xref: /freebsd/sys/dev/sis/if_sis.c (revision 6356dba0b403daa023dec24559ab1f8e602e4f14)
1 /*-
2  * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3  * Copyright (c) 1997, 1998, 1999
4  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39  * available from http://www.sis.com.tw.
40  *
41  * This driver also supports the NatSemi DP83815. Datasheets are
42  * available from http://www.national.com.
43  *
44  * Written by Bill Paul <wpaul@ee.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 /*
49  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50  * simple TX and RX descriptors of 3 longwords in size. The receiver
51  * has a single perfect filter entry for the station address and a
52  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53  * transceiver while the 7016 requires an external transceiver chip.
54  * Both chips offer the standard bit-bang MII interface as well as
55  * an enchanced PHY interface which simplifies accessing MII registers.
56  *
57  * The only downside to this chipset is that RX descriptors must be
58  * longword aligned.
59  */
60 
61 #ifdef HAVE_KERNEL_OPTION_HEADERS
62 #include "opt_device_polling.h"
63 #endif
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/sockio.h>
68 #include <sys/mbuf.h>
69 #include <sys/malloc.h>
70 #include <sys/kernel.h>
71 #include <sys/module.h>
72 #include <sys/socket.h>
73 
74 #include <net/if.h>
75 #include <net/if_arp.h>
76 #include <net/ethernet.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_vlan_var.h>
81 
82 #include <net/bpf.h>
83 
84 #include <machine/bus.h>
85 #include <machine/resource.h>
86 #include <sys/bus.h>
87 #include <sys/rman.h>
88 
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91 
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 
95 #define SIS_USEIOSPACE
96 
97 #include <dev/sis/if_sisreg.h>
98 
99 MODULE_DEPEND(sis, pci, 1, 1, 1);
100 MODULE_DEPEND(sis, ether, 1, 1, 1);
101 MODULE_DEPEND(sis, miibus, 1, 1, 1);
102 
103 /* "device miibus" required.  See GENERIC if you get errors here. */
104 #include "miibus_if.h"
105 
106 #define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
107 #define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
108 #define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
109 
110 /*
111  * register space access macros
112  */
113 #define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
114 
115 #define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
116 
117 #define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
118 
119 /*
120  * Various supported device vendors/types and their names.
121  */
122 static struct sis_type sis_devs[] = {
123 	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
124 	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
125 	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
126 	{ 0, 0, NULL }
127 };
128 
129 static int sis_detach(device_t);
130 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131 static int sis_ifmedia_upd(struct ifnet *);
132 static void sis_init(void *);
133 static void sis_initl(struct sis_softc *);
134 static void sis_intr(void *);
135 static int sis_ioctl(struct ifnet *, u_long, caddr_t);
136 static int sis_newbuf(struct sis_softc *, struct sis_desc *, struct mbuf *);
137 static void sis_start(struct ifnet *);
138 static void sis_startl(struct ifnet *);
139 static void sis_stop(struct sis_softc *);
140 static void sis_watchdog(struct sis_softc *);
141 
142 
143 static struct resource_spec sis_res_spec[] = {
144 #ifdef SIS_USEIOSPACE
145 	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
146 #else
147 	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
148 #endif
149 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
150 	{ -1, 0 }
151 };
152 
153 #define SIS_SETBIT(sc, reg, x)				\
154 	CSR_WRITE_4(sc, reg,				\
155 		CSR_READ_4(sc, reg) | (x))
156 
157 #define SIS_CLRBIT(sc, reg, x)				\
158 	CSR_WRITE_4(sc, reg,				\
159 		CSR_READ_4(sc, reg) & ~(x))
160 
161 #define SIO_SET(x)					\
162 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
163 
164 #define SIO_CLR(x)					\
165 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
166 
167 static void
168 sis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
169 {
170 	struct sis_desc	*r;
171 
172 	r = arg;
173 	r->sis_next = segs->ds_addr;
174 }
175 
176 static void
177 sis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
178 {
179 	struct sis_desc	*r;
180 
181 	r = arg;
182 	r->sis_ptr = segs->ds_addr;
183 }
184 
185 static void
186 sis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
187 {
188 	u_int32_t *p;
189 
190 	p = arg;
191 	*p = segs->ds_addr;
192 }
193 
194 /*
195  * Routine to reverse the bits in a word. Stolen almost
196  * verbatim from /usr/games/fortune.
197  */
198 static uint16_t
199 sis_reverse(uint16_t n)
200 {
201 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
202 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
203 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
204 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
205 
206 	return(n);
207 }
208 
209 static void
210 sis_delay(struct sis_softc *sc)
211 {
212 	int			idx;
213 
214 	for (idx = (300 / 33) + 1; idx > 0; idx--)
215 		CSR_READ_4(sc, SIS_CSR);
216 }
217 
218 static void
219 sis_eeprom_idle(struct sis_softc *sc)
220 {
221 	int		i;
222 
223 	SIO_SET(SIS_EECTL_CSEL);
224 	sis_delay(sc);
225 	SIO_SET(SIS_EECTL_CLK);
226 	sis_delay(sc);
227 
228 	for (i = 0; i < 25; i++) {
229 		SIO_CLR(SIS_EECTL_CLK);
230 		sis_delay(sc);
231 		SIO_SET(SIS_EECTL_CLK);
232 		sis_delay(sc);
233 	}
234 
235 	SIO_CLR(SIS_EECTL_CLK);
236 	sis_delay(sc);
237 	SIO_CLR(SIS_EECTL_CSEL);
238 	sis_delay(sc);
239 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
240 }
241 
242 /*
243  * Send a read command and address to the EEPROM, check for ACK.
244  */
245 static void
246 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
247 {
248 	int		d, i;
249 
250 	d = addr | SIS_EECMD_READ;
251 
252 	/*
253 	 * Feed in each bit and stobe the clock.
254 	 */
255 	for (i = 0x400; i; i >>= 1) {
256 		if (d & i) {
257 			SIO_SET(SIS_EECTL_DIN);
258 		} else {
259 			SIO_CLR(SIS_EECTL_DIN);
260 		}
261 		sis_delay(sc);
262 		SIO_SET(SIS_EECTL_CLK);
263 		sis_delay(sc);
264 		SIO_CLR(SIS_EECTL_CLK);
265 		sis_delay(sc);
266 	}
267 }
268 
269 /*
270  * Read a word of data stored in the EEPROM at address 'addr.'
271  */
272 static void
273 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
274 {
275 	int		i;
276 	u_int16_t		word = 0;
277 
278 	/* Force EEPROM to idle state. */
279 	sis_eeprom_idle(sc);
280 
281 	/* Enter EEPROM access mode. */
282 	sis_delay(sc);
283 	SIO_CLR(SIS_EECTL_CLK);
284 	sis_delay(sc);
285 	SIO_SET(SIS_EECTL_CSEL);
286 	sis_delay(sc);
287 
288 	/*
289 	 * Send address of word we want to read.
290 	 */
291 	sis_eeprom_putbyte(sc, addr);
292 
293 	/*
294 	 * Start reading bits from EEPROM.
295 	 */
296 	for (i = 0x8000; i; i >>= 1) {
297 		SIO_SET(SIS_EECTL_CLK);
298 		sis_delay(sc);
299 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
300 			word |= i;
301 		sis_delay(sc);
302 		SIO_CLR(SIS_EECTL_CLK);
303 		sis_delay(sc);
304 	}
305 
306 	/* Turn off EEPROM access mode. */
307 	sis_eeprom_idle(sc);
308 
309 	*dest = word;
310 }
311 
312 /*
313  * Read a sequence of words from the EEPROM.
