xref: /freebsd/sys/dev/sge/if_sge.c (revision f6a3b357e9be4c6423c85eff9a847163a0d307c8)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
5  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
6  * Copyright (c) 1997, 1998, 1999
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
27  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
28  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
35  * OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 /*
42  * SiS 190/191 PCI Ethernet NIC driver.
43  *
44  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
45  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
46  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
47  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
48  * review and very useful comments.
49  *
50  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
51  * Linux and Solaris drivers.
52  */
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kernel.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mbuf.h>
62 #include <sys/module.h>
63 #include <sys/mutex.h>
64 #include <sys/rman.h>
65 #include <sys/socket.h>
66 #include <sys/sockio.h>
67 
68 #include <net/bpf.h>
69 #include <net/if.h>
70 #include <net/if_var.h>
71 #include <net/if_arp.h>
72 #include <net/ethernet.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 #include <net/if_vlan_var.h>
77 
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/tcp.h>
82 
83 #include <machine/bus.h>
84 #include <machine/in_cksum.h>
85 
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88 
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcivar.h>
91 
92 #include <dev/sge/if_sgereg.h>
93 
94 MODULE_DEPEND(sge, pci, 1, 1, 1);
95 MODULE_DEPEND(sge, ether, 1, 1, 1);
96 MODULE_DEPEND(sge, miibus, 1, 1, 1);
97 
98 /* "device miibus0" required.  See GENERIC if you get errors here. */
99 #include "miibus_if.h"
100 
101 /*
102  * Various supported device vendors/types and their names.
103  */
104 static struct sge_type sge_devs[] = {
105 	{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
106 	{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
107 	{ 0, 0, NULL }
108 };
109 
110 static int	sge_probe(device_t);
111 static int	sge_attach(device_t);
112 static int	sge_detach(device_t);
113 static int	sge_shutdown(device_t);
114 static int	sge_suspend(device_t);
115 static int	sge_resume(device_t);
116 
117 static int	sge_miibus_readreg(device_t, int, int);
118 static int	sge_miibus_writereg(device_t, int, int, int);
119 static void	sge_miibus_statchg(device_t);
120 
121 static int	sge_newbuf(struct sge_softc *, int);
122 static int	sge_encap(struct sge_softc *, struct mbuf **);
123 static __inline void
124 		sge_discard_rxbuf(struct sge_softc *, int);
125 static void	sge_rxeof(struct sge_softc *);
126 static void	sge_txeof(struct sge_softc *);
127 static void	sge_intr(void *);
128 static void	sge_tick(void *);
129 static void	sge_start(struct ifnet *);
130 static void	sge_start_locked(struct ifnet *);
131 static int	sge_ioctl(struct ifnet *, u_long, caddr_t);
132 static void	sge_init(void *);
133 static void	sge_init_locked(struct sge_softc *);
134 static void	sge_stop(struct sge_softc *);
135 static void	sge_watchdog(struct sge_softc *);
136 static int	sge_ifmedia_upd(struct ifnet *);
137 static void	sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138 
139 static int	sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
140 static int	sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
141 static uint16_t	sge_read_eeprom(struct sge_softc *, int);
142 
143 static void	sge_rxfilter(struct sge_softc *);
144 static void	sge_setvlan(struct sge_softc *);
145 static void	sge_reset(struct sge_softc *);
146 static int	sge_list_rx_init(struct sge_softc *);
147 static int	sge_list_rx_free(struct sge_softc *);
148 static int	sge_list_tx_init(struct sge_softc *);
149 static int	sge_list_tx_free(struct sge_softc *);
150 
151 static int	sge_dma_alloc(struct sge_softc *);
152 static void	sge_dma_free(struct sge_softc *);
153 static void	sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
154 
155 static device_method_t sge_methods[] = {
156 	/* Device interface */
157 	DEVMETHOD(device_probe,		sge_probe),
158 	DEVMETHOD(device_attach,	sge_attach),
159 	DEVMETHOD(device_detach,	sge_detach),
160 	DEVMETHOD(device_suspend,	sge_suspend),
161 	DEVMETHOD(device_resume,	sge_resume),
162 	DEVMETHOD(device_shutdown,	sge_shutdown),
163 
164 	/* MII interface */
165 	DEVMETHOD(miibus_readreg,	sge_miibus_readreg),
166 	DEVMETHOD(miibus_writereg,	sge_miibus_writereg),
167 	DEVMETHOD(miibus_statchg,	sge_miibus_statchg),
168 
169 	DEVMETHOD_END
170 };
171 
172 static driver_t sge_driver = {
173 	"sge", sge_methods, sizeof(struct sge_softc)
174 };
175 
176 static devclass_t sge_devclass;
177 
178 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
179 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
180 
181 /*
182  * Register space access macros.
