xref: /freebsd/sys/dev/sis/if_sis.c (revision 9e5787d2284e187abb5b654d924394a65772e004)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
5  * Copyright (c) 1997, 1998, 1999
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
41  * available from http://www.sis.com.tw.
42  *
43  * This driver also supports the NatSemi DP83815. Datasheets are
44  * available from http://www.national.com.
45  *
46  * Written by Bill Paul <wpaul@ee.columbia.edu>
47  * Electrical Engineering Department
48  * Columbia University, New York City
49  */
50 /*
51  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
52  * simple TX and RX descriptors of 3 longwords in size. The receiver
53  * has a single perfect filter entry for the station address and a
54  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
55  * transceiver while the 7016 requires an external transceiver chip.
56  * Both chips offer the standard bit-bang MII interface as well as
57  * an enchanced PHY interface which simplifies accessing MII registers.
58  *
59  * The only downside to this chipset is that RX descriptors must be
60  * longword aligned.
61  */
62 
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/lock.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/module.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/if_arp.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 #include <net/if_vlan_var.h>
88 
89 #include <net/bpf.h>
90 
91 #include <machine/bus.h>
92 #include <machine/resource.h>
93 #include <sys/rman.h>
94 
95 #include <dev/mii/mii.h>
96 #include <dev/mii/mii_bitbang.h>
97 #include <dev/mii/miivar.h>
98 
99 #include <dev/pci/pcireg.h>
100 #include <dev/pci/pcivar.h>
101 
102 #define SIS_USEIOSPACE
103 
104 #include <dev/sis/if_sisreg.h>
105 
106 MODULE_DEPEND(sis, pci, 1, 1, 1);
107 MODULE_DEPEND(sis, ether, 1, 1, 1);
108 MODULE_DEPEND(sis, miibus, 1, 1, 1);
109 
110 /* "device miibus" required.  See GENERIC if you get errors here. */
111 #include "miibus_if.h"
112 
113 #define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
114 #define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
115 #define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
116 
117 /*
118  * register space access macros
119  */
120 #define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
121 
122 #define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
123 
124 #define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
125 
126 #define	CSR_BARRIER(sc, reg, length, flags)				\
127 	bus_barrier(sc->sis_res[0], reg, length, flags)
128 
129 /*
130  * Various supported device vendors/types and their names.
131  */
132 static const struct sis_type sis_devs[] = {
133 	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
134 	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
135 	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
136 	{ 0, 0, NULL }
137 };
138 
139 static int sis_detach(device_t);
140 static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
141 static int sis_dma_alloc(struct sis_softc *);
142 static void sis_dma_free(struct sis_softc *);
143 static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
144     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
145 static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
146 #ifndef __NO_STRICT_ALIGNMENT
147 static __inline void sis_fixup_rx(struct mbuf *);
148 #endif
149 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
150 static int sis_ifmedia_upd(struct ifnet *);
151 static void sis_init(void *);
152 static void sis_initl(struct sis_softc *);
153 static void sis_intr(void *);
154 static int sis_ioctl(struct ifnet *, u_long, caddr_t);
155 static uint32_t sis_mii_bitbang_read(device_t);
156 static void sis_mii_bitbang_write(device_t, uint32_t);
157 static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
158 static int sis_resume(device_t);
159 static int sis_rxeof(struct sis_softc *);
160 static void sis_rxfilter(struct sis_softc *);
161 static void sis_rxfilter_ns(struct sis_softc *);
162 static void sis_rxfilter_sis(struct sis_softc *);
163 static void sis_start(struct ifnet *);
164 static void sis_startl(struct ifnet *);
165 static void sis_stop(struct sis_softc *);
166 static int sis_suspend(device_t);
167 static void sis_add_sysctls(struct sis_softc *);
168 static void sis_watchdog(struct sis_softc *);
169 static void sis_wol(struct sis_softc *);
170 
171 /*
172  * MII bit-bang glue
173  */
174 static const struct mii_bitbang_ops sis_mii_bitbang_ops = {
175 	sis_mii_bitbang_read,
176 	sis_mii_bitbang_write,
177 	{
178 		SIS_MII_DATA,		/* MII_BIT_MDO */
179 		SIS_MII_DATA,		/* MII_BIT_MDI */
180 		SIS_MII_CLK,		/* MII_BIT_MDC */
181 		SIS_MII_DIR,		/* MII_BIT_DIR_HOST_PHY */
182 		0,			/* MII_BIT_DIR_PHY_HOST */
183 	}
184 };
185 
186 static struct resource_spec sis_res_spec[] = {
187 #ifdef SIS_USEIOSPACE
188 	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
189 #else
190 	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
191 #endif
192 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
193 	{ -1, 0 }
194 };
195 
196 #define SIS_SETBIT(sc, reg, x)				\
197 	CSR_WRITE_4(sc, reg,				\
198 		CSR_READ_4(sc, reg) | (x))
199 
200 #define SIS_CLRBIT(sc, reg, x)				\
201 	CSR_WRITE_4(sc, reg,				\
202 		CSR_READ_4(sc, reg) & ~(x))
203 
204 #define SIO_SET(x)					\
205 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
206 
207 #define SIO_CLR(x)					\
208 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
209 
210 /*
211  * Routine to reverse the bits in a word. Stolen almost
212  * verbatim from /usr/games/fortune.
213  */
214 static uint16_t
215 sis_reverse(uint16_t n)
216 {
217 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
218 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
219 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
220 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
221 
222 	return (n);
223 }
224 
225 static void
226 sis_delay(struct sis_softc *sc)
227 {
228 	int			idx;
229 
230 	for (idx = (300 / 33) + 1; idx > 0; idx--)
231 		CSR_READ_4(sc, SIS_CSR);
232 }
233 
234 static void
235 sis_eeprom_idle(struct sis_softc *sc)
236 {
237 	int		i;
238 
239 	SIO_SET(SIS_EECTL_CSEL);
240 	sis_delay(sc);
241 	SIO_SET(SIS_EECTL_CLK);
242 	sis_delay(sc);
243 
244 	for (i = 0; i < 25; i++) {
245 		SIO_CLR(SIS_EECTL_CLK);
246 		sis_delay(sc);
247 		SIO_SET(SIS_EECTL_CLK);
248 		sis_delay(sc);
249 	}
250 
251 	SIO_CLR(SIS_EECTL_CLK);
252 	sis_delay(sc);
253 	SIO_CLR(SIS_EECTL_CSEL);
254 	sis_delay(sc);
255 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
256 }
257 
258 /*
259  * Send a read command and address to the EEPROM, check for ACK.
260  */
261 static void
262 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
263 {
264 	int		d, i;
265 
266 	d = addr | SIS_EECMD_READ;
267 
268 	/*
269 	 * Feed in each bit and stobe the clock.
270 	 */
271 	for (i = 0x400; i; i >>= 1) {
272 		if (d & i) {
273 			SIO_SET(SIS_EECTL_DIN);
274 		} else {
275 			SIO_CLR(SIS_EECTL_DIN);
276 		}
277 		sis_delay(sc);
278 		SIO_SET(SIS_EECTL_CLK);
279 		sis_delay(sc);
280 		SIO_CLR(SIS_EECTL_CLK);
281 		sis_delay(sc);
282 	}
283 }
284 
285 /*
286  * Read a word of data stored in the EEPROM at address 'addr.'
287  */
288 static void
289 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
290 {
291 	int		i;
292 	uint16_t	word = 0;
293 
294 	/* Force EEPROM to idle state. */
295 	sis_eeprom_idle(sc);
296 
297 	/* Enter EEPROM access mode. */
298 	sis_delay(sc);
299 	SIO_CLR(SIS_EECTL_CLK);
300 	sis_delay(sc);
301 	SIO_SET(SIS_EECTL_CSEL);
302 	sis_delay(sc);
303 
304 	/*
305 	 * Send address of word we want to read.
306 	 */
307 	sis_eeprom_putbyte(sc, addr);
308 
309 	/*
310 	 * Start reading bits from EEPROM.
311 	 */
312 	for (i = 0x8000; i; i >>= 1) {
313 		SIO_SET(SIS_EECTL_CLK);
314 		sis_delay(sc);
315 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
316 			word |= i;
317 		sis_delay(sc);
318 		SIO_CLR(SIS_EECTL_CLK);
319 		sis_delay(sc);
320 	}
321 
322 	/* Turn off EEPROM access mode. */
323 	sis_eeprom_idle(sc);
324 
325 	*dest = word;
326 }
327 
328 /*
329  * Read a sequence of words from the EEPROM.