314  */
315 static void
316 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
317 {
318 	int			i;
319 	u_int16_t		word = 0, *ptr;
320 
321 	for (i = 0; i < cnt; i++) {
322 		sis_eeprom_getword(sc, off + i, &word);
323 		ptr = (u_int16_t *)(dest + (i * 2));
324 		if (swap)
325 			*ptr = ntohs(word);
326 		else
327 			*ptr = word;
328 	}
329 }
330 
331 #if defined(__i386__) || defined(__amd64__)
332 static device_t
333 sis_find_bridge(device_t dev)
334 {
335 	devclass_t		pci_devclass;
336 	device_t		*pci_devices;
337 	int			pci_count = 0;
338 	device_t		*pci_children;
339 	int			pci_childcount = 0;
340 	device_t		*busp, *childp;
341 	device_t		child = NULL;
342 	int			i, j;
343 
344 	if ((pci_devclass = devclass_find("pci")) == NULL)
345 		return(NULL);
346 
347 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
348 
349 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
350 		pci_childcount = 0;
351 		device_get_children(*busp, &pci_children, &pci_childcount);
352 		for (j = 0, childp = pci_children;
353 		    j < pci_childcount; j++, childp++) {
354 			if (pci_get_vendor(*childp) == SIS_VENDORID &&
355 			    pci_get_device(*childp) == 0x0008) {
356 				child = *childp;
357 				goto done;
358 			}
359 		}
360 	}
361 
362 done:
363 	free(pci_devices, M_TEMP);
364 	free(pci_children, M_TEMP);
365 	return(child);
366 }
367 
368 static void
369 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
370 {
371 	device_t		bridge;
372 	u_int8_t		reg;
373 	int			i;
374 	bus_space_tag_t		btag;
375 
376 	bridge = sis_find_bridge(dev);
377 	if (bridge == NULL)
378 		return;
379 	reg = pci_read_config(bridge, 0x48, 1);
380 	pci_write_config(bridge, 0x48, reg|0x40, 1);
381 
382 	/* XXX */
383 #if defined(__i386__)
384 	btag = I386_BUS_SPACE_IO;
385 #elif defined(__amd64__)
386 	btag = AMD64_BUS_SPACE_IO;
387 #endif
388 
389 	for (i = 0; i < cnt; i++) {
390 		bus_space_write_1(btag, 0x0, 0x70, i + off);
391 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
392 	}
393 
394 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
395 	return;
396 }
397 
398 static void
399 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
400 {
401 	u_int32_t		filtsave, csrsave;
402 
403 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
404 	csrsave = CSR_READ_4(sc, SIS_CSR);
405 
406 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
407 	CSR_WRITE_4(sc, SIS_CSR, 0);
408 
409 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
410 
411 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
412 	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
413 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
414 	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
415 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
416 	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
417 
418 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
419 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
420 	return;
421 }
422 #endif
423 
424 /*
425  * Sync the PHYs by setting data bit and strobing the clock 32 times.
426  */
427 static void
428 sis_mii_sync(struct sis_softc *sc)
429 {
430 	int		i;
431 
432  	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
433 
434  	for (i = 0; i < 32; i++) {
435  		SIO_SET(SIS_MII_CLK);
436  		DELAY(1);
437  		SIO_CLR(SIS_MII_CLK);
438  		DELAY(1);
439  	}
440 }
441 
442 /*
443  * Clock a series of bits through the MII.
444  */
445 static void
446 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
447 {
448 	int			i;
449 
450 	SIO_CLR(SIS_MII_CLK);
451 
452 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
453 		if (bits & i) {
454 			SIO_SET(SIS_MII_DATA);
455 		} else {
456 			SIO_CLR(SIS_MII_DATA);
457 		}
458 		DELAY(1);
459 		SIO_CLR(SIS_MII_CLK);
460 		DELAY(1);
461 		SIO_SET(SIS_MII_CLK);
462 	}
463 }
464 
465 /*
466  * Read an PHY register through the MII.
467  */
468 static int
469 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
470 {
471 	int			i, ack;
472 
473 	/*
474 	 * Set up frame for RX.
475 	 */
476 	frame->mii_stdelim = SIS_MII_STARTDELIM;
477 	frame->mii_opcode = SIS_MII_READOP;
478 	frame->mii_turnaround = 0;
479 	frame->mii_data = 0;
480 
481 	/*
482  	 * Turn on data xmit.
483 	 */
484 	SIO_SET(SIS_MII_DIR);
485 
486 	sis_mii_sync(sc);
487 
488 	/*
489 	 * Send command/address info.
490 	 */
491 	sis_mii_send(sc, frame->mii_stdelim, 2);
492 	sis_mii_send(sc, frame->mii_opcode, 2);
493 	sis_mii_send(sc, frame->mii_phyaddr, 5);
494 	sis_mii_send(sc, frame->mii_regaddr, 5);
495 
496 	/* Idle bit */
497 	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
498 	DELAY(1);
499 	SIO_SET(SIS_MII_CLK);
500 	DELAY(1);
501 
502 	/* Turn off xmit. */
503 	SIO_CLR(SIS_MII_DIR);
504 
505 	/* Check for ack */
506 	SIO_CLR(SIS_MII_CLK);
507 	DELAY(1);
508 	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
509 	SIO_SET(SIS_MII_CLK);
510 	DELAY(1);
511 
512 	/*
513 	 * Now try reading data bits. If the ack failed, we still
514 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
515 	 */
516 	if (ack) {
517 		for(i = 0; i < 16; i++) {
518 			SIO_CLR(SIS_MII_CLK);
519 			DELAY(1);
520 			SIO_SET(SIS_MII_CLK);
521 			DELAY(1);
522 		}
523 		goto fail;
524 	}
525 
526 	for (i = 0x8000; i; i >>= 1) {
527 		SIO_CLR(SIS_MII_CLK);
528 		DELAY(1);
529 		if (!ack) {
530 			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
531 				frame->mii_data |= i;
532 			DELAY(1);
533 		}
534 		SIO_SET(SIS_MII_CLK);
535 		DELAY(1);
536 	}
537 
538 fail:
539 
540 	SIO_CLR(SIS_MII_CLK);
541 	DELAY(1);
542 	SIO_SET(SIS_MII_CLK);
543 	DELAY(1);
544 
545 	if (ack)
546 		return(1);
547 	return(0);
548 }
549 
550 /*
551  * Write to a PHY register through the MII.
552  */
553 static int
554 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
555 {
556 
557  	/*
558  	 * Set up frame for TX.
559  	 */
560 
561  	frame->mii_stdelim = SIS_MII_STARTDELIM;
562  	frame->mii_opcode = SIS_MII_WRITEOP;
563  	frame->mii_turnaround = SIS_MII_TURNAROUND;
564 
565  	/*
566   	 * Turn on data output.
567  	 */
568  	SIO_SET(SIS_MII_DIR);
569 
570  	sis_mii_sync(sc);
571 
572  	sis_mii_send(sc, frame->mii_stdelim, 2);
573  	sis_mii_send(sc, frame->mii_opcode, 2);
574  	sis_mii_send(sc, frame->mii_phyaddr, 5);
575  	sis_mii_send(sc, frame->mii_regaddr, 5);
576  	sis_mii_send(sc, frame->mii_turnaround, 2);
577  	sis_mii_send(sc, frame->mii_data, 16);
578 
579  	/* Idle bit. */
580  	SIO_SET(SIS_MII_CLK);
581  	DELAY(1);
582  	SIO_CLR(SIS_MII_CLK);
583  	DELAY(1);
584 
585  	/*
586  	 * Turn off xmit.
587  	 */
588  	SIO_CLR(SIS_MII_DIR);
589 
590  	return(0);
591 }
592 
593 static int
594 sis_miibus_readreg(device_t dev, int phy, int reg)
595 {
596 	struct sis_softc	*sc;
597 	struct sis_mii_frame    frame;
598 
599 	sc = device_get_softc(dev);
600 
601 	if (sc->sis_type == SIS_TYPE_83815) {
602 		if (phy != 0)
603 			return(0);
604 		/*
605 		 * The NatSemi chip can take a while after
606 		 * a reset to come ready, during which the BMSR
607 		 * returns a value of 0. This is *never* supposed
608 		 * to happen: some of the BMSR bits are meant to
609 		 * be hardwired in the on position, and this can
610 		 * confuse the miibus code a bit during the probe
611 		 * and attach phase. So we make an effort to check
612 		 * for this condition and wait for it to clear.
613 		 */
614 		if (!CSR_READ_4(sc, NS_BMSR))
615 			DELAY(1000);
616 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
617 	}
618 
619 	/*
620 	 * Chipsets < SIS_635 seem not to be able to read/write
621 	 * through mdio. Use the enhanced PHY access register
622 	 * again for them.
623 	 */
624 	if (sc->sis_type == SIS_TYPE_900 &&
625 	    sc->sis_rev < SIS_REV_635) {
626 		int i, val = 0;
627 
628 		if (phy != 0)
629 			return(0);
630 
631 		CSR_WRITE_4(sc, SIS_PHYCTL,
632 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
633 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
634 
635 		for (i = 0; i < SIS_TIMEOUT; i++) {
636 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
637 				break;
638 		}
639 
640 		if (i == SIS_TIMEOUT) {
641 			device_printf(sc->sis_dev, "PHY failed to come ready\n");
642 			return(0);
643 		}
644 
645 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
646 
647 		if (val == 0xFFFF)
648 			return(0);
649 
650 		return(val);
651 	} else {
652 		bzero((char *)&frame, sizeof(frame));
653 
654 		frame.mii_phyaddr = phy;
655 		frame.mii_regaddr = reg;
656 		sis_mii_readreg(sc, &frame);
657 
658 		return(frame.mii_data);
659 	}
660 }
661 
662 static int
663 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
664 {
665 	struct sis_softc	*sc;
666 	struct sis_mii_frame	frame;
667 
668 	sc = device_get_softc(dev);
669 
670 	if (sc->sis_type == SIS_TYPE_83815) {
671 		if (phy != 0)
672 			return(0);
673 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
674 		return(0);
675 	}
676 
677 	/*
678 	 * Chipsets < SIS_635 seem not to be able to read/write
679 	 * through mdio. Use the enhanced PHY access register
680 	 * again for them.
