1 /*- 2 * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org> 3 * Copyright (c) 1997, 1998, 1999 4 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are 39 * available from http://www.sis.com.tw. 40 * 41 * This driver also supports the NatSemi DP83815. Datasheets are 42 * available from http://www.national.com. 43 * 44 * Written by Bill Paul <wpaul@ee.columbia.edu> 45 * Electrical Engineering Department 46 * Columbia University, New York City 47 */ 48 /* 49 * The SiS 900 is a fairly simple chip. It uses bus master DMA with 50 * simple TX and RX descriptors of 3 longwords in size. The receiver 51 * has a single perfect filter entry for the station address and a 52 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based 53 * transceiver while the 7016 requires an external transceiver chip. 54 * Both chips offer the standard bit-bang MII interface as well as 55 * an enchanced PHY interface which simplifies accessing MII registers. 56 * 57 * The only downside to this chipset is that RX descriptors must be 58 * longword aligned. 59 */ 60 61 #ifdef HAVE_KERNEL_OPTION_HEADERS 62 #include "opt_device_polling.h" 63 #endif 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/bus.h> 68 #include <sys/endian.h> 69 #include <sys/kernel.h> 70 #include <sys/lock.h> 71 #include <sys/malloc.h> 72 #include <sys/mbuf.h> 73 #include <sys/module.h> 74 #include <sys/socket.h> 75 #include <sys/sockio.h> 76 #include <sys/sysctl.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_dl.h> 83 #include <net/if_media.h> 84 #include <net/if_types.h> 85 #include <net/if_vlan_var.h> 86 87 #include <net/bpf.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <dev/mii/mii.h> 94 #include <dev/mii/mii_bitbang.h> 95 #include <dev/mii/miivar.h> 96 97 #include <dev/pci/pcireg.h> 98 #include <dev/pci/pcivar.h> 99 100 #define SIS_USEIOSPACE 101 102 #include <dev/sis/if_sisreg.h> 103 104 MODULE_DEPEND(sis, pci, 1, 1, 1); 105 MODULE_DEPEND(sis, ether, 1, 1, 1); 106 MODULE_DEPEND(sis, miibus, 1, 1, 1); 107 108 /* "device miibus" required. See GENERIC if you get errors here. */ 109 #include "miibus_if.h" 110 111 #define SIS_LOCK(_sc) mtx_lock(&(_sc)->sis_mtx) 112 #define SIS_UNLOCK(_sc) mtx_unlock(&(_sc)->sis_mtx) 113 #define SIS_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sis_mtx, MA_OWNED) 114 115 /* 116 * register space access macros 117 */ 118 #define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sis_res[0], reg, val) 119 120 #define CSR_READ_4(sc, reg) bus_read_4(sc->sis_res[0], reg) 121 122 #define CSR_READ_2(sc, reg) bus_read_2(sc->sis_res[0], reg) 123 124 #define CSR_BARRIER(sc, reg, length, flags) \ 125 bus_barrier(sc->sis_res[0], reg, length, flags) 126 127 /* 128 * Various supported device vendors/types and their names. 129 */ 130 static const struct sis_type sis_devs[] = { 131 { SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" }, 132 { SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" }, 133 { NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" }, 134 { 0, 0, NULL } 135 }; 136 137 static int sis_detach(device_t); 138 static __inline void sis_discard_rxbuf(struct sis_rxdesc *); 139 static int sis_dma_alloc(struct sis_softc *); 140 static void sis_dma_free(struct sis_softc *); 141 static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t, 142 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 143 static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int); 144 #ifndef __NO_STRICT_ALIGNMENT 145 static __inline void sis_fixup_rx(struct mbuf *); 146 #endif 147 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *); 148 static int sis_ifmedia_upd(struct ifnet *); 149 static void sis_init(void *); 150 static void sis_initl(struct sis_softc *); 151 static void sis_intr(void *); 152 static int sis_ioctl(struct ifnet *, u_long, caddr_t); 153 static uint32_t sis_mii_bitbang_read(device_t); 154 static void sis_mii_bitbang_write(device_t, uint32_t); 155 static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *); 156 static int sis_resume(device_t); 157 static int sis_rxeof(struct sis_softc *); 158 static void sis_rxfilter(struct sis_softc *); 159 static void sis_rxfilter_ns(struct sis_softc *); 160 static void sis_rxfilter_sis(struct sis_softc *); 161 static void sis_start(struct ifnet *); 162 static void sis_startl(struct ifnet *); 163 static void sis_stop(struct sis_softc *); 164 static int sis_suspend(device_t); 165 static void sis_add_sysctls(struct sis_softc *); 166 static void sis_watchdog(struct sis_softc *); 167 static void sis_wol(struct sis_softc *); 168 169 /* 170 * MII bit-bang glue 171 */ 172 static const struct mii_bitbang_ops sis_mii_bitbang_ops = { 173 sis_mii_bitbang_read, 174 sis_mii_bitbang_write, 175 { 176 SIS_MII_DATA, /* MII_BIT_MDO */ 177 SIS_MII_DATA, /* MII_BIT_MDI */ 178 SIS_MII_CLK, /* MII_BIT_MDC */ 179 SIS_MII_DIR, /* MII_BIT_DIR_HOST_PHY */ 180 0, /* MII_BIT_DIR_PHY_HOST */ 181 } 182 }; 183 184 static struct resource_spec sis_res_spec[] = { 185 #ifdef SIS_USEIOSPACE 186 { SYS_RES_IOPORT, SIS_PCI_LOIO, RF_ACTIVE}, 187 #else 188 { SYS_RES_MEMORY, SIS_PCI_LOMEM, RF_ACTIVE}, 189 #endif 190 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE}, 191 { -1, 0 } 192 }; 193 194 #define SIS_SETBIT(sc, reg, x) \ 195 CSR_WRITE_4(sc, reg, \ 196 CSR_READ_4(sc, reg) | (x)) 197 198 #define SIS_CLRBIT(sc, reg, x) \ 199 CSR_WRITE_4(sc, reg, \ 200 CSR_READ_4(sc, reg) & ~(x)) 201 202 #define SIO_SET(x) \ 203 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x) 204 205 #define SIO_CLR(x) \ 206 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x) 207 208 /* 209 * Routine to reverse the bits in a word. Stolen almost 210 * verbatim from /usr/games/fortune. 211 */ 212 static uint16_t 213 sis_reverse(uint16_t n) 214 { 215 n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa); 216 n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc); 217 n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0); 218 n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00); 219 220 return (n); 221 } 222 223 static void 224 sis_delay(struct sis_softc *sc) 225 { 226 int idx; 227 228 for (idx = (300 / 33) + 1; idx > 0; idx--) 229 CSR_READ_4(sc, SIS_CSR); 230 } 231 232 static void 233 sis_eeprom_idle(struct sis_softc *sc) 234 { 235 int i; 236 237 SIO_SET(SIS_EECTL_CSEL); 238 sis_delay(sc); 239 SIO_SET(SIS_EECTL_CLK); 240 sis_delay(sc); 241 242 for (i = 0; i < 25; i++) { 243 SIO_CLR(SIS_EECTL_CLK); 244 sis_delay(sc); 245 SIO_SET(SIS_EECTL_CLK); 246 sis_delay(sc); 247 } 248 249 SIO_CLR(SIS_EECTL_CLK); 250 sis_delay(sc); 251 SIO_CLR(SIS_EECTL_CSEL); 252 sis_delay(sc); 253 CSR_WRITE_4(sc, SIS_EECTL, 0x00000000); 254 } 255 256 /* 257 * Send a read command and address to the EEPROM, check for ACK. 258 */ 259 static void 260 sis_eeprom_putbyte(struct sis_softc *sc, int addr) 261 { 262 int d, i; 263 264 d = addr | SIS_EECMD_READ; 265 266 /* 267 * Feed in each bit and stobe the clock. 268 */ 269 for (i = 0x400; i; i >>= 1) { 270 if (d & i) { 271 SIO_SET(SIS_EECTL_DIN); 272 } else { 273 SIO_CLR(SIS_EECTL_DIN); 274 } 275 sis_delay(sc); 276 SIO_SET(SIS_EECTL_CLK); 277 sis_delay(sc); 278 SIO_CLR(SIS_EECTL_CLK); 279 sis_delay(sc); 280 } 281 } 282 283 /* 284 * Read a word of data stored in the EEPROM at address 'addr.' 285 */ 286 static void 287 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest) 288 { 289 int i; 290 uint16_t word = 0; 291 292 /* Force EEPROM to idle state. */ 293 sis_eeprom_idle(sc); 294 295 /* Enter EEPROM access mode. */ 296 sis_delay(sc); 297 SIO_CLR(SIS_EECTL_CLK); 298 sis_delay(sc); 299 SIO_SET(SIS_EECTL_CSEL); 300 sis_delay(sc); 301 302 /* 303 * Send address of word we want to read. 304 */ 305 sis_eeprom_putbyte(sc, addr); 306 307 /* 308 * Start reading bits from EEPROM. 309 */ 310 for (i = 0x8000; i; i >>= 1) { 311 SIO_SET(SIS_EECTL_CLK); 312 sis_delay(sc); 313 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT) 314 word |= i; 315 sis_delay(sc); 316 SIO_CLR(SIS_EECTL_CLK); 317 sis_delay(sc); 318 } 319 320 /* Turn off EEPROM access mode. */ 321 sis_eeprom_idle(sc); 322 323 *dest = word; 324 } 325 326 /* 327 * Read a sequence of words from the EEPROM. 