183  */
184 #define	CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sge_res, reg, val)
185 #define	CSR_WRITE_2(sc, reg, val)	bus_write_2(sc->sge_res, reg, val)
186 #define	CSR_WRITE_1(cs, reg, val)	bus_write_1(sc->sge_res, reg, val)
187 
188 #define	CSR_READ_4(sc, reg)		bus_read_4(sc->sge_res, reg)
189 #define	CSR_READ_2(sc, reg)		bus_read_2(sc->sge_res, reg)
190 #define	CSR_READ_1(sc, reg)		bus_read_1(sc->sge_res, reg)
191 
192 /* Define to show Tx/Rx error status. */
193 #undef SGE_SHOW_ERRORS
194 
195 #define	SGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
196 
197 static void
198 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
199 {
200 	bus_addr_t *p;
201 
202 	if (error != 0)
203 		return;
204 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
205 	p  = arg;
206 	*p = segs->ds_addr;
207 }
208 
209 /*
210  * Read a sequence of words from the EEPROM.
211  */
212 static uint16_t
213 sge_read_eeprom(struct sge_softc *sc, int offset)
214 {
215 	uint32_t val;
216 	int i;
217 
218 	KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
219 	CSR_WRITE_4(sc, ROMInterface,
220 	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
221 	DELAY(500);
222 	for (i = 0; i < SGE_TIMEOUT; i++) {
223 		val = CSR_READ_4(sc, ROMInterface);
224 		if ((val & EI_REQ) == 0)
225 			break;
226 		DELAY(100);
227 	}
228 	if (i == SGE_TIMEOUT) {
229 		device_printf(sc->sge_dev,
230 		    "EEPROM read timeout : 0x%08x\n", val);
231 		return (0xffff);
232 	}
233 
234 	return ((val & EI_DATA) >> EI_DATA_SHIFT);
235 }
236 
237 static int
238 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
239 {
240 	uint16_t val;
241 	int i;
242 
243 	val = sge_read_eeprom(sc, EEPROMSignature);
244 	if (val == 0xffff || val == 0) {
245 		device_printf(sc->sge_dev,
246 		    "invalid EEPROM signature : 0x%04x\n", val);
247 		return (EINVAL);
248 	}
249 
250 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
251 		val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
252 		dest[i + 0] = (uint8_t)val;
253 		dest[i + 1] = (uint8_t)(val >> 8);
254 	}
255 
256 	if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
257 		sc->sge_flags |= SGE_FLAG_RGMII;
258 	return (0);
259 }
260 
261 /*
262  * For SiS96x, APC CMOS RAM is used to store ethernet address.
263  * APC CMOS RAM is accessed through ISA bridge.
