 	sis_stop(sc);
2041 	/*
2042 	 * Reset the chip to a known state.
2043 	 */
2044 	sis_reset(sc);
2045 #ifdef notyet
2046 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
2047 		/*
2048 		 * Configure 400usec of interrupt holdoff.  This is based
2049 		 * on emperical tests on a Soekris 4801.
2050  		 */
2051 		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
2052 	}
2053 #endif
2054 
2055 	mii = device_get_softc(sc->sis_miibus);
2056 
2057 	/* Set MAC address */
2058 	eaddr = IF_LLADDR(sc->sis_ifp);
2059 	if (sc->sis_type == SIS_TYPE_83815) {
2060 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
2061 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
2062 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
2063 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
2064 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
2065 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
2066 	} else {
2067 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
2068 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
2069 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
2070 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
2071 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
2072 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
2073 	}
2074 
2075 	/* Init circular TX/RX lists. */
2076 	if (sis_ring_init(sc) != 0) {
2077 		device_printf(sc->sis_dev,
2078 		    "initialization failed: no memory for rx buffers\n");
2079 		sis_stop(sc);
2080 		return;
2081 	}
2082 
2083 	if (sc->sis_type == SIS_TYPE_83815 || sc->sis_type == SIS_TYPE_83816) {
2084 		if (sc->sis_manual_pad != 0)
2085 			sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
2086 		else
2087 			sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
2088 	}
2089 
2090 	/*
2091 	 * Short Cable Receive Errors (MP21.E)
2092 	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
2093 	 * recommends the following register settings "for optimum
2094 	 * performance." for rev 15C.  Set this also for 15D parts as
2095 	 * they require it in practice.
2096 	 */
2097 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
2098 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2099 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2100 		/* set val for c2 */
2101 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2102 		/* load/kill c2 */
2103 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2104 		/* rais SD off, from 4 to c */
2105 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2106 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2107 	}
2108 
2109 	/*
2110 	 * For the NatSemi chip, we have to explicitly enable the
2111 	 * reception of ARP frames, as well as turn on the 'perfect
2112 	 * match' filter where we store the station address, otherwise
2113 	 * we won't receive unicasts meant for this host.
2114 	 */
2115 	if (sc->sis_type == SIS_TYPE_83815) {
2116 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
2117 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
2118 	}
2119 
2120 	 /* If we want promiscuous mode, set the allframes bit. */
2121 	if (ifp->if_flags & IFF_PROMISC) {
2122 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2123 	} else {
2124 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2125 	}
2126 
2127 	/*
2128 	 * Set the capture broadcast bit to capture broadcast frames.
2129 	 */
2130 	if (ifp->if_flags & IFF_BROADCAST) {
2131 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2132 	} else {
2133 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2134 	}
2135 
2136 	/*
2137 	 * Load the multicast filter.
2138 	 */
2139 	if (sc->sis_type == SIS_TYPE_83815)
2140 		sis_setmulti_ns(sc);
2141 	else
2142 		sis_setmulti_sis(sc);
2143 
2144 	/* Turn the receive filter on */
2145 	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
2146 
2147 	/*
2148 	 * Load the address of the RX and TX lists.
2149 	 */
2150 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
2151 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
2152 
2153 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2154 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2155 	 * for TX/RX DMA should be no larger than 16 double words.
2156 	 */
2157 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2158 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2159 	} else {
2160 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2161 	}
2162 
2163 	/* Accept Long Packets for VLAN support */
2164 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2165 
2166 	/*
2167 	 * Assume 100Mbps link, actual MAC configuration is done
2168 	 * after getting a valid link.
2169 	 */
2170 	CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2171 
2172 	/*
2173 	 * Enable interrupts.
2174 	 */
2175 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2176 #ifdef DEVICE_POLLING
2177 	/*
2178 	 * ... only enable interrupts if we are not polling, make sure
2179 	 * they are off otherwise.