328 */ 329 static void 330 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap) 331 { 332 int i; 333 uint16_t word = 0, *ptr; 334 335 for (i = 0; i < cnt; i++) { 336 sis_eeprom_getword(sc, off + i, &word); 337 ptr = (uint16_t *)(dest + (i * 2)); 338 if (swap) 339 *ptr = ntohs(word); 340 else 341 *ptr = word; 342 } 343 } 344 345 #if defined(__i386__) || defined(__amd64__) 346 static device_t 347 sis_find_bridge(device_t dev) 348 { 349 devclass_t pci_devclass; 350 device_t *pci_devices; 351 int pci_count = 0; 352 device_t *pci_children; 353 int pci_childcount = 0; 354 device_t *busp, *childp; 355 device_t child = NULL; 356 int i, j; 357 358 if ((pci_devclass = devclass_find("pci")) == NULL) 359 return (NULL); 360 361 devclass_get_devices(pci_devclass, &pci_devices, &pci_count); 362 363 for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) { 364 if (device_get_children(*busp, &pci_children, &pci_childcount)) 365 continue; 366 for (j = 0, childp = pci_children; 367 j < pci_childcount; j++, childp++) { 368 if (pci_get_vendor(*childp) == SIS_VENDORID && 369 pci_get_device(*childp) == 0x0008) { 370 child = *childp; 371 free(pci_children, M_TEMP); 372 goto done; 373 } 374 } 375 free(pci_children, M_TEMP); 376 } 377 378 done: 379 free(pci_devices, M_TEMP); 380 return (child); 381 } 382 383 static void 384 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt) 385 { 386 device_t bridge; 387 uint8_t reg; 388 int i; 389 bus_space_tag_t btag; 390 391 bridge = sis_find_bridge(dev); 392 if (bridge == NULL) 393 return; 394 reg = pci_read_config(bridge, 0x48, 1); 395 pci_write_config(bridge, 0x48, reg|0x40, 1); 396 397 /* XXX */ 398 #if defined(__amd64__) || defined(__i386__) 399 btag = X86_BUS_SPACE_IO; 400 #endif 401 402 for (i = 0; i < cnt; i++) { 403 bus_space_write_1(btag, 0x0, 0x70, i + off); 404 *(dest + i) = bus_space_read_1(btag, 0x0, 0x71); 405 } 406 407 pci_write_config(bridge, 0x48, reg & ~0x40, 1); 408 } 409 410 static void 411 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest) 412 { 413 uint32_t filtsave, csrsave; 414 415 filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL); 416 csrsave = CSR_READ_4(sc, SIS_CSR); 417 418 CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave); 419 CSR_WRITE_4(sc, SIS_CSR, 0); 420 421 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE); 422 423 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); 424 ((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA); 425 CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1); 426 ((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA); 427 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); 428 ((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA); 429 430 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave); 431 CSR_WRITE_4(sc, SIS_CSR, csrsave); 432 } 433 #endif 434 435 /* 436 * Read the MII serial port for the MII bit-bang module. 437 */ 438 static uint32_t 439 sis_mii_bitbang_read(device_t dev) 440 { 441 struct sis_softc *sc; 442 uint32_t val; 443 444 sc = device_get_softc(dev); 445 446 val = CSR_READ_4(sc, SIS_EECTL); 447 CSR_BARRIER(sc, SIS_EECTL, 4, 448 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 449 return (val); 450 } 451 452 /* 453 * Write the MII serial port for the MII bit-bang module. 454 */ 455 static void 456 sis_mii_bitbang_write(device_t dev, uint32_t val) 457 { 458 struct sis_softc *sc; 459 460 sc = device_get_softc(dev); 461 462 CSR_WRITE_4(sc, SIS_EECTL, val); 463 CSR_BARRIER(sc, SIS_EECTL, 4, 464 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 465 } 466 467 static int 468 sis_miibus_readreg(device_t dev, int phy, int reg) 469 { 470 struct sis_softc *sc; 471 472 sc = device_get_softc(dev); 473 474 if (sc->sis_type == SIS_TYPE_83815) { 475 if (phy != 0) 476 return (0); 477 /* 478 * The NatSemi chip can take a while after 479 * a reset to come ready, during which the BMSR 480 * returns a value of 0. This is *never* supposed 481 * to happen: some of the BMSR bits are meant to 482 * be hardwired in the on position, and this can 483 * confuse the miibus code a bit during the probe 484 * and attach phase. So we make an effort to check 485 * for this condition and wait for it to clear. 486 */ 487 if (!CSR_READ_4(sc, NS_BMSR)) 488 DELAY(1000); 489 return CSR_READ_4(sc, NS_BMCR + (reg * 4)); 490 } 491 492 /* 493 * Chipsets < SIS_635 seem not to be able to read/write 494 * through mdio. Use the enhanced PHY access register 495 * again for them. 496 */ 497 if (sc->sis_type == SIS_TYPE_900 && 498 sc->sis_rev < SIS_REV_635) { 499 int i, val = 0; 500 501 if (phy != 0) 502 return (0); 503 504 CSR_WRITE_4(sc, SIS_PHYCTL, 505 (phy << 11) | (reg << 6) | SIS_PHYOP_READ); 506 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); 507 508 for (i = 0; i < SIS_TIMEOUT; i++) { 509 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) 510 break; 511 } 512 513 if (i == SIS_TIMEOUT) { 514 device_printf(sc->sis_dev, 515 "PHY failed to come ready\n"); 516 return (0); 517 } 518 519 val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF; 520 521 if (val == 0xFFFF) 522 return (0); 523 524 return (val); 525 } else 526 return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy, 527 reg)); 528 } 529 530 static int 531 sis_miibus_writereg(device_t dev, int phy, int reg, int data) 532 { 533 struct sis_softc *sc; 534 535 sc = device_get_softc(dev); 536 537 if (sc->sis_type == SIS_TYPE_83815) { 538 if (phy != 0) 539 return (0); 540 CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data); 541 return (0); 542 } 543 544 /* 545 * Chipsets < SIS_635 seem not to be able to read/write 546 * through mdio. Use the enhanced PHY access register 547 * again for them. 548 */ 549 if (sc->sis_type == SIS_TYPE_900 && 550 sc->sis_rev < SIS_REV_635) { 551 int i; 552 553 if (phy != 0) 554 return (0); 555 556 CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) | 557 (reg << 6) | SIS_PHYOP_WRITE); 558 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); 559 560 for (i = 0; i < SIS_TIMEOUT; i++) { 561 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) 562 break; 563 } 564 565 if (i == SIS_TIMEOUT) 566 device_printf(sc->sis_dev, 567 "PHY failed to come ready\n"); 568 } else 569 mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg, 570 data); 571 return (0); 572 } 573 574 static void 575 sis_miibus_statchg(device_t dev) 576 { 577 struct sis_softc *sc; 578 struct mii_data *mii; 579 struct ifnet *ifp; 580 uint32_t reg; 581 582 sc = device_get_softc(dev); 583 SIS_LOCK_ASSERT(sc); 584 585 mii = device_get_softc(sc->sis_miibus); 586 ifp = sc->sis_ifp; 587 if (mii == NULL || ifp == NULL || 588 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 589 return; 590 591 sc->sis_flags &= ~SIS_FLAG_LINK; 592 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 593 (IFM_ACTIVE | IFM_AVALID)) { 594 switch (IFM_SUBTYPE(mii->mii_media_active)) { 595 case IFM_10_T: 596 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10); 597 sc->sis_flags |= SIS_FLAG_LINK; 598 break; 599 case IFM_100_TX: 600 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); 601 sc->sis_flags |= SIS_FLAG_LINK; 602 break; 603 default: 604 break; 605 } 606 } 607 608 if ((sc->sis_flags & SIS_FLAG_LINK) == 0) { 609 /* 610 * Stopping MACs seem to reset SIS_TX_LISTPTR and 611 * SIS_RX_LISTPTR which in turn requires resetting 612 * TX/RX buffers. So just don't do anything for 613 * lost link. 614 */ 615 return; 616 } 617 618 /* Set full/half duplex mode. */ 619 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 620 SIS_SETBIT(sc, SIS_TX_CFG, 621 (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); 622 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); 623 } else { 624 SIS_CLRBIT(sc, SIS_TX_CFG, 625 (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); 626 SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); 627 } 628 629 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { 630 /* 631 * MPII03.D: Half Duplex Excessive Collisions. 