330  */
331 static void
332 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
333 {
334 	int			i;
335 	uint16_t		word = 0, *ptr;
336 
337 	for (i = 0; i < cnt; i++) {
338 		sis_eeprom_getword(sc, off + i, &word);
339 		ptr = (uint16_t *)(dest + (i * 2));
340 		if (swap)
341 			*ptr = ntohs(word);
342 		else
343 			*ptr = word;
344 	}
345 }
346 
347 #if defined(__i386__) || defined(__amd64__)
348 static device_t
349 sis_find_bridge(device_t dev)
350 {
351 	devclass_t		pci_devclass;
352 	device_t		*pci_devices;
353 	int			pci_count = 0;
354 	device_t		*pci_children;
355 	int			pci_childcount = 0;
356 	device_t		*busp, *childp;
357 	device_t		child = NULL;
358 	int			i, j;
359 
360 	if ((pci_devclass = devclass_find("pci")) == NULL)
361 		return (NULL);
362 
363 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
364 
365 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
366 		if (device_get_children(*busp, &pci_children, &pci_childcount))
367 			continue;
368 		for (j = 0, childp = pci_children;
369 		    j < pci_childcount; j++, childp++) {
370 			if (pci_get_vendor(*childp) == SIS_VENDORID &&
371 			    pci_get_device(*childp) == 0x0008) {
372 				child = *childp;
373 				free(pci_children, M_TEMP);
374 				goto done;
375 			}
376 		}
377 		free(pci_children, M_TEMP);
378 	}
379 
380 done:
381 	free(pci_devices, M_TEMP);
382 	return (child);
383 }
384 
385 static void
386 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
387 {
388 	device_t		bridge;
389 	uint8_t			reg;
390 	int			i;
391 	bus_space_tag_t		btag;
392 
393 	bridge = sis_find_bridge(dev);
394 	if (bridge == NULL)
395 		return;
396 	reg = pci_read_config(bridge, 0x48, 1);
397 	pci_write_config(bridge, 0x48, reg|0x40, 1);
398 
399 	/* XXX */
400 #if defined(__amd64__) || defined(__i386__)
401 	btag = X86_BUS_SPACE_IO;
402 #endif
403 
404 	for (i = 0; i < cnt; i++) {
405 		bus_space_write_1(btag, 0x0, 0x70, i + off);
406 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
407 	}
408 
409 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
410 }
411 
412 static void
413 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
414 {
415 	uint32_t		filtsave, csrsave;
416 
417 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
418 	csrsave = CSR_READ_4(sc, SIS_CSR);
419 
420 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
421 	CSR_WRITE_4(sc, SIS_CSR, 0);
422 
423 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
424 
425 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
426 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
427 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
428 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
429 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
430 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
431 
432 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
433 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
434 }
435 #endif
436 
437 /*
438  * Read the MII serial port for the MII bit-bang module.
439  */
440 static uint32_t
441 sis_mii_bitbang_read(device_t dev)
442 {
443 	struct sis_softc	*sc;
444 	uint32_t		val;
445 
446 	sc = device_get_softc(dev);
447 
448 	val = CSR_READ_4(sc, SIS_EECTL);
449 	CSR_BARRIER(sc, SIS_EECTL, 4,
450 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
451 	return (val);
452 }
453 
454 /*
455  * Write the MII serial port for the MII bit-bang module.
456  */
457 static void
458 sis_mii_bitbang_write(device_t dev, uint32_t val)
459 {
460 	struct sis_softc	*sc;
461 
462 	sc = device_get_softc(dev);
463 
464 	CSR_WRITE_4(sc, SIS_EECTL, val);
465 	CSR_BARRIER(sc, SIS_EECTL, 4,
466 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
467 }
468 
469 static int
470 sis_miibus_readreg(device_t dev, int phy, int reg)
471 {
472 	struct sis_softc	*sc;
473 
474 	sc = device_get_softc(dev);
475 
476 	if (sc->sis_type == SIS_TYPE_83815) {
477 		if (phy != 0)
478 			return (0);
479 		/*
480 		 * The NatSemi chip can take a while after
481 		 * a reset to come ready, during which the BMSR
482 		 * returns a value of 0. This is *never* supposed
483 		 * to happen: some of the BMSR bits are meant to
484 		 * be hardwired in the on position, and this can
485 		 * confuse the miibus code a bit during the probe
486 		 * and attach phase. So we make an effort to check
487 		 * for this condition and wait for it to clear.
488 		 */
489 		if (!CSR_READ_4(sc, NS_BMSR))
490 			DELAY(1000);
491 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
492 	}
493 
494 	/*
495 	 * Chipsets < SIS_635 seem not to be able to read/write
496 	 * through mdio. Use the enhanced PHY access register
497 	 * again for them.
498 	 */
499 	if (sc->sis_type == SIS_TYPE_900 &&
500 	    sc->sis_rev < SIS_REV_635) {
501 		int i, val = 0;
502 
503 		if (phy != 0)
504 			return (0);
505 
506 		CSR_WRITE_4(sc, SIS_PHYCTL,
507 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
508 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
509 
510 		for (i = 0; i < SIS_TIMEOUT; i++) {
511 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
512 				break;
513 		}
514 
515 		if (i == SIS_TIMEOUT) {
516 			device_printf(sc->sis_dev,
517 			    "PHY failed to come ready\n");
518 			return (0);
519 		}
520 
521 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
522 
523 		if (val == 0xFFFF)
524 			return (0);
525 
526 		return (val);
527 	} else
528 		return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy,
529 		    reg));
530 }
531 
532 static int
533 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
534 {
535 	struct sis_softc	*sc;
536 
537 	sc = device_get_softc(dev);
538 
539 	if (sc->sis_type == SIS_TYPE_83815) {
540 		if (phy != 0)
541 			return (0);
542 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
543 		return (0);
544 	}
545 
546 	/*
547 	 * Chipsets < SIS_635 seem not to be able to read/write
548 	 * through mdio. Use the enhanced PHY access register
549 	 * again for them.
550 	 */
551 	if (sc->sis_type == SIS_TYPE_900 &&
552 	    sc->sis_rev < SIS_REV_635) {
553 		int i;
554 
555 		if (phy != 0)
556 			return (0);
557 
558 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
559 		    (reg << 6) | SIS_PHYOP_WRITE);
560 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
561 
562 		for (i = 0; i < SIS_TIMEOUT; i++) {
563 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
564 				break;
565 		}
566 
567 		if (i == SIS_TIMEOUT)
568 			device_printf(sc->sis_dev,
569 			    "PHY failed to come ready\n");
570 	} else
571 		mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg,
572 		    data);
573 	return (0);
574 }
575 
576 static void
577 sis_miibus_statchg(device_t dev)
578 {
579 	struct sis_softc	*sc;
580 	struct mii_data		*mii;
581 	struct ifnet		*ifp;
582 	uint32_t		reg;
583 
584 	sc = device_get_softc(dev);
585 	SIS_LOCK_ASSERT(sc);
586 
587 	mii = device_get_softc(sc->sis_miibus);
588 	ifp = sc->sis_ifp;
589 	if (mii == NULL || ifp == NULL ||
590 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
591 		return;
592 
593 	sc->sis_flags &= ~SIS_FLAG_LINK;
594 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
595 	    (IFM_ACTIVE | IFM_AVALID)) {
596 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
597 		case IFM_10_T:
598 			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
599 			sc->sis_flags |= SIS_FLAG_LINK;
600 			break;
601 		case IFM_100_TX:
602 			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
603 			sc->sis_flags |= SIS_FLAG_LINK;
604 			break;
605 		default:
606 			break;
607 		}
608 	}
609 
610 	if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
611 		/*
612 		 * Stopping MACs seem to reset SIS_TX_LISTPTR and
613 		 * SIS_RX_LISTPTR which in turn requires resetting
614 		 * TX/RX buffers.  So just don't do anything for
615 		 * lost link.
616 		 */
617 		return;
618 	}
619 
620 	/* Set full/half duplex mode. */
621 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
622 		SIS_SETBIT(sc, SIS_TX_CFG,
623 		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
624 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
625 	} else {
626 		SIS_CLRBIT(sc, SIS_TX_CFG,
627 		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
628 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
629 	}
630 
631 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
632 		/*
633 		 * MPII03.D: Half Duplex Excessive Collisions.
634 		 * Also page 49 in 83816 manual
635 		 */
636 		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
637 	}
638 
639 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
640 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
641 		/*
642 		 * Short Cable Receive Errors (MP21.E)
643 		 */
644 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
645 		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
646 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
647 		DELAY(100);
648 		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
649 		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
650 			device_printf(sc->sis_dev,
651 			    "Applying short cable fix (reg=%x)\n", reg);
652 			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
653 			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
654 		}
655 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
656 	}
657 	/* Enable TX/RX MACs. */
658 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
659 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
660 }
661 
662 static uint32_t
663 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
664 {
665 	uint32_t		crc;
666 
667 	/* Compute CRC for the address value. */
668 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
669 
670 	/*
671 	 * return the filter bit position
672 	 *
673 	 * The NatSemi chip has a 512-bit filter, which is
674 	 * different than the SiS, so we special-case it.