681 	 */
682 	if (sc->sis_type == SIS_TYPE_900 &&
683 	    sc->sis_rev < SIS_REV_635) {
684 		int i;
685 
686 		if (phy != 0)
687 			return(0);
688 
689 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
690 		    (reg << 6) | SIS_PHYOP_WRITE);
691 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
692 
693 		for (i = 0; i < SIS_TIMEOUT; i++) {
694 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
695 				break;
696 		}
697 
698 		if (i == SIS_TIMEOUT)
699 			device_printf(sc->sis_dev, "PHY failed to come ready\n");
700 	} else {
701 		bzero((char *)&frame, sizeof(frame));
702 
703 		frame.mii_phyaddr = phy;
704 		frame.mii_regaddr = reg;
705 		frame.mii_data = data;
706 		sis_mii_writereg(sc, &frame);
707 	}
708 	return(0);
709 }
710 
711 static void
712 sis_miibus_statchg(device_t dev)
713 {
714 	struct sis_softc	*sc;
715 
716 	sc = device_get_softc(dev);
717 	SIS_LOCK_ASSERT(sc);
718 	sis_initl(sc);
719 }
720 
721 static uint32_t
722 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
723 {
724 	uint32_t		crc;
725 
726 	/* Compute CRC for the address value. */
727 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
728 
729 	/*
730 	 * return the filter bit position
731 	 *
732 	 * The NatSemi chip has a 512-bit filter, which is
733 	 * different than the SiS, so we special-case it.
734 	 */
735 	if (sc->sis_type == SIS_TYPE_83815)
736 		return (crc >> 23);
737 	else if (sc->sis_rev >= SIS_REV_635 ||
738 	    sc->sis_rev == SIS_REV_900B)
739 		return (crc >> 24);
740 	else
741 		return (crc >> 25);
742 }
743 
744 static void
745 sis_setmulti_ns(struct sis_softc *sc)
746 {
747 	struct ifnet		*ifp;
748 	struct ifmultiaddr	*ifma;
749 	u_int32_t		h = 0, i, filtsave;
750 	int			bit, index;
751 
752 	ifp = sc->sis_ifp;
753 
754 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
755 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
756 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
757 		return;
758 	}
759 
760 	/*
761 	 * We have to explicitly enable the multicast hash table
762 	 * on the NatSemi chip if we want to use it, which we do.
763 	 */
764 	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
765 	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
766 
767 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
768 
769 	/* first, zot all the existing hash bits */
770 	for (i = 0; i < 32; i++) {
771 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
772 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
773 	}
774 
775 	IF_ADDR_LOCK(ifp);
776 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
777 		if (ifma->ifma_addr->sa_family != AF_LINK)
778 			continue;
779 		h = sis_mchash(sc,
780 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
781 		index = h >> 3;
782 		bit = h & 0x1F;
783 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
784 		if (bit > 0xF)
785 			bit -= 0x10;
786 		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
787 	}
788 	IF_ADDR_UNLOCK(ifp);
789 
790 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
791 
792 	return;
793 }
794 
795 static void
796 sis_setmulti_sis(struct sis_softc *sc)
797 {
798 	struct ifnet		*ifp;
799 	struct ifmultiaddr	*ifma;
800 	u_int32_t		h, i, n, ctl;
801 	u_int16_t		hashes[16];
802 
803 	ifp = sc->sis_ifp;
804 
805 	/* hash table size */
806 	if (sc->sis_rev >= SIS_REV_635 ||
807 	    sc->sis_rev == SIS_REV_900B)
808 		n = 16;
809 	else
810 		n = 8;
811 
812 	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
813 
814 	if (ifp->if_flags & IFF_BROADCAST)
815 		ctl |= SIS_RXFILTCTL_BROAD;
816 
817 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
818 		ctl |= SIS_RXFILTCTL_ALLMULTI;
819 		if (ifp->if_flags & IFF_PROMISC)
820 			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
821 		for (i = 0; i < n; i++)
822 			hashes[i] = ~0;
823 	} else {
824 		for (i = 0; i < n; i++)
825 			hashes[i] = 0;
826 		i = 0;
827 		IF_ADDR_LOCK(ifp);
828 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
829 			if (ifma->ifma_addr->sa_family != AF_LINK)
830 			continue;
831 			h = sis_mchash(sc,
832 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
833 			hashes[h >> 4] |= 1 << (h & 0xf);
834 			i++;
835 		}
836 		IF_ADDR_UNLOCK(ifp);
837 		if (i > n) {
838 			ctl |= SIS_RXFILTCTL_ALLMULTI;
839 			for (i = 0; i < n; i++)
840 				hashes[i] = ~0;
841 		}
842 	}
843 
844 	for (i = 0; i < n; i++) {
845 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
846 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
847 	}
848 
849 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
850 }
851 
852 static void
853 sis_reset(struct sis_softc *sc)
854 {
855 	int		i;
856 
857 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
858 
859 	for (i = 0; i < SIS_TIMEOUT; i++) {
860 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
861 			break;
862 	}
863 
864 	if (i == SIS_TIMEOUT)
865 		device_printf(sc->sis_dev, "reset never completed\n");
866 
867 	/* Wait a little while for the chip to get its brains in order. */
868 	DELAY(1000);
869 
870 	/*
871 	 * If this is a NetSemi chip, make sure to clear
872 	 * PME mode.
873 	 */
874 	if (sc->sis_type == SIS_TYPE_83815) {
875 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
876 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
877 	}
878 
879         return;
880 }
881 
882 /*
883  * Probe for an SiS chip. Check the PCI vendor and device
884  * IDs against our list and return a device name if we find a match.
885  */
886 static int
887 sis_probe(device_t dev)
888 {
889 	struct sis_type		*t;
890 
891 	t = sis_devs;
892 
893 	while(t->sis_name != NULL) {
894 		if ((pci_get_vendor(dev) == t->sis_vid) &&
895 		    (pci_get_device(dev) == t->sis_did)) {
896 			device_set_desc(dev, t->sis_name);
897 			return (BUS_PROBE_DEFAULT);
898 		}
899 		t++;
900 	}
901 
902 	return(ENXIO);
903 }
904 
905 /*
906  * Attach the interface. Allocate softc structures, do ifmedia
907  * setup and ethernet/BPF attach.
908  */
909 static int
910 sis_attach(device_t dev)
911 {
912 	u_char			eaddr[ETHER_ADDR_LEN];
913 	struct sis_softc	*sc;
914 	struct ifnet		*ifp;
915 	int			error = 0, waittime = 0;
916 
917 	waittime = 0;
918 	sc = device_get_softc(dev);
919 
920 	sc->sis_dev = dev;
921 
922 	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
923 	    MTX_DEF);
924 	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
925 
926 	if (pci_get_device(dev) == SIS_DEVICEID_900)
927 		sc->sis_type = SIS_TYPE_900;
928 	if (pci_get_device(dev) == SIS_DEVICEID_7016)
929 		sc->sis_type = SIS_TYPE_7016;
930 	if (pci_get_vendor(dev) == NS_VENDORID)
931 		sc->sis_type = SIS_TYPE_83815;
932 
933 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
934 	/*
935 	 * Map control/status registers.
936 	 */
937 	pci_enable_busmaster(dev);
938 
939 	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
940 	if (error) {
941 		device_printf(dev, "couldn't allocate resources\n");
942 		goto fail;
943 	}
944 
945 	/* Reset the adapter. */
946 	sis_reset(sc);
947 
948 	if (sc->sis_type == SIS_TYPE_900 &&
949             (sc->sis_rev == SIS_REV_635 ||
950             sc->sis_rev == SIS_REV_900B)) {
951 		SIO_SET(SIS_CFG_RND_CNT);
952 		SIO_SET(SIS_CFG_PERR_DETECT);
953 	}
954 
955 	/*
956 	 * Get station address from the EEPROM.
957 	 */
958 	switch (pci_get_vendor(dev)) {
959 	case NS_VENDORID:
960 		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
961 
962 		/* We can't update the device description, so spew */
963 		if (sc->sis_srr == NS_SRR_15C)
964 			device_printf(dev, "Silicon Revision: DP83815C\n");
965 		else if (sc->sis_srr == NS_SRR_15D)
966 			device_printf(dev, "Silicon Revision: DP83815D\n");
967 		else if (sc->sis_srr == NS_SRR_16A)
968 			device_printf(dev, "Silicon Revision: DP83816A\n");
969 		else
970 			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
971 
972 		/*
973 		 * Reading the MAC address out of the EEPROM on
974 		 * the NatSemi chip takes a bit more work than
975 		 * you'd expect. The address spans 4 16-bit words,
976 		 * with the first word containing only a single bit.