632 * Also page 49 in 83816 manual 633 */ 634 SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D); 635 } 636 637 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A && 638 IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { 639 /* 640 * Short Cable Receive Errors (MP21.E) 641 */ 642 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); 643 reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff; 644 CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000); 645 DELAY(100); 646 reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff; 647 if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) { 648 device_printf(sc->sis_dev, 649 "Applying short cable fix (reg=%x)\n", reg); 650 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8); 651 SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20); 652 } 653 CSR_WRITE_4(sc, NS_PHY_PAGE, 0); 654 } 655 /* Enable TX/RX MACs. */ 656 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); 657 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE); 658 } 659 660 static uint32_t 661 sis_mchash(struct sis_softc *sc, const uint8_t *addr) 662 { 663 uint32_t crc; 664 665 /* Compute CRC for the address value. */ 666 crc = ether_crc32_be(addr, ETHER_ADDR_LEN); 667 668 /* 669 * return the filter bit position 670 * 671 * The NatSemi chip has a 512-bit filter, which is 672 * different than the SiS, so we special-case it. 673 */ 674 if (sc->sis_type == SIS_TYPE_83815) 675 return (crc >> 23); 676 else if (sc->sis_rev >= SIS_REV_635 || 677 sc->sis_rev == SIS_REV_900B) 678 return (crc >> 24); 679 else 680 return (crc >> 25); 681 } 682 683 static void 684 sis_rxfilter(struct sis_softc *sc) 685 { 686 687 SIS_LOCK_ASSERT(sc); 688 689 if (sc->sis_type == SIS_TYPE_83815) 690 sis_rxfilter_ns(sc); 691 else 692 sis_rxfilter_sis(sc); 693 } 694 695 static void 696 sis_rxfilter_ns(struct sis_softc *sc) 697 { 698 struct ifnet *ifp; 699 struct ifmultiaddr *ifma; 700 uint32_t h, i, filter; 701 int bit, index; 702 703 ifp = sc->sis_ifp; 704 filter = CSR_READ_4(sc, SIS_RXFILT_CTL); 705 if (filter & SIS_RXFILTCTL_ENABLE) { 706 /* 707 * Filter should be disabled to program other bits. 708 */ 709 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE); 710 CSR_READ_4(sc, SIS_RXFILT_CTL); 711 } 712 filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT | 713 NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD | 714 SIS_RXFILTCTL_ALLMULTI); 715 716 if (ifp->if_flags & IFF_BROADCAST) 717 filter |= SIS_RXFILTCTL_BROAD; 718 /* 719 * For the NatSemi chip, we have to explicitly enable the 720 * reception of ARP frames, as well as turn on the 'perfect 721 * match' filter where we store the station address, otherwise 722 * we won't receive unicasts meant for this host. 723 */ 724 filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT; 725 726 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { 727 filter |= SIS_RXFILTCTL_ALLMULTI; 728 if (ifp->if_flags & IFF_PROMISC) 729 filter |= SIS_RXFILTCTL_ALLPHYS; 730 } else { 731 /* 732 * We have to explicitly enable the multicast hash table 733 * on the NatSemi chip if we want to use it, which we do. 734 */ 735 filter |= NS_RXFILTCTL_MCHASH; 736 737 /* first, zot all the existing hash bits */ 738 for (i = 0; i < 32; i++) { 739 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + 740 (i * 2)); 741 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0); 742 } 743 744 if_maddr_rlock(ifp); 745 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 746 if (ifma->ifma_addr->sa_family != AF_LINK) 747 continue; 748 h = sis_mchash(sc, 749 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 750 index = h >> 3; 751 bit = h & 0x1F; 752 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + 753 index); 754 if (bit > 0xF) 755 bit -= 0x10; 756 SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit)); 757 } 758 if_maddr_runlock(ifp); 759 } 760 761 /* Turn the receive filter on */ 762 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE); 763 CSR_READ_4(sc, SIS_RXFILT_CTL); 764 } 765 766 static void 767 sis_rxfilter_sis(struct sis_softc *sc) 768 { 769 struct ifnet *ifp; 770 struct ifmultiaddr *ifma; 771 uint32_t filter, h, i, n; 772 uint16_t hashes[16]; 773 774 ifp = sc->sis_ifp; 775 776 /* hash table size */ 777 if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) 778 n = 16; 779 else 780 n = 8; 781 782 filter = CSR_READ_4(sc, SIS_RXFILT_CTL); 783 if (filter & SIS_RXFILTCTL_ENABLE) { 784 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE); 785 CSR_READ_4(sc, SIS_RXFILT_CTL); 786 } 787 filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD | 788 SIS_RXFILTCTL_ALLMULTI); 789 if (ifp->if_flags & IFF_BROADCAST) 790 filter |= SIS_RXFILTCTL_BROAD; 791 792 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { 793 filter |= SIS_RXFILTCTL_ALLMULTI; 794 if (ifp->if_flags & IFF_PROMISC) 795 filter |= SIS_RXFILTCTL_ALLPHYS; 796 for (i = 0; i < n; i++) 797 hashes[i] = ~0; 798 } else { 799 for (i = 0; i < n; i++) 800 hashes[i] = 0; 801 i = 0; 802 if_maddr_rlock(ifp); 803 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 804 if (ifma->ifma_addr->sa_family != AF_LINK) 805 continue; 806 h = sis_mchash(sc, 807 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 808 hashes[h >> 4] |= 1 << (h & 0xf); 809 i++; 810 } 811 if_maddr_runlock(ifp); 812 if (i > n) { 813 filter |= SIS_RXFILTCTL_ALLMULTI; 814 for (i = 0; i < n; i++) 815 hashes[i] = ~0; 816 } 817 } 818 819 for (i = 0; i < n; i++) { 820 CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16); 821 CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]); 822 } 823 824 /* Turn the receive filter on */ 825 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE); 826 CSR_READ_4(sc, SIS_RXFILT_CTL); 827 } 828 829 static void 830 sis_reset(struct sis_softc *sc) 831 { 832 int i; 833 834 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET); 835 836 for (i = 0; i < SIS_TIMEOUT; i++) { 837 if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET)) 838 break; 839 } 840 841 if (i == SIS_TIMEOUT) 842 device_printf(sc->sis_dev, "reset never completed\n"); 843 844 /* Wait a little while for the chip to get its brains in order. */ 845 DELAY(1000); 846 847 /* 848 * If this is a NetSemi chip, make sure to clear 849 * PME mode. 850 */ 851 if (sc->sis_type == SIS_TYPE_83815) { 852 CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS); 853 CSR_WRITE_4(sc, NS_CLKRUN, 0); 854 } else { 855 /* Disable WOL functions. */ 856 CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0); 857 } 858 } 859 860 /* 861 * Probe for an SiS chip. Check the PCI vendor and device 862 * IDs against our list and return a device name if we find a match. 863 */ 864 static int 865 sis_probe(device_t dev) 866 { 867 const struct sis_type *t; 868 869 t = sis_devs; 870 871 while (t->sis_name != NULL) { 872 if ((pci_get_vendor(dev) == t->sis_vid) && 873 (pci_get_device(dev) == t->sis_did)) { 874 device_set_desc(dev, t->sis_name); 875 return (BUS_PROBE_DEFAULT); 876 } 877 t++; 878 } 879 880 return (ENXIO); 881 } 882 883 /* 884 * Attach the interface. Allocate softc structures, do ifmedia 885 * setup and ethernet/BPF attach. 886 */ 887 static int 888 sis_attach(device_t dev) 889 { 890 u_char eaddr[ETHER_ADDR_LEN]; 891 struct sis_softc *sc; 892 struct ifnet *ifp; 893 int error = 0, pmc, waittime = 0; 894 895 waittime = 0; 896 sc = device_get_softc(dev); 897 898 sc->sis_dev = dev; 899 900 mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 901 MTX_DEF); 902 callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0); 903 904 if (pci_get_device(dev) == SIS_DEVICEID_900) 905 sc->sis_type = SIS_TYPE_900; 906 if (pci_get_device(dev) == SIS_DEVICEID_7016) 907 sc->sis_type = SIS_TYPE_7016; 908 if (pci_get_vendor(dev) == NS_VENDORID) 909 sc->sis_type = SIS_TYPE_83815; 910 911 sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1); 912 /* 913 * Map control/status registers. 914 */ 915 pci_enable_busmaster(dev); 916 917 error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res); 918 if (error) { 919 device_printf(dev, "couldn't allocate resources\n"); 920 goto fail; 921 } 922 923 /* Reset the adapter. */ 924 sis_reset(sc); 925 926 if (sc->sis_type == SIS_TYPE_900 && 927 (sc->sis_rev == SIS_REV_635 || 928 sc->sis_rev == SIS_REV_900B)) { 929 SIO_SET(SIS_CFG_RND_CNT); 930 SIO_SET(SIS_CFG_PERR_DETECT); 931 } 932 933 /* 934 * Get station address from the EEPROM. 935 */ 936 switch (pci_get_vendor(dev)) { 937 case NS_VENDORID: 938 sc->sis_srr = CSR_READ_4(sc, NS_SRR); 939 940 /* We can't update the device description, so spew */ 941 if (sc->sis_srr == NS_SRR_15C) 942 device_printf(dev, "Silicon Revision: DP83815C\n"); 943 else if (sc->sis_srr == NS_SRR_15D) 944 device_printf(dev, "Silicon Revision: DP83815D\n"); 945 else if (sc->sis_srr == NS_SRR_16A) 946 device_printf(dev, "Silicon Revision: DP83816A\n"); 947 else 948 device_printf(dev, "Silicon Revision %x\n", sc->sis_srr); 949 950 /* 951 * Reading the MAC address out of the EEPROM on 952 * the NatSemi chip takes a bit more work than 953 * you'd expect. The address spans 4 16-bit words, 954 * with the first word containing only a single bit. 955 * You have to shift everything over one bit to 956 * get it aligned properly. Also, the bits are 957 * stored backwards (the LSB is really the MSB, 958 * and so on) so you have to reverse them in order 959 * to get the MAC address into the form we want. 960 * Why? Who the hell knows. 