xref: /freebsd/sys/dev/sis/if_sis.c (revision a02aba5f3c73d7ed377f88327fedd11f70f23353)
1 /*-
2  * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3  * Copyright (c) 1997, 1998, 1999
4  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39  * available from http://www.sis.com.tw.
40  *
41  * This driver also supports the NatSemi DP83815. Datasheets are
42  * available from http://www.national.com.
43  *
44  * Written by Bill Paul <wpaul@ee.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 /*
49  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50  * simple TX and RX descriptors of 3 longwords in size. The receiver
51  * has a single perfect filter entry for the station address and a
52  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53  * transceiver while the 7016 requires an external transceiver chip.
54  * Both chips offer the standard bit-bang MII interface as well as
55  * an enchanced PHY interface which simplifies accessing MII registers.
56  *
57  * The only downside to this chipset is that RX descriptors must be
58  * longword aligned.
59  */
60 
61 #ifdef HAVE_KERNEL_OPTION_HEADERS
62 #include "opt_device_polling.h"
63 #endif
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/bus.h>
68 #include <sys/endian.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/module.h>
74 #include <sys/socket.h>
75 #include <sys/sockio.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_dl.h>
82 #include <net/if_media.h>
83 #include <net/if_types.h>
84 #include <net/if_vlan_var.h>
85 
86 #include <net/bpf.h>
87 
88 #include <machine/bus.h>
89 #include <machine/resource.h>
90 #include <sys/rman.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #define SIS_USEIOSPACE
99 
100 #include <dev/sis/if_sisreg.h>
101 
102 MODULE_DEPEND(sis, pci, 1, 1, 1);
103 MODULE_DEPEND(sis, ether, 1, 1, 1);
104 MODULE_DEPEND(sis, miibus, 1, 1, 1);
105 
106 /* "device miibus" required.  See GENERIC if you get errors here. */
107 #include "miibus_if.h"
108 
109 #define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
110 #define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
111 #define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
112 
113 /*
114  * register space access macros
115  */
116 #define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
117 
118 #define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
119 
120 #define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
121 
122 /*
123  * Various supported device vendors/types and their names.
124  */
125 static struct sis_type sis_devs[] = {
126 	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
127 	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
128 	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
129 	{ 0, 0, NULL }
130 };
131 
132 static int sis_detach(device_t);
133 static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
134 static int sis_dma_alloc(struct sis_softc *);
135 static void sis_dma_free(struct sis_softc *);
136 static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
137     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
138 static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
139 #ifndef __NO_STRICT_ALIGNMENT
140 static __inline void sis_fixup_rx(struct mbuf *);
141 #endif
142 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
143 static int sis_ifmedia_upd(struct ifnet *);
144 static void sis_init(void *);
145 static void sis_initl(struct sis_softc *);
146 static void sis_intr(void *);
147 static int sis_ioctl(struct ifnet *, u_long, caddr_t);
148 static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
149 static int sis_resume(device_t);
150 static int sis_rxeof(struct sis_softc *);
151 static void sis_rxfilter(struct sis_softc *);
152 static void sis_rxfilter_ns(struct sis_softc *);
153 static void sis_rxfilter_sis(struct sis_softc *);
154 static void sis_start(struct ifnet *);
155 static void sis_startl(struct ifnet *);
156 static void sis_stop(struct sis_softc *);
157 static int sis_suspend(device_t);
158 static void sis_add_sysctls(struct sis_softc *);
159 static void sis_watchdog(struct sis_softc *);
160 static void sis_wol(struct sis_softc *);
161 
162 
163 static struct resource_spec sis_res_spec[] = {
164 #ifdef SIS_USEIOSPACE
165 	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
166 #else
167 	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
168 #endif
169 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
170 	{ -1, 0 }
171 };
172 
173 #define SIS_SETBIT(sc, reg, x)				\
174 	CSR_WRITE_4(sc, reg,				\
175 		CSR_READ_4(sc, reg) | (x))
176 
177 #define SIS_CLRBIT(sc, reg, x)				\
178 	CSR_WRITE_4(sc, reg,				\
179 		CSR_READ_4(sc, reg) & ~(x))
180 
181 #define SIO_SET(x)					\
182 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
183 
184 #define SIO_CLR(x)					\
185 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
186 
187 /*
188  * Routine to reverse the bits in a word. Stolen almost
189  * verbatim from /usr/games/fortune.
190  */
191 static uint16_t
192 sis_reverse(uint16_t n)
193 {
194 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
195 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
196 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
197 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
198 
199 	return (n);
200 }
201 
202 static void
203 sis_delay(struct sis_softc *sc)
204 {
205 	int			idx;
206 
207 	for (idx = (300 / 33) + 1; idx > 0; idx--)
208 		CSR_READ_4(sc, SIS_CSR);
209 }
210 
211 static void
212 sis_eeprom_idle(struct sis_softc *sc)
213 {
214 	int		i;
215 
216 	SIO_SET(SIS_EECTL_CSEL);
217 	sis_delay(sc);
218 	SIO_SET(SIS_EECTL_CLK);
219 	sis_delay(sc);
220 
221 	for (i = 0; i < 25; i++) {
222 		SIO_CLR(SIS_EECTL_CLK);
223 		sis_delay(sc);
224 		SIO_SET(SIS_EECTL_CLK);
225 		sis_delay(sc);
226 	}
227 
228 	SIO_CLR(SIS_EECTL_CLK);
229 	sis_delay(sc);
230 	SIO_CLR(SIS_EECTL_CSEL);
231 	sis_delay(sc);
232 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
233 }
234 
235 /*
236  * Send a read command and address to the EEPROM, check for ACK.
237  */
238 static void
239 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
240 {
241 	int		d, i;
242 
243 	d = addr | SIS_EECMD_READ;
244 
245 	/*
246 	 * Feed in each bit and stobe the clock.
247 	 */
248 	for (i = 0x400; i; i >>= 1) {
249 		if (d & i) {
250 			SIO_SET(SIS_EECTL_DIN);
251 		} else {
252 			SIO_CLR(SIS_EECTL_DIN);
253 		}
254 		sis_delay(sc);
255 		SIO_SET(SIS_EECTL_CLK);
256 		sis_delay(sc);
257 		SIO_CLR(SIS_EECTL_CLK);
258 		sis_delay(sc);
259 	}
260 }
261 
262 /*
263  * Read a word of data stored in the EEPROM at address 'addr.'
264  */
265 static void
266 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
267 {
268 	int		i;
269 	uint16_t	word = 0;
270 
271 	/* Force EEPROM to idle state. */
272 	sis_eeprom_idle(sc);
273 
274 	/* Enter EEPROM access mode. */
275 	sis_delay(sc);
276 	SIO_CLR(SIS_EECTL_CLK);
277 	sis_delay(sc);
278 	SIO_SET(SIS_EECTL_CSEL);
279 	sis_delay(sc);
280 
281 	/*
282 	 * Send address of word we want to read.
283 	 */
284 	sis_eeprom_putbyte(sc, addr);
285 
286 	/*
287 	 * Start reading bits from EEPROM.
288 	 */
289 	for (i = 0x8000; i; i >>= 1) {
290 		SIO_SET(SIS_EECTL_CLK);
291 		sis_delay(sc);
292 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
293 			word |= i;
294 		sis_delay(sc);
295 		SIO_CLR(SIS_EECTL_CLK);
296 		sis_delay(sc);
297 	}
298 
299 	/* Turn off EEPROM access mode. */
300 	sis_eeprom_idle(sc);
301 
302 	*dest = word;
303 }
304 
305 /*
306  * Read a sequence of words from the EEPROM.
307  */
308 static void
309 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
310 {
311 	int			i;
312 	uint16_t		word = 0, *ptr;
313 
314 	for (i = 0; i < cnt; i++) {
315 		sis_eeprom_getword(sc, off + i, &word);
316 		ptr = (uint16_t *)(dest + (i * 2));
317 		if (swap)
318 			*ptr = ntohs(word);
319 		else
320 			*ptr = word;
321 	}
322 }
323 
324 #if defined(__i386__) || defined(__amd64__)
325 static device_t
326 sis_find_bridge(device_t dev)
327 {
328 	devclass_t		pci_devclass;
329 	device_t		*pci_devices;
330 	int			pci_count = 0;
331 	device_t		*pci_children;
332 	int			pci_childcount = 0;
333 	device_t		*busp, *childp;
334 	device_t		child = NULL;
335 	int			i, j;
336 
337 	if ((pci_devclass = devclass_find("pci")) == NULL)
338 		return (NULL);
339 
340 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
341 
342 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
343 		if (device_get_children(*busp, &pci_children, &pci_childcount))
344 			continue;
345 		for (j = 0, childp = pci_children;
346 		    j < pci_childcount; j++, childp++) {
347 			if (pci_get_vendor(*childp) == SIS_VENDORID &&
348 			    pci_get_device(*childp) == 0x0008) {
349 				child = *childp;
350 				free(pci_children, M_TEMP);
351 				goto done;
352 			}
353 		}
354 		free(pci_children, M_TEMP);
355 	}
356 
357 done:
358 	free(pci_devices, M_TEMP);
359 	return (child);
360 }
361 
362 static void
363 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
364 {
365 	device_t		bridge;
366 	uint8_t			reg;
367 	int			i;
368 	bus_space_tag_t		btag;
369 
370 	bridge = sis_find_bridge(dev);
371 	if (bridge == NULL)
372 		return;
373 	reg = pci_read_config(bridge, 0x48, 1);
374 	pci_write_config(bridge, 0x48, reg|0x40, 1);
375 
376 	/* XXX */
377 #if defined(__amd64__) || defined(__i386__)
378 	btag = X86_BUS_SPACE_IO;
379 #endif
380 
381 	for (i = 0; i < cnt; i++) {
382 		bus_space_write_1(btag, 0x0, 0x70, i + off);
383 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
384 	}
385 
386 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
387 }
388 
389 static void
390 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
391 {
392 	uint32_t		filtsave, csrsave;
393 
394 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
395 	csrsave = CSR_READ_4(sc, SIS_CSR);
396 
397 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
398 	CSR_WRITE_4(sc, SIS_CSR, 0);
399 
400 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
401 
402 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
403 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
404 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
405 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
406 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
407 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
408 
409 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
410 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
411 }
412 #endif
413 
414 /*
415  * Sync the PHYs by setting data bit and strobing the clock 32 times.