264  */
265 static int
266 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
267 {
268 #if defined(__amd64__) || defined(__i386__)
269 	devclass_t pci;
270 	device_t bus, dev = NULL;
271 	device_t *kids;
272 	struct apc_tbl {
273 		uint16_t vid;
274 		uint16_t did;
275 	} *tp, apc_tbls[] = {
276 		{ SIS_VENDORID, 0x0965 },
277 		{ SIS_VENDORID, 0x0966 },
278 		{ SIS_VENDORID, 0x0968 }
279 	};
280 	uint8_t reg;
281 	int busnum, i, j, numkids;
282 
283 	pci = devclass_find("pci");
284 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
285 		bus = devclass_get_device(pci, busnum);
286 		if (!bus)
287 			continue;
288 		if (device_get_children(bus, &kids, &numkids) != 0)
289 			continue;
290 		for (i = 0; i < numkids; i++) {
291 			dev = kids[i];
292 			if (pci_get_class(dev) == PCIC_BRIDGE &&
293 			    pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
294 				tp = apc_tbls;
295 				for (j = 0; j < nitems(apc_tbls); j++) {
296 					if (pci_get_vendor(dev) == tp->vid &&
297 					    pci_get_device(dev) == tp->did) {
298 						free(kids, M_TEMP);
299 						goto apc_found;
300 					}
301 					tp++;
302 				}
303 			}
304                 }
305 		free(kids, M_TEMP);
306 	}
307 	device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
308 	return (EINVAL);
309 apc_found:
310 	/* Enable port 0x78 and 0x79 to access APC registers. */
311 	reg = pci_read_config(dev, 0x48, 1);
312 	pci_write_config(dev, 0x48, reg & ~0x02, 1);
313 	DELAY(50);
314 	pci_read_config(dev, 0x48, 1);
315 	/* Read stored ethernet address. */
316 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
317 		outb(0x78, 0x09 + i);
318 		dest[i] = inb(0x79);
319 	}
320 	outb(0x78, 0x12);
321 	if ((inb(0x79) & 0x80) != 0)
322 		sc->sge_flags |= SGE_FLAG_RGMII;
323 	/* Restore access to APC registers. */
324 	pci_write_config(dev, 0x48, reg, 1);
325 
326 	return (0);
327 #else
328 	return (EINVAL);
329 #endif
330 }
331 
332 static int
333 sge_miibus_readreg(device_t dev, int phy, int reg)
334 {
335 	struct sge_softc *sc;
336 	uint32_t val;
337 	int i;
338 
339 	sc = device_get_softc(dev);
340 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
341 	    (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
342 	DELAY(10);
343 	for (i = 0; i < SGE_TIMEOUT; i++) {
344 		val = CSR_READ_4(sc, GMIIControl);
345 		if ((val & GMI_REQ) == 0)
346 			break;
347 		DELAY(10);
348 	}
349 	if (i == SGE_TIMEOUT) {
350 		device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
351 		return (0);
352 	}
353 	return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
354 }
355 
356 static int
357 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
358 {
359 	struct sge_softc *sc;
360 	uint32_t val;
361 	int i;
362 
363 	sc = device_get_softc(dev);
364 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
365 	    (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
366 	    GMI_OP_WR | GMI_REQ);
367 	DELAY(10);
368 	for (i = 0; i < SGE_TIMEOUT; i++) {
369 		val = CSR_READ_4(sc, GMIIControl);
370 		if ((val & GMI_REQ) == 0)
371 			break;
372 		DELAY(10);
373 	}
374 	if (i == SGE_TIMEOUT)
375 		device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
376 	return (0);
377 }
378 
379 static void
380 sge_miibus_statchg(device_t dev)
381 {
382 	struct sge_softc *sc;
383 	struct mii_data *mii;
384 	struct ifnet *ifp;
385 	uint32_t ctl, speed;
386 
387 	sc = device_get_softc(dev);
388 	mii = device_get_softc(sc->sge_miibus);
389 	ifp = sc->sge_ifp;
390 	if (mii == NULL || ifp == NULL ||
391 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
392 		return;
393 	speed = 0;
394 	sc->sge_flags &= ~SGE_FLAG_LINK;
395 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
396 	    (IFM_ACTIVE | IFM_AVALID)) {
397 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
398 		case IFM_10_T:
399 			sc->sge_flags |= SGE_FLAG_LINK;
400 			speed = SC_SPEED_10;
401 			break;
402 		case IFM_100_TX:
403 			sc->sge_flags |= SGE_FLAG_LINK;
404 			speed = SC_SPEED_100;
405 			break;
406 		case IFM_1000_T:
407 			if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
408 				sc->sge_flags |= SGE_FLAG_LINK;
409 				speed = SC_SPEED_1000;
410 			}
411 			break;
412 		default:
413 			break;
414                 }
415         }