961 */ 962 { 963 uint16_t tmp[4]; 964 965 sis_read_eeprom(sc, (caddr_t)&tmp, 966 NS_EE_NODEADDR, 4, 0); 967 968 /* Shift everything over one bit. */ 969 tmp[3] = tmp[3] >> 1; 970 tmp[3] |= tmp[2] << 15; 971 tmp[2] = tmp[2] >> 1; 972 tmp[2] |= tmp[1] << 15; 973 tmp[1] = tmp[1] >> 1; 974 tmp[1] |= tmp[0] << 15; 975 976 /* Now reverse all the bits. */ 977 tmp[3] = sis_reverse(tmp[3]); 978 tmp[2] = sis_reverse(tmp[2]); 979 tmp[1] = sis_reverse(tmp[1]); 980 981 eaddr[0] = (tmp[1] >> 0) & 0xFF; 982 eaddr[1] = (tmp[1] >> 8) & 0xFF; 983 eaddr[2] = (tmp[2] >> 0) & 0xFF; 984 eaddr[3] = (tmp[2] >> 8) & 0xFF; 985 eaddr[4] = (tmp[3] >> 0) & 0xFF; 986 eaddr[5] = (tmp[3] >> 8) & 0xFF; 987 } 988 break; 989 case SIS_VENDORID: 990 default: 991 #if defined(__i386__) || defined(__amd64__) 992 /* 993 * If this is a SiS 630E chipset with an embedded 994 * SiS 900 controller, we have to read the MAC address 995 * from the APC CMOS RAM. Our method for doing this 996 * is very ugly since we have to reach out and grab 997 * ahold of hardware for which we cannot properly 998 * allocate resources. This code is only compiled on 999 * the i386 architecture since the SiS 630E chipset 1000 * is for x86 motherboards only. Note that there are 1001 * a lot of magic numbers in this hack. These are 1002 * taken from SiS's Linux driver. I'd like to replace 1003 * them with proper symbolic definitions, but that 1004 * requires some datasheets that I don't have access 1005 * to at the moment. 1006 */ 1007 if (sc->sis_rev == SIS_REV_630S || 1008 sc->sis_rev == SIS_REV_630E || 1009 sc->sis_rev == SIS_REV_630EA1) 1010 sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6); 1011 1012 else if (sc->sis_rev == SIS_REV_635 || 1013 sc->sis_rev == SIS_REV_630ET) 1014 sis_read_mac(sc, dev, (caddr_t)&eaddr); 1015 else if (sc->sis_rev == SIS_REV_96x) { 1016 /* Allow to read EEPROM from LAN. It is shared 1017 * between a 1394 controller and the NIC and each 1018 * time we access it, we need to set SIS_EECMD_REQ. 1019 */ 1020 SIO_SET(SIS_EECMD_REQ); 1021 for (waittime = 0; waittime < SIS_TIMEOUT; 1022 waittime++) { 1023 /* Force EEPROM to idle state. */ 1024 sis_eeprom_idle(sc); 1025 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) { 1026 sis_read_eeprom(sc, (caddr_t)&eaddr, 1027 SIS_EE_NODEADDR, 3, 0); 1028 break; 1029 } 1030 DELAY(1); 1031 } 1032 /* 1033 * Set SIS_EECTL_CLK to high, so a other master 1034 * can operate on the i2c bus. 1035 */ 1036 SIO_SET(SIS_EECTL_CLK); 1037 /* Refuse EEPROM access by LAN */ 1038 SIO_SET(SIS_EECMD_DONE); 1039 } else 1040 #endif 1041 sis_read_eeprom(sc, (caddr_t)&eaddr, 1042 SIS_EE_NODEADDR, 3, 0); 1043 break; 1044 } 1045 1046 sis_add_sysctls(sc); 1047 1048 /* Allocate DMA'able memory. */ 1049 if ((error = sis_dma_alloc(sc)) != 0) 1050 goto fail; 1051 1052 ifp = sc->sis_ifp = if_alloc(IFT_ETHER); 1053 if (ifp == NULL) { 1054 device_printf(dev, "can not if_alloc()\n"); 1055 error = ENOSPC; 1056 goto fail; 1057 } 1058 ifp->if_softc = sc; 1059 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1060 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1061 ifp->if_ioctl = sis_ioctl; 1062 ifp->if_start = sis_start; 1063 ifp->if_init = sis_init; 1064 IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1); 1065 ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1; 1066 IFQ_SET_READY(&ifp->if_snd); 1067 1068 if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) { 1069 if (sc->sis_type == SIS_TYPE_83815) 1070 ifp->if_capabilities |= IFCAP_WOL; 1071 else 1072 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 1073 ifp->if_capenable = ifp->if_capabilities; 1074 } 1075 1076 /* 1077 * Do MII setup. 1078 */ 1079 error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd, 1080 sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); 1081 if (error != 0) { 1082 device_printf(dev, "attaching PHYs failed\n"); 1083 goto fail; 1084 } 1085 1086 /* 1087 * Call MI attach routine. 1088 */ 1089 ether_ifattach(ifp, eaddr); 1090 1091 /* 1092 * Tell the upper layer(s) we support long frames. 1093 */ 1094 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 1095 ifp->if_capabilities |= IFCAP_VLAN_MTU; 1096 ifp->if_capenable = ifp->if_capabilities; 1097 #ifdef DEVICE_POLLING 1098 ifp->if_capabilities |= IFCAP_POLLING; 1099 #endif 1100 1101 /* Hook interrupt last to avoid having to lock softc */ 1102 error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE, 1103 NULL, sis_intr, sc, &sc->sis_intrhand); 1104 1105 if (error) { 1106 device_printf(dev, "couldn't set up irq\n"); 1107 ether_ifdetach(ifp); 1108 goto fail; 1109 } 1110 1111 fail: 1112 if (error) 1113 sis_detach(dev); 1114 1115 return (error); 1116 } 1117 1118 /* 1119 * Shutdown hardware and free up resources. This can be called any 1120 * time after the mutex has been initialized. It is called in both 1121 * the error case in attach and the normal detach case so it needs 1122 * to be careful about only freeing resources that have actually been 1123 * allocated. 1124 */ 1125 static int 1126 sis_detach(device_t dev) 1127 { 1128 struct sis_softc *sc; 1129 struct ifnet *ifp; 1130 1131 sc = device_get_softc(dev); 1132 KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized")); 1133 ifp = sc->sis_ifp; 1134 1135 #ifdef DEVICE_POLLING 1136 if (ifp->if_capenable & IFCAP_POLLING) 1137 ether_poll_deregister(ifp); 1138 #endif 1139 1140 /* These should only be active if attach succeeded. */ 1141 if (device_is_attached(dev)) { 1142 SIS_LOCK(sc); 1143 sis_stop(sc); 1144 SIS_UNLOCK(sc); 1145 callout_drain(&sc->sis_stat_ch); 1146 ether_ifdetach(ifp); 1147 } 1148 if (sc->sis_miibus) 1149 device_delete_child(dev, sc->sis_miibus); 1150 bus_generic_detach(dev); 1151 1152 if (sc->sis_intrhand) 1153 bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand); 1154 bus_release_resources(dev, sis_res_spec, sc->sis_res); 1155 1156 if (ifp) 1157 if_free(ifp); 1158 1159 sis_dma_free(sc); 1160 1161 mtx_destroy(&sc->sis_mtx); 1162 1163 return (0); 1164 } 1165 1166 struct sis_dmamap_arg { 1167 bus_addr_t sis_busaddr; 1168 }; 1169 1170 static void 1171 sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1172 { 1173 struct sis_dmamap_arg *ctx; 1174 1175 if (error != 0) 1176 return; 1177 1178 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1179 1180 ctx = (struct sis_dmamap_arg *)arg; 1181 ctx->sis_busaddr = segs[0].ds_addr; 1182 } 1183 1184 static int 1185 sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment, 1186 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 1187 bus_addr_t *paddr, const char *msg) 1188 { 1189 struct sis_dmamap_arg ctx; 1190 int error; 1191 1192 error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0, 1193 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1, 1194 maxsize, 0, NULL, NULL, tag); 1195 if (error != 0) { 1196 device_printf(sc->sis_dev, 1197 "could not create %s dma tag\n", msg); 1198 return (ENOMEM); 1199 } 1200 /* Allocate DMA'able memory for ring. */ 1201 error = bus_dmamem_alloc(*tag, (void **)ring, 1202 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 1203 if (error != 0) { 1204 device_printf(sc->sis_dev, 1205 "could not allocate DMA'able memory for %s\n", msg); 1206 return (ENOMEM); 1207 } 1208 /* Load the address of the ring. */ 1209 ctx.sis_busaddr = 0; 1210 error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb, 1211 &ctx, BUS_DMA_NOWAIT); 1212 if (error != 0) { 1213 device_printf(sc->sis_dev, 1214 "could not load DMA'able memory for %s\n", msg); 1215 return (ENOMEM); 1216 } 1217 *paddr = ctx.sis_busaddr; 1218 return (0); 1219 } 1220 1221 static int 1222 sis_dma_alloc(struct sis_softc *sc) 1223 { 1224 struct sis_rxdesc *rxd; 1225 struct sis_txdesc *txd; 1226 int error, i; 1227 1228 /* Allocate the parent bus DMA tag appropriate for PCI. */ 1229 error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev), 1230 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1231 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 1232 0, NULL, NULL, &sc->sis_parent_tag); 1233 if (error != 0) { 1234 device_printf(sc->sis_dev, 1235 "could not allocate parent dma tag\n"); 1236 return (ENOMEM); 1237 } 1238 1239 /* Create RX ring. */ 1240 error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ, 1241 &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list, 1242 &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring"); 1243 if (error) 1244 return (error); 1245 1246 /* Create TX ring. */ 1247 error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ, 1248 &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list, 1249 &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring"); 1250 if (error) 1251 return (error); 1252 1253 /* Create tag for RX mbufs. */ 1254 error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0, 1255 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, 1256 MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag); 1257 if (error) { 1258 device_printf(sc->sis_dev, "could not allocate RX dma tag\n"); 1259 return (error); 1260 } 1261 1262 /* Create tag for TX mbufs. */ 1263 error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0, 1264 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1265 MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL, 1266 &sc->sis_tx_tag); 1267 if (error) { 1268 device_printf(sc->sis_dev, "could not allocate TX dma tag\n"); 1269 return (error); 1270 } 1271 1272 /* Create DMA maps for RX buffers. */ 1273 error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap); 1274 if (error) { 1275 device_printf(sc->sis_dev, 1276 "can't create spare DMA map for RX\n"); 1277 return (error); 1278 } 1279 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1280 rxd = &sc->sis_rxdesc[i]; 1281 rxd->rx_m = NULL; 1282 error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap); 1283 if (error) { 1284 device_printf(sc->sis_dev, 1285 "can't create DMA map for RX\n"); 1286 return (error); 1287 } 1288 } 1289 1290 /* Create DMA maps for TX buffers. */ 1291 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1292 txd = &sc->sis_txdesc[i]; 1293 txd->tx_m = NULL; 1294 error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap); 1295 if (error) { 1296 device_printf(sc->sis_dev, 1297 "can't create DMA map for TX\n"); 1298 return (error); 1299 } 1300 } 1301 1302 return (0); 1303 } 1304 1305 static void 1306 sis_dma_free(struct sis_softc *sc) 1307 { 1308 struct sis_rxdesc *rxd; 1309 struct sis_txdesc *txd; 1310 int i; 1311 1312 /* Destroy DMA maps for RX buffers. */ 1313 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1314 rxd = &sc->sis_rxdesc[i]; 1315 if (rxd->rx_dmamap) 1316 bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap); 1317 } 1318 if (sc->sis_rx_sparemap) 1319 bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap); 1320 1321 /* Destroy DMA maps for TX buffers. */ 1322 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1323 txd = &sc->sis_txdesc[i]; 1324 if (txd->tx_dmamap) 1325 bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap); 1326 } 1327 1328 if (sc->sis_rx_tag) 1329 bus_dma_tag_destroy(sc->sis_rx_tag); 1330 if (sc->sis_tx_tag) 1331 bus_dma_tag_destroy(sc->sis_tx_tag); 1332 1333 /* Destroy RX ring. */ 1334 if (sc->sis_rx_paddr) 1335 bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map); 1336 if (sc->sis_rx_list) 1337 bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list, 1338 sc->sis_rx_list_map); 1339 1340 if (sc->sis_rx_list_tag) 1341 bus_dma_tag_destroy(sc->sis_rx_list_tag); 1342 1343 /* Destroy TX ring. */ 1344 if (sc->sis_tx_paddr) 1345 bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map); 1346 1347 if (sc->sis_tx_list) 1348 bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list, 1349 sc->sis_tx_list_map); 1350 1351 if (sc->sis_tx_list_tag) 1352 bus_dma_tag_destroy(sc->sis_tx_list_tag); 1353 1354 /* Destroy the parent tag. */ 1355 if (sc->sis_parent_tag) 1356 bus_dma_tag_destroy(sc->sis_parent_tag); 1357 } 1358 1359 /* 1360 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that 1361 * we arrange the descriptors in a closed ring, so that the last descriptor 1362 * points back to the first. 1363 */ 1364 static int 1365 sis_ring_init(struct sis_softc *sc) 1366 { 1367 struct sis_rxdesc *rxd; 1368 struct sis_txdesc *txd; 1369 bus_addr_t next; 1370 int error, i; 1371 1372 bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ); 1373 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1374 txd = &sc->sis_txdesc[i]; 1375 txd->tx_m = NULL; 1376 if (i == SIS_TX_LIST_CNT - 1) 1377 next = SIS_TX_RING_ADDR(sc, 0); 1378 else 1379 next = SIS_TX_RING_ADDR(sc, i + 1); 1380 sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next)); 1381 } 1382 sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0; 1383 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, 1384 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1385 1386 sc->sis_rx_cons = 0; 1387 bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ); 1388 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1389 rxd = &sc->sis_rxdesc[i]; 1390 rxd->rx_desc = &sc->sis_rx_list[i]; 1391 if (i == SIS_RX_LIST_CNT - 1) 1392 next = SIS_RX_RING_ADDR(sc, 0); 1393 else 1394 next = SIS_RX_RING_ADDR(sc, i + 1); 1395 rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next)); 1396 error = sis_newbuf(sc, rxd); 1397 if (error) 1398 return (error); 1399 } 1400 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, 1401 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1402 1403 return (0); 1404 } 1405 1406 /* 1407 * Initialize an RX descriptor and attach an MBUF cluster. 1408 */ 1409 static int 1410 sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd) 1411 { 1412 struct mbuf *m; 1413 bus_dma_segment_t segs[1]; 1414 bus_dmamap_t map; 1415 int nsegs; 1416 1417 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1418 if (m == NULL) 1419 return (ENOBUFS); 1420 m->m_len = m->m_pkthdr.len = SIS_RXLEN; 1421 #ifndef __NO_STRICT_ALIGNMENT 1422 m_adj(m, SIS_RX_BUF_ALIGN); 1423 #endif 1424 1425 if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m, 1426 segs, &nsegs, 0) != 0) { 1427 m_freem(m); 1428 return (ENOBUFS); 1429 } 1430 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1431 1432 if (rxd->rx_m != NULL) { 1433 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, 1434 BUS_DMASYNC_POSTREAD); 1435 bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap); 1436 } 1437 map = rxd->rx_dmamap; 1438 rxd->rx_dmamap = sc->sis_rx_sparemap; 1439 sc->sis_rx_sparemap = map; 1440 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); 1441 rxd->rx_m = m; 1442 rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr)); 1443 rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN); 1444 return (0); 1445 } 1446 1447 static __inline void 1448 sis_discard_rxbuf(struct sis_rxdesc *rxd) 1449 { 1450 1451 rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN); 1452 } 1453 1454 #ifndef __NO_STRICT_ALIGNMENT 1455 static __inline void 1456 sis_fixup_rx(struct mbuf *m) 1457 { 1458 uint16_t *src, *dst; 1459 int i; 1460 1461 src = mtod(m, uint16_t *); 1462 dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src); 1463 1464 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1465 *dst++ = *src++; 1466 1467 m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN; 1468 } 1469 #endif 1470 1471 /* 1472 * A frame has been uploaded: pass the resulting mbuf chain up to 1473 * the higher level protocols. 1474 */ 1475 static int 1476 sis_rxeof(struct sis_softc *sc) 1477 { 1478 struct mbuf *m; 1479 struct ifnet *ifp; 1480 struct sis_rxdesc *rxd; 1481 struct sis_desc *cur_rx; 1482 int prog, rx_cons, rx_npkts = 0, total_len; 1483 uint32_t rxstat; 1484 1485 SIS_LOCK_ASSERT(sc); 1486 1487 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, 1488 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1489 1490 rx_cons = sc->sis_rx_cons; 1491 ifp = sc->sis_ifp; 1492 1493 for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; 1494 SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) { 1495 #ifdef DEVICE_POLLING 1496 if (ifp->if_capenable & IFCAP_POLLING) { 1497 if (sc->rxcycles <= 0) 1498 break; 1499 sc->rxcycles--; 1500 } 1501 #endif 1502 cur_rx = &sc->sis_rx_list[rx_cons]; 1503 rxstat = le32toh(cur_rx->sis_cmdsts); 1504 if ((rxstat & SIS_CMDSTS_OWN) == 0) 1505 break; 1506 rxd = &sc->sis_rxdesc[rx_cons]; 1507 1508 total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN; 1509 if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 && 1510 total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN - 1511 ETHER_CRC_LEN)) 1512 rxstat &= ~SIS_RXSTAT_GIANT; 1513 if (SIS_RXSTAT_ERROR(rxstat) != 0) { 1514 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1515 if (rxstat & SIS_RXSTAT_COLL) 1516 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1517 sis_discard_rxbuf(rxd); 1518 continue; 1519 } 1520 1521 /* Add a new receive buffer to the ring. */ 1522 m = rxd->rx_m; 1523 if (sis_newbuf(sc, rxd) != 0) { 1524 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1525 sis_discard_rxbuf(rxd); 1526 continue; 1527 } 1528 1529 /* No errors; receive the packet. */ 1530 m->m_pkthdr.len = m->m_len = total_len; 1531 #ifndef __NO_STRICT_ALIGNMENT 1532 /* 1533 * On architectures without alignment problems we try to 1534 * allocate a new buffer for the receive ring, and pass up 1535 * the one where the packet is already, saving the expensive 1536 * copy operation. 