416  */
417 static void
418 sis_mii_sync(struct sis_softc *sc)
419 {
420 	int		i;
421 
422  	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
423 
424  	for (i = 0; i < 32; i++) {
425  		SIO_SET(SIS_MII_CLK);
426  		DELAY(1);
427  		SIO_CLR(SIS_MII_CLK);
428  		DELAY(1);
429  	}
430 }
431 
432 /*
433  * Clock a series of bits through the MII.
434  */
435 static void
436 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
437 {
438 	int			i;
439 
440 	SIO_CLR(SIS_MII_CLK);
441 
442 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
443 		if (bits & i) {
444 			SIO_SET(SIS_MII_DATA);
445 		} else {
446 			SIO_CLR(SIS_MII_DATA);
447 		}
448 		DELAY(1);
449 		SIO_CLR(SIS_MII_CLK);
450 		DELAY(1);
451 		SIO_SET(SIS_MII_CLK);
452 	}
453 }
454 
455 /*
456  * Read an PHY register through the MII.
457  */
458 static int
459 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
460 {
461 	int			i, ack;
462 
463 	/*
464 	 * Set up frame for RX.
465 	 */
466 	frame->mii_stdelim = SIS_MII_STARTDELIM;
467 	frame->mii_opcode = SIS_MII_READOP;
468 	frame->mii_turnaround = 0;
469 	frame->mii_data = 0;
470 
471 	/*
472  	 * Turn on data xmit.
473 	 */
474 	SIO_SET(SIS_MII_DIR);
475 
476 	sis_mii_sync(sc);
477 
478 	/*
479 	 * Send command/address info.
480 	 */
481 	sis_mii_send(sc, frame->mii_stdelim, 2);
482 	sis_mii_send(sc, frame->mii_opcode, 2);
483 	sis_mii_send(sc, frame->mii_phyaddr, 5);
484 	sis_mii_send(sc, frame->mii_regaddr, 5);
485 
486 	/* Idle bit */
487 	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
488 	DELAY(1);
489 	SIO_SET(SIS_MII_CLK);
490 	DELAY(1);
491 
492 	/* Turn off xmit. */
493 	SIO_CLR(SIS_MII_DIR);
494 
495 	/* Check for ack */
496 	SIO_CLR(SIS_MII_CLK);
497 	DELAY(1);
498 	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
499 	SIO_SET(SIS_MII_CLK);
500 	DELAY(1);
501 
502 	/*
503 	 * Now try reading data bits. If the ack failed, we still
504 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
505 	 */
506 	if (ack) {
507 		for (i = 0; i < 16; i++) {
508 			SIO_CLR(SIS_MII_CLK);
509 			DELAY(1);
510 			SIO_SET(SIS_MII_CLK);
511 			DELAY(1);
512 		}
513 		goto fail;
514 	}
515 
516 	for (i = 0x8000; i; i >>= 1) {
517 		SIO_CLR(SIS_MII_CLK);
518 		DELAY(1);
519 		if (!ack) {
520 			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
521 				frame->mii_data |= i;
522 			DELAY(1);
523 		}
524 		SIO_SET(SIS_MII_CLK);
525 		DELAY(1);
526 	}
527 
528 fail:
529 
530 	SIO_CLR(SIS_MII_CLK);
531 	DELAY(1);
532 	SIO_SET(SIS_MII_CLK);
533 	DELAY(1);
534 
535 	if (ack)
536 		return (1);
537 	return (0);
538 }
539 
540 /*
541  * Write to a PHY register through the MII.
542  */
543 static int
544 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
545 {
546 
547  	/*
548  	 * Set up frame for TX.
549  	 */
550 
551  	frame->mii_stdelim = SIS_MII_STARTDELIM;
552  	frame->mii_opcode = SIS_MII_WRITEOP;
553  	frame->mii_turnaround = SIS_MII_TURNAROUND;
554 
555  	/*
556   	 * Turn on data output.
557  	 */
558  	SIO_SET(SIS_MII_DIR);
559 
560  	sis_mii_sync(sc);
561 
562  	sis_mii_send(sc, frame->mii_stdelim, 2);
563  	sis_mii_send(sc, frame->mii_opcode, 2);
564  	sis_mii_send(sc, frame->mii_phyaddr, 5);
565  	sis_mii_send(sc, frame->mii_regaddr, 5);
566  	sis_mii_send(sc, frame->mii_turnaround, 2);
567  	sis_mii_send(sc, frame->mii_data, 16);
568 
569  	/* Idle bit. */
570  	SIO_SET(SIS_MII_CLK);
571  	DELAY(1);
572  	SIO_CLR(SIS_MII_CLK);
573  	DELAY(1);
574 
575  	/*
576  	 * Turn off xmit.
577  	 */
578  	SIO_CLR(SIS_MII_DIR);
579 
580  	return (0);
581 }
582 
583 static int
584 sis_miibus_readreg(device_t dev, int phy, int reg)
585 {
586 	struct sis_softc	*sc;
587 	struct sis_mii_frame    frame;
588 
589 	sc = device_get_softc(dev);
590 
591 	if (sc->sis_type == SIS_TYPE_83815) {
592 		if (phy != 0)
593 			return (0);
594 		/*
595 		 * The NatSemi chip can take a while after
596 		 * a reset to come ready, during which the BMSR
597 		 * returns a value of 0. This is *never* supposed
598 		 * to happen: some of the BMSR bits are meant to
599 		 * be hardwired in the on position, and this can
600 		 * confuse the miibus code a bit during the probe
601 		 * and attach phase. So we make an effort to check
602 		 * for this condition and wait for it to clear.
603 		 */
604 		if (!CSR_READ_4(sc, NS_BMSR))
605 			DELAY(1000);
606 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
607 	}
608 
609 	/*
610 	 * Chipsets < SIS_635 seem not to be able to read/write
611 	 * through mdio. Use the enhanced PHY access register
612 	 * again for them.
613 	 */
614 	if (sc->sis_type == SIS_TYPE_900 &&
615 	    sc->sis_rev < SIS_REV_635) {
616 		int i, val = 0;
617 
618 		if (phy != 0)
619 			return (0);
620 
621 		CSR_WRITE_4(sc, SIS_PHYCTL,
622 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
623 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
624 
625 		for (i = 0; i < SIS_TIMEOUT; i++) {
626 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
627 				break;
628 		}
629 
630 		if (i == SIS_TIMEOUT) {
631 			device_printf(sc->sis_dev, "PHY failed to come ready\n");
632 			return (0);
633 		}
634 
635 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
636 
637 		if (val == 0xFFFF)
638 			return (0);
639 
640 		return (val);
641 	} else {
642 		bzero((char *)&frame, sizeof(frame));
643 
644 		frame.mii_phyaddr = phy;
645 		frame.mii_regaddr = reg;
646 		sis_mii_readreg(sc, &frame);
647 
648 		return (frame.mii_data);
649 	}
650 }
651 
652 static int
653 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
654 {
655 	struct sis_softc	*sc;
656 	struct sis_mii_frame	frame;
657 
658 	sc = device_get_softc(dev);
659 
660 	if (sc->sis_type == SIS_TYPE_83815) {
661 		if (phy != 0)
662 			return (0);
663 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
664 		return (0);
665 	}
666 
667 	/*
668 	 * Chipsets < SIS_635 seem not to be able to read/write
669 	 * through mdio. Use the enhanced PHY access register
670 	 * again for them.
671 	 */
672 	if (sc->sis_type == SIS_TYPE_900 &&
673 	    sc->sis_rev < SIS_REV_635) {
674 		int i;
675 
676 		if (phy != 0)
677 			return (0);
678 
679 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
680 		    (reg << 6) | SIS_PHYOP_WRITE);
681 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
682 
683 		for (i = 0; i < SIS_TIMEOUT; i++) {
684 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
685 				break;
686 		}
687 
688 		if (i == SIS_TIMEOUT)
689 			device_printf(sc->sis_dev, "PHY failed to come ready\n");
690 	} else {
691 		bzero((char *)&frame, sizeof(frame));
692 
693 		frame.mii_phyaddr = phy;
694 		frame.mii_regaddr = reg;
695 		frame.mii_data = data;
696 		sis_mii_writereg(sc, &frame);
697 	}
698 	return (0);
699 }
700 
701 static void
702 sis_miibus_statchg(device_t dev)
703 {
704 	struct sis_softc	*sc;
705 	struct mii_data		*mii;
706 	struct ifnet		*ifp;
707 	uint32_t		reg;
708 
709 	sc = device_get_softc(dev);
710 	SIS_LOCK_ASSERT(sc);
711 
712 	mii = device_get_softc(sc->sis_miibus);
713 	ifp = sc->sis_ifp;
714 	if (mii == NULL || ifp == NULL ||
715 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
716 		return;
717 
718 	sc->sis_flags &= ~SIS_FLAG_LINK;
719 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
720 	    (IFM_ACTIVE | IFM_AVALID)) {
721 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
722 		case IFM_10_T:
723 			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
724 			sc->sis_flags |= SIS_FLAG_LINK;
725 			break;
726 		case IFM_100_TX:
727 			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
728 			sc->sis_flags |= SIS_FLAG_LINK;
729 			break;
730 		default:
731 			break;
732 		}
733 	}
734 
735 	if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
736 		/*
737 		 * Stopping MACs seem to reset SIS_TX_LISTPTR and
738 		 * SIS_RX_LISTPTR which in turn requires resetting
739 		 * TX/RX buffers.  So just don't do anything for
740 		 * lost link.