2180 	 */
2181 	if (ifp->if_capenable & IFCAP_POLLING)
2182 		CSR_WRITE_4(sc, SIS_IER, 0);
2183 	else
2184 #endif
2185 	CSR_WRITE_4(sc, SIS_IER, 1);
2186 
2187 	/* Clear MAC disable. */
2188 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
2189 
2190 	sc->sis_flags &= ~SIS_FLAG_LINK;
2191 	mii_mediachg(mii);
2192 
2193 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2194 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2195 
2196 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2197 }
2198 
2199 /*
2200  * Set media options.
2201  */
2202 static int
2203 sis_ifmedia_upd(struct ifnet *ifp)
2204 {
2205 	struct sis_softc	*sc;
2206 	struct mii_data		*mii;
2207 	int			error;
2208 
2209 	sc = ifp->if_softc;
2210 
2211 	SIS_LOCK(sc);
2212 	mii = device_get_softc(sc->sis_miibus);
2213 	if (mii->mii_instance) {
2214 		struct mii_softc	*miisc;
2215 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2216 			mii_phy_reset(miisc);
2217 	}
2218 	error = mii_mediachg(mii);
2219 	SIS_UNLOCK(sc);
2220 
2221 	return (error);
2222 }
2223 
2224 /*
2225  * Report current media status.
2226  */
2227 static void
2228 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2229 {
2230 	struct sis_softc	*sc;
2231 	struct mii_data		*mii;
2232 
2233 	sc = ifp->if_softc;
2234 
2235 	SIS_LOCK(sc);
2236 	mii = device_get_softc(sc->sis_miibus);
2237 	mii_pollstat(mii);
2238 	SIS_UNLOCK(sc);
2239 	ifmr->ifm_active = mii->mii_media_active;
2240 	ifmr->ifm_status = mii->mii_media_status;
2241 }
2242 
2243 static int
2244 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2245 {
2246 	struct sis_softc	*sc = ifp->if_softc;
2247 	struct ifreq		*ifr = (struct ifreq *) data;
2248 	struct mii_data		*mii;
2249 	int			error = 0, mask;
2250 
2251 	switch (command) {
2252 	case SIOCSIFFLAGS:
2253 		SIS_LOCK(sc);
2254 		if (ifp->if_flags & IFF_UP) {
2255 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2256 			    ((ifp->if_flags ^ sc->sis_if_flags) &
2257 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2258 				if (sc->sis_type == SIS_TYPE_83815)
2259 					sis_setmulti_ns(sc);
2260 				else
2261 					sis_setmulti_sis(sc);
2262 			} else
2263 				sis_initl(sc);
2264 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2265 			sis_stop(sc);
2266 		}
2267 		sc->sis_if_flags = ifp->if_flags;
2268 		SIS_UNLOCK(sc);
2269 		error = 0;
2270 		break;
2271 	case SIOCADDMULTI:
2272 	case SIOCDELMULTI:
2273 		SIS_LOCK(sc);
2274 		if (sc->sis_type == SIS_TYPE_83815)
2275 			sis_setmulti_ns(sc);
2276 		else
2277 			sis_setmulti_sis(sc);
2278 		SIS_UNLOCK(sc);
2279 		break;
2280 	case SIOCGIFMEDIA:
2281 	case SIOCSIFMEDIA:
2282 		mii = device_get_softc(sc->sis_miibus);
2283 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2284 		break;
2285 	case SIOCSIFCAP:
2286 		SIS_LOCK(sc);
2287 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2288 #ifdef DEVICE_POLLING
2289 		if ((mask & IFCAP_POLLING) != 0 &&
2290 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2291 			ifp->if_capenable ^= IFCAP_POLLING;
2292 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2293 				error = ether_poll_register(sis_poll, ifp);
2294 				if (error != 0) {
2295 					SIS_UNLOCK(sc);
2296 					break;
2297 				}