977 		 * You have to shift everything over one bit to
978 		 * get it aligned properly. Also, the bits are
979 		 * stored backwards (the LSB is really the MSB,
980 		 * and so on) so you have to reverse them in order
981 		 * to get the MAC address into the form we want.
982 		 * Why? Who the hell knows.
983 		 */
984 		{
985 			u_int16_t		tmp[4];
986 
987 			sis_read_eeprom(sc, (caddr_t)&tmp,
988 			    NS_EE_NODEADDR, 4, 0);
989 
990 			/* Shift everything over one bit. */
991 			tmp[3] = tmp[3] >> 1;
992 			tmp[3] |= tmp[2] << 15;
993 			tmp[2] = tmp[2] >> 1;
994 			tmp[2] |= tmp[1] << 15;
995 			tmp[1] = tmp[1] >> 1;
996 			tmp[1] |= tmp[0] << 15;
997 
998 			/* Now reverse all the bits. */
999 			tmp[3] = sis_reverse(tmp[3]);
1000 			tmp[2] = sis_reverse(tmp[2]);
1001 			tmp[1] = sis_reverse(tmp[1]);
1002 
1003 			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1004 		}
1005 		break;
1006 	case SIS_VENDORID:
1007 	default:
1008 #if defined(__i386__) || defined(__amd64__)
1009 		/*
1010 		 * If this is a SiS 630E chipset with an embedded
1011 		 * SiS 900 controller, we have to read the MAC address
1012 		 * from the APC CMOS RAM. Our method for doing this
1013 		 * is very ugly since we have to reach out and grab
1014 		 * ahold of hardware for which we cannot properly
1015 		 * allocate resources. This code is only compiled on
1016 		 * the i386 architecture since the SiS 630E chipset
1017 		 * is for x86 motherboards only. Note that there are
1018 		 * a lot of magic numbers in this hack. These are
1019 		 * taken from SiS's Linux driver. I'd like to replace
1020 		 * them with proper symbolic definitions, but that
1021 		 * requires some datasheets that I don't have access
1022 		 * to at the moment.
1023 		 */
1024 		if (sc->sis_rev == SIS_REV_630S ||
1025 		    sc->sis_rev == SIS_REV_630E ||
1026 		    sc->sis_rev == SIS_REV_630EA1)
1027 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1028 
1029 		else if (sc->sis_rev == SIS_REV_635 ||
1030 			 sc->sis_rev == SIS_REV_630ET)
1031 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1032 		else if (sc->sis_rev == SIS_REV_96x) {
1033 			/* Allow to read EEPROM from LAN. It is shared
1034 			 * between a 1394 controller and the NIC and each
1035 			 * time we access it, we need to set SIS_EECMD_REQ.
1036 			 */
1037 			SIO_SET(SIS_EECMD_REQ);
1038 			for (waittime = 0; waittime < SIS_TIMEOUT;
1039 			    waittime++) {
1040 				/* Force EEPROM to idle state. */
1041 				sis_eeprom_idle(sc);
1042 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1043 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1044 					    SIS_EE_NODEADDR, 3, 0);
1045 					break;
1046 				}
1047 				DELAY(1);
1048 			}
1049 			/*
1050 			 * Set SIS_EECTL_CLK to high, so a other master
1051 			 * can operate on the i2c bus.
1052 			 */
1053 			SIO_SET(SIS_EECTL_CLK);
1054 			/* Refuse EEPROM access by LAN */
1055 			SIO_SET(SIS_EECMD_DONE);
1056 		} else
1057 #endif
1058 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1059 			    SIS_EE_NODEADDR, 3, 0);
1060 		break;
1061 	}
1062 
1063 	/*
1064 	 * Allocate the parent bus DMA tag appropriate for PCI.
1065 	 */
1066 #define SIS_NSEG_NEW 32
1067 	 error = bus_dma_tag_create(NULL,	/* parent */
1068 			1, 0,			/* alignment, boundary */
1069 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1070 			BUS_SPACE_MAXADDR,	/* highaddr */
1071 			NULL, NULL,		/* filter, filterarg */
1072 			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1073 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1074 			BUS_DMA_ALLOCNOW,	/* flags */
1075 			NULL, NULL,		/* lockfunc, lockarg */
1076 			&sc->sis_parent_tag);
1077 	if (error)
1078 		goto fail;
1079 
1080 	/*
1081 	 * Now allocate a tag for the DMA descriptor lists and a chunk
1082 	 * of DMA-able memory based on the tag.  Also obtain the physical
1083 	 * addresses of the RX and TX ring, which we'll need later.
1084 	 * All of our lists are allocated as a contiguous block
1085 	 * of memory.
1086 	 */
1087 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1088 			1, 0,			/* alignment, boundary */
1089 			BUS_SPACE_MAXADDR,	/* lowaddr */
1090 			BUS_SPACE_MAXADDR,	/* highaddr */
1091 			NULL, NULL,		/* filter, filterarg */
1092 			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1093 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1094 			0,			/* flags */
1095 			busdma_lock_mutex,	/* lockfunc */
1096 			&Giant,			/* lockarg */
1097 			&sc->sis_rx_tag);
1098 	if (error)
1099 		goto fail;
1100 
1101 	error = bus_dmamem_alloc(sc->sis_rx_tag,
1102 	    (void **)&sc->sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1103 	    &sc->sis_rx_dmamap);
1104 
1105 	if (error) {
1106 		device_printf(dev, "no memory for rx list buffers!\n");
1107 		bus_dma_tag_destroy(sc->sis_rx_tag);
1108 		sc->sis_rx_tag = NULL;
1109 		goto fail;
1110 	}
1111 
1112 	error = bus_dmamap_load(sc->sis_rx_tag,
1113 	    sc->sis_rx_dmamap, &(sc->sis_rx_list[0]),
1114 	    sizeof(struct sis_desc), sis_dma_map_ring,
1115 	    &sc->sis_rx_paddr, 0);
1116 
1117 	if (error) {
1118 		device_printf(dev, "cannot get address of the rx ring!\n");
1119 		bus_dmamem_free(sc->sis_rx_tag,
1120 		    sc->sis_rx_list, sc->sis_rx_dmamap);
1121 		bus_dma_tag_destroy(sc->sis_rx_tag);
1122 		sc->sis_rx_tag = NULL;
1123 		goto fail;
1124 	}
1125 
1126 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1127 			1, 0,			/* alignment, boundary */
1128 			BUS_SPACE_MAXADDR,	/* lowaddr */
1129 			BUS_SPACE_MAXADDR,	/* highaddr */
1130 			NULL, NULL,		/* filter, filterarg */
1131 			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1132 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1133 			0,			/* flags */
1134 			busdma_lock_mutex,	/* lockfunc */
1135 			&Giant,			/* lockarg */
1136 			&sc->sis_tx_tag);
1137 	if (error)
1138 		goto fail;
1139 
1140 	error = bus_dmamem_alloc(sc->sis_tx_tag,
1141 	    (void **)&sc->sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1142 	    &sc->sis_tx_dmamap);
1143 
1144 	if (error) {
1145 		device_printf(dev, "no memory for tx list buffers!\n");
1146 		bus_dma_tag_destroy(sc->sis_tx_tag);
1147 		sc->sis_tx_tag = NULL;
1148 		goto fail;
1149 	}
1150 
1151 	error = bus_dmamap_load(sc->sis_tx_tag,
1152 	    sc->sis_tx_dmamap, &(sc->sis_tx_list[0]),
1153 	    sizeof(struct sis_desc), sis_dma_map_ring,
1154 	    &sc->sis_tx_paddr, 0);
1155 
1156 	if (error) {
1157 		device_printf(dev, "cannot get address of the tx ring!\n");
1158 		bus_dmamem_free(sc->sis_tx_tag,
1159 		    sc->sis_tx_list, sc->sis_tx_dmamap);
1160 		bus_dma_tag_destroy(sc->sis_tx_tag);
1161 		sc->sis_tx_tag = NULL;
1162 		goto fail;
1163 	}
1164 
1165 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1166 			1, 0,			/* alignment, boundary */
1167 			BUS_SPACE_MAXADDR,	/* lowaddr */
1168 			BUS_SPACE_MAXADDR,	/* highaddr */
1169 			NULL, NULL,		/* filter, filterarg */
1170 			MCLBYTES, 1,		/* maxsize,nsegments */
1171 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1172 			0,			/* flags */
1173 			busdma_lock_mutex,	/* lockfunc */
1174 			&Giant,			/* lockarg */
1175 			&sc->sis_tag);
1176 	if (error)
1177 		goto fail;
1178 
1179 	/*
1180 	 * Obtain the physical addresses of the RX and TX
1181 	 * rings which we'll need later in the init routine.