741 		 */
742 		return;
743 	}
744 
745 	/* Set full/half duplex mode. */
746 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
747 		SIS_SETBIT(sc, SIS_TX_CFG,
748 		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
749 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
750 	} else {
751 		SIS_CLRBIT(sc, SIS_TX_CFG,
752 		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
753 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
754 	}
755 
756 	if (sc->sis_type == SIS_TYPE_83816) {
757 		/*
758 		 * MPII03.D: Half Duplex Excessive Collisions.
759 		 * Also page 49 in 83816 manual
760 		 */
761 		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
762 	}
763 
764 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
765 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
766 		/*
767 		 * Short Cable Receive Errors (MP21.E)
768 		 */
769 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
770 		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
771 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
772 		DELAY(100);
773 		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
774 		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
775 			device_printf(sc->sis_dev,
776 			    "Applying short cable fix (reg=%x)\n", reg);
777 			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
778 			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
779 		}
780 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
781 	}
782 	/* Enable TX/RX MACs. */
783 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
784 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
785 }
786 
787 static uint32_t
788 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
789 {
790 	uint32_t		crc;
791 
792 	/* Compute CRC for the address value. */
793 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
794 
795 	/*
796 	 * return the filter bit position
797 	 *
798 	 * The NatSemi chip has a 512-bit filter, which is
799 	 * different than the SiS, so we special-case it.
800 	 */
801 	if (sc->sis_type == SIS_TYPE_83815)
802 		return (crc >> 23);
803 	else if (sc->sis_rev >= SIS_REV_635 ||
804 	    sc->sis_rev == SIS_REV_900B)
805 		return (crc >> 24);
806 	else
807 		return (crc >> 25);
808 }
809 
810 static void
811 sis_rxfilter(struct sis_softc *sc)
812 {
813 
814 	SIS_LOCK_ASSERT(sc);
815 
816 	if (sc->sis_type == SIS_TYPE_83815)
817 		sis_rxfilter_ns(sc);
818 	else
819 		sis_rxfilter_sis(sc);
820 }
821 
822 static void
823 sis_rxfilter_ns(struct sis_softc *sc)
824 {
825 	struct ifnet		*ifp;
826 	struct ifmultiaddr	*ifma;
827 	uint32_t		h, i, filter;
828 	int			bit, index;
829 
830 	ifp = sc->sis_ifp;
831 	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
832 	if (filter & SIS_RXFILTCTL_ENABLE) {
833 		/*
834 		 * Filter should be disabled to program other bits.
835 		 */
836 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
837 		CSR_READ_4(sc, SIS_RXFILT_CTL);
838 	}
839 	filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
840 	    NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
841 	    SIS_RXFILTCTL_ALLMULTI);
842 
843 	if (ifp->if_flags & IFF_BROADCAST)
844 		filter |= SIS_RXFILTCTL_BROAD;
845 	/*
846 	 * For the NatSemi chip, we have to explicitly enable the
847 	 * reception of ARP frames, as well as turn on the 'perfect
848 	 * match' filter where we store the station address, otherwise
849 	 * we won't receive unicasts meant for this host.
850 	 */
851 	filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
852 
853 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
854 		filter |= SIS_RXFILTCTL_ALLMULTI;
855 		if (ifp->if_flags & IFF_PROMISC)
856 			filter |= SIS_RXFILTCTL_ALLPHYS;
857 	} else {
858 		/*
859 		 * We have to explicitly enable the multicast hash table
860 		 * on the NatSemi chip if we want to use it, which we do.
861 		 */
862 		filter |= NS_RXFILTCTL_MCHASH;
863 
864 		/* first, zot all the existing hash bits */
865 		for (i = 0; i < 32; i++) {
866 			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
867 			    (i * 2));
868 			CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
869 		}
870 
871 		if_maddr_rlock(ifp);
872 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
873 			if (ifma->ifma_addr->sa_family != AF_LINK)
874 				continue;
875 			h = sis_mchash(sc,
876 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
877 			index = h >> 3;
878 			bit = h & 0x1F;
879 			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
880 			    index);
881 			if (bit > 0xF)
882 				bit -= 0x10;
883 			SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
884 		}
885 		if_maddr_runlock(ifp);
886 	}
887 
888 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter);
889 	CSR_READ_4(sc, SIS_RXFILT_CTL);
890 }
891 
892 static void
893 sis_rxfilter_sis(struct sis_softc *sc)
894 {
895 	struct ifnet		*ifp;
896 	struct ifmultiaddr	*ifma;
897 	uint32_t		filter, h, i, n;
898 	uint16_t		hashes[16];
899 
900 	ifp = sc->sis_ifp;
901 
902 	/* hash table size */
903 	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
904 		n = 16;
905 	else
906 		n = 8;
907 
908 	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
909 	if (filter & SIS_RXFILTCTL_ENABLE) {
910 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILT_CTL);
911 		CSR_READ_4(sc, SIS_RXFILT_CTL);
912 	}
913 	filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
914 	    SIS_RXFILTCTL_ALLMULTI);
915 	if (ifp->if_flags & IFF_BROADCAST)
916 		filter |= SIS_RXFILTCTL_BROAD;
917 
918 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
919 		filter |= SIS_RXFILTCTL_ALLMULTI;
920 		if (ifp->if_flags & IFF_PROMISC)
921 			filter |= SIS_RXFILTCTL_ALLPHYS;
922 		for (i = 0; i < n; i++)
923 			hashes[i] = ~0;
924 	} else {
925 		for (i = 0; i < n; i++)
926 			hashes[i] = 0;
927 		i = 0;
928 		if_maddr_rlock(ifp);
929 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
930 			if (ifma->ifma_addr->sa_family != AF_LINK)
931 			continue;
932 			h = sis_mchash(sc,
933 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
934 			hashes[h >> 4] |= 1 << (h & 0xf);
935 			i++;
936 		}
937 		if_maddr_runlock(ifp);
938 		if (i > n) {
939 			filter |= SIS_RXFILTCTL_ALLMULTI;
940 			for (i = 0; i < n; i++)
941 				hashes[i] = ~0;
942 		}
943 	}
944 
945 	for (i = 0; i < n; i++) {
946 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
947 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
948 	}
949 
950 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter);
951 	CSR_READ_4(sc, SIS_RXFILT_CTL);
952 }
953 
954 static void
955 sis_reset(struct sis_softc *sc)
956 {
957 	int		i;
958 
959 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
960 
961 	for (i = 0; i < SIS_TIMEOUT; i++) {
962 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
963 			break;
964 	}
965 
966 	if (i == SIS_TIMEOUT)
967 		device_printf(sc->sis_dev, "reset never completed\n");
968 
969 	/* Wait a little while for the chip to get its brains in order. */
970 	DELAY(1000);
971 
972 	/*
973 	 * If this is a NetSemi chip, make sure to clear
974 	 * PME mode.
975 	 */
976 	if (sc->sis_type == SIS_TYPE_83815) {
977 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
978 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
979 	} else {
980 		/* Disable WOL functions. */
981 		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
982 	}
983 }
984 
985 /*
986  * Probe for an SiS chip. Check the PCI vendor and device
987  * IDs against our list and return a device name if we find a match.
988  */
989 static int
990 sis_probe(device_t dev)
991 {
992 	struct sis_type		*t;
993 
994 	t = sis_devs;
995 
996 	while (t->sis_name != NULL) {
997 		if ((pci_get_vendor(dev) == t->sis_vid) &&
998 		    (pci_get_device(dev) == t->sis_did)) {
999 			device_set_desc(dev, t->sis_name);
1000 			return (BUS_PROBE_DEFAULT);
1001 		}
1002 		t++;
1003 	}
1004 
1005 	return (ENXIO);
1006 }
1007 
1008 /*
1009  * Attach the interface. Allocate softc structures, do ifmedia
1010  * setup and ethernet/BPF attach.
1011  */
1012 static int
1013 sis_attach(device_t dev)
1014 {
1015 	u_char			eaddr[ETHER_ADDR_LEN];
1016 	struct sis_softc	*sc;
1017 	struct ifnet		*ifp;
1018 	int			error = 0, pmc, waittime = 0;
1019 
1020 	waittime = 0;
1021 	sc = device_get_softc(dev);
1022 
1023 	sc->sis_dev = dev;
1024 
1025 	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1026 	    MTX_DEF);
1027 	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
1028 
1029 	if (pci_get_device(dev) == SIS_DEVICEID_900)
1030 		sc->sis_type = SIS_TYPE_900;
1031 	if (pci_get_device(dev) == SIS_DEVICEID_7016)
1032 		sc->sis_type = SIS_TYPE_7016;
1033 	if (pci_get_vendor(dev) == NS_VENDORID)
1034 		sc->sis_type = SIS_TYPE_83815;
1035 
1036 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
1037 	/*
1038 	 * Map control/status registers.