675 	 */
676 	if (sc->sis_type == SIS_TYPE_83815)
677 		return (crc >> 23);
678 	else if (sc->sis_rev >= SIS_REV_635 ||
679 	    sc->sis_rev == SIS_REV_900B)
680 		return (crc >> 24);
681 	else
682 		return (crc >> 25);
683 }
684 
685 static void
686 sis_rxfilter(struct sis_softc *sc)
687 {
688 
689 	SIS_LOCK_ASSERT(sc);
690 
691 	if (sc->sis_type == SIS_TYPE_83815)
692 		sis_rxfilter_ns(sc);
693 	else
694 		sis_rxfilter_sis(sc);
695 }
696 
697 static u_int
698 sis_write_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
699 {
700 	struct sis_softc *sc = arg;
701 	uint32_t h;
702 	int bit, index;
703 
704 	h = sis_mchash(sc, LLADDR(sdl));
705 	index = h >> 3;
706 	bit = h & 0x1F;
707 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
708 	if (bit > 0xF)
709 		bit -= 0x10;
710 	SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
711 
712 	return (1);
713 }
714 
715 static void
716 sis_rxfilter_ns(struct sis_softc *sc)
717 {
718 	struct ifnet		*ifp;
719 	uint32_t		i, filter;
720 
721 	ifp = sc->sis_ifp;
722 	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
723 	if (filter & SIS_RXFILTCTL_ENABLE) {
724 		/*
725 		 * Filter should be disabled to program other bits.
726 		 */
727 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
728 		CSR_READ_4(sc, SIS_RXFILT_CTL);
729 	}
730 	filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
731 	    NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
732 	    SIS_RXFILTCTL_ALLMULTI);
733 
734 	if (ifp->if_flags & IFF_BROADCAST)
735 		filter |= SIS_RXFILTCTL_BROAD;
736 	/*
737 	 * For the NatSemi chip, we have to explicitly enable the
738 	 * reception of ARP frames, as well as turn on the 'perfect
739 	 * match' filter where we store the station address, otherwise
740 	 * we won't receive unicasts meant for this host.
741 	 */
742 	filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
743 
744 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
745 		filter |= SIS_RXFILTCTL_ALLMULTI;
746 		if (ifp->if_flags & IFF_PROMISC)
747 			filter |= SIS_RXFILTCTL_ALLPHYS;
748 	} else {
749 		/*
750 		 * We have to explicitly enable the multicast hash table
751 		 * on the NatSemi chip if we want to use it, which we do.
752 		 */
753 		filter |= NS_RXFILTCTL_MCHASH;
754 
755 		/* first, zot all the existing hash bits */
756 		for (i = 0; i < 32; i++) {
757 			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
758 			    (i * 2));
759 			CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
760 		}
761 
762 		if_foreach_llmaddr(ifp, sis_write_maddr, sc);
763 	}
764 
765 	/* Turn the receive filter on */
766 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
767 	CSR_READ_4(sc, SIS_RXFILT_CTL);
768 }
769 
770 struct sis_hash_maddr_ctx {
771 	struct sis_softc *sc;
772 	uint16_t hashes[16];
773 };
774 
775 static u_int
776 sis_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
777 {
778 	struct sis_hash_maddr_ctx *ctx = arg;
779 	uint32_t h;
780 
781 	h = sis_mchash(ctx->sc, LLADDR(sdl));
782 	ctx->hashes[h >> 4] |= 1 << (h & 0xf);
783 
784 	return (1);
785 }
786 
787 static void
788 sis_rxfilter_sis(struct sis_softc *sc)
789 {
790 	struct ifnet		*ifp;
791 	struct sis_hash_maddr_ctx ctx;
792 	uint32_t		filter, i, n;
793 
794 	ifp = sc->sis_ifp;
795 
796 	/* hash table size */
797 	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
798 		n = 16;
799 	else
800 		n = 8;
801 
802 	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
803 	if (filter & SIS_RXFILTCTL_ENABLE) {
804 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
805 		CSR_READ_4(sc, SIS_RXFILT_CTL);
806 	}
807 	filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
808 	    SIS_RXFILTCTL_ALLMULTI);
809 	if (ifp->if_flags & IFF_BROADCAST)
810 		filter |= SIS_RXFILTCTL_BROAD;
811 
812 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
813 		filter |= SIS_RXFILTCTL_ALLMULTI;
814 		if (ifp->if_flags & IFF_PROMISC)
815 			filter |= SIS_RXFILTCTL_ALLPHYS;
816 		for (i = 0; i < n; i++)
817 			ctx.hashes[i] = ~0;
818 	} else {
819 		for (i = 0; i < n; i++)
820 			ctx.hashes[i] = 0;
821 		ctx.sc = sc;
822 		if (if_foreach_llmaddr(ifp, sis_hash_maddr, &ctx) > n) {
823 			filter |= SIS_RXFILTCTL_ALLMULTI;
824 			for (i = 0; i < n; i++)
825 				ctx.hashes[i] = ~0;
826 		}
827 	}
828 
829 	for (i = 0; i < n; i++) {
830 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
831 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, ctx.hashes[i]);
832 	}
833 
834 	/* Turn the receive filter on */
835 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
836 	CSR_READ_4(sc, SIS_RXFILT_CTL);
837 }
838 
839 static void
840 sis_reset(struct sis_softc *sc)
841 {
842 	int		i;
843 
844 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
845 
846 	for (i = 0; i < SIS_TIMEOUT; i++) {
847 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
848 			break;
849 	}
850 
851 	if (i == SIS_TIMEOUT)
852 		device_printf(sc->sis_dev, "reset never completed\n");
853 
854 	/* Wait a little while for the chip to get its brains in order. */
855 	DELAY(1000);
856 
857 	/*
858 	 * If this is a NetSemi chip, make sure to clear
859 	 * PME mode.
860 	 */
861 	if (sc->sis_type == SIS_TYPE_83815) {
862 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
863 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
864 	} else {
865 		/* Disable WOL functions. */
866 		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
867 	}
868 }
869 
870 /*
871  * Probe for an SiS chip. Check the PCI vendor and device
872  * IDs against our list and return a device name if we find a match.
873  */
874 static int
875 sis_probe(device_t dev)
876 {
877 	const struct sis_type	*t;
878 
879 	t = sis_devs;
880 
881 	while (t->sis_name != NULL) {
882 		if ((pci_get_vendor(dev) == t->sis_vid) &&
883 		    (pci_get_device(dev) == t->sis_did)) {
884 			device_set_desc(dev, t->sis_name);
885 			return (BUS_PROBE_DEFAULT);
886 		}
887 		t++;
888 	}
889 
890 	return (ENXIO);
891 }
892 
893 /*
894  * Attach the interface. Allocate softc structures, do ifmedia
895  * setup and ethernet/BPF attach.
896  */
897 static int
898 sis_attach(device_t dev)
899 {
900 	u_char			eaddr[ETHER_ADDR_LEN];
901 	struct sis_softc	*sc;
902 	struct ifnet		*ifp;
903 	int			error = 0, pmc, waittime = 0;
904 
905 	waittime = 0;
906 	sc = device_get_softc(dev);
907 
908 	sc->sis_dev = dev;
909 
910 	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
911 	    MTX_DEF);
912 	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
913 
914 	if (pci_get_device(dev) == SIS_DEVICEID_900)
915 		sc->sis_type = SIS_TYPE_900;
916 	if (pci_get_device(dev) == SIS_DEVICEID_7016)
917 		sc->sis_type = SIS_TYPE_7016;
918 	if (pci_get_vendor(dev) == NS_VENDORID)
919 		sc->sis_type = SIS_TYPE_83815;
920 
921 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
922 	/*
923 	 * Map control/status registers.
924 	 */
925 	pci_enable_busmaster(dev);
926 
927 	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
928 	if (error) {
929 		device_printf(dev, "couldn't allocate resources\n");
930 		goto fail;
931 	}
932 
933 	/* Reset the adapter. */
934 	sis_reset(sc);
935 
936 	if (sc->sis_type == SIS_TYPE_900 &&
937 	    (sc->sis_rev == SIS_REV_635 ||
938 	    sc->sis_rev == SIS_REV_900B)) {
939 		SIO_SET(SIS_CFG_RND_CNT);
940 		SIO_SET(SIS_CFG_PERR_DETECT);
941 	}
942 
943 	/*
944 	 * Get station address from the EEPROM.
945 	 */
946 	switch (pci_get_vendor(dev)) {
947 	case NS_VENDORID:
948 		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
949 
950 		/* We can't update the device description, so spew */
951 		if (sc->sis_srr == NS_SRR_15C)
952 			device_printf(dev, "Silicon Revision: DP83815C\n");
953 		else if (sc->sis_srr == NS_SRR_15D)
954 			device_printf(dev, "Silicon Revision: DP83815D\n");
955 		else if (sc->sis_srr == NS_SRR_16A)
956 			device_printf(dev, "Silicon Revision: DP83816A\n");
957 		else
958 			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
959 
960 		/*
961 		 * Reading the MAC address out of the EEPROM on
962 		 * the NatSemi chip takes a bit more work than
963 		 * you'd expect. The address spans 4 16-bit words,
964 		 * with the first word containing only a single bit.
965 		 * You have to shift everything over one bit to
966 		 * get it aligned properly. Also, the bits are
967 		 * stored backwards (the LSB is really the MSB,
968 		 * and so on) so you have to reverse them in order
969 		 * to get the MAC address into the form we want.