1182 	 */
1183 
1184 	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1185 	if (ifp == NULL) {
1186 		device_printf(dev, "can not if_alloc()\n");
1187 		error = ENOSPC;
1188 		goto fail;
1189 	}
1190 	ifp->if_softc = sc;
1191 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1192 	ifp->if_mtu = ETHERMTU;
1193 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1194 	ifp->if_ioctl = sis_ioctl;
1195 	ifp->if_start = sis_start;
1196 	ifp->if_init = sis_init;
1197 	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1198 	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1199 	IFQ_SET_READY(&ifp->if_snd);
1200 
1201 	/*
1202 	 * Do MII setup.
1203 	 */
1204 	if (mii_phy_probe(dev, &sc->sis_miibus,
1205 	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1206 		device_printf(dev, "MII without any PHY!\n");
1207 		error = ENXIO;
1208 		goto fail;
1209 	}
1210 
1211 	/*
1212 	 * Call MI attach routine.
1213 	 */
1214 	ether_ifattach(ifp, eaddr);
1215 
1216 	/*
1217 	 * Tell the upper layer(s) we support long frames.
1218 	 */
1219 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1220 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1221 	ifp->if_capenable = ifp->if_capabilities;
1222 #ifdef DEVICE_POLLING
1223 	ifp->if_capabilities |= IFCAP_POLLING;
1224 #endif
1225 
1226 	/* Hook interrupt last to avoid having to lock softc */
1227 	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1228 	    NULL, sis_intr, sc, &sc->sis_intrhand);
1229 
1230 	if (error) {
1231 		device_printf(dev, "couldn't set up irq\n");
1232 		ether_ifdetach(ifp);
1233 		goto fail;
1234 	}
1235 
1236 fail:
1237 	if (error)
1238 		sis_detach(dev);
1239 
1240 	return(error);
1241 }
1242 
1243 /*
1244  * Shutdown hardware and free up resources. This can be called any
1245  * time after the mutex has been initialized. It is called in both
1246  * the error case in attach and the normal detach case so it needs
1247  * to be careful about only freeing resources that have actually been
1248  * allocated.
1249  */
1250 static int
1251 sis_detach(device_t dev)
1252 {
1253 	struct sis_softc	*sc;
1254 	struct ifnet		*ifp;
1255 
1256 	sc = device_get_softc(dev);
1257 	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1258 	ifp = sc->sis_ifp;
1259 
1260 #ifdef DEVICE_POLLING
1261 	if (ifp->if_capenable & IFCAP_POLLING)
1262 		ether_poll_deregister(ifp);
1263 #endif
1264 
1265 	/* These should only be active if attach succeeded. */
1266 	if (device_is_attached(dev)) {
1267 		SIS_LOCK(sc);
1268 		sis_reset(sc);
1269 		sis_stop(sc);
1270 		SIS_UNLOCK(sc);
1271 		callout_drain(&sc->sis_stat_ch);
1272 		ether_ifdetach(ifp);
1273 	}
1274 	if (sc->sis_miibus)
1275 		device_delete_child(dev, sc->sis_miibus);
1276 	bus_generic_detach(dev);
1277 
1278 	if (sc->sis_intrhand)
1279 		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1280 	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1281 
1282 	if (ifp)
1283 		if_free(ifp);
1284 
1285 	if (sc->sis_rx_tag) {
1286 		bus_dmamap_unload(sc->sis_rx_tag,
1287 		    sc->sis_rx_dmamap);
1288 		bus_dmamem_free(sc->sis_rx_tag,
1289 		    sc->sis_rx_list, sc->sis_rx_dmamap);
1290 		bus_dma_tag_destroy(sc->sis_rx_tag);
1291 	}
1292 	if (sc->sis_tx_tag) {
1293 		bus_dmamap_unload(sc->sis_tx_tag,
1294 		    sc->sis_tx_dmamap);
1295 		bus_dmamem_free(sc->sis_tx_tag,
1296 		    sc->sis_tx_list, sc->sis_tx_dmamap);
1297 		bus_dma_tag_destroy(sc->sis_tx_tag);
1298 	}
1299 	if (sc->sis_parent_tag)
1300 		bus_dma_tag_destroy(sc->sis_parent_tag);
1301 	if (sc->sis_tag)
1302 		bus_dma_tag_destroy(sc->sis_tag);
1303 
1304 	mtx_destroy(&sc->sis_mtx);
1305 
1306 	return(0);
1307 }
1308 
1309 /*
1310  * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1311  * we arrange the descriptors in a closed ring, so that the last descriptor
1312  * points back to the first.
1313  */
1314 static int
1315 sis_ring_init(struct sis_softc *sc)
1316 {
1317 	int i, error;
1318 	struct sis_desc *dp;
1319 
1320 	dp = &sc->sis_tx_list[0];
1321 	for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
1322 		if (i == (SIS_TX_LIST_CNT - 1))
1323 			dp->sis_nextdesc = &sc->sis_tx_list[0];
1324 		else
1325 			dp->sis_nextdesc = dp + 1;
1326 		bus_dmamap_load(sc->sis_tx_tag,
1327 		    sc->sis_tx_dmamap,
1328 		    dp->sis_nextdesc, sizeof(struct sis_desc),
1329 		    sis_dma_map_desc_next, dp, 0);
1330 		dp->sis_mbuf = NULL;
1331 		dp->sis_ptr = 0;
1332 		dp->sis_ctl = 0;
1333 	}
1334 
1335 	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1336 
1337 	bus_dmamap_sync(sc->sis_tx_tag,
1338 	    sc->sis_tx_dmamap, BUS_DMASYNC_PREWRITE);
1339 
1340 	dp = &sc->sis_rx_list[0];
1341 	for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
1342 		error = sis_newbuf(sc, dp, NULL);
1343 		if (error)
1344 			return(error);
1345 		if (i == (SIS_RX_LIST_CNT - 1))
1346 			dp->sis_nextdesc = &sc->sis_rx_list[0];
1347 		else
1348 			dp->sis_nextdesc = dp + 1;
1349 		bus_dmamap_load(sc->sis_rx_tag,
1350 		    sc->sis_rx_dmamap,
1351 		    dp->sis_nextdesc, sizeof(struct sis_desc),
1352 		    sis_dma_map_desc_next, dp, 0);
1353 		}
1354 
1355 	bus_dmamap_sync(sc->sis_rx_tag,
1356 	    sc->sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1357 
1358 	sc->sis_rx_pdsc = &sc->sis_rx_list[0];
1359 
1360 	return(0);
1361 }
1362 
1363 /*
1364  * Initialize an RX descriptor and attach an MBUF cluster.
1365  */
1366 static int
1367 sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1368 {
1369 
1370 	if (c == NULL)
1371 		return(EINVAL);
1372 
1373 	if (m == NULL) {
1374 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1375 		if (m == NULL)
1376 			return(ENOBUFS);
1377 	} else
1378 		m->m_data = m->m_ext.ext_buf;
1379 
1380 	c->sis_mbuf = m;
1381 	c->sis_ctl = SIS_RXLEN;
1382 
1383 	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1384 	bus_dmamap_load(sc->sis_tag, c->sis_map,
1385 	    mtod(m, void *), MCLBYTES,
1386 	    sis_dma_map_desc_ptr, c, 0);
1387 	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREREAD);
1388 
1389 	return(0);
1390 }
1391 
1392 /*
1393  * A frame has been uploaded: pass the resulting mbuf chain up to
1394  * the higher level protocols.
1395  */
1396 static void
1397 sis_rxeof(struct sis_softc *sc)
1398 {
1399 	struct mbuf		*m, *m0;
1400 	struct ifnet		*ifp;
1401 	struct sis_desc		*cur_rx;
1402 	int			total_len = 0;
1403 	u_int32_t		rxstat;
1404 
1405 	SIS_LOCK_ASSERT(sc);
1406 
1407 	ifp = sc->sis_ifp;
1408 
1409 	for(cur_rx = sc->sis_rx_pdsc; SIS_OWNDESC(cur_rx);
1410 	    cur_rx = cur_rx->sis_nextdesc) {
1411 
1412 #ifdef DEVICE_POLLING
1413 		if (ifp->if_capenable & IFCAP_POLLING) {
1414 			if (sc->rxcycles <= 0)
1415 				break;
1416 			sc->rxcycles--;
1417 		}
1418 #endif
1419 		rxstat = cur_rx->sis_rxstat;
1420 		bus_dmamap_sync(sc->sis_tag,
1421 		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1422 		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1423 		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1424 		m = cur_rx->sis_mbuf;
1425 		cur_rx->sis_mbuf = NULL;
1426 		total_len = SIS_RXBYTES(cur_rx);
1427 
1428 		/*
1429 		 * If an error occurs, update stats, clear the
1430 		 * status word and leave the mbuf cluster in place:
1431 		 * it should simply get re-used next time this descriptor
1432 	 	 * comes up in the ring.