1039 	 */
1040 	pci_enable_busmaster(dev);
1041 
1042 	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
1043 	if (error) {
1044 		device_printf(dev, "couldn't allocate resources\n");
1045 		goto fail;
1046 	}
1047 
1048 	/* Reset the adapter. */
1049 	sis_reset(sc);
1050 
1051 	if (sc->sis_type == SIS_TYPE_900 &&
1052 	    (sc->sis_rev == SIS_REV_635 ||
1053 	    sc->sis_rev == SIS_REV_900B)) {
1054 		SIO_SET(SIS_CFG_RND_CNT);
1055 		SIO_SET(SIS_CFG_PERR_DETECT);
1056 	}
1057 
1058 	/*
1059 	 * Get station address from the EEPROM.
1060 	 */
1061 	switch (pci_get_vendor(dev)) {
1062 	case NS_VENDORID:
1063 		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
1064 
1065 		/* We can't update the device description, so spew */
1066 		if (sc->sis_srr == NS_SRR_15C)
1067 			device_printf(dev, "Silicon Revision: DP83815C\n");
1068 		else if (sc->sis_srr == NS_SRR_15D)
1069 			device_printf(dev, "Silicon Revision: DP83815D\n");
1070 		else if (sc->sis_srr == NS_SRR_16A)
1071 			device_printf(dev, "Silicon Revision: DP83816A\n");
1072 		else
1073 			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
1074 
1075 		/*
1076 		 * Reading the MAC address out of the EEPROM on
1077 		 * the NatSemi chip takes a bit more work than
1078 		 * you'd expect. The address spans 4 16-bit words,
1079 		 * with the first word containing only a single bit.
1080 		 * You have to shift everything over one bit to
1081 		 * get it aligned properly. Also, the bits are
1082 		 * stored backwards (the LSB is really the MSB,
1083 		 * and so on) so you have to reverse them in order
1084 		 * to get the MAC address into the form we want.
1085 		 * Why? Who the hell knows.
1086 		 */
1087 		{
1088 			uint16_t		tmp[4];
1089 
1090 			sis_read_eeprom(sc, (caddr_t)&tmp,
1091 			    NS_EE_NODEADDR, 4, 0);
1092 
1093 			/* Shift everything over one bit. */
1094 			tmp[3] = tmp[3] >> 1;
1095 			tmp[3] |= tmp[2] << 15;
1096 			tmp[2] = tmp[2] >> 1;
1097 			tmp[2] |= tmp[1] << 15;
1098 			tmp[1] = tmp[1] >> 1;
1099 			tmp[1] |= tmp[0] << 15;
1100 
1101 			/* Now reverse all the bits. */
1102 			tmp[3] = sis_reverse(tmp[3]);
1103 			tmp[2] = sis_reverse(tmp[2]);
1104 			tmp[1] = sis_reverse(tmp[1]);
1105 
1106 			eaddr[0] = (tmp[1] >> 0) & 0xFF;
1107 			eaddr[1] = (tmp[1] >> 8) & 0xFF;
1108 			eaddr[2] = (tmp[2] >> 0) & 0xFF;
1109 			eaddr[3] = (tmp[2] >> 8) & 0xFF;
1110 			eaddr[4] = (tmp[3] >> 0) & 0xFF;
1111 			eaddr[5] = (tmp[3] >> 8) & 0xFF;
1112 		}
1113 		break;
1114 	case SIS_VENDORID:
1115 	default:
1116 #if defined(__i386__) || defined(__amd64__)
1117 		/*
1118 		 * If this is a SiS 630E chipset with an embedded
1119 		 * SiS 900 controller, we have to read the MAC address
1120 		 * from the APC CMOS RAM. Our method for doing this
1121 		 * is very ugly since we have to reach out and grab
1122 		 * ahold of hardware for which we cannot properly
1123 		 * allocate resources. This code is only compiled on
1124 		 * the i386 architecture since the SiS 630E chipset
1125 		 * is for x86 motherboards only. Note that there are
1126 		 * a lot of magic numbers in this hack. These are
1127 		 * taken from SiS's Linux driver. I'd like to replace
1128 		 * them with proper symbolic definitions, but that
1129 		 * requires some datasheets that I don't have access
1130 		 * to at the moment.
1131 		 */
1132 		if (sc->sis_rev == SIS_REV_630S ||
1133 		    sc->sis_rev == SIS_REV_630E ||
1134 		    sc->sis_rev == SIS_REV_630EA1)
1135 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1136 
1137 		else if (sc->sis_rev == SIS_REV_635 ||
1138 			 sc->sis_rev == SIS_REV_630ET)
1139 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1140 		else if (sc->sis_rev == SIS_REV_96x) {
1141 			/* Allow to read EEPROM from LAN. It is shared
1142 			 * between a 1394 controller and the NIC and each
1143 			 * time we access it, we need to set SIS_EECMD_REQ.
1144 			 */
1145 			SIO_SET(SIS_EECMD_REQ);
1146 			for (waittime = 0; waittime < SIS_TIMEOUT;
1147 			    waittime++) {
1148 				/* Force EEPROM to idle state. */
1149 				sis_eeprom_idle(sc);
1150 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1151 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1152 					    SIS_EE_NODEADDR, 3, 0);
1153 					break;
1154 				}
1155 				DELAY(1);
1156 			}
1157 			/*
1158 			 * Set SIS_EECTL_CLK to high, so a other master
1159 			 * can operate on the i2c bus.
1160 			 */
1161 			SIO_SET(SIS_EECTL_CLK);
1162 			/* Refuse EEPROM access by LAN */
1163 			SIO_SET(SIS_EECMD_DONE);
1164 		} else
1165 #endif
1166 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1167 			    SIS_EE_NODEADDR, 3, 0);
1168 		break;
1169 	}
1170 
1171 	sis_add_sysctls(sc);
1172 
1173 	/* Allocate DMA'able memory. */
1174 	if ((error = sis_dma_alloc(sc)) != 0)
1175 		goto fail;
1176 
1177 	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1178 	if (ifp == NULL) {
1179 		device_printf(dev, "can not if_alloc()\n");
1180 		error = ENOSPC;
1181 		goto fail;
1182 	}
1183 	ifp->if_softc = sc;
1184 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1185 	ifp->if_mtu = ETHERMTU;
1186 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1187 	ifp->if_ioctl = sis_ioctl;
1188 	ifp->if_start = sis_start;
1189 	ifp->if_init = sis_init;
1190 	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1191 	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1192 	IFQ_SET_READY(&ifp->if_snd);
1193 
1194 	if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
1195 		if (sc->sis_type == SIS_TYPE_83815)
1196 			ifp->if_capabilities |= IFCAP_WOL;
1197 		else
1198 			ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1199 		ifp->if_capenable = ifp->if_capabilities;
1200 	}
1201 
1202 	/*
1203 	 * Do MII setup.
1204 	 */
1205 	error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
1206 	    sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1207 	if (error != 0) {
1208 		device_printf(dev, "attaching PHYs failed\n");
1209 		goto fail;
1210 	}
1211 
1212 	/*
1213 	 * Call MI attach routine.
1214 	 */
1215 	ether_ifattach(ifp, eaddr);
1216 
1217 	/*
1218 	 * Tell the upper layer(s) we support long frames.
1219 	 */
1220 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1221 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1222 	ifp->if_capenable = ifp->if_capabilities;
1223 #ifdef DEVICE_POLLING
1224 	ifp->if_capabilities |= IFCAP_POLLING;
1225 #endif
1226 
1227 	/* Hook interrupt last to avoid having to lock softc */
1228 	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1229 	    NULL, sis_intr, sc, &sc->sis_intrhand);
1230 
1231 	if (error) {
1232 		device_printf(dev, "couldn't set up irq\n");
1233 		ether_ifdetach(ifp);
1234 		goto fail;
1235 	}
1236 
1237 fail:
1238 	if (error)
1239 		sis_detach(dev);
1240 
1241 	return (error);
1242 }
1243 
1244 /*
1245  * Shutdown hardware and free up resources. This can be called any
1246  * time after the mutex has been initialized. It is called in both
1247  * the error case in attach and the normal detach case so it needs
1248  * to be careful about only freeing resources that have actually been
1249  * allocated.