1537 */ 1538 sis_fixup_rx(m); 1539 #endif 1540 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1541 m->m_pkthdr.rcvif = ifp; 1542 1543 SIS_UNLOCK(sc); 1544 (*ifp->if_input)(ifp, m); 1545 SIS_LOCK(sc); 1546 rx_npkts++; 1547 } 1548 1549 if (prog > 0) { 1550 sc->sis_rx_cons = rx_cons; 1551 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, 1552 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1553 } 1554 1555 return (rx_npkts); 1556 } 1557 1558 /* 1559 * A frame was downloaded to the chip. It's safe for us to clean up 1560 * the list buffers. 1561 */ 1562 1563 static void 1564 sis_txeof(struct sis_softc *sc) 1565 { 1566 struct ifnet *ifp; 1567 struct sis_desc *cur_tx; 1568 struct sis_txdesc *txd; 1569 uint32_t cons, txstat; 1570 1571 SIS_LOCK_ASSERT(sc); 1572 1573 cons = sc->sis_tx_cons; 1574 if (cons == sc->sis_tx_prod) 1575 return; 1576 1577 ifp = sc->sis_ifp; 1578 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, 1579 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1580 1581 /* 1582 * Go through our tx list and free mbufs for those 1583 * frames that have been transmitted. 1584 */ 1585 for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) { 1586 cur_tx = &sc->sis_tx_list[cons]; 1587 txstat = le32toh(cur_tx->sis_cmdsts); 1588 if ((txstat & SIS_CMDSTS_OWN) != 0) 1589 break; 1590 txd = &sc->sis_txdesc[cons]; 1591 if (txd->tx_m != NULL) { 1592 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, 1593 BUS_DMASYNC_POSTWRITE); 1594 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); 1595 m_freem(txd->tx_m); 1596 txd->tx_m = NULL; 1597 if ((txstat & SIS_CMDSTS_PKT_OK) != 0) { 1598 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1599 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1600 (txstat & SIS_TXSTAT_COLLCNT) >> 16); 1601 } else { 1602 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1603 if (txstat & SIS_TXSTAT_EXCESSCOLLS) 1604 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1605 if (txstat & SIS_TXSTAT_OUTOFWINCOLL) 1606 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1607 } 1608 } 1609 sc->sis_tx_cnt--; 1610 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1611 } 1612 sc->sis_tx_cons = cons; 1613 if (sc->sis_tx_cnt == 0) 1614 sc->sis_watchdog_timer = 0; 1615 } 1616 1617 static void 1618 sis_tick(void *xsc) 1619 { 1620 struct sis_softc *sc; 1621 struct mii_data *mii; 1622 1623 sc = xsc; 1624 SIS_LOCK_ASSERT(sc); 1625 1626 mii = device_get_softc(sc->sis_miibus); 1627 mii_tick(mii); 1628 sis_watchdog(sc); 1629 if ((sc->sis_flags & SIS_FLAG_LINK) == 0) 1630 sis_miibus_statchg(sc->sis_dev); 1631 callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc); 1632 } 1633 1634 #ifdef DEVICE_POLLING 1635 static poll_handler_t sis_poll; 1636 1637 static int 1638 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1639 { 1640 struct sis_softc *sc = ifp->if_softc; 1641 int rx_npkts = 0; 1642 1643 SIS_LOCK(sc); 1644 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1645 SIS_UNLOCK(sc); 1646 return (rx_npkts); 1647 } 1648 1649 /* 1650 * On the sis, reading the status register also clears it. 1651 * So before returning to intr mode we must make sure that all 1652 * possible pending sources of interrupts have been served. 1653 * In practice this means run to completion the *eof routines, 1654 * and then call the interrupt routine 1655 */ 1656 sc->rxcycles = count; 1657 rx_npkts = sis_rxeof(sc); 1658 sis_txeof(sc); 1659 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1660 sis_startl(ifp); 1661 1662 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) { 1663 uint32_t status; 1664 1665 /* Reading the ISR register clears all interrupts. */ 1666 status = CSR_READ_4(sc, SIS_ISR); 1667 1668 if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW)) 1669 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1670 1671 if (status & (SIS_ISR_RX_IDLE)) 1672 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); 1673 1674 if (status & SIS_ISR_SYSERR) { 1675 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1676 sis_initl(sc); 1677 } 1678 } 1679 1680 SIS_UNLOCK(sc); 1681 return (rx_npkts); 1682 } 1683 #endif /* DEVICE_POLLING */ 1684 1685 static void 1686 sis_intr(void *arg) 1687 { 1688 struct sis_softc *sc; 1689 struct ifnet *ifp; 1690 uint32_t status; 1691 1692 sc = arg; 1693 ifp = sc->sis_ifp; 1694 1695 SIS_LOCK(sc); 1696 #ifdef DEVICE_POLLING 1697 if (ifp->if_capenable & IFCAP_POLLING) { 1698 SIS_UNLOCK(sc); 1699 return; 1700 } 1701 #endif 1702 1703 /* Reading the ISR register clears all interrupts. */ 1704 status = CSR_READ_4(sc, SIS_ISR); 1705 if ((status & SIS_INTRS) == 0) { 1706 /* Not ours. */ 1707 SIS_UNLOCK(sc); 1708 return; 1709 } 1710 1711 /* Disable interrupts. */ 1712 CSR_WRITE_4(sc, SIS_IER, 0); 1713 1714 for (;(status & SIS_INTRS) != 0;) { 1715 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1716 break; 1717 if (status & 1718 (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | 1719 SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) ) 1720 sis_txeof(sc); 1721 1722 if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | 1723 SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE)) 1724 sis_rxeof(sc); 1725 1726 if (status & SIS_ISR_RX_OFLOW) 1727 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1728 1729 if (status & (SIS_ISR_RX_IDLE)) 1730 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); 1731 1732 if (status & SIS_ISR_SYSERR) { 1733 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1734 sis_initl(sc); 1735 SIS_UNLOCK(sc); 1736 return; 1737 } 1738 status = CSR_READ_4(sc, SIS_ISR); 1739 } 1740 1741 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1742 /* Re-enable interrupts. */ 1743 CSR_WRITE_4(sc, SIS_IER, 1); 1744 1745 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1746 sis_startl(ifp); 1747 } 1748 1749 SIS_UNLOCK(sc); 1750 } 1751 1752 /* 1753 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1754 * pointers to the fragment pointers. 1755 */ 1756 static int 1757 sis_encap(struct sis_softc *sc, struct mbuf **m_head) 1758 { 1759 struct mbuf *m; 1760 struct sis_txdesc *txd; 1761 struct sis_desc *f; 1762 bus_dma_segment_t segs[SIS_MAXTXSEGS]; 1763 bus_dmamap_t map; 1764 int error, i, frag, nsegs, prod; 1765 int padlen; 1766 1767 prod = sc->sis_tx_prod; 1768 txd = &sc->sis_txdesc[prod]; 1769 if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 && 1770 (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) { 1771 m = *m_head; 1772 padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len; 1773 if (M_WRITABLE(m) == 0) { 1774 /* Get a writable copy. */ 1775 m = m_dup(*m_head, M_NOWAIT); 1776 m_freem(*m_head); 1777 if (m == NULL) { 1778 *m_head = NULL; 1779 return (ENOBUFS); 1780 } 1781 *m_head = m; 1782 } 1783 if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) { 1784 m = m_defrag(m, M_NOWAIT); 1785 if (m == NULL) { 1786 m_freem(*m_head); 1787 *m_head = NULL; 1788 return (ENOBUFS); 1789 } 1790 } 1791 /* 1792 * Manually pad short frames, and zero the pad space 1793 * to avoid leaking data. 1794 */ 1795 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); 1796 m->m_pkthdr.len += padlen; 1797 m->m_len = m->m_pkthdr.len; 1798 *m_head = m; 1799 } 1800 error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap, 1801 *m_head, segs, &nsegs, 0); 1802 if (error == EFBIG) { 1803 m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS); 1804 if (m == NULL) { 1805 m_freem(*m_head); 1806 *m_head = NULL; 1807 return (ENOBUFS); 1808 } 1809 *m_head = m; 1810 error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap, 1811 *m_head, segs, &nsegs, 0); 1812 if (error != 0) { 1813 m_freem(*m_head); 1814 *m_head = NULL; 1815 return (error); 1816 } 1817 } else if (error != 0) 1818 return (error); 1819 1820 /* Check