2298 				/* Disable interrupts. */
2299 				CSR_WRITE_4(sc, SIS_IER, 0);
2300                         } else {
2301                                 error = ether_poll_deregister(ifp);
2302                                 /* Enable interrupts. */
2303 				CSR_WRITE_4(sc, SIS_IER, 1);
2304                         }
2305 		}
2306 #endif /* DEVICE_POLLING */
2307 		if ((mask & IFCAP_WOL) != 0 &&
2308 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2309 			if ((mask & IFCAP_WOL_UCAST) != 0)
2310 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2311 			if ((mask & IFCAP_WOL_MCAST) != 0)
2312 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2313 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2314 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2315 		}
2316 		SIS_UNLOCK(sc);
2317 		break;
2318 	default:
2319 		error = ether_ioctl(ifp, command, data);
2320 		break;
2321 	}
2322 
2323 	return (error);
2324 }
2325 
2326 static void
2327 sis_watchdog(struct sis_softc *sc)
2328 {
2329 
2330 	SIS_LOCK_ASSERT(sc);
2331 
2332 	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2333 		return;
2334 
2335 	device_printf(sc->sis_dev, "watchdog timeout\n");
2336 	sc->sis_ifp->if_oerrors++;
2337 
2338 	sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2339 	sis_initl(sc);
2340 
2341 	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2342 		sis_startl(sc->sis_ifp);
2343 }
2344 
2345 /*
2346  * Stop the adapter and free any mbufs allocated to the
2347  * RX and TX lists.
2348  */
2349 static void
2350 sis_stop(struct sis_softc *sc)
2351 {
2352 	struct ifnet *ifp;
2353 	struct sis_rxdesc *rxd;
2354 	struct sis_txdesc *txd;
2355 	int i;
2356 
2357 	SIS_LOCK_ASSERT(sc);
2358 
2359 	ifp = sc->sis_ifp;
2360 	sc->sis_watchdog_timer = 0;
2361 
2362 	callout_stop(&sc->sis_stat_ch);
2363 
2364 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2365 	CSR_WRITE_4(sc, SIS_IER, 0);
2366 	CSR_WRITE_4(sc, SIS_IMR, 0);
2367 	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2368 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2369 	DELAY(1000);
2370 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2371 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2372 
2373 	sc->sis_flags &= ~SIS_FLAG_LINK;
2374 
2375 	/*
2376 	 * Free data in the RX lists.
2377 	 */
2378 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2379 		rxd = &sc->sis_rxdesc[i];
2380 		if (rxd->rx_m != NULL) {
2381 			bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
2382 			    BUS_DMASYNC_POSTREAD);
2383 			bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
2384 			m_freem(rxd->rx_m);
2385 			rxd->rx_m = NULL;
2386 		}
2387 	}
2388 
2389 	/*
2390 	 * Free the TX list buffers.
2391 	 */
2392 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2393 		txd = &sc->sis_txdesc[i];
2394 		if (txd->tx_m != NULL) {
2395 			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
2396 			    BUS_DMASYNC_POSTWRITE);
2397 			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
2398 			m_freem(txd->tx_m);
2399 			txd->tx_m = NULL;
2400 		}
2401 	}
2402 }
2403 
2404 /*
2405  * Stop all chip I/O so that the kernel's probe routines don't
2406  * get confused by errant DMAs when rebooting.