1250  */
1251 static int
1252 sis_detach(device_t dev)
1253 {
1254 	struct sis_softc	*sc;
1255 	struct ifnet		*ifp;
1256 
1257 	sc = device_get_softc(dev);
1258 	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1259 	ifp = sc->sis_ifp;
1260 
1261 #ifdef DEVICE_POLLING
1262 	if (ifp->if_capenable & IFCAP_POLLING)
1263 		ether_poll_deregister(ifp);
1264 #endif
1265 
1266 	/* These should only be active if attach succeeded. */
1267 	if (device_is_attached(dev)) {
1268 		SIS_LOCK(sc);
1269 		sis_stop(sc);
1270 		SIS_UNLOCK(sc);
1271 		callout_drain(&sc->sis_stat_ch);
1272 		ether_ifdetach(ifp);
1273 	}
1274 	if (sc->sis_miibus)
1275 		device_delete_child(dev, sc->sis_miibus);
1276 	bus_generic_detach(dev);
1277 
1278 	if (sc->sis_intrhand)
1279 		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1280 	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1281 
1282 	if (ifp)
1283 		if_free(ifp);
1284 
1285 	sis_dma_free(sc);
1286 
1287 	mtx_destroy(&sc->sis_mtx);
1288 
1289 	return (0);
1290 }
1291 
1292 struct sis_dmamap_arg {
1293 	bus_addr_t	sis_busaddr;
1294 };
1295 
1296 static void
1297 sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1298 {
1299 	struct sis_dmamap_arg	*ctx;
1300 
1301 	if (error != 0)
1302 		return;
1303 
1304 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1305 
1306 	ctx = (struct sis_dmamap_arg *)arg;
1307 	ctx->sis_busaddr = segs[0].ds_addr;
1308 }
1309 
1310 static int
1311 sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
1312     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
1313     bus_addr_t *paddr, const char *msg)
1314 {
1315 	struct sis_dmamap_arg	ctx;
1316 	int			error;
1317 
1318 	error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
1319 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
1320 	    maxsize, 0, NULL, NULL, tag);
1321 	if (error != 0) {
1322 		device_printf(sc->sis_dev,
1323 		    "could not create %s dma tag\n", msg);
1324 		return (ENOMEM);
1325 	}
1326 	/* Allocate DMA'able memory for ring. */
1327 	error = bus_dmamem_alloc(*tag, (void **)ring,
1328 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1329 	if (error != 0) {
1330 		device_printf(sc->sis_dev,
1331 		    "could not allocate DMA'able memory for %s\n", msg);
1332 		return (ENOMEM);
1333 	}
1334 	/* Load the address of the ring. */
1335 	ctx.sis_busaddr = 0;
1336 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
1337 	    &ctx, BUS_DMA_NOWAIT);
1338 	if (error != 0) {
1339 		device_printf(sc->sis_dev,
1340 		    "could not load DMA'able memory for %s\n", msg);
1341 		return (ENOMEM);
1342 	}
1343 	*paddr = ctx.sis_busaddr;
1344 	return (0);
1345 }
1346 
1347 static int
1348 sis_dma_alloc(struct sis_softc *sc)
1349 {
1350 	struct sis_rxdesc	*rxd;
1351 	struct sis_txdesc	*txd;
1352 	int			error, i;
1353 
1354 	/* Allocate the parent bus DMA tag appropriate for PCI. */
1355 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1356 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1357 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
1358 	    0, NULL, NULL, &sc->sis_parent_tag);
1359 	if (error != 0) {
1360 		device_printf(sc->sis_dev,
1361 		    "could not allocate parent dma tag\n");
1362 		return (ENOMEM);
1363 	}
1364 
1365 	/* Create RX ring. */
1366 	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
1367 	    &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
1368 	    &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
1369 	if (error)
1370 		return (error);
1371 
1372 	/* Create TX ring. */
1373 	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
1374 	    &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
1375 	    &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
1376 	if (error)
1377 		return (error);
1378 
1379 	/* Create tag for RX mbufs. */
1380 	error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
1381 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1382 	    MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
1383 	if (error) {
1384 		device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
1385 		return (error);
1386 	}
1387 
1388 	/* Create tag for TX mbufs. */
1389 	error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
1390 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1391 	    MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1392 	    &sc->sis_tx_tag);
1393 	if (error) {
1394 		device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
1395 		return (error);
1396 	}
1397 
1398 	/* Create DMA maps for RX buffers. */
1399 	error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
1400 	if (error) {
1401 		device_printf(sc->sis_dev,
1402 		    "can't create spare DMA map for RX\n");
1403 		return (error);
1404 	}
1405 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1406 		rxd = &sc->sis_rxdesc[i];
1407 		rxd->rx_m = NULL;
1408 		error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
1409 		if (error) {
1410 			device_printf(sc->sis_dev,
1411 			    "can't create DMA map for RX\n");
1412 			return (error);
1413 		}
1414 	}
1415 
1416 	/* Create DMA maps for TX buffers. */
1417 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1418 		txd = &sc->sis_txdesc[i];
1419 		txd->tx_m = NULL;
1420 		error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
1421 		if (error) {
1422 			device_printf(sc->sis_dev,
1423 			    "can't create DMA map for TX\n");
1424 			return (error);
1425 		}
1426 	}
1427 
1428 	return (0);
1429 }
1430 
1431 static void
1432 sis_dma_free(struct sis_softc *sc)
1433 {
1434 	struct sis_rxdesc	*rxd;
1435 	struct sis_txdesc	*txd;
1436 	int			i;
1437 
1438 	/* Destroy DMA maps for RX buffers. */
1439 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1440 		rxd = &sc->sis_rxdesc[i];
1441 		if (rxd->rx_dmamap)
1442 			bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
1443 	}
1444 	if (sc->sis_rx_sparemap)
1445 		bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
1446 
1447 	/* Destroy DMA maps for TX buffers. */
1448 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1449 		txd = &sc->sis_txdesc[i];
1450 		if (txd->tx_dmamap)
1451 			bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
1452 	}
1453 
1454 	if (sc->sis_rx_tag)
1455 		bus_dma_tag_destroy(sc->sis_rx_tag);
1456 	if (sc->sis_tx_tag)
1457 		bus_dma_tag_destroy(sc->sis_tx_tag);
1458 
1459 	/* Destroy RX ring. */
1460 	if (sc->sis_rx_list_map)
1461 		bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
1462 	if (sc->sis_rx_list_map && sc->sis_rx_list)
1463 		bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
1464 		    sc->sis_rx_list_map);
1465 
1466 	if (sc->sis_rx_list_tag)
1467 		bus_dma_tag_destroy(sc->sis_rx_list_tag);
1468 
1469 	/* Destroy TX ring. */
1470 	if (sc->sis_tx_list_map)
1471 		bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
1472 
1473 	if (sc->sis_tx_list_map && sc->sis_tx_list)
1474 		bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
1475 		    sc->sis_tx_list_map);
1476 
1477 	if (sc->sis_tx_list_tag)
1478 		bus_dma_tag_destroy(sc->sis_tx_list_tag);
1479 
1480 	/* Destroy the parent tag. */
1481 	if (sc->sis_parent_tag)
1482 		bus_dma_tag_destroy(sc->sis_parent_tag);
1483 }
1484 
1485 /*
1486  * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1487  * we arrange the descriptors in a closed ring, so that the last descriptor
1488  * points back to the first.
1489  */
1490 static int
1491 sis_ring_init(struct sis_softc *sc)
1492 {
1493 	struct sis_rxdesc	*rxd;
1494 	struct sis_txdesc	*txd;
1495 	bus_addr_t		next;
1496 	int			error, i;
1497 
1498 	bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
1499 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1500 		txd = &sc->sis_txdesc[i];
1501 		txd->tx_m = NULL;
1502 		if (i == SIS_TX_LIST_CNT - 1)
1503 			next = SIS_TX_RING_ADDR(sc, 0);
1504 		else
1505 			next = SIS_TX_RING_ADDR(sc, i + 1);
1506 		sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
1507 	}
1508 	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1509 	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1510 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1511 
1512 	sc->sis_rx_cons = 0;
1513 	bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
1514 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1515 		rxd = &sc->sis_rxdesc[i];
1516 		rxd->rx_desc = &sc->sis_rx_list[i];
1517 		if (i == SIS_RX_LIST_CNT - 1)
1518 			next = SIS_RX_RING_ADDR(sc, 0);
1519 		else
1520 			next = SIS_RX_RING_ADDR(sc, i + 1);
1521 		rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
1522 		error = sis_newbuf(sc, rxd);
1523 		if (error)
1524 			return (error);
1525 	}
1526 	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1527 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1528 
1529 	return (0);
1530 }
1531 
1532 /*
1533  * Initialize an RX descriptor and attach an MBUF cluster.
1534  */
1535 static int
1536 sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
1537 {
1538 	struct mbuf		*m;
1539 	bus_dma_segment_t	segs[1];
1540 	bus_dmamap_t		map;
1541 	int nsegs;
1542 
1543 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1544 	if (m == NULL)
1545 		return (ENOBUFS);
1546 	m->m_len = m->m_pkthdr.len = SIS_RXLEN;
1547 #ifndef __NO_STRICT_ALIGNMENT
1548 	m_adj(m, SIS_RX_BUF_ALIGN);
1549 #endif
1550 
1551 	if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
1552 	    segs, &nsegs, 0) != 0) {
1553 		m_freem(m);
1554 		return (ENOBUFS);
1555 	}
1556 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1557 
1558 	if (rxd->rx_m != NULL) {
1559 		bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
1560 		    BUS_DMASYNC_POSTREAD);
1561 		bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
1562 	}
1563 	map = rxd->rx_dmamap;
1564 	rxd->rx_dmamap = sc->sis_rx_sparemap;
1565 	sc->sis_rx_sparemap = map;
1566 	bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
1567 	rxd->rx_m = m;
1568 	rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
1569 	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1570 	return (0);
1571 }
1572 
1573 static __inline void
1574 sis_discard_rxbuf(struct sis_rxdesc *rxd)
1575 {
1576 
1577 	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1578 }
1579 
1580 #ifndef __NO_STRICT_ALIGNMENT
1581 static __inline void
1582 sis_fixup_rx(struct mbuf *m)
1583 {
1584 	uint16_t		*src, *dst;
1585 	int			i;
1586 
1587 	src = mtod(m, uint16_t *);
1588 	dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
1589 
1590 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1591 		*dst++ = *src++;
1592 
1593 	m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
1594 }
1595 #endif
1596 
1597 /*
1598  * A frame has been uploaded: pass the resulting mbuf chain up to
1599  * the higher level protocols.