for descriptor overruns. */ 1821 if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) { 1822 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); 1823 return (ENOBUFS); 1824 } 1825 1826 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); 1827 1828 frag = prod; 1829 for (i = 0; i < nsegs; i++) { 1830 f = &sc->sis_tx_list[prod]; 1831 if (i == 0) 1832 f->sis_cmdsts = htole32(segs[i].ds_len | 1833 SIS_CMDSTS_MORE); 1834 else 1835 f->sis_cmdsts = htole32(segs[i].ds_len | 1836 SIS_CMDSTS_OWN | SIS_CMDSTS_MORE); 1837 f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr)); 1838 SIS_INC(prod, SIS_TX_LIST_CNT); 1839 sc->sis_tx_cnt++; 1840 } 1841 1842 /* Update producer index. */ 1843 sc->sis_tx_prod = prod; 1844 1845 /* Remove MORE flag on the last descriptor. */ 1846 prod = (prod - 1) & (SIS_TX_LIST_CNT - 1); 1847 f = &sc->sis_tx_list[prod]; 1848 f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE); 1849 1850 /* Lastly transfer ownership of packet to the controller. */ 1851 f = &sc->sis_tx_list[frag]; 1852 f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN); 1853 1854 /* Swap the last and the first dmamaps. */ 1855 map = txd->tx_dmamap; 1856 txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap; 1857 sc->sis_txdesc[prod].tx_dmamap = map; 1858 sc->sis_txdesc[prod].tx_m = *m_head; 1859 1860 return (0); 1861 } 1862 1863 static void 1864 sis_start(struct ifnet *ifp) 1865 { 1866 struct sis_softc *sc; 1867 1868 sc = ifp->if_softc; 1869 SIS_LOCK(sc); 1870 sis_startl(ifp); 1871 SIS_UNLOCK(sc); 1872 } 1873 1874 static void 1875 sis_startl(struct ifnet *ifp) 1876 { 1877 struct sis_softc *sc; 1878 struct mbuf *m_head; 1879 int queued; 1880 1881 sc = ifp->if_softc; 1882 1883 SIS_LOCK_ASSERT(sc); 1884 1885 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1886 IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0) 1887 return; 1888 1889 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 1890 sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) { 1891 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1892 if (m_head == NULL) 1893 break; 1894 1895 if (sis_encap(sc, &m_head) != 0) { 1896 if (m_head == NULL) 1897 break; 1898 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1899 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1900 break; 1901 } 1902 1903 queued++; 1904 1905 /* 1906 * If there's a BPF listener, bounce a copy of this frame 1907 * to him. 1908 */ 1909 BPF_MTAP(ifp, m_head); 1910 } 1911 1912 if (queued) { 1913 /* Transmit */ 1914 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, 1915 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1916 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE); 1917 1918 /* 1919 * Set a timeout in case the chip goes out to lunch. 1920 */ 1921 sc->sis_watchdog_timer = 5; 1922 } 1923 } 1924 1925 static void 1926 sis_init(void *xsc) 1927 { 1928 struct sis_softc *sc = xsc; 1929 1930 SIS_LOCK(sc); 1931 sis_initl(sc); 1932 SIS_UNLOCK(sc); 1933 } 1934 1935 static void 1936 sis_initl(struct sis_softc *sc) 1937 { 1938 struct ifnet *ifp = sc->sis_ifp; 1939 struct mii_data *mii; 1940 uint8_t *eaddr; 1941 1942 SIS_LOCK_ASSERT(sc); 1943 1944 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1945 return; 1946 1947 /* 1948 * Cancel pending I/O and free all RX/TX buffers. 1949 */ 1950 sis_stop(sc); 1951 /* 1952 * Reset the chip to a known state. 1953 */ 1954 sis_reset(sc); 1955 #ifdef notyet 1956 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { 1957 /* 1958 * Configure 400usec of interrupt holdoff. This is based 1959 * on emperical tests on a Soekris 4801. 1960 */ 1961 CSR_WRITE_4(sc, NS_IHR, 0x100 | 4); 1962 } 1963 #endif 1964 1965 mii = device_get_softc(sc->sis_miibus); 1966 1967 /* Set MAC address */ 1968 eaddr = IF_LLADDR(sc->sis_ifp); 1969 if (sc->sis_type == SIS_TYPE_83815) { 1970 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0); 1971 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8); 1972 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1); 1973 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8); 1974 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2); 1975 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8); 1976 } else { 1977 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); 1978 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8); 1979 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); 1980 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8); 1981 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); 1982 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8); 1983 } 1984 1985 /* Init circular TX/RX lists. */ 1986 if (sis_ring_init(sc) != 0) { 1987 device_printf(sc->sis_dev, 1988 "initialization failed: no memory for rx buffers\n"); 1989 sis_stop(sc); 1990 return; 1991 } 1992 1993 if (sc->sis_type == SIS_TYPE_83815) { 1994 if (sc->sis_manual_pad != 0) 1995 sc->sis_flags |= SIS_FLAG_MANUAL_PAD; 1996 else 1997 sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD; 1998 } 1999 2000 /* 2001 * Short Cable Receive Errors (MP21.E) 2002 * also: Page 78 of the DP83815 data sheet (september 2002 version) 2003 * recommends the following register settings "for optimum 2004 * performance." for rev 15C. Set this also for 15D parts as 2005 * they require it in practice. 2006 */ 2007 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) { 2008 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); 2009 CSR_WRITE_4(sc, NS_PHY_CR, 0x189C); 2010 /* set val for c2 */ 2011 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000); 2012 /* load/kill c2 */ 2013 CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040); 2014 /* rais SD off, from 4 to c */ 2015 CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C); 2016 CSR_WRITE_4(sc, NS_PHY_PAGE, 0); 2017 } 2018 2019 sis_rxfilter(sc); 2020 2021 /* 2022 * Load the address of the RX and TX lists. 2023 */ 2024 CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr)); 2025 CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr)); 2026 2027 /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of 2028 * the PCI bus. When this bit is set, the Max DMA Burst Size 2029 * for TX/RX DMA should be no larger than 16 double words. 2030 */ 2031 if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) { 2032 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64); 2033 } else { 2034 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256); 2035 } 2036 2037 /* Accept Long Packets for VLAN support */ 2038 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER); 2039 2040 /* 2041 * Assume 100Mbps link, actual MAC configuration is done 2042 * after getting a valid link. 2043 */ 2044 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); 2045 2046 /* 2047 * Enable interrupts. 2048 */ 2049 CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS); 2050 #ifdef DEVICE_POLLING 2051 /* 2052 * ... only enable interrupts if we are not polling, make sure 2053 * they are off otherwise. 2054 */ 2055 if (ifp->if_capenable & IFCAP_POLLING) 2056 CSR_WRITE_4(sc, SIS_IER, 0); 2057 else 2058 #endif 2059 CSR_WRITE_4(sc, SIS_IER, 1); 2060 2061 /* Clear MAC disable. */ 2062 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); 2063 2064 sc->sis_flags &= ~SIS_FLAG_LINK; 2065 mii_mediachg(mii); 2066 2067 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2068 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2069 2070 callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc); 2071 } 2072 2073 /* 2074 * Set media options. 2075 */ 2076 static int 2077 sis_ifmedia_upd(struct ifnet *ifp) 2078 { 2079 struct sis_softc *sc; 2080 struct mii_data *mii; 2081 struct mii_softc *miisc; 2082 int error; 2083 2084 sc = ifp->if_softc; 2085 2086 SIS_LOCK(sc); 2087 mii = device_get_softc(sc->sis_miibus); 2088 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2089 PHY_RESET(miisc); 2090 error = mii_mediachg(mii); 2091 SIS_UNLOCK(sc); 2092 2093 return (error); 2094 } 2095 2096 /* 2097 * Report current media status. 