1433 		 */
1434 		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1435 			ifp->if_ierrors++;
1436 			if (rxstat & SIS_RXSTAT_COLL)
1437 				ifp->if_collisions++;
1438 			sis_newbuf(sc, cur_rx, m);
1439 			continue;
1440 		}
1441 
1442 		/* No errors; receive the packet. */
1443 #ifdef __NO_STRICT_ALIGNMENT
1444 		/*
1445 		 * On architectures without alignment problems we try to
1446 		 * allocate a new buffer for the receive ring, and pass up
1447 		 * the one where the packet is already, saving the expensive
1448 		 * copy done in m_devget().
1449 		 * If we are on an architecture with alignment problems, or
1450 		 * if the allocation fails, then use m_devget and leave the
1451 		 * existing buffer in the receive ring.
1452 		 */
1453 		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1454 			m->m_pkthdr.len = m->m_len = total_len;
1455 		else
1456 #endif
1457 		{
1458 			m0 = m_devget(mtod(m, char *), total_len,
1459 				ETHER_ALIGN, ifp, NULL);
1460 			sis_newbuf(sc, cur_rx, m);
1461 			if (m0 == NULL) {
1462 				ifp->if_ierrors++;
1463 				continue;
1464 			}
1465 			m = m0;
1466 		}
1467 
1468 		ifp->if_ipackets++;
1469 		m->m_pkthdr.rcvif = ifp;
1470 
1471 		SIS_UNLOCK(sc);
1472 		(*ifp->if_input)(ifp, m);
1473 		SIS_LOCK(sc);
1474 	}
1475 
1476 	sc->sis_rx_pdsc = cur_rx;
1477 }
1478 
1479 static void
1480 sis_rxeoc(struct sis_softc *sc)
1481 {
1482 
1483 	SIS_LOCK_ASSERT(sc);
1484 	sis_rxeof(sc);
1485 	sis_initl(sc);
1486 }
1487 
1488 /*
1489  * A frame was downloaded to the chip. It's safe for us to clean up
1490  * the list buffers.
1491  */
1492 
1493 static void
1494 sis_txeof(struct sis_softc *sc)
1495 {
1496 	struct ifnet		*ifp;
1497 	u_int32_t		idx;
1498 
1499 	SIS_LOCK_ASSERT(sc);
1500 	ifp = sc->sis_ifp;
1501 
1502 	/*
1503 	 * Go through our tx list and free mbufs for those
1504 	 * frames that have been transmitted.
1505 	 */
1506 	for (idx = sc->sis_tx_cons; sc->sis_tx_cnt > 0;
1507 	    sc->sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1508 		struct sis_desc *cur_tx = &sc->sis_tx_list[idx];
1509 
1510 		if (SIS_OWNDESC(cur_tx))
1511 			break;
1512 
1513 		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1514 			continue;
1515 
1516 		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1517 			ifp->if_oerrors++;
1518 			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1519 				ifp->if_collisions++;
1520 			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1521 				ifp->if_collisions++;
1522 		}
1523 
1524 		ifp->if_collisions +=
1525 		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1526 
1527 		ifp->if_opackets++;
1528 		if (cur_tx->sis_mbuf != NULL) {
1529 			m_freem(cur_tx->sis_mbuf);
1530 			cur_tx->sis_mbuf = NULL;
1531 			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1532 			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1533 		}
1534 	}
1535 
1536 	if (idx != sc->sis_tx_cons) {
1537 		/* we freed up some buffers */
1538 		sc->sis_tx_cons = idx;
1539 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1540 	}
1541 
1542 	sc->sis_watchdog_timer = (sc->sis_tx_cnt == 0) ? 0 : 5;
1543 
1544 	return;
1545 }
1546 
1547 static void
1548 sis_tick(void *xsc)
1549 {
1550 	struct sis_softc	*sc;
1551 	struct mii_data		*mii;
1552 	struct ifnet		*ifp;
1553 
1554 	sc = xsc;
1555 	SIS_LOCK_ASSERT(sc);
1556 	sc->in_tick = 1;
1557 	ifp = sc->sis_ifp;
1558 
1559 	mii = device_get_softc(sc->sis_miibus);
1560 	mii_tick(mii);
1561 
1562 	sis_watchdog(sc);
1563 
1564 	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1565 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1566 		sc->sis_link++;
1567 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1568 			sis_startl(ifp);
1569 	}
1570 
1571 	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1572 	sc->in_tick = 0;
1573 }
1574 
1575 #ifdef DEVICE_POLLING
1576 static poll_handler_t sis_poll;
1577 
1578 static void
1579 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1580 {
1581 	struct	sis_softc *sc = ifp->if_softc;
1582 
1583 	SIS_LOCK(sc);
1584 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1585 		SIS_UNLOCK(sc);
1586 		return;
1587 	}
1588 
1589 	/*
1590 	 * On the sis, reading the status register also clears it.
1591 	 * So before returning to intr mode we must make sure that all
1592 	 * possible pending sources of interrupts have been served.
1593 	 * In practice this means run to completion the *eof routines,
1594 	 * and then call the interrupt routine
1595 	 */
1596 	sc->rxcycles = count;
1597 	sis_rxeof(sc);
1598 	sis_txeof(sc);
1599 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1600 		sis_startl(ifp);
1601 
1602 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1603 		u_int32_t	status;
1604 
1605 		/* Reading the ISR register clears all interrupts. */
1606 		status = CSR_READ_4(sc, SIS_ISR);
1607 
1608 		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1609 			sis_rxeoc(sc);
1610 
1611 		if (status & (SIS_ISR_RX_IDLE))
1612 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1613 
1614 		if (status & SIS_ISR_SYSERR) {
1615 			sis_reset(sc);
1616 			sis_initl(sc);
1617 		}
1618 	}
1619 
1620 	SIS_UNLOCK(sc);
1621 }
1622 #endif /* DEVICE_POLLING */
1623 
1624 static void
1625 sis_intr(void *arg)
1626 {
1627 	struct sis_softc	*sc;
1628 	struct ifnet		*ifp;
1629 	u_int32_t		status;
1630 
1631 	sc = arg;
1632 	ifp = sc->sis_ifp;
1633 
1634 	if (sc->sis_stopped)	/* Most likely shared interrupt */
1635 		return;
1636 
1637 	SIS_LOCK(sc);
1638 #ifdef DEVICE_POLLING
1639 	if (ifp->if_capenable & IFCAP_POLLING) {
1640 		SIS_UNLOCK(sc);
1641 		return;
1642 	}
1643 #endif
1644 
1645 	/* Disable interrupts. */
1646 	CSR_WRITE_4(sc, SIS_IER, 0);
1647 
1648 	for (;;) {
1649 		SIS_LOCK_ASSERT(sc);
1650 		/* Reading the ISR register clears all interrupts. */
1651 		status = CSR_READ_4(sc, SIS_ISR);
1652 
1653 		if ((status & SIS_INTRS) == 0)
1654 			break;
1655 
1656 		if (status &
1657 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1658 		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1659 			sis_txeof(sc);
1660 
1661 		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1662 			sis_rxeof(sc);
1663 
1664 		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1665 			sis_rxeoc(sc);
1666 
1667 		if (status & (SIS_ISR_RX_IDLE))
1668 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1669 
1670 		if (status & SIS_ISR_SYSERR) {
1671 			sis_reset(sc);
1672 			sis_initl(sc);
1673 		}
1674 	}
1675 
1676 	/* Re-enable interrupts. */
1677 	CSR_WRITE_4(sc, SIS_IER, 1);
1678 
1679 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1680 		sis_startl(ifp);
1681 
1682 	SIS_UNLOCK(sc);
1683 }
1684 
1685 /*
1686  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1687  * pointers to the fragment pointers.
1688  */
1689 static int
1690 sis_encap(struct sis_softc *sc, struct mbuf **m_head, uint32_t *txidx)
1691 {
1692 	struct sis_desc		*f = NULL;
1693 	struct mbuf		*m;
1694 	int			frag, cur, cnt = 0, chainlen = 0;
1695 
1696 	/*
1697 	 * If there's no way we can send any packets, return now.