1600  */
1601 static int
1602 sis_rxeof(struct sis_softc *sc)
1603 {
1604 	struct mbuf		*m;
1605 	struct ifnet		*ifp;
1606 	struct sis_rxdesc	*rxd;
1607 	struct sis_desc		*cur_rx;
1608 	int			prog, rx_cons, rx_npkts = 0, total_len;
1609 	uint32_t		rxstat;
1610 
1611 	SIS_LOCK_ASSERT(sc);
1612 
1613 	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1614 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1615 
1616 	rx_cons = sc->sis_rx_cons;
1617 	ifp = sc->sis_ifp;
1618 
1619 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1620 	    SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
1621 #ifdef DEVICE_POLLING
1622 		if (ifp->if_capenable & IFCAP_POLLING) {
1623 			if (sc->rxcycles <= 0)
1624 				break;
1625 			sc->rxcycles--;
1626 		}
1627 #endif
1628 		cur_rx = &sc->sis_rx_list[rx_cons];
1629 		rxstat = le32toh(cur_rx->sis_cmdsts);
1630 		if ((rxstat & SIS_CMDSTS_OWN) == 0)
1631 			break;
1632 		rxd = &sc->sis_rxdesc[rx_cons];
1633 
1634 		total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
1635 		if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1636 		    total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1637 		    ETHER_CRC_LEN))
1638 			rxstat &= ~SIS_RXSTAT_GIANT;
1639 		if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1640 			ifp->if_ierrors++;
1641 			if (rxstat & SIS_RXSTAT_COLL)
1642 				ifp->if_collisions++;
1643 			sis_discard_rxbuf(rxd);
1644 			continue;
1645 		}
1646 
1647 		/* Add a new receive buffer to the ring. */
1648 		m = rxd->rx_m;
1649 		if (sis_newbuf(sc, rxd) != 0) {
1650 			ifp->if_iqdrops++;
1651 			sis_discard_rxbuf(rxd);
1652 			continue;
1653 		}
1654 
1655 		/* No errors; receive the packet. */
1656 		m->m_pkthdr.len = m->m_len = total_len;
1657 #ifndef __NO_STRICT_ALIGNMENT
1658 		/*
1659 		 * On architectures without alignment problems we try to
1660 		 * allocate a new buffer for the receive ring, and pass up
1661 		 * the one where the packet is already, saving the expensive
1662 		 * copy operation.
1663 		 */
1664 		sis_fixup_rx(m);
1665 #endif
1666 		ifp->if_ipackets++;
1667 		m->m_pkthdr.rcvif = ifp;
1668 
1669 		SIS_UNLOCK(sc);
1670 		(*ifp->if_input)(ifp, m);
1671 		SIS_LOCK(sc);
1672 		rx_npkts++;
1673 	}
1674 
1675 	if (prog > 0) {
1676 		sc->sis_rx_cons = rx_cons;
1677 		bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1678 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1679 	}
1680 
1681 	return (rx_npkts);
1682 }
1683 
1684 /*
1685  * A frame was downloaded to the chip. It's safe for us to clean up
1686  * the list buffers.
1687  */
1688 
1689 static void
1690 sis_txeof(struct sis_softc *sc)
1691 {
1692 	struct ifnet		*ifp;
1693 	struct sis_desc		*cur_tx;
1694 	struct sis_txdesc	*txd;
1695 	uint32_t		cons, txstat;
1696 
1697 	SIS_LOCK_ASSERT(sc);
1698 
1699 	cons = sc->sis_tx_cons;
1700 	if (cons == sc->sis_tx_prod)
1701 		return;
1702 
1703 	ifp = sc->sis_ifp;
1704 	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1705 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1706 
1707 	/*
1708 	 * Go through our tx list and free mbufs for those
1709 	 * frames that have been transmitted.
1710 	 */
1711 	for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
1712 		cur_tx = &sc->sis_tx_list[cons];
1713 		txstat = le32toh(cur_tx->sis_cmdsts);
1714 		if ((txstat & SIS_CMDSTS_OWN) != 0)
1715 			break;
1716 		txd = &sc->sis_txdesc[cons];
1717 		if (txd->tx_m != NULL) {
1718 			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
1719 			    BUS_DMASYNC_POSTWRITE);
1720 			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1721 			m_freem(txd->tx_m);
1722 			txd->tx_m = NULL;
1723 			if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
1724 				ifp->if_opackets++;
1725 				ifp->if_collisions +=
1726 				    (txstat & SIS_TXSTAT_COLLCNT) >> 16;
1727 			} else {
1728 				ifp->if_oerrors++;
1729 				if (txstat & SIS_TXSTAT_EXCESSCOLLS)
1730 					ifp->if_collisions++;
1731 				if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
1732 					ifp->if_collisions++;
1733 			}
1734 		}
1735 		sc->sis_tx_cnt--;
1736 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1737 	}
1738 	sc->sis_tx_cons = cons;
1739 	if (sc->sis_tx_cnt == 0)
1740 		sc->sis_watchdog_timer = 0;
1741 }
1742 
1743 static void
1744 sis_tick(void *xsc)
1745 {
1746 	struct sis_softc	*sc;
1747 	struct mii_data		*mii;
1748 	struct ifnet		*ifp;
1749 
1750 	sc = xsc;
1751 	SIS_LOCK_ASSERT(sc);
1752 	ifp = sc->sis_ifp;
1753 
1754 	mii = device_get_softc(sc->sis_miibus);
1755 	mii_tick(mii);
1756 	sis_watchdog(sc);
1757 	if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
1758 		sis_miibus_statchg(sc->sis_dev);
1759 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1760 }
1761 
1762 #ifdef DEVICE_POLLING
1763 static poll_handler_t sis_poll;
1764 
1765 static int
1766 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1767 {
1768 	struct	sis_softc *sc = ifp->if_softc;
1769 	int rx_npkts = 0;
1770 
1771 	SIS_LOCK(sc);
1772 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1773 		SIS_UNLOCK(sc);
1774 		return (rx_npkts);
1775 	}
1776 
1777 	/*
1778 	 * On the sis, reading the status register also clears it.
1779 	 * So before returning to intr mode we must make sure that all
1780 	 * possible pending sources of interrupts have been served.
1781 	 * In practice this means run to completion the *eof routines,
1782 	 * and then call the interrupt routine
1783 	 */
1784 	sc->rxcycles = count;
1785 	rx_npkts = sis_rxeof(sc);
1786 	sis_txeof(sc);
1787 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1788 		sis_startl(ifp);
1789 
1790 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1791 		uint32_t	status;
1792 
1793 		/* Reading the ISR register clears all interrupts. */
1794 		status = CSR_READ_4(sc, SIS_ISR);
1795 
1796 		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1797 			ifp->if_ierrors++;
1798 
1799 		if (status & (SIS_ISR_RX_IDLE))
1800 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1801 
1802 		if (status & SIS_ISR_SYSERR) {
1803 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1804 			sis_initl(sc);
1805 		}
1806 	}
1807 
1808 	SIS_UNLOCK(sc);
1809 	return (rx_npkts);
1810 }
1811 #endif /* DEVICE_POLLING */
1812 
1813 static void
1814 sis_intr(void *arg)
1815 {
1816 	struct sis_softc	*sc;
1817 	struct ifnet		*ifp;
1818 	uint32_t		status;
1819 
1820 	sc = arg;
1821 	ifp = sc->sis_ifp;
1822 
1823 	SIS_LOCK(sc);
1824 #ifdef DEVICE_POLLING
1825 	if (ifp->if_capenable & IFCAP_POLLING) {
1826 		SIS_UNLOCK(sc);
1827 		return;
1828 	}
1829 #endif
1830 
1831 	/* Reading the ISR register clears all interrupts. */
1832 	status = CSR_READ_4(sc, SIS_ISR);
1833 	if ((status & SIS_INTRS) == 0) {
1834 		/* Not ours. */
1835 		SIS_UNLOCK(sc);
1836 		return;
1837 	}
1838 
1839 	/* Disable interrupts. */
1840 	CSR_WRITE_4(sc, SIS_IER, 0);
1841 
1842 	for (;(status & SIS_INTRS) != 0;) {
1843 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1844 			break;
1845 		if (status &
1846 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1847 		    SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1848 			sis_txeof(sc);
1849 
1850 		if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1851 		    SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1852 			sis_rxeof(sc);
1853 
1854 		if (status & SIS_ISR_RX_OFLOW)
1855 			ifp->if_ierrors++;
1856 
1857 		if (status & (SIS_ISR_RX_IDLE))
1858 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1859 
1860 		if (status & SIS_ISR_SYSERR) {
1861 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1862 			sis_initl(sc);
1863 			SIS_UNLOCK(sc);
1864 			return;
1865 		}
1866 		status = CSR_READ_4(sc, SIS_ISR);
1867 	}
1868 
1869 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1870 		/* Re-enable interrupts. */
1871 		CSR_WRITE_4(sc, SIS_IER, 1);
1872 
1873 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1874 			sis_startl(ifp);
1875 	}
1876 
1877 	SIS_UNLOCK(sc);
1878 }
1879 
1880 /*
1881  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1882  * pointers to the fragment pointers.
1883  */
1884 static int
1885 sis_encap(struct sis_softc *sc, struct mbuf **m_head)
1886 {
1887 	struct mbuf		*m;
1888 	struct sis_txdesc	*txd;
1889 	struct sis_desc		*f;
1890 	bus_dma_segment_t	segs[SIS_MAXTXSEGS];
1891 	bus_dmamap_t		map;
1892 	int			error, i, frag, nsegs, prod;
1893 	int			padlen;
1894 
1895 	prod = sc->sis_tx_prod;
1896 	txd = &sc->sis_txdesc[prod];
1897 	if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
1898 	    (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
1899 		m = *m_head;
1900 		padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
1901 		if (M_WRITABLE(m) == 0) {
1902 			/* Get a writable copy. */
1903 			m = m_dup(*m_head, M_DONTWAIT);
1904 			m_freem(*m_head);
1905 			if (m == NULL) {
1906 				*m_head = NULL;
1907 				return (ENOBUFS);
1908 			}
1909 			*m_head = m;
1910 		}
1911 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1912 			m = m_defrag(m, M_DONTWAIT);
1913 			if (m == NULL) {
1914 				m_freem(*m_head);
1915 				*m_head = NULL;
1916 				return (ENOBUFS);
1917 			}
1918 		}
1919 		/*
1920 		 * Manually pad short frames, and zero the pad space
1921 		 * to avoid leaking data.