970 		 * Why? Who the hell knows.
971 		 */
972 		{
973 			uint16_t		tmp[4];
974 
975 			sis_read_eeprom(sc, (caddr_t)&tmp,
976 			    NS_EE_NODEADDR, 4, 0);
977 
978 			/* Shift everything over one bit. */
979 			tmp[3] = tmp[3] >> 1;
980 			tmp[3] |= tmp[2] << 15;
981 			tmp[2] = tmp[2] >> 1;
982 			tmp[2] |= tmp[1] << 15;
983 			tmp[1] = tmp[1] >> 1;
984 			tmp[1] |= tmp[0] << 15;
985 
986 			/* Now reverse all the bits. */
987 			tmp[3] = sis_reverse(tmp[3]);
988 			tmp[2] = sis_reverse(tmp[2]);
989 			tmp[1] = sis_reverse(tmp[1]);
990 
991 			eaddr[0] = (tmp[1] >> 0) & 0xFF;
992 			eaddr[1] = (tmp[1] >> 8) & 0xFF;
993 			eaddr[2] = (tmp[2] >> 0) & 0xFF;
994 			eaddr[3] = (tmp[2] >> 8) & 0xFF;
995 			eaddr[4] = (tmp[3] >> 0) & 0xFF;
996 			eaddr[5] = (tmp[3] >> 8) & 0xFF;
997 		}
998 		break;
999 	case SIS_VENDORID:
1000 	default:
1001 #if defined(__i386__) || defined(__amd64__)
1002 		/*
1003 		 * If this is a SiS 630E chipset with an embedded
1004 		 * SiS 900 controller, we have to read the MAC address
1005 		 * from the APC CMOS RAM. Our method for doing this
1006 		 * is very ugly since we have to reach out and grab
1007 		 * ahold of hardware for which we cannot properly
1008 		 * allocate resources. This code is only compiled on
1009 		 * the i386 architecture since the SiS 630E chipset
1010 		 * is for x86 motherboards only. Note that there are
1011 		 * a lot of magic numbers in this hack. These are
1012 		 * taken from SiS's Linux driver. I'd like to replace
1013 		 * them with proper symbolic definitions, but that
1014 		 * requires some datasheets that I don't have access
1015 		 * to at the moment.
1016 		 */
1017 		if (sc->sis_rev == SIS_REV_630S ||
1018 		    sc->sis_rev == SIS_REV_630E ||
1019 		    sc->sis_rev == SIS_REV_630EA1)
1020 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1021 
1022 		else if (sc->sis_rev == SIS_REV_635 ||
1023 			 sc->sis_rev == SIS_REV_630ET)
1024 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1025 		else if (sc->sis_rev == SIS_REV_96x) {
1026 			/* Allow to read EEPROM from LAN. It is shared
1027 			 * between a 1394 controller and the NIC and each
1028 			 * time we access it, we need to set SIS_EECMD_REQ.
1029 			 */
1030 			SIO_SET(SIS_EECMD_REQ);
1031 			for (waittime = 0; waittime < SIS_TIMEOUT;
1032 			    waittime++) {
1033 				/* Force EEPROM to idle state. */
1034 				sis_eeprom_idle(sc);
1035 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1036 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1037 					    SIS_EE_NODEADDR, 3, 0);
1038 					break;
1039 				}
1040 				DELAY(1);
1041 			}
1042 			/*
1043 			 * Set SIS_EECTL_CLK to high, so a other master
1044 			 * can operate on the i2c bus.
1045 			 */
1046 			SIO_SET(SIS_EECTL_CLK);
1047 			/* Refuse EEPROM access by LAN */
1048 			SIO_SET(SIS_EECMD_DONE);
1049 		} else
1050 #endif
1051 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1052 			    SIS_EE_NODEADDR, 3, 0);
1053 		break;
1054 	}
1055 
1056 	sis_add_sysctls(sc);
1057 
1058 	/* Allocate DMA'able memory. */
1059 	if ((error = sis_dma_alloc(sc)) != 0)
1060 		goto fail;
1061 
1062 	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1063 	if (ifp == NULL) {
1064 		device_printf(dev, "can not if_alloc()\n");
1065 		error = ENOSPC;
1066 		goto fail;
1067 	}
1068 	ifp->if_softc = sc;
1069 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1070 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1071 	ifp->if_ioctl = sis_ioctl;
1072 	ifp->if_start = sis_start;
1073 	ifp->if_init = sis_init;
1074 	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1075 	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1076 	IFQ_SET_READY(&ifp->if_snd);
1077 
1078 	if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
1079 		if (sc->sis_type == SIS_TYPE_83815)
1080 			ifp->if_capabilities |= IFCAP_WOL;
1081 		else
1082 			ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1083 		ifp->if_capenable = ifp->if_capabilities;
1084 	}
1085 
1086 	/*
1087 	 * Do MII setup.
1088 	 */
1089 	error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
1090 	    sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1091 	if (error != 0) {
1092 		device_printf(dev, "attaching PHYs failed\n");
1093 		goto fail;
1094 	}
1095 
1096 	/*
1097 	 * Call MI attach routine.
1098 	 */
1099 	ether_ifattach(ifp, eaddr);
1100 
1101 	/*
1102 	 * Tell the upper layer(s) we support long frames.
1103 	 */
1104 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1105 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1106 	ifp->if_capenable = ifp->if_capabilities;
1107 #ifdef DEVICE_POLLING
1108 	ifp->if_capabilities |= IFCAP_POLLING;
1109 #endif
1110 
1111 	/* Hook interrupt last to avoid having to lock softc */
1112 	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1113 	    NULL, sis_intr, sc, &sc->sis_intrhand);
1114 
1115 	if (error) {
1116 		device_printf(dev, "couldn't set up irq\n");
1117 		ether_ifdetach(ifp);
1118 		goto fail;
1119 	}
1120 
1121 fail:
1122 	if (error)
1123 		sis_detach(dev);
1124 
1125 	return (error);
1126 }
1127 
1128 /*
1129  * Shutdown hardware and free up resources. This can be called any
1130  * time after the mutex has been initialized. It is called in both
1131  * the error case in attach and the normal detach case so it needs
1132  * to be careful about only freeing resources that have actually been
1133  * allocated.
1134  */
1135 static int
1136 sis_detach(device_t dev)
1137 {
1138 	struct sis_softc	*sc;
1139 	struct ifnet		*ifp;
1140 
1141 	sc = device_get_softc(dev);
1142 	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1143 	ifp = sc->sis_ifp;
1144 
1145 #ifdef DEVICE_POLLING
1146 	if (ifp->if_capenable & IFCAP_POLLING)
1147 		ether_poll_deregister(ifp);
1148 #endif
1149 
1150 	/* These should only be active if attach succeeded. */
1151 	if (device_is_attached(dev)) {
1152 		SIS_LOCK(sc);
1153 		sis_stop(sc);
1154 		SIS_UNLOCK(sc);
1155 		callout_drain(&sc->sis_stat_ch);
1156 		ether_ifdetach(ifp);
1157 	}
1158 	if (sc->sis_miibus)
1159 		device_delete_child(dev, sc->sis_miibus);
1160 	bus_generic_detach(dev);
1161 
1162 	if (sc->sis_intrhand)
1163 		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1164 	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1165 
1166 	if (ifp)
1167 		if_free(ifp);
1168 
1169 	sis_dma_free(sc);
1170 
1171 	mtx_destroy(&sc->sis_mtx);
1172 
1173 	return (0);
1174 }
1175 
1176 struct sis_dmamap_arg {
1177 	bus_addr_t	sis_busaddr;
1178 };
1179 
1180 static void
1181 sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1182 {
1183 	struct sis_dmamap_arg	*ctx;
1184 
1185 	if (error != 0)
1186 		return;
1187 
1188 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1189 
1190 	ctx = (struct sis_dmamap_arg *)arg;
1191 	ctx->sis_busaddr = segs[0].ds_addr;
1192 }
1193 
1194 static int
1195 sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
1196     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
1197     bus_addr_t *paddr, const char *msg)
1198 {
1199 	struct sis_dmamap_arg	ctx;
1200 	int			error;
1201 
1202 	error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
1203 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
1204 	    maxsize, 0, NULL, NULL, tag);
1205 	if (error != 0) {
1206 		device_printf(sc->sis_dev,
1207 		    "could not create %s dma tag\n", msg);
1208 		return (ENOMEM);
1209 	}
1210 	/* Allocate DMA'able memory for ring. */
1211 	error = bus_dmamem_alloc(*tag, (void **)ring,
1212 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1213 	if (error != 0) {
1214 		device_printf(sc->sis_dev,
1215 		    "could not allocate DMA'able memory for %s\n", msg);
1216 		return (ENOMEM);
1217 	}
1218 	/* Load the address of the ring. */
1219 	ctx.sis_busaddr = 0;
1220 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
1221 	    &ctx, BUS_DMA_NOWAIT);
1222 	if (error != 0) {
1223 		device_printf(sc->sis_dev,
1224 		    "could not load DMA'able memory for %s\n", msg);
1225 		return (ENOMEM);
1226 	}
1227 	*paddr = ctx.sis_busaddr;
1228 	return (0);
1229 }
1230 
1231 static int
1232 sis_dma_alloc(struct sis_softc *sc)
1233 {
1234 	struct sis_rxdesc	*rxd;
1235 	struct sis_txdesc	*txd;
1236 	int			error, i;
1237 
1238 	/* Allocate the parent bus DMA tag appropriate for PCI. */
1239 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1240 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1241 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
1242 	    0, NULL, NULL, &sc->sis_parent_tag);
1243 	if (error != 0) {
1244 		device_printf(sc->sis_dev,
1245 		    "could not allocate parent dma tag\n");
1246 		return (ENOMEM);
1247 	}
1248 
1249 	/* Create RX ring. */
1250 	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
1251 	    &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
1252 	    &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
1253 	if (error)
1254 		return (error);
1255 
1256 	/* Create TX ring. */
1257 	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
1258 	    &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