2098 */ 2099 static void 2100 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2101 { 2102 struct sis_softc *sc; 2103 struct mii_data *mii; 2104 2105 sc = ifp->if_softc; 2106 2107 SIS_LOCK(sc); 2108 mii = device_get_softc(sc->sis_miibus); 2109 mii_pollstat(mii); 2110 ifmr->ifm_active = mii->mii_media_active; 2111 ifmr->ifm_status = mii->mii_media_status; 2112 SIS_UNLOCK(sc); 2113 } 2114 2115 static int 2116 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2117 { 2118 struct sis_softc *sc = ifp->if_softc; 2119 struct ifreq *ifr = (struct ifreq *) data; 2120 struct mii_data *mii; 2121 int error = 0, mask; 2122 2123 switch (command) { 2124 case SIOCSIFFLAGS: 2125 SIS_LOCK(sc); 2126 if (ifp->if_flags & IFF_UP) { 2127 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2128 ((ifp->if_flags ^ sc->sis_if_flags) & 2129 (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2130 sis_rxfilter(sc); 2131 else 2132 sis_initl(sc); 2133 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2134 sis_stop(sc); 2135 sc->sis_if_flags = ifp->if_flags; 2136 SIS_UNLOCK(sc); 2137 break; 2138 case SIOCADDMULTI: 2139 case SIOCDELMULTI: 2140 SIS_LOCK(sc); 2141 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2142 sis_rxfilter(sc); 2143 SIS_UNLOCK(sc); 2144 break; 2145 case SIOCGIFMEDIA: 2146 case SIOCSIFMEDIA: 2147 mii = device_get_softc(sc->sis_miibus); 2148 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2149 break; 2150 case SIOCSIFCAP: 2151 SIS_LOCK(sc); 2152 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2153 #ifdef DEVICE_POLLING 2154 if ((mask & IFCAP_POLLING) != 0 && 2155 (IFCAP_POLLING & ifp->if_capabilities) != 0) { 2156 ifp->if_capenable ^= IFCAP_POLLING; 2157 if ((IFCAP_POLLING & ifp->if_capenable) != 0) { 2158 error = ether_poll_register(sis_poll, ifp); 2159 if (error != 0) { 2160 SIS_UNLOCK(sc); 2161 break; 2162 } 2163 /* Disable interrupts. */ 2164 CSR_WRITE_4(sc, SIS_IER, 0); 2165 } else { 2166 error = ether_poll_deregister(ifp); 2167 /* Enable interrupts. */ 2168 CSR_WRITE_4(sc, SIS_IER, 1); 2169 } 2170 } 2171 #endif /* DEVICE_POLLING */ 2172 if ((mask & IFCAP_WOL) != 0 && 2173 (ifp->if_capabilities & IFCAP_WOL) != 0) { 2174 if ((mask & IFCAP_WOL_UCAST) != 0) 2175 ifp->if_capenable ^= IFCAP_WOL_UCAST; 2176 if ((mask & IFCAP_WOL_MCAST) != 0) 2177 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2178 if ((mask & IFCAP_WOL_MAGIC) != 0) 2179 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2180 } 2181 SIS_UNLOCK(sc); 2182 break; 2183 default: 2184 error = ether_ioctl(ifp, command, data); 2185 break; 2186 } 2187 2188 return (error); 2189 } 2190 2191 static void 2192 sis_watchdog(struct sis_softc *sc) 2193 { 2194 2195 SIS_LOCK_ASSERT(sc); 2196 2197 if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0) 2198 return; 2199 2200 device_printf(sc->sis_dev, "watchdog timeout\n"); 2201 if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1); 2202 2203 sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2204 sis_initl(sc); 2205 2206 if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd)) 2207 sis_startl(sc->sis_ifp); 2208 } 2209 2210 /* 2211 * Stop the adapter and free any mbufs allocated to the 2212 * RX and TX lists. 2213 */ 2214 static void 2215 sis_stop(struct sis_softc *sc) 2216 { 2217 struct ifnet *ifp; 2218 struct sis_rxdesc *rxd; 2219 struct sis_txdesc *txd; 2220 int i; 2221 2222 SIS_LOCK_ASSERT(sc); 2223 2224 ifp = sc->sis_ifp; 2225 sc->sis_watchdog_timer = 0; 2226 2227 callout_stop(&sc->sis_stat_ch); 2228 2229 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2230 CSR_WRITE_4(sc, SIS_IER, 0); 2231 CSR_WRITE_4(sc, SIS_IMR, 0); 2232 CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */ 2233 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE); 2234 DELAY(1000); 2235 CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0); 2236 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); 2237 2238 sc->sis_flags &= ~SIS_FLAG_LINK; 2239 2240 /* 2241 * Free data in the RX lists. 2242 */ 2243 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 2244 rxd = &sc->sis_rxdesc[i]; 2245 if (rxd->rx_m != NULL) { 2246 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, 2247 BUS_DMASYNC_POSTREAD); 2248 bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap); 2249 m_freem(rxd->rx_m); 2250 rxd->rx_m = NULL; 2251 } 2252 } 2253 2254 /* 2255 * Free the TX list buffers. 2256 */ 2257 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 2258 txd = &sc->sis_txdesc[i]; 2259 if (txd->tx_m != NULL) { 2260 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, 2261 BUS_DMASYNC_POSTWRITE); 2262 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); 2263 m_freem(txd->tx_m); 2264 txd->tx_m = NULL; 2265 } 2266 } 2267 } 2268 2269 /* 2270 * Stop all chip I/O so that the kernel's probe routines don't 2271 * get confused by errant DMAs when rebooting. 2272 */ 2273 static int 2274 sis_shutdown(device_t dev) 2275 { 2276 2277 return (sis_suspend(dev)); 2278 } 2279 2280 static int 2281 sis_suspend(device_t dev) 2282 { 2283 struct sis_softc *sc; 2284 2285 sc = device_get_softc(dev); 2286 SIS_LOCK(sc); 2287 sis_stop(sc); 2288 sis_wol(sc); 2289 SIS_UNLOCK(sc); 2290 return (0); 2291 } 2292 2293 static int 2294 sis_resume(device_t dev) 2295 { 2296 struct sis_softc *sc; 2297 struct ifnet *ifp; 2298 2299 sc = device_get_softc(dev); 2300 SIS_LOCK(sc); 2301 ifp = sc->sis_ifp; 2302 if ((ifp->if_flags & IFF_UP) != 0) { 2303 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2304 sis_initl(sc); 2305 } 2306 SIS_UNLOCK(sc); 2307 return (0); 2308 } 2309 2310 static void 2311 sis_wol(struct sis_softc *sc) 2312 { 2313 struct ifnet *ifp; 2314 uint32_t val; 2315 uint16_t pmstat; 2316 int pmc; 2317 2318 ifp = sc->sis_ifp; 2319 if ((ifp->if_capenable & IFCAP_WOL) == 0) 2320 return; 2321 2322 if (sc->sis_type == SIS_TYPE_83815) { 2323 /* Reset RXDP. */ 2324 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); 2325 2326 /* Configure WOL events. */ 2327 CSR_READ_4(sc, NS_WCSR); 2328 val = 0; 2329 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 2330 val |= NS_WCSR_WAKE_UCAST; 2331 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 2332 val |= NS_WCSR_WAKE_MCAST; 2333 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2334 val |= NS_WCSR_WAKE_MAGIC; 2335 CSR_WRITE_4(sc, NS_WCSR, val); 2336 /* Enable PME and clear PMESTS. */ 2337 val = CSR_READ_4(sc, NS_CLKRUN); 2338 val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS; 2339 CSR_WRITE_4(sc, NS_CLKRUN, val); 2340 /* Enable silent RX mode. */ 2341 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); 2342 } else { 2343 if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0) 2344 return; 2345 val = 0; 2346 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2347 val |= SIS_PWRMAN_WOL_MAGIC; 2348 CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val); 2349 /* Request PME. */ 2350 pmstat = pci_read_config(sc->sis_dev, 2351 pmc + PCIR_POWER_STATUS, 2); 2352 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 2353 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2354 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 2355 pci_write_config(sc->sis_dev, 2356 pmc + PCIR_POWER_STATUS, pmstat, 2); 2357 } 2358 } 2359 2360 static void 2361 sis_add_sysctls(struct sis_softc *sc) 2362 { 2363 struct sysctl_ctx_list *ctx; 2364 struct sysctl_oid_list *children; 2365 int unit; 2366 2367 ctx = device_get_sysctl_ctx(sc->sis_dev); 2368 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev)); 2369 2370 unit = device_get_unit(sc->sis_dev); 2371 /* 2372 * Unlike most other controllers, NS DP83815/DP83816 controllers 2373 * seem to pad with 0xFF when it encounter short frames. According 2374 * to RFC 1042 the pad bytes should be 0x00. Turning this tunable 2375 * on will have driver pad manully but it's disabled by default 2376 * because it will consume extra CPU cycles for short frames. 2377 */ 2378 sc->sis_manual_pad = 0; 2379 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad", 2380 CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames"); 2381 } 2382 2383 static device_method_t sis_methods[] = { 2384 /* Device interface */ 2385 DEVMETHOD(device_probe, sis_probe), 2386 DEVMETHOD(device_attach, sis_attach), 2387 DEVMETHOD(device_detach, sis_detach), 2388 DEVMETHOD(device_shutdown, sis_shutdown), 2389 DEVMETHOD(device_suspend, sis_suspend), 2390 DEVMETHOD(device_resume, sis_resume), 2391 2392 /* MII interface */ 2393 DEVMETHOD(miibus_readreg, sis_miibus_readreg), 2394 DEVMETHOD(miibus_writereg, sis_miibus_writereg), 2395 DEVMETHOD(miibus_statchg, sis_miibus_statchg), 2396 2397 DEVMETHOD_END 2398 }; 2399 2400 static driver_t sis_driver = { 2401 "sis", 2402 sis_methods, 2403 sizeof(struct sis_softc) 2404 }; 2405 2406 static devclass_t sis_devclass; 2407 2408 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0); 2409 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0); 2410