1922 		 */
1923 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1924 		m->m_pkthdr.len += padlen;
1925 		m->m_len = m->m_pkthdr.len;
1926 		*m_head = m;
1927 	}
1928 	error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1929 	    *m_head, segs, &nsegs, 0);
1930 	if (error == EFBIG) {
1931 		m = m_collapse(*m_head, M_DONTWAIT, SIS_MAXTXSEGS);
1932 		if (m == NULL) {
1933 			m_freem(*m_head);
1934 			*m_head = NULL;
1935 			return (ENOBUFS);
1936 		}
1937 		*m_head = m;
1938 		error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1939 		    *m_head, segs, &nsegs, 0);
1940 		if (error != 0) {
1941 			m_freem(*m_head);
1942 			*m_head = NULL;
1943 			return (error);
1944 		}
1945 	} else if (error != 0)
1946 		return (error);
1947 
1948 	/* Check for descriptor overruns. */
1949 	if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
1950 		bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1951 		return (ENOBUFS);
1952 	}
1953 
1954 	bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
1955 
1956 	frag = prod;
1957 	for (i = 0; i < nsegs; i++) {
1958 		f = &sc->sis_tx_list[prod];
1959 		if (i == 0)
1960 			f->sis_cmdsts = htole32(segs[i].ds_len |
1961 			    SIS_CMDSTS_MORE);
1962 		else
1963 			f->sis_cmdsts = htole32(segs[i].ds_len |
1964 			    SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
1965 		f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
1966 		SIS_INC(prod, SIS_TX_LIST_CNT);
1967 		sc->sis_tx_cnt++;
1968 	}
1969 
1970 	/* Update producer index. */
1971 	sc->sis_tx_prod = prod;
1972 
1973 	/* Remove MORE flag on the last descriptor. */
1974 	prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
1975 	f = &sc->sis_tx_list[prod];
1976 	f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
1977 
1978 	/* Lastly transfer ownership of packet to the controller. */
1979 	f = &sc->sis_tx_list[frag];
1980 	f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
1981 
1982 	/* Swap the last and the first dmamaps. */
1983 	map = txd->tx_dmamap;
1984 	txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
1985 	sc->sis_txdesc[prod].tx_dmamap = map;
1986 	sc->sis_txdesc[prod].tx_m = *m_head;
1987 
1988 	return (0);
1989 }
1990 
1991 static void
1992 sis_start(struct ifnet *ifp)
1993 {
1994 	struct sis_softc	*sc;
1995 
1996 	sc = ifp->if_softc;
1997 	SIS_LOCK(sc);
1998 	sis_startl(ifp);
1999 	SIS_UNLOCK(sc);
2000 }
2001 
2002 static void
2003 sis_startl(struct ifnet *ifp)
2004 {
2005 	struct sis_softc	*sc;
2006 	struct mbuf		*m_head;
2007 	int			queued;
2008 
2009 	sc = ifp->if_softc;
2010 
2011 	SIS_LOCK_ASSERT(sc);
2012 
2013 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2014 	    IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
2015 		return;
2016 
2017 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2018 	    sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
2019 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2020 		if (m_head == NULL)
2021 			break;
2022 
2023 		if (sis_encap(sc, &m_head) != 0) {
2024 			if (m_head == NULL)
2025 				break;
2026 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2027 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2028 			break;
2029 		}
2030 
2031 		queued++;
2032 
2033 		/*
2034 		 * If there's a BPF listener, bounce a copy of this frame
2035 		 * to him.
2036 		 */
2037 		BPF_MTAP(ifp, m_head);
2038 	}
2039 
2040 	if (queued) {
2041 		/* Transmit */
2042 		bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
2043 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2044 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
2045 
2046 		/*
2047 		 * Set a timeout in case the chip goes out to lunch.
2048 		 */
2049 		sc->sis_watchdog_timer = 5;
2050 	}
2051 }
2052 
2053 static void
2054 sis_init(void *xsc)
2055 {
2056 	struct sis_softc	*sc = xsc;
2057 
2058 	SIS_LOCK(sc);
2059 	sis_initl(sc);
2060 	SIS_UNLOCK(sc);
2061 }
2062 
2063 static void
2064 sis_initl(struct sis_softc *sc)
2065 {
2066 	struct ifnet		*ifp = sc->sis_ifp;
2067 	struct mii_data		*mii;
2068 	uint8_t			*eaddr;
2069 
2070 	SIS_LOCK_ASSERT(sc);
2071 
2072 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2073 		return;
2074 
2075 	/*
2076 	 * Cancel pending I/O and free all RX/TX buffers.
2077 	 */
2078 	sis_stop(sc);
2079 	/*
2080 	 * Reset the chip to a known state.
2081 	 */
2082 	sis_reset(sc);
2083 #ifdef notyet
2084 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
2085 		/*
2086 		 * Configure 400usec of interrupt holdoff.  This is based
2087 		 * on emperical tests on a Soekris 4801.
2088  		 */
2089 		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
2090 	}
2091 #endif
2092 
2093 	mii = device_get_softc(sc->sis_miibus);
2094 
2095 	/* Set MAC address */
2096 	eaddr = IF_LLADDR(sc->sis_ifp);
2097 	if (sc->sis_type == SIS_TYPE_83815) {
2098 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
2099 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
2100 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
2101 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
2102 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
2103 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
2104 	} else {
2105 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
2106 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
2107 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
2108 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
2109 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
2110 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
2111 	}
2112 
2113 	/* Init circular TX/RX lists. */
2114 	if (sis_ring_init(sc) != 0) {
2115 		device_printf(sc->sis_dev,
2116 		    "initialization failed: no memory for rx buffers\n");
2117 		sis_stop(sc);
2118 		return;
2119 	}
2120 
2121 	if (sc->sis_type == SIS_TYPE_83815 || sc->sis_type == SIS_TYPE_83816) {
2122 		if (sc->sis_manual_pad != 0)
2123 			sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
2124 		else
2125 			sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
2126 	}
2127 
2128 	/*
2129 	 * Short Cable Receive Errors (MP21.E)
2130 	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
2131 	 * recommends the following register settings "for optimum
2132 	 * performance." for rev 15C.  Set this also for 15D parts as
2133 	 * they require it in practice.
2134 	 */
2135 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
2136 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2137 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2138 		/* set val for c2 */
2139 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2140 		/* load/kill c2 */
2141 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2142 		/* rais SD off, from 4 to c */
2143 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2144 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2145 	}
2146 
2147 	sis_rxfilter(sc);
2148 	/* Turn the receive filter on */
2149 	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
2150 
2151 	/*
2152 	 * Load the address of the RX and TX lists.
2153 	 */
2154 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
2155 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
2156 
2157 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2158 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2159 	 * for TX/RX DMA should be no larger than 16 double words.
2160 	 */
2161 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2162 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2163 	} else {
2164 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2165 	}
2166 
2167 	/* Accept Long Packets for VLAN support */
2168 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2169 
2170 	/*
2171 	 * Assume 100Mbps link, actual MAC configuration is done
2172 	 * after getting a valid link.
2173 	 */
2174 	CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2175 
2176 	/*
2177 	 * Enable interrupts.
2178 	 */
2179 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2180 #ifdef DEVICE_POLLING
2181 	/*
2182 	 * ... only enable interrupts if we are not polling, make sure
2183 	 * they are off otherwise.
2184 	 */
2185 	if (ifp->if_capenable & IFCAP_POLLING)
2186 		CSR_WRITE_4(sc, SIS_IER, 0);
2187 	else
2188 #endif
2189 	CSR_WRITE_4(sc, SIS_IER, 1);
2190 
2191 	/* Clear MAC disable. */
2192 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
2193 
2194 	sc->sis_flags &= ~SIS_FLAG_LINK;
2195 	mii_mediachg(mii);
2196 
2197 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2198 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2199 
2200 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2201 }
2202 
2203 /*
2204  * Set media options.
2205  */
2206 static int
2207 sis_ifmedia_upd(struct ifnet *ifp)
2208 {
2209 	struct sis_softc	*sc;
2210 	struct mii_data		*mii;
2211 	struct mii_softc	*miisc;
2212 	int			error;
2213 
2214 	sc = ifp->if_softc;
2215 
2216 	SIS_LOCK(sc);
2217 	mii = device_get_softc(sc->sis_miibus);
2218 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2219 		PHY_RESET(miisc);
2220 	error = mii_mediachg(mii);
2221 	SIS_UNLOCK(sc);
2222 
2223 	return (error);
2224 }
2225 
2226 /*
2227  * Report current media status.