1259 	    &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
1260 	if (error)
1261 		return (error);
1262 
1263 	/* Create tag for RX mbufs. */
1264 	error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
1265 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1266 	    MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
1267 	if (error) {
1268 		device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
1269 		return (error);
1270 	}
1271 
1272 	/* Create tag for TX mbufs. */
1273 	error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
1274 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1275 	    MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1276 	    &sc->sis_tx_tag);
1277 	if (error) {
1278 		device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
1279 		return (error);
1280 	}
1281 
1282 	/* Create DMA maps for RX buffers. */
1283 	error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
1284 	if (error) {
1285 		device_printf(sc->sis_dev,
1286 		    "can't create spare DMA map for RX\n");
1287 		return (error);
1288 	}
1289 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1290 		rxd = &sc->sis_rxdesc[i];
1291 		rxd->rx_m = NULL;
1292 		error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
1293 		if (error) {
1294 			device_printf(sc->sis_dev,
1295 			    "can't create DMA map for RX\n");
1296 			return (error);
1297 		}
1298 	}
1299 
1300 	/* Create DMA maps for TX buffers. */
1301 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1302 		txd = &sc->sis_txdesc[i];
1303 		txd->tx_m = NULL;
1304 		error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
1305 		if (error) {
1306 			device_printf(sc->sis_dev,
1307 			    "can't create DMA map for TX\n");
1308 			return (error);
1309 		}
1310 	}
1311 
1312 	return (0);
1313 }
1314 
1315 static void
1316 sis_dma_free(struct sis_softc *sc)
1317 {
1318 	struct sis_rxdesc	*rxd;
1319 	struct sis_txdesc	*txd;
1320 	int			i;
1321 
1322 	/* Destroy DMA maps for RX buffers. */
1323 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1324 		rxd = &sc->sis_rxdesc[i];
1325 		if (rxd->rx_dmamap)
1326 			bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
1327 	}
1328 	if (sc->sis_rx_sparemap)
1329 		bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
1330 
1331 	/* Destroy DMA maps for TX buffers. */
1332 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1333 		txd = &sc->sis_txdesc[i];
1334 		if (txd->tx_dmamap)
1335 			bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
1336 	}
1337 
1338 	if (sc->sis_rx_tag)
1339 		bus_dma_tag_destroy(sc->sis_rx_tag);
1340 	if (sc->sis_tx_tag)
1341 		bus_dma_tag_destroy(sc->sis_tx_tag);
1342 
1343 	/* Destroy RX ring. */
1344 	if (sc->sis_rx_paddr)
1345 		bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
1346 	if (sc->sis_rx_list)
1347 		bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
1348 		    sc->sis_rx_list_map);
1349 
1350 	if (sc->sis_rx_list_tag)
1351 		bus_dma_tag_destroy(sc->sis_rx_list_tag);
1352 
1353 	/* Destroy TX ring. */
1354 	if (sc->sis_tx_paddr)
1355 		bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
1356 
1357 	if (sc->sis_tx_list)
1358 		bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
1359 		    sc->sis_tx_list_map);
1360 
1361 	if (sc->sis_tx_list_tag)
1362 		bus_dma_tag_destroy(sc->sis_tx_list_tag);
1363 
1364 	/* Destroy the parent tag. */
1365 	if (sc->sis_parent_tag)
1366 		bus_dma_tag_destroy(sc->sis_parent_tag);
1367 }
1368 
1369 /*
1370  * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1371  * we arrange the descriptors in a closed ring, so that the last descriptor
1372  * points back to the first.
1373  */
1374 static int
1375 sis_ring_init(struct sis_softc *sc)
1376 {
1377 	struct sis_rxdesc	*rxd;
1378 	struct sis_txdesc	*txd;
1379 	bus_addr_t		next;
1380 	int			error, i;
1381 
1382 	bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
1383 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1384 		txd = &sc->sis_txdesc[i];
1385 		txd->tx_m = NULL;
1386 		if (i == SIS_TX_LIST_CNT - 1)
1387 			next = SIS_TX_RING_ADDR(sc, 0);
1388 		else
1389 			next = SIS_TX_RING_ADDR(sc, i + 1);
1390 		sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
1391 	}
1392 	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1393 	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1394 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1395 
1396 	sc->sis_rx_cons = 0;
1397 	bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
1398 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1399 		rxd = &sc->sis_rxdesc[i];
1400 		rxd->rx_desc = &sc->sis_rx_list[i];
1401 		if (i == SIS_RX_LIST_CNT - 1)
1402 			next = SIS_RX_RING_ADDR(sc, 0);
1403 		else
1404 			next = SIS_RX_RING_ADDR(sc, i + 1);
1405 		rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
1406 		error = sis_newbuf(sc, rxd);
1407 		if (error)
1408 			return (error);
1409 	}
1410 	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1411 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1412 
1413 	return (0);
1414 }
1415 
1416 /*
1417  * Initialize an RX descriptor and attach an MBUF cluster.
1418  */
1419 static int
1420 sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
1421 {
1422 	struct mbuf		*m;
1423 	bus_dma_segment_t	segs[1];
1424 	bus_dmamap_t		map;
1425 	int nsegs;
1426 
1427 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1428 	if (m == NULL)
1429 		return (ENOBUFS);
1430 	m->m_len = m->m_pkthdr.len = SIS_RXLEN;
1431 #ifndef __NO_STRICT_ALIGNMENT
1432 	m_adj(m, SIS_RX_BUF_ALIGN);
1433 #endif
1434 
1435 	if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
1436 	    segs, &nsegs, 0) != 0) {
1437 		m_freem(m);
1438 		return (ENOBUFS);
1439 	}
1440 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1441 
1442 	if (rxd->rx_m != NULL) {
1443 		bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
1444 		    BUS_DMASYNC_POSTREAD);
1445 		bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
1446 	}
1447 	map = rxd->rx_dmamap;
1448 	rxd->rx_dmamap = sc->sis_rx_sparemap;
1449 	sc->sis_rx_sparemap = map;
1450 	bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
1451 	rxd->rx_m = m;
1452 	rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
1453 	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1454 	return (0);
1455 }
1456 
1457 static __inline void
1458 sis_discard_rxbuf(struct sis_rxdesc *rxd)
1459 {
1460 
1461 	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1462 }
1463 
1464 #ifndef __NO_STRICT_ALIGNMENT
1465 static __inline void
1466 sis_fixup_rx(struct mbuf *m)
1467 {
1468 	uint16_t		*src, *dst;
1469 	int			i;
1470 
1471 	src = mtod(m, uint16_t *);
1472 	dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
1473 
1474 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1475 		*dst++ = *src++;
1476 
1477 	m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
1478 }
1479 #endif
1480 
1481 /*
1482  * A frame has been uploaded: pass the resulting mbuf chain up to
1483  * the higher level protocols.
1484  */
1485 static int
1486 sis_rxeof(struct sis_softc *sc)
1487 {
1488 	struct mbuf		*m;
1489 	struct ifnet		*ifp;
1490 	struct sis_rxdesc	*rxd;
1491 	struct sis_desc		*cur_rx;
1492 	int			prog, rx_cons, rx_npkts = 0, total_len;
1493 	uint32_t		rxstat;
1494 
1495 	SIS_LOCK_ASSERT(sc);
1496 
1497 	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1498 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1499 
1500 	rx_cons = sc->sis_rx_cons;
1501 	ifp = sc->sis_ifp;
1502 
1503 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1504 	    SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
1505 #ifdef DEVICE_POLLING
1506 		if (ifp->if_capenable & IFCAP_POLLING) {
1507 			if (sc->rxcycles <= 0)
1508 				break;
1509 			sc->rxcycles--;
1510 		}
1511 #endif
1512 		cur_rx = &sc->sis_rx_list[rx_cons];
1513 		rxstat = le32toh(cur_rx->sis_cmdsts);
1514 		if ((rxstat & SIS_CMDSTS_OWN) == 0)
1515 			break;
1516 		rxd = &sc->sis_rxdesc[rx_cons];
1517 
1518 		total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
1519 		if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1520 		    total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1521 		    ETHER_CRC_LEN))
1522 			rxstat &= ~SIS_RXSTAT_GIANT;
1523 		if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1524 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1525 			if (rxstat & SIS_RXSTAT_COLL)
1526 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1527 			sis_discard_rxbuf(rxd);
1528 			continue;
1529 		}
1530 
1531 		/* Add a new receive buffer to the ring. */
1532 		m = rxd->rx_m;
1533 		if (sis_newbuf(sc, rxd) != 0) {
1534 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1535 			sis_discard_rxbuf(rxd);
1536 			continue;
1537 		}
1538 
1539 		/* No errors; receive the packet. */
1540 		m->m_pkthdr.len = m->m_len = total_len;
1541 #ifndef __NO_STRICT_ALIGNMENT
1542 		/*
1543 		 * On architectures without alignment problems we try to
1544 		 * allocate a new buffer for the receive ring, and pass up
1545 		 * the one where the packet is already, saving the expensive
1546 		 * copy operation.