1698 	 */
1699 	if (SIS_TX_LIST_CNT - sc->sis_tx_cnt < 2)
1700 		return (ENOBUFS);
1701 
1702 	/*
1703 	 * Count the number of frags in this chain to see if
1704 	 * we need to m_defrag.  Since the descriptor list is shared
1705 	 * by all packets, we'll m_defrag long chains so that they
1706 	 * do not use up the entire list, even if they would fit.
1707 	 */
1708 
1709 	for (m = *m_head; m != NULL; m = m->m_next)
1710 		chainlen++;
1711 
1712 	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1713 	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_tx_cnt)) < 2)) {
1714 		m = m_defrag(*m_head, M_DONTWAIT);
1715 		if (m == NULL)
1716 			return (ENOBUFS);
1717 		*m_head = m;
1718 	}
1719 
1720 	/*
1721  	 * Start packing the mbufs in this chain into
1722 	 * the fragment pointers. Stop when we run out
1723  	 * of fragments or hit the end of the mbuf chain.
1724 	 */
1725 	cur = frag = *txidx;
1726 
1727 	for (m = *m_head; m != NULL; m = m->m_next) {
1728 		if (m->m_len != 0) {
1729 			if ((SIS_TX_LIST_CNT -
1730 			    (sc->sis_tx_cnt + cnt)) < 2)
1731 				return(ENOBUFS);
1732 			f = &sc->sis_tx_list[frag];
1733 			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1734 			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1735 			bus_dmamap_load(sc->sis_tag, f->sis_map,
1736 			    mtod(m, void *), m->m_len,
1737 			    sis_dma_map_desc_ptr, f, 0);
1738 			bus_dmamap_sync(sc->sis_tag,
1739 			    f->sis_map, BUS_DMASYNC_PREREAD);
1740 			if (cnt != 0)
1741 				f->sis_ctl |= SIS_CMDSTS_OWN;
1742 			cur = frag;
1743 			SIS_INC(frag, SIS_TX_LIST_CNT);
1744 			cnt++;
1745 		}
1746 	}
1747 
1748 	if (m != NULL)
1749 		return(ENOBUFS);
1750 
1751 	sc->sis_tx_list[cur].sis_mbuf = *m_head;
1752 	sc->sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1753 	sc->sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1754 	sc->sis_tx_cnt += cnt;
1755 	*txidx = frag;
1756 
1757 	return(0);
1758 }
1759 
1760 /*
1761  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1762  * to the mbuf data regions directly in the transmit lists. We also save a
1763  * copy of the pointers since the transmit list fragment pointers are
1764  * physical addresses.
1765  */
1766 
1767 static void
1768 sis_start(struct ifnet *ifp)
1769 {
1770 	struct sis_softc	*sc;
1771 
1772 	sc = ifp->if_softc;
1773 	SIS_LOCK(sc);
1774 	sis_startl(ifp);
1775 	SIS_UNLOCK(sc);
1776 }
1777 
1778 static void
1779 sis_startl(struct ifnet *ifp)
1780 {
1781 	struct sis_softc	*sc;
1782 	struct mbuf		*m_head = NULL;
1783 	u_int32_t		idx, queued = 0;
1784 
1785 	sc = ifp->if_softc;
1786 
1787 	SIS_LOCK_ASSERT(sc);
1788 
1789 	if (!sc->sis_link)
1790 		return;
1791 
1792 	idx = sc->sis_tx_prod;
1793 
1794 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1795 		return;
1796 
1797 	while(sc->sis_tx_list[idx].sis_mbuf == NULL) {
1798 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1799 		if (m_head == NULL)
1800 			break;
1801 
1802 		if (sis_encap(sc, &m_head, &idx)) {
1803 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1804 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1805 			break;
1806 		}
1807 
1808 		queued++;
1809 
1810 		/*
1811 		 * If there's a BPF listener, bounce a copy of this frame
1812 		 * to him.
1813 		 */
1814 		BPF_MTAP(ifp, m_head);
1815 
1816 	}
1817 
1818 	if (queued) {
1819 		/* Transmit */
1820 		sc->sis_tx_prod = idx;
1821 		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1822 
1823 		/*
1824 		 * Set a timeout in case the chip goes out to lunch.
1825 		 */
1826 		sc->sis_watchdog_timer = 5;
1827 	}
1828 }
1829 
1830 static void
1831 sis_init(void *xsc)
1832 {
1833 	struct sis_softc	*sc = xsc;
1834 
1835 	SIS_LOCK(sc);
1836 	sis_initl(sc);
1837 	SIS_UNLOCK(sc);
1838 }
1839 
1840 static void
1841 sis_initl(struct sis_softc *sc)
1842 {
1843 	struct ifnet		*ifp = sc->sis_ifp;
1844 	struct mii_data		*mii;
1845 
1846 	SIS_LOCK_ASSERT(sc);
1847 
1848 	/*
1849 	 * Cancel pending I/O and free all RX/TX buffers.
1850 	 */
1851 	sis_stop(sc);
1852 	sc->sis_stopped = 0;
1853 
1854 #ifdef notyet
1855 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1856 		/*
1857 		 * Configure 400usec of interrupt holdoff.  This is based
1858 		 * on emperical tests on a Soekris 4801.
1859  		 */
1860 		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1861 	}
1862 #endif
1863 
1864 	mii = device_get_softc(sc->sis_miibus);
1865 
1866 	/* Set MAC address */
1867 	if (sc->sis_type == SIS_TYPE_83815) {
1868 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1869 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1870 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[0]);
1871 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1872 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1873 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[1]);
1874 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1875 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1876 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[2]);
1877 	} else {
1878 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1879 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1880 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[0]);
1881 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1882 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1883 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[1]);
1884 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1885 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1886 		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[2]);
1887 	}
1888 
1889 	/* Init circular TX/RX lists. */
1890 	if (sis_ring_init(sc) != 0) {
1891 		device_printf(sc->sis_dev,
1892 		    "initialization failed: no memory for rx buffers\n");
1893 		sis_stop(sc);
1894 		return;
1895 	}
1896 
1897 	/*
1898 	 * Short Cable Receive Errors (MP21.E)
1899 	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
1900 	 * recommends the following register settings "for optimum
1901 	 * performance." for rev 15C.  Set this also for 15D parts as
1902 	 * they require it in practice.
1903 	 */
1904 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
1905 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
1906 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
1907 		/* set val for c2 */
1908 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
1909 		/* load/kill c2 */
1910 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
1911 		/* rais SD off, from 4 to c */
1912 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
1913 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
1914 	}
1915 
1916 
1917 	/*
1918 	 * For the NatSemi chip, we have to explicitly enable the
1919 	 * reception of ARP frames, as well as turn on the 'perfect
1920 	 * match' filter where we store the station address, otherwise
1921 	 * we won't receive unicasts meant for this host.
1922 	 */
1923 	if (sc->sis_type == SIS_TYPE_83815) {
1924 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1925 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1926 	}
1927 
1928 	 /* If we want promiscuous mode, set the allframes bit. */
1929 	if (ifp->if_flags & IFF_PROMISC) {
1930 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1931 	} else {
1932 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1933 	}
1934 
1935 	/*
1936 	 * Set the capture broadcast bit to capture broadcast frames.
1937 	 */
1938 	if (ifp->if_flags & IFF_BROADCAST) {
1939 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1940 	} else {
1941 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1942 	}
1943 
1944 	/*
1945 	 * Load the multicast filter.
1946 	 */
1947 	if (sc->sis_type == SIS_TYPE_83815)
1948 		sis_setmulti_ns(sc);
1949 	else
1950 		sis_setmulti_sis(sc);
1951 
1952 	/* Turn the receive filter on */
1953 	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1954 
1955 	/*
1956 	 * Load the address of the RX and TX lists.
1957 	 */
1958 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_rx_paddr);
1959 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_tx_paddr);
1960 
1961 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1962 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1963 	 * for TX/RX DMA should be no larger than 16 double words.
1964 	 */
1965 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
1966 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1967 	} else {
1968 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1969 	}
1970 
1971 	/* Accept Long Packets for VLAN support */
1972 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1973 
1974 	/* Set TX configuration */
1975 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
1976 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1977 	} else {
1978 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1979 	}
1980 
1981 	/* Set full/half duplex mode. */
1982 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1983 		SIS_SETBIT(sc, SIS_TX_CFG,
1984 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1985 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1986 	} else {
1987 		SIS_CLRBIT(sc, SIS_TX_CFG,
1988 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1989 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1990 	}
1991 
1992 	if (sc->sis_type == SIS_TYPE_83816) {
1993 		/*
1994 		 * MPII03.D: Half Duplex Excessive Collisions.