2407  */
2408 static int
2409 sis_shutdown(device_t dev)
2410 {
2411 
2412 	return (sis_suspend(dev));
2413 }
2414 
2415 static int
2416 sis_suspend(device_t dev)
2417 {
2418 	struct sis_softc	*sc;
2419 
2420 	sc = device_get_softc(dev);
2421 	SIS_LOCK(sc);
2422 	sis_stop(sc);
2423 	sis_wol(sc);
2424 	SIS_UNLOCK(sc);
2425 	return (0);
2426 }
2427 
2428 static int
2429 sis_resume(device_t dev)
2430 {
2431 	struct sis_softc	*sc;
2432 	struct ifnet		*ifp;
2433 
2434 	sc = device_get_softc(dev);
2435 	SIS_LOCK(sc);
2436 	ifp = sc->sis_ifp;
2437 	if ((ifp->if_flags & IFF_UP) != 0) {
2438 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2439 		sis_initl(sc);
2440 	}
2441 	SIS_UNLOCK(sc);
2442 	return (0);
2443 }
2444 
2445 static void
2446 sis_wol(struct sis_softc *sc)
2447 {
2448 	struct ifnet		*ifp;
2449 	uint32_t		val;
2450 	uint16_t		pmstat;
2451 	int			pmc;
2452 
2453 	ifp = sc->sis_ifp;
2454 	if ((ifp->if_capenable & IFCAP_WOL) == 0)
2455 		return;
2456 
2457 	if (sc->sis_type == SIS_TYPE_83815) {
2458 		/* Reset RXDP. */
2459 		CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2460 
2461 		/* Configure WOL events. */
2462 		CSR_READ_4(sc, NS_WCSR);
2463 		val = 0;
2464 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2465 			val |= NS_WCSR_WAKE_UCAST;
2466 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2467 			val |= NS_WCSR_WAKE_MCAST;
2468 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2469 			val |= NS_WCSR_WAKE_MAGIC;
2470 		CSR_WRITE_4(sc, NS_WCSR, val);
2471 		/* Enable PME and clear PMESTS. */
2472 		val = CSR_READ_4(sc, NS_CLKRUN);
2473 		val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
2474 		CSR_WRITE_4(sc, NS_CLKRUN, val);
2475 		/* Enable silent RX mode. */
2476 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2477 	} else {
2478 		if (pci_find_extcap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
2479 			return;
2480 		val = 0;
2481 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2482 			val |= SIS_PWRMAN_WOL_MAGIC;
2483 		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
2484 		/* Request PME. */
2485 		pmstat = pci_read_config(sc->sis_dev,
2486 		    pmc + PCIR_POWER_STATUS, 2);
2487 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2488 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2489 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2490 		pci_write_config(sc->sis_dev,
2491 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
2492 	}
2493 }
2494 
2495 static void
2496 sis_add_sysctls(struct sis_softc *sc)
2497 {
2498 	struct sysctl_ctx_list *ctx;
2499 	struct sysctl_oid_list *children;
2500 	char tn[32];
2501 	int unit;
2502 
2503 	ctx = device_get_sysctl_ctx(sc->sis_dev);
2504 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
2505 
2506 	unit = device_get_unit(sc->sis_dev);
2507 	/*
2508 	 * Unlike most other controllers, NS DP83815/DP83816 controllers
2509 	 * seem to pad with 0xFF when it encounter short frames.  According
2510 	 * to RFC 1042 the pad bytes should be 0x00.  Turning this tunable
2511 	 * on will have driver pad manully but it's disabled by default
2512 	 * because it will consume extra CPU cycles for short frames.
2513 	 */
2514 	sc->sis_manual_pad = 0;
2515 	snprintf(tn, sizeof(tn), "dev.sis.%d.manual_pad", unit);
2516 	TUNABLE_INT_FETCH(tn, &sc->sis_manual_pad);
2517 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
2518 	    CTLFLAG_RW, &sc->sis_manual_pad, 0, "Manually pad short frames");
2519 }
2520 
2521 static device_method_t sis_methods[] = {
2522 	/* Device interface */
2523 	DEVMETHOD(device_probe,		sis_probe),
2524 	DEVMETHOD(device_attach,	sis_attach),
2525 	DEVMETHOD(device_detach,	sis_detach),
2526 	DEVMETHOD(device_shutdown,	sis_shutdown),
2527 	DEVMETHOD(device_suspend,	sis_suspend),
2528 	DEVMETHOD(device_resume,	sis_resume),
2529 
2530 	/* bus interface */
2531 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
2532 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2533 
2534 	/* MII interface */
2535 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2536 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2537 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2538 
2539 	{ 0, 0 }
2540 };
2541 
2542 static driver_t sis_driver = {
2543 	"sis",
2544 	sis_methods,
2545 	sizeof(struct sis_softc)
2546 };
2547 
2548 static devclass_t sis_devclass;
2549 
2550 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2551 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2552