1547 		 */
1548 		sis_fixup_rx(m);
1549 #endif
1550 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1551 		m->m_pkthdr.rcvif = ifp;
1552 
1553 		SIS_UNLOCK(sc);
1554 		(*ifp->if_input)(ifp, m);
1555 		SIS_LOCK(sc);
1556 		rx_npkts++;
1557 	}
1558 
1559 	if (prog > 0) {
1560 		sc->sis_rx_cons = rx_cons;
1561 		bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1562 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1563 	}
1564 
1565 	return (rx_npkts);
1566 }
1567 
1568 /*
1569  * A frame was downloaded to the chip. It's safe for us to clean up
1570  * the list buffers.
1571  */
1572 
1573 static void
1574 sis_txeof(struct sis_softc *sc)
1575 {
1576 	struct ifnet		*ifp;
1577 	struct sis_desc		*cur_tx;
1578 	struct sis_txdesc	*txd;
1579 	uint32_t		cons, txstat;
1580 
1581 	SIS_LOCK_ASSERT(sc);
1582 
1583 	cons = sc->sis_tx_cons;
1584 	if (cons == sc->sis_tx_prod)
1585 		return;
1586 
1587 	ifp = sc->sis_ifp;
1588 	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1589 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1590 
1591 	/*
1592 	 * Go through our tx list and free mbufs for those
1593 	 * frames that have been transmitted.
1594 	 */
1595 	for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
1596 		cur_tx = &sc->sis_tx_list[cons];
1597 		txstat = le32toh(cur_tx->sis_cmdsts);
1598 		if ((txstat & SIS_CMDSTS_OWN) != 0)
1599 			break;
1600 		txd = &sc->sis_txdesc[cons];
1601 		if (txd->tx_m != NULL) {
1602 			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
1603 			    BUS_DMASYNC_POSTWRITE);
1604 			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1605 			m_freem(txd->tx_m);
1606 			txd->tx_m = NULL;
1607 			if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
1608 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1609 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1610 				    (txstat & SIS_TXSTAT_COLLCNT) >> 16);
1611 			} else {
1612 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1613 				if (txstat & SIS_TXSTAT_EXCESSCOLLS)
1614 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1615 				if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
1616 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1617 			}
1618 		}
1619 		sc->sis_tx_cnt--;
1620 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1621 	}
1622 	sc->sis_tx_cons = cons;
1623 	if (sc->sis_tx_cnt == 0)
1624 		sc->sis_watchdog_timer = 0;
1625 }
1626 
1627 static void
1628 sis_tick(void *xsc)
1629 {
1630 	struct sis_softc	*sc;
1631 	struct mii_data		*mii;
1632 
1633 	sc = xsc;
1634 	SIS_LOCK_ASSERT(sc);
1635 
1636 	mii = device_get_softc(sc->sis_miibus);
1637 	mii_tick(mii);
1638 	sis_watchdog(sc);
1639 	if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
1640 		sis_miibus_statchg(sc->sis_dev);
1641 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1642 }
1643 
1644 #ifdef DEVICE_POLLING
1645 static poll_handler_t sis_poll;
1646 
1647 static int
1648 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1649 {
1650 	struct	sis_softc *sc = ifp->if_softc;
1651 	int rx_npkts = 0;
1652 
1653 	SIS_LOCK(sc);
1654 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1655 		SIS_UNLOCK(sc);
1656 		return (rx_npkts);
1657 	}
1658 
1659 	/*
1660 	 * On the sis, reading the status register also clears it.
1661 	 * So before returning to intr mode we must make sure that all
1662 	 * possible pending sources of interrupts have been served.
1663 	 * In practice this means run to completion the *eof routines,
1664 	 * and then call the interrupt routine
1665 	 */
1666 	sc->rxcycles = count;
1667 	rx_npkts = sis_rxeof(sc);
1668 	sis_txeof(sc);
1669 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1670 		sis_startl(ifp);
1671 
1672 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1673 		uint32_t	status;
1674 
1675 		/* Reading the ISR register clears all interrupts. */
1676 		status = CSR_READ_4(sc, SIS_ISR);
1677 
1678 		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1679 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1680 
1681 		if (status & (SIS_ISR_RX_IDLE))
1682 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1683 
1684 		if (status & SIS_ISR_SYSERR) {
1685 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1686 			sis_initl(sc);
1687 		}
1688 	}
1689 
1690 	SIS_UNLOCK(sc);
1691 	return (rx_npkts);
1692 }
1693 #endif /* DEVICE_POLLING */
1694 
1695 static void
1696 sis_intr(void *arg)
1697 {
1698 	struct sis_softc	*sc;
1699 	struct ifnet		*ifp;
1700 	uint32_t		status;
1701 
1702 	sc = arg;
1703 	ifp = sc->sis_ifp;
1704 
1705 	SIS_LOCK(sc);
1706 #ifdef DEVICE_POLLING
1707 	if (ifp->if_capenable & IFCAP_POLLING) {
1708 		SIS_UNLOCK(sc);
1709 		return;
1710 	}
1711 #endif
1712 
1713 	/* Reading the ISR register clears all interrupts. */
1714 	status = CSR_READ_4(sc, SIS_ISR);
1715 	if ((status & SIS_INTRS) == 0) {
1716 		/* Not ours. */
1717 		SIS_UNLOCK(sc);
1718 		return;
1719 	}
1720 
1721 	/* Disable interrupts. */
1722 	CSR_WRITE_4(sc, SIS_IER, 0);
1723 
1724 	for (;(status & SIS_INTRS) != 0;) {
1725 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1726 			break;
1727 		if (status &
1728 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1729 		    SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1730 			sis_txeof(sc);
1731 
1732 		if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1733 		    SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1734 			sis_rxeof(sc);
1735 
1736 		if (status & SIS_ISR_RX_OFLOW)
1737 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1738 
1739 		if (status & (SIS_ISR_RX_IDLE))
1740 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1741 
1742 		if (status & SIS_ISR_SYSERR) {
1743 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1744 			sis_initl(sc);
1745 			SIS_UNLOCK(sc);
1746 			return;
1747 		}
1748 		status = CSR_READ_4(sc, SIS_ISR);
1749 	}
1750 
1751 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1752 		/* Re-enable interrupts. */
1753 		CSR_WRITE_4(sc, SIS_IER, 1);
1754 
1755 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1756 			sis_startl(ifp);
1757 	}
1758 
1759 	SIS_UNLOCK(sc);
1760 }
1761 
1762 /*
1763  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1764  * pointers to the fragment pointers.
1765  */
1766 static int
1767 sis_encap(struct sis_softc *sc, struct mbuf **m_head)
1768 {
1769 	struct mbuf		*m;
1770 	struct sis_txdesc	*txd;
1771 	struct sis_desc		*f;
1772 	bus_dma_segment_t	segs[SIS_MAXTXSEGS];
1773 	bus_dmamap_t		map;
1774 	int			error, i, frag, nsegs, prod;
1775 	int			padlen;
1776 
1777 	prod = sc->sis_tx_prod;
1778 	txd = &sc->sis_txdesc[prod];
1779 	if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
1780 	    (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
1781 		m = *m_head;
1782 		padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
1783 		if (M_WRITABLE(m) == 0) {
1784 			/* Get a writable copy. */
1785 			m = m_dup(*m_head, M_NOWAIT);
1786 			m_freem(*m_head);
1787 			if (m == NULL) {
1788 				*m_head = NULL;
1789 				return (ENOBUFS);
1790 			}
1791 			*m_head = m;
1792 		}
1793 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1794 			m = m_defrag(m, M_NOWAIT);
1795 			if (m == NULL) {
1796 				m_freem(*m_head);
1797 				*m_head = NULL;
1798 				return (ENOBUFS);
1799 			}
1800 		}
1801 		/*
1802 		 * Manually pad short frames, and zero the pad space
1803 		 * to avoid leaking data.