1995 		 * Also page 49 in 83816 manual
1996 		 */
1997 		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
1998 	}
1999 
2000 	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
2001 	     IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2002 		uint32_t reg;
2003 
2004 		/*
2005 		 * Short Cable Receive Errors (MP21.E)
2006 		 */
2007 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2008 		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
2009 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
2010 		DELAY(100000);
2011 		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
2012 		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
2013 			device_printf(sc->sis_dev,
2014 			    "Applying short cable fix (reg=%x)\n", reg);
2015 			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
2016 			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
2017 		}
2018 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2019 	}
2020 
2021 	/*
2022 	 * Enable interrupts.
2023 	 */
2024 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2025 #ifdef DEVICE_POLLING
2026 	/*
2027 	 * ... only enable interrupts if we are not polling, make sure
2028 	 * they are off otherwise.
2029 	 */
2030 	if (ifp->if_capenable & IFCAP_POLLING)
2031 		CSR_WRITE_4(sc, SIS_IER, 0);
2032 	else
2033 #endif
2034 	CSR_WRITE_4(sc, SIS_IER, 1);
2035 
2036 	/* Enable receiver and transmitter. */
2037 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2038 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2039 
2040 #ifdef notdef
2041 	mii_mediachg(mii);
2042 #endif
2043 
2044 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2045 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2046 
2047 	if (!sc->in_tick)
2048 		callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2049 }
2050 
2051 /*
2052  * Set media options.
2053  */
2054 static int
2055 sis_ifmedia_upd(struct ifnet *ifp)
2056 {
2057 	struct sis_softc	*sc;
2058 	struct mii_data		*mii;
2059 
2060 	sc = ifp->if_softc;
2061 
2062 	SIS_LOCK(sc);
2063 	mii = device_get_softc(sc->sis_miibus);
2064 	sc->sis_link = 0;
2065 	if (mii->mii_instance) {
2066 		struct mii_softc	*miisc;
2067 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2068 			mii_phy_reset(miisc);
2069 	}
2070 	mii_mediachg(mii);
2071 	SIS_UNLOCK(sc);
2072 
2073 	return(0);
2074 }
2075 
2076 /*
2077  * Report current media status.
2078  */
2079 static void
2080 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2081 {
2082 	struct sis_softc	*sc;
2083 	struct mii_data		*mii;
2084 
2085 	sc = ifp->if_softc;
2086 
2087 	SIS_LOCK(sc);
2088 	mii = device_get_softc(sc->sis_miibus);
2089 	mii_pollstat(mii);
2090 	SIS_UNLOCK(sc);
2091 	ifmr->ifm_active = mii->mii_media_active;
2092 	ifmr->ifm_status = mii->mii_media_status;
2093 }
2094 
2095 static int
2096 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2097 {
2098 	struct sis_softc	*sc = ifp->if_softc;
2099 	struct ifreq		*ifr = (struct ifreq *) data;
2100 	struct mii_data		*mii;
2101 	int			error = 0;
2102 
2103 	switch(command) {
2104 	case SIOCSIFFLAGS:
2105 		SIS_LOCK(sc);
2106 		if (ifp->if_flags & IFF_UP) {
2107 			sis_initl(sc);
2108 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2109 			sis_stop(sc);
2110 		}
2111 		SIS_UNLOCK(sc);
2112 		error = 0;
2113 		break;
2114 	case SIOCADDMULTI:
2115 	case SIOCDELMULTI:
2116 		SIS_LOCK(sc);
2117 		if (sc->sis_type == SIS_TYPE_83815)
2118 			sis_setmulti_ns(sc);
2119 		else
2120 			sis_setmulti_sis(sc);
2121 		SIS_UNLOCK(sc);
2122 		error = 0;
2123 		break;
2124 	case SIOCGIFMEDIA:
2125 	case SIOCSIFMEDIA:
2126 		mii = device_get_softc(sc->sis_miibus);
2127 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2128 		break;
2129 	case SIOCSIFCAP:
2130 		/* ok, disable interrupts */
2131 #ifdef DEVICE_POLLING
2132 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
2133 		    !(ifp->if_capenable & IFCAP_POLLING)) {
2134 			error = ether_poll_register(sis_poll, ifp);
2135 			if (error)
2136 				return(error);
2137 			SIS_LOCK(sc);
2138 			/* Disable interrupts */
2139 			CSR_WRITE_4(sc, SIS_IER, 0);
2140 			ifp->if_capenable |= IFCAP_POLLING;
2141 			SIS_UNLOCK(sc);
2142 			return (error);
2143 
2144 		}
2145 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
2146 		    ifp->if_capenable & IFCAP_POLLING) {
2147 			error = ether_poll_deregister(ifp);
2148 			/* Enable interrupts. */
2149 			SIS_LOCK(sc);
2150 			CSR_WRITE_4(sc, SIS_IER, 1);
2151 			ifp->if_capenable &= ~IFCAP_POLLING;
2152 			SIS_UNLOCK(sc);
2153 			return (error);
2154 		}
2155 #endif /* DEVICE_POLLING */
2156 		break;
2157 	default:
2158 		error = ether_ioctl(ifp, command, data);
2159 		break;
2160 	}
2161 
2162 	return(error);
2163 }
2164 
2165 static void
2166 sis_watchdog(struct sis_softc *sc)
2167 {
2168 
2169 	SIS_LOCK_ASSERT(sc);
2170 	if (sc->sis_stopped) {
2171 		SIS_UNLOCK(sc);
2172 		return;
2173 	}
2174 
2175 	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2176 		return;
2177 
2178 	device_printf(sc->sis_dev, "watchdog timeout\n");
2179 	sc->sis_ifp->if_oerrors++;
2180 
2181 	sis_stop(sc);
2182 	sis_reset(sc);
2183 	sis_initl(sc);
2184 
2185 	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2186 		sis_startl(sc->sis_ifp);
2187 }
2188 
2189 /*
2190  * Stop the adapter and free any mbufs allocated to the
2191  * RX and TX lists.
2192  */
2193 static void
2194 sis_stop(struct sis_softc *sc)
2195 {
2196 	int i;
2197 	struct ifnet *ifp;
2198 	struct sis_desc *dp;
2199 
2200 	if (sc->sis_stopped)
2201 		return;
2202 	SIS_LOCK_ASSERT(sc);
2203 	ifp = sc->sis_ifp;
2204 	sc->sis_watchdog_timer = 0;
2205 
2206 	callout_stop(&sc->sis_stat_ch);
2207 
2208 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2209 	CSR_WRITE_4(sc, SIS_IER, 0);
2210 	CSR_WRITE_4(sc, SIS_IMR, 0);
2211 	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2212 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2213 	DELAY(1000);
2214 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2215 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2216 
2217 	sc->sis_link = 0;
2218 
2219 	/*
2220 	 * Free data in the RX lists.
2221 	 */
2222 	dp = &sc->sis_rx_list[0];
2223 	for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
2224 		if (dp->sis_mbuf == NULL)
2225 			continue;
2226 		bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2227 		bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2228 		m_freem(dp->sis_mbuf);
2229 		dp->sis_mbuf = NULL;
2230 	}
2231 	bzero(sc->sis_rx_list, SIS_RX_LIST_SZ);
2232 
2233 	/*
2234 	 * Free the TX list buffers.
2235 	 */
2236 	dp = &sc->sis_tx_list[0];
2237 	for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
2238 		if (dp->sis_mbuf == NULL)
2239 			continue;
2240 		bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2241 		bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2242 		m_freem(dp->sis_mbuf);
2243 		dp->sis_mbuf = NULL;
2244 	}
2245 
2246 	bzero(sc->sis_tx_list, SIS_TX_LIST_SZ);
2247 
2248 	sc->sis_stopped = 1;
2249 }
2250 
2251 /*
2252  * Stop all chip I/O so that the kernel's probe routines don't
2253  * get confused by errant DMAs when rebooting.
2254  */
2255 static void
2256 sis_shutdown(device_t dev)
2257 {
2258 	struct sis_softc	*sc;
2259 
2260 	sc = device_get_softc(dev);
2261 	SIS_LOCK(sc);
2262 	sis_reset(sc);
2263 	sis_stop(sc);
2264 	SIS_UNLOCK(sc);
2265 }
2266 
2267 static device_method_t sis_methods[] = {
2268 	/* Device interface */
2269 	DEVMETHOD(device_probe,		sis_probe),
2270 	DEVMETHOD(device_attach,	sis_attach),
2271 	DEVMETHOD(device_detach,	sis_detach),
2272 	DEVMETHOD(device_shutdown,	sis_shutdown),
2273 
2274 	/* bus interface */
2275 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
2276 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2277 
2278 	/* MII interface */
2279 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2280 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2281 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2282 
2283 	{ 0, 0 }
2284 };
2285 
2286 static driver_t sis_driver = {
2287 	"sis",
2288 	sis_methods,
2289 	sizeof(struct sis_softc)
2290 };
2291 
2292 static devclass_t sis_devclass;
2293 
2294 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2295 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2296