2228  */
2229 static void
2230 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2231 {
2232 	struct sis_softc	*sc;
2233 	struct mii_data		*mii;
2234 
2235 	sc = ifp->if_softc;
2236 
2237 	SIS_LOCK(sc);
2238 	mii = device_get_softc(sc->sis_miibus);
2239 	mii_pollstat(mii);
2240 	SIS_UNLOCK(sc);
2241 	ifmr->ifm_active = mii->mii_media_active;
2242 	ifmr->ifm_status = mii->mii_media_status;
2243 }
2244 
2245 static int
2246 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2247 {
2248 	struct sis_softc	*sc = ifp->if_softc;
2249 	struct ifreq		*ifr = (struct ifreq *) data;
2250 	struct mii_data		*mii;
2251 	int			error = 0, mask;
2252 
2253 	switch (command) {
2254 	case SIOCSIFFLAGS:
2255 		SIS_LOCK(sc);
2256 		if (ifp->if_flags & IFF_UP) {
2257 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2258 			    ((ifp->if_flags ^ sc->sis_if_flags) &
2259 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2260 				sis_rxfilter(sc);
2261 			else
2262 				sis_initl(sc);
2263 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2264 			sis_stop(sc);
2265 		sc->sis_if_flags = ifp->if_flags;
2266 		SIS_UNLOCK(sc);
2267 		break;
2268 	case SIOCADDMULTI:
2269 	case SIOCDELMULTI:
2270 		SIS_LOCK(sc);
2271 		sis_rxfilter(sc);
2272 		SIS_UNLOCK(sc);
2273 		break;
2274 	case SIOCGIFMEDIA:
2275 	case SIOCSIFMEDIA:
2276 		mii = device_get_softc(sc->sis_miibus);
2277 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2278 		break;
2279 	case SIOCSIFCAP:
2280 		SIS_LOCK(sc);
2281 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2282 #ifdef DEVICE_POLLING
2283 		if ((mask & IFCAP_POLLING) != 0 &&
2284 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2285 			ifp->if_capenable ^= IFCAP_POLLING;
2286 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2287 				error = ether_poll_register(sis_poll, ifp);
2288 				if (error != 0) {
2289 					SIS_UNLOCK(sc);
2290 					break;
2291 				}
2292 				/* Disable interrupts. */
2293 				CSR_WRITE_4(sc, SIS_IER, 0);
2294                         } else {
2295                                 error = ether_poll_deregister(ifp);
2296                                 /* Enable interrupts. */
2297 				CSR_WRITE_4(sc, SIS_IER, 1);
2298                         }
2299 		}
2300 #endif /* DEVICE_POLLING */
2301 		if ((mask & IFCAP_WOL) != 0 &&
2302 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2303 			if ((mask & IFCAP_WOL_UCAST) != 0)
2304 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2305 			if ((mask & IFCAP_WOL_MCAST) != 0)
2306 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2307 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2308 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2309 		}
2310 		SIS_UNLOCK(sc);
2311 		break;
2312 	default:
2313 		error = ether_ioctl(ifp, command, data);
2314 		break;
2315 	}
2316 
2317 	return (error);
2318 }
2319 
2320 static void
2321 sis_watchdog(struct sis_softc *sc)
2322 {
2323 
2324 	SIS_LOCK_ASSERT(sc);
2325 
2326 	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2327 		return;
2328 
2329 	device_printf(sc->sis_dev, "watchdog timeout\n");
2330 	sc->sis_ifp->if_oerrors++;
2331 
2332 	sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2333 	sis_initl(sc);
2334 
2335 	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2336 		sis_startl(sc->sis_ifp);
2337 }
2338 
2339 /*
2340  * Stop the adapter and free any mbufs allocated to the
2341  * RX and TX lists.
2342  */
2343 static void
2344 sis_stop(struct sis_softc *sc)
2345 {
2346 	struct ifnet *ifp;
2347 	struct sis_rxdesc *rxd;
2348 	struct sis_txdesc *txd;
2349 	int i;
2350 
2351 	SIS_LOCK_ASSERT(sc);
2352 
2353 	ifp = sc->sis_ifp;
2354 	sc->sis_watchdog_timer = 0;
2355 
2356 	callout_stop(&sc->sis_stat_ch);
2357 
2358 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2359 	CSR_WRITE_4(sc, SIS_IER, 0);
2360 	CSR_WRITE_4(sc, SIS_IMR, 0);
2361 	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2362 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2363 	DELAY(1000);
2364 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2365 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2366 
2367 	sc->sis_flags &= ~SIS_FLAG_LINK;
2368 
2369 	/*
2370 	 * Free data in the RX lists.
2371 	 */
2372 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2373 		rxd = &sc->sis_rxdesc[i];
2374 		if (rxd->rx_m != NULL) {
2375 			bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
2376 			    BUS_DMASYNC_POSTREAD);
2377 			bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
2378 			m_freem(rxd->rx_m);
2379 			rxd->rx_m = NULL;
2380 		}
2381 	}
2382 
2383 	/*
2384 	 * Free the TX list buffers.
2385 	 */
2386 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2387 		txd = &sc->sis_txdesc[i];
2388 		if (txd->tx_m != NULL) {
2389 			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
2390 			    BUS_DMASYNC_POSTWRITE);
2391 			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
2392 			m_freem(txd->tx_m);
2393 			txd->tx_m = NULL;
2394 		}
2395 	}
2396 }
2397 
2398 /*
2399  * Stop all chip I/O so that the kernel's probe routines don't
2400  * get confused by errant DMAs when rebooting.
2401  */
2402 static int
2403 sis_shutdown(device_t dev)
2404 {
2405 
2406 	return (sis_suspend(dev));
2407 }
2408 
2409 static int
2410 sis_suspend(device_t dev)
2411 {
2412 	struct sis_softc	*sc;
2413 
2414 	sc = device_get_softc(dev);
2415 	SIS_LOCK(sc);
2416 	sis_stop(sc);
2417 	sis_wol(sc);
2418 	SIS_UNLOCK(sc);
2419 	return (0);
2420 }
2421 
2422 static int
2423 sis_resume(device_t dev)
2424 {
2425 	struct sis_softc	*sc;
2426 	struct ifnet		*ifp;
2427 
2428 	sc = device_get_softc(dev);
2429 	SIS_LOCK(sc);
2430 	ifp = sc->sis_ifp;
2431 	if ((ifp->if_flags & IFF_UP) != 0) {
2432 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2433 		sis_initl(sc);
2434 	}
2435 	SIS_UNLOCK(sc);
2436 	return (0);
2437 }
2438 
2439 static void
2440 sis_wol(struct sis_softc *sc)
2441 {
2442 	struct ifnet		*ifp;
2443 	uint32_t		val;
2444 	uint16_t		pmstat;
2445 	int			pmc;
2446 
2447 	ifp = sc->sis_ifp;
2448 	if ((ifp->if_capenable & IFCAP_WOL) == 0)
2449 		return;
2450 
2451 	if (sc->sis_type == SIS_TYPE_83815) {
2452 		/* Reset RXDP. */
2453 		CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2454 
2455 		/* Configure WOL events. */
2456 		CSR_READ_4(sc, NS_WCSR);
2457 		val = 0;
2458 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2459 			val |= NS_WCSR_WAKE_UCAST;
2460 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2461 			val |= NS_WCSR_WAKE_MCAST;
2462 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2463 			val |= NS_WCSR_WAKE_MAGIC;
2464 		CSR_WRITE_4(sc, NS_WCSR, val);
2465 		/* Enable PME and clear PMESTS. */
2466 		val = CSR_READ_4(sc, NS_CLKRUN);
2467 		val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
2468 		CSR_WRITE_4(sc, NS_CLKRUN, val);
2469 		/* Enable silent RX mode. */
2470 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2471 	} else {
2472 		if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
2473 			return;
2474 		val = 0;
2475 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2476 			val |= SIS_PWRMAN_WOL_MAGIC;
2477 		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
2478 		/* Request PME. */
2479 		pmstat = pci_read_config(sc->sis_dev,
2480 		    pmc + PCIR_POWER_STATUS, 2);
2481 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2482 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2483 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2484 		pci_write_config(sc->sis_dev,
2485 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
2486 	}
2487 }
2488 
2489 static void
2490 sis_add_sysctls(struct sis_softc *sc)
2491 {
2492 	struct sysctl_ctx_list *ctx;
2493 	struct sysctl_oid_list *children;
2494 	char tn[32];
2495 	int unit;
2496 
2497 	ctx = device_get_sysctl_ctx(sc->sis_dev);
2498 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
2499 
2500 	unit = device_get_unit(sc->sis_dev);
2501 	/*
2502 	 * Unlike most other controllers, NS DP83815/DP83816 controllers
2503 	 * seem to pad with 0xFF when it encounter short frames.  According
2504 	 * to RFC 1042 the pad bytes should be 0x00.  Turning this tunable
2505 	 * on will have driver pad manully but it's disabled by default
2506 	 * because it will consume extra CPU cycles for short frames.
2507 	 */
2508 	sc->sis_manual_pad = 0;
2509 	snprintf(tn, sizeof(tn), "dev.sis.%d.manual_pad", unit);
2510 	TUNABLE_INT_FETCH(tn, &sc->sis_manual_pad);
2511 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
2512 	    CTLFLAG_RW, &sc->sis_manual_pad, 0, "Manually pad short frames");
2513 }
2514 
2515 static device_method_t sis_methods[] = {
2516 	/* Device interface */
2517 	DEVMETHOD(device_probe,		sis_probe),
2518 	DEVMETHOD(device_attach,	sis_attach),
2519 	DEVMETHOD(device_detach,	sis_detach),
2520 	DEVMETHOD(device_shutdown,	sis_shutdown),
2521 	DEVMETHOD(device_suspend,	sis_suspend),
2522 	DEVMETHOD(device_resume,	sis_resume),
2523 
2524 	/* bus interface */
2525 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
2526 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2527 
2528 	/* MII interface */
2529 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2530 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2531 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2532 
2533 	{ 0, 0 }
2534 };
2535 
2536 static driver_t sis_driver = {
2537 	"sis",
2538 	sis_methods,
2539 	sizeof(struct sis_softc)
2540 };
2541 
2542 static devclass_t sis_devclass;
2543 
2544 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2545 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2546