1804 		 */
1805 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1806 		m->m_pkthdr.len += padlen;
1807 		m->m_len = m->m_pkthdr.len;
1808 		*m_head = m;
1809 	}
1810 	error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1811 	    *m_head, segs, &nsegs, 0);
1812 	if (error == EFBIG) {
1813 		m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS);
1814 		if (m == NULL) {
1815 			m_freem(*m_head);
1816 			*m_head = NULL;
1817 			return (ENOBUFS);
1818 		}
1819 		*m_head = m;
1820 		error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1821 		    *m_head, segs, &nsegs, 0);
1822 		if (error != 0) {
1823 			m_freem(*m_head);
1824 			*m_head = NULL;
1825 			return (error);
1826 		}
1827 	} else if (error != 0)
1828 		return (error);
1829 
1830 	/* Check for descriptor overruns. */
1831 	if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
1832 		bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1833 		return (ENOBUFS);
1834 	}
1835 
1836 	bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
1837 
1838 	frag = prod;
1839 	for (i = 0; i < nsegs; i++) {
1840 		f = &sc->sis_tx_list[prod];
1841 		if (i == 0)
1842 			f->sis_cmdsts = htole32(segs[i].ds_len |
1843 			    SIS_CMDSTS_MORE);
1844 		else
1845 			f->sis_cmdsts = htole32(segs[i].ds_len |
1846 			    SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
1847 		f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
1848 		SIS_INC(prod, SIS_TX_LIST_CNT);
1849 		sc->sis_tx_cnt++;
1850 	}
1851 
1852 	/* Update producer index. */
1853 	sc->sis_tx_prod = prod;
1854 
1855 	/* Remove MORE flag on the last descriptor. */
1856 	prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
1857 	f = &sc->sis_tx_list[prod];
1858 	f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
1859 
1860 	/* Lastly transfer ownership of packet to the controller. */
1861 	f = &sc->sis_tx_list[frag];
1862 	f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
1863 
1864 	/* Swap the last and the first dmamaps. */
1865 	map = txd->tx_dmamap;
1866 	txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
1867 	sc->sis_txdesc[prod].tx_dmamap = map;
1868 	sc->sis_txdesc[prod].tx_m = *m_head;
1869 
1870 	return (0);
1871 }
1872 
1873 static void
1874 sis_start(struct ifnet *ifp)
1875 {
1876 	struct sis_softc	*sc;
1877 
1878 	sc = ifp->if_softc;
1879 	SIS_LOCK(sc);
1880 	sis_startl(ifp);
1881 	SIS_UNLOCK(sc);
1882 }
1883 
1884 static void
1885 sis_startl(struct ifnet *ifp)
1886 {
1887 	struct sis_softc	*sc;
1888 	struct mbuf		*m_head;
1889 	int			queued;
1890 
1891 	sc = ifp->if_softc;
1892 
1893 	SIS_LOCK_ASSERT(sc);
1894 
1895 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1896 	    IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
1897 		return;
1898 
1899 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1900 	    sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
1901 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1902 		if (m_head == NULL)
1903 			break;
1904 
1905 		if (sis_encap(sc, &m_head) != 0) {
1906 			if (m_head == NULL)
1907 				break;
1908 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1909 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1910 			break;
1911 		}
1912 
1913 		queued++;
1914 
1915 		/*
1916 		 * If there's a BPF listener, bounce a copy of this frame
1917 		 * to him.
1918 		 */
1919 		BPF_MTAP(ifp, m_head);
1920 	}
1921 
1922 	if (queued) {
1923 		/* Transmit */
1924 		bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1925 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1926 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1927 
1928 		/*
1929 		 * Set a timeout in case the chip goes out to lunch.
1930 		 */
1931 		sc->sis_watchdog_timer = 5;
1932 	}
1933 }
1934 
1935 static void
1936 sis_init(void *xsc)
1937 {
1938 	struct sis_softc	*sc = xsc;
1939 
1940 	SIS_LOCK(sc);
1941 	sis_initl(sc);
1942 	SIS_UNLOCK(sc);
1943 }
1944 
1945 static void
1946 sis_initl(struct sis_softc *sc)
1947 {
1948 	struct ifnet		*ifp = sc->sis_ifp;
1949 	struct mii_data		*mii;
1950 	uint8_t			*eaddr;
1951 
1952 	SIS_LOCK_ASSERT(sc);
1953 
1954 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1955 		return;
1956 
1957 	/*
1958 	 * Cancel pending I/O and free all RX/TX buffers.
1959 	 */
1960 	sis_stop(sc);
1961 	/*
1962 	 * Reset the chip to a known state.
1963 	 */
1964 	sis_reset(sc);
1965 #ifdef notyet
1966 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1967 		/*
1968 		 * Configure 400usec of interrupt holdoff.  This is based
1969 		 * on emperical tests on a Soekris 4801.
1970  		 */
1971 		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1972 	}
1973 #endif
1974 
1975 	mii = device_get_softc(sc->sis_miibus);
1976 
1977 	/* Set MAC address */
1978 	eaddr = IF_LLADDR(sc->sis_ifp);
1979 	if (sc->sis_type == SIS_TYPE_83815) {
1980 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1981 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1982 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1983 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1984 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1985 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1986 	} else {
1987 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1988 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1989 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1990 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1991 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1992 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1993 	}
1994 
1995 	/* Init circular TX/RX lists. */
1996 	if (sis_ring_init(sc) != 0) {
1997 		device_printf(sc->sis_dev,
1998 		    "initialization failed: no memory for rx buffers\n");
1999 		sis_stop(sc);
2000 		return;
2001 	}
2002 
2003 	if (sc->sis_type == SIS_TYPE_83815) {
2004 		if (sc->sis_manual_pad != 0)
2005 			sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
2006 		else
2007 			sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
2008 	}
2009 
2010 	/*
2011 	 * Short Cable Receive Errors (MP21.E)
2012 	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
2013 	 * recommends the following register settings "for optimum
2014 	 * performance." for rev 15C.  Set this also for 15D parts as
2015 	 * they require it in practice.
2016 	 */
2017 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
2018 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2019 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2020 		/* set val for c2 */
2021 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2022 		/* load/kill c2 */
2023 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2024 		/* rais SD off, from 4 to c */
2025 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2026 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2027 	}
2028 
2029 	sis_rxfilter(sc);
2030 
2031 	/*
2032 	 * Load the address of the RX and TX lists.
2033 	 */
2034 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
2035 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
2036 
2037 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2038 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2039 	 * for TX/RX DMA should be no larger than 16 double words.
2040 	 */
2041 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2042 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2043 	} else {
2044 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2045 	}
2046 
2047 	/* Accept Long Packets for VLAN support */
2048 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2049 
2050 	/*
2051 	 * Assume 100Mbps link, actual MAC configuration is done
2052 	 * after getting a valid link.
2053 	 */
2054 	CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2055 
2056 	/*
2057 	 * Enable interrupts.
2058 	 */
2059 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2060 #ifdef DEVICE_POLLING
2061 	/*
2062 	 * ... only enable interrupts if we are not polling, make sure
2063 	 * they are off otherwise.
2064 	 */
2065 	if (ifp->if_capenable & IFCAP_POLLING)
2066 		CSR_WRITE_4(sc, SIS_IER, 0);
2067 	else
2068 #endif
2069 	CSR_WRITE_4(sc, SIS_IER, 1);
2070 
2071 	/* Clear MAC disable. */
2072 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
2073 
2074 	sc->sis_flags &= ~SIS_FLAG_LINK;
2075 	mii_mediachg(mii);
2076 
2077 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2078 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2079 
2080 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2081 }
2082 
2083 /*
2084  * Set media options.
2085  */
2086 static int
2087 sis_ifmedia_upd(struct ifnet *ifp)
2088 {
2089 	struct sis_softc	*sc;
2090 	struct mii_data		*mii;
2091 	struct mii_softc	*miisc;
2092 	int			error;
2093 
2094 	sc = ifp->if_softc;
2095 
2096 	SIS_LOCK(sc);
2097 	mii = device_get_softc(sc->sis_miibus);
2098 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2099 		PHY_RESET(miisc);
2100 	error = mii_mediachg(mii);
2101 	SIS_UNLOCK(sc);
2102 
2103 	return (error);
2104 }
2105 
2106 /*
2107  * Report current media status.
2108  */
2109 static void
2110 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2111 {
2112 	struct sis_softc	*sc;
2113 	struct mii_data		*mii;
2114 
2115 	sc = ifp->if_softc;
2116 
2117 	SIS_LOCK(sc);
2118 	mii = device_get_softc(sc->sis_miibus);
2119 	mii_pollstat(mii);
2120 	ifmr->ifm_active = mii->mii_media_active;
2121 	ifmr->ifm_status = mii->mii_media_status;
2122 	SIS_UNLOCK(sc);
2123 }
2124 
2125 static int
2126 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2127 {
2128 	struct sis_softc	*sc = ifp->if_softc;
2129 	struct ifreq		*ifr = (struct ifreq *) data;
2130 	struct mii_data		*mii;
2131 	int			error = 0, mask;
2132 
2133 	switch (command) {
2134 	case SIOCSIFFLAGS:
2135 		SIS_LOCK(sc);
2136 		if (ifp->if_flags & IFF_UP) {
2137 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2138 			    ((ifp->if_flags ^ sc->sis_if_flags) &
2139 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2140 				sis_rxfilter(sc);
2141 			else
2142 				sis_initl(sc);
2143 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2144 			sis_stop(sc);
2145 		sc->sis_if_flags = ifp->if_flags;
2146 		SIS_UNLOCK(sc);
2147 		break;
2148 	case SIOCADDMULTI:
2149 	case SIOCDELMULTI:
2150 		SIS_LOCK(sc);
2151 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2152 			sis_rxfilter(sc);
2153 		SIS_UNLOCK(sc);
2154 		break;
2155 	case SIOCGIFMEDIA:
2156 	case SIOCSIFMEDIA:
2157 		mii = device_get_softc(sc->sis_miibus);
2158 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2159 		break;
2160 	case SIOCSIFCAP:
2161 		SIS_LOCK(sc);
2162 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2163 #ifdef DEVICE_POLLING
2164 		if ((mask & IFCAP_POLLING) != 0 &&
2165 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2166 			ifp->if_capenable ^= IFCAP_POLLING;
2167 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2168 				error = ether_poll_register(sis_poll, ifp);
2169 				if (error != 0) {
2170 					SIS_UNLOCK(sc);
2171 					break;
2172 				}
2173 				/* Disable interrupts. */
2174 				CSR_WRITE_4(sc, SIS_IER, 0);
2175                         } else {
2176                                 error = ether_poll_deregister(ifp);
2177                                 /* Enable interrupts. */
2178 				CSR_WRITE_4(sc, SIS_IER, 1);
2179                         }
2180 		}
2181 #endif /* DEVICE_POLLING */
2182 		if ((mask & IFCAP_WOL) != 0 &&
2183 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2184 			if ((mask & IFCAP_WOL_UCAST) != 0)
2185 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2186 			if ((mask & IFCAP_WOL_MCAST) != 0)
2187 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2188 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2189 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2190 		}
2191 		SIS_UNLOCK(sc);
2192 		break;
2193 	default:
2194 		error = ether_ioctl(ifp, command, data);
2195 		break;
2196 	}
2197 
2198 	return (error);
2199 }
2200 
2201 static void
2202 sis_watchdog(struct sis_softc *sc)
2203 {
2204 
2205 	SIS_LOCK_ASSERT(sc);
2206 
2207 	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2208 		return;
2209 
2210 	device_printf(sc->sis_dev, "watchdog timeout\n");
2211 	if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1);
2212 
2213 	sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2214 	sis_initl(sc);
2215 
2216 	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2217 		sis_startl(sc->sis_ifp);
2218 }
2219 
2220 /*
2221  * Stop the adapter and free any mbufs allocated to the
2222  * RX and TX lists.
2223  */
2224 static void
2225 sis_stop(struct sis_softc *sc)
2226 {
2227 	struct ifnet *ifp;
2228 	struct sis_rxdesc *rxd;
2229 	struct sis_txdesc *txd;
2230 	int i;
2231 
2232 	SIS_LOCK_ASSERT(sc);
2233 
2234 	ifp = sc->sis_ifp;
2235 	sc->sis_watchdog_timer = 0;
2236 
2237 	callout_stop(&sc->sis_stat_ch);
2238 
2239 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2240 	CSR_WRITE_4(sc, SIS_IER, 0);
2241 	CSR_WRITE_4(sc, SIS_IMR, 0);
2242 	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2243 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2244 	DELAY(1000);
2245 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2246 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2247 
2248 	sc->sis_flags &= ~SIS_FLAG_LINK;
2249 
2250 	/*
2251 	 * Free data in the RX lists.
2252 	 */
2253 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2254 		rxd = &sc->sis_rxdesc[i];
2255 		if (rxd->rx_m != NULL) {
2256 			bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
2257 			    BUS_DMASYNC_POSTREAD);
2258 			bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
2259 			m_freem(rxd->rx_m);
2260 			rxd->rx_m = NULL;
2261 		}
2262 	}
2263 
2264 	/*
2265 	 * Free the TX list buffers.
2266 	 */
2267 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2268 		txd = &sc->sis_txdesc[i];
2269 		if (txd->tx_m != NULL) {
2270 			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
2271 			    BUS_DMASYNC_POSTWRITE);
2272 			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
2273 			m_freem(txd->tx_m);
2274 			txd->tx_m = NULL;
2275 		}
2276 	}
2277 }
2278 
2279 /*
2280  * Stop all chip I/O so that the kernel's probe routines don't
2281  * get confused by errant DMAs when rebooting.
2282  */
2283 static int
2284 sis_shutdown(device_t dev)
2285 {
2286 
2287 	return (sis_suspend(dev));
2288 }
2289 
2290 static int
2291 sis_suspend(device_t dev)
2292 {
2293 	struct sis_softc	*sc;
2294 
2295 	sc = device_get_softc(dev);
2296 	SIS_LOCK(sc);
2297 	sis_stop(sc);
2298 	sis_wol(sc);
2299 	SIS_UNLOCK(sc);
2300 	return (0);
2301 }
2302 
2303 static int
2304 sis_resume(device_t dev)
2305 {
2306 	struct sis_softc	*sc;
2307 	struct ifnet		*ifp;
2308 
2309 	sc = device_get_softc(dev);
2310 	SIS_LOCK(sc);
2311 	ifp = sc->sis_ifp;
2312 	if ((ifp->if_flags & IFF_UP) != 0) {
2313 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2314 		sis_initl(sc);
2315 	}
2316 	SIS_UNLOCK(sc);
2317 	return (0);
2318 }
2319 
2320 static void
2321 sis_wol(struct sis_softc *sc)
2322 {
2323 	struct ifnet		*ifp;
2324 	uint32_t		val;
2325 	uint16_t		pmstat;
2326 	int			pmc;
2327 
2328 	ifp = sc->sis_ifp;
2329 	if ((ifp->if_capenable & IFCAP_WOL) == 0)
2330 		return;
2331 
2332 	if (sc->sis_type == SIS_TYPE_83815) {
2333 		/* Reset RXDP. */
2334 		CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2335 
2336 		/* Configure WOL events. */
2337 		CSR_READ_4(sc, NS_WCSR);
2338 		val = 0;
2339 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2340 			val |= NS_WCSR_WAKE_UCAST;
2341 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2342 			val |= NS_WCSR_WAKE_MCAST;
2343 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2344 			val |= NS_WCSR_WAKE_MAGIC;
2345 		CSR_WRITE_4(sc, NS_WCSR, val);
2346 		/* Enable PME and clear PMESTS. */
2347 		val = CSR_READ_4(sc, NS_CLKRUN);
2348 		val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
2349 		CSR_WRITE_4(sc, NS_CLKRUN, val);
2350 		/* Enable silent RX mode. */
2351 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2352 	} else {
2353 		if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
2354 			return;
2355 		val = 0;
2356 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2357 			val |= SIS_PWRMAN_WOL_MAGIC;
2358 		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
2359 		/* Request PME. */
2360 		pmstat = pci_read_config(sc->sis_dev,
2361 		    pmc + PCIR_POWER_STATUS, 2);
2362 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2363 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2364 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2365 		pci_write_config(sc->sis_dev,
2366 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
2367 	}
2368 }
2369 
2370 static void
2371 sis_add_sysctls(struct sis_softc *sc)
2372 {
2373 	struct sysctl_ctx_list *ctx;
2374 	struct sysctl_oid_list *children;
2375 	int unit;
2376 
2377 	ctx = device_get_sysctl_ctx(sc->sis_dev);
2378 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
2379 
2380 	unit = device_get_unit(sc->sis_dev);
2381 	/*
2382 	 * Unlike most other controllers, NS DP83815/DP83816 controllers
2383 	 * seem to pad with 0xFF when it encounter short frames.  According
2384 	 * to RFC 1042 the pad bytes should be 0x00.  Turning this tunable
2385 	 * on will have driver pad manully but it's disabled by default
2386 	 * because it will consume extra CPU cycles for short frames.
2387 	 */
2388 	sc->sis_manual_pad = 0;
2389 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
2390 	    CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames");
2391 }
2392 
2393 static device_method_t sis_methods[] = {
2394 	/* Device interface */
2395 	DEVMETHOD(device_probe,		sis_probe),
2396 	DEVMETHOD(device_attach,	sis_attach),
2397 	DEVMETHOD(device_detach,	sis_detach),
2398 	DEVMETHOD(device_shutdown,	sis_shutdown),
2399 	DEVMETHOD(device_suspend,	sis_suspend),
2400 	DEVMETHOD(device_resume,	sis_resume),
2401 
2402 	/* MII interface */
2403 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2404 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2405 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2406 
2407 	DEVMETHOD_END
2408 };
2409 
2410 static driver_t sis_driver = {
2411 	"sis",
2412 	sis_methods,
2413 	sizeof(struct sis_softc)
2414 };
2415 
2416 static devclass_t sis_devclass;
2417 
2418 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2419 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2420