416 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
417 		return;
418 	/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
419 	ctl = CSR_READ_4(sc, StationControl);
420 	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
421 	if (speed == SC_SPEED_1000) {
422 		ctl |= 0x07000000;
423 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
424 	} else {
425 		ctl |= 0x04000000;
426 		sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
427 	}
428 #ifdef notyet
429 	if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
430 		ctl |= 0x03000000;
431 #endif
432 	ctl |= speed;
433 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
434 		ctl |= SC_FDX;
435 		sc->sge_flags |= SGE_FLAG_FDX;
436 	} else
437 		sc->sge_flags &= ~SGE_FLAG_FDX;
438 	CSR_WRITE_4(sc, StationControl, ctl);
439 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
440 		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
441 		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
442 	}
443 }
444 
445 static void
446 sge_rxfilter(struct sge_softc *sc)
447 {
448 	struct ifnet *ifp;
449 	struct ifmultiaddr *ifma;
450 	uint32_t crc, hashes[2];
451 	uint16_t rxfilt;
452 
453 	SGE_LOCK_ASSERT(sc);
454 
455 	ifp = sc->sge_ifp;
456 	rxfilt = CSR_READ_2(sc, RxMacControl);
457 	rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
458 	rxfilt |= AcceptMyPhys;
459 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
460 		rxfilt |= AcceptBroadcast;
461 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
462 		if ((ifp->if_flags & IFF_PROMISC) != 0)
463 			rxfilt |= AcceptAllPhys;
464 		rxfilt |= AcceptMulticast;
465 		hashes[0] = 0xFFFFFFFF;
466 		hashes[1] = 0xFFFFFFFF;
467 	} else {
468 		rxfilt |= AcceptMulticast;
469 		hashes[0] = hashes[1] = 0;
470 		/* Now program new ones. */
471 		if_maddr_rlock(ifp);
472 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
473 			if (ifma->ifma_addr->sa_family != AF_LINK)
474 				continue;
475 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
476 			    ifma->ifma_addr), ETHER_ADDR_LEN);
477 			hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
478 		}
479 		if_maddr_runlock(ifp);
480 	}
481 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
482 	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
483 	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
484 }
485 
486 static void
487 sge_setvlan(struct sge_softc *sc)
488 {
489 	struct ifnet *ifp;
490 	uint16_t rxfilt;
491 
492 	SGE_LOCK_ASSERT(sc);
493 
494 	ifp = sc->sge_ifp;
495 	if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
496 		return;
497 	rxfilt = CSR_READ_2(sc, RxMacControl);
498 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
499 		rxfilt |= RXMAC_STRIP_VLAN;
500 	else
501 		rxfilt &= ~RXMAC_STRIP_VLAN;
502 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
503 }
504 
505 static void
506 sge_reset(struct sge_softc *sc)
507 {
508 
509 	CSR_WRITE_4(sc, IntrMask, 0);
510 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
511 
512 	/* Soft reset. */
513 	CSR_WRITE_4(sc, IntrControl, 0x8000);
514 	CSR_READ_4(sc, IntrControl);
515 	DELAY(100);
516 	CSR_WRITE_4(sc, IntrControl, 0);
517 	/* Stop MAC. */
518 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
519 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
520 
521 	CSR_WRITE_4(sc, IntrMask, 0);
522 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
523 
524 	CSR_WRITE_4(sc, GMIIControl, 0);
525 }
526 
527 /*
528  * Probe for an SiS chip. Check the PCI vendor and device
529  * IDs against our list and return a device name if we find a match.
530  */
531 static int
532 sge_probe(device_t dev)
533 {
534 	struct sge_type *t;
535 
536 	t = sge_devs;
537 	while (t->sge_name != NULL) {
538 		if ((pci_get_vendor(dev) == t->sge_vid) &&
539 		    (pci_get_device(dev) == t->sge_did)) {
540 			device_set_desc(dev, t->sge_name);
541 			return (BUS_PROBE_DEFAULT);
542 		}
543 		t++;
544 	}
545 
546 	return (ENXIO);
547 }
548 
549 /*
550  * Attach the interface.  Allocate softc structures, do ifmedia
551  * setup and ethernet/BPF attach.
552  */
553 static int
554 sge_attach(device_t dev)
555 {
556 	struct sge_softc *sc;
557 	struct ifnet *ifp;
558 	uint8_t eaddr[ETHER_ADDR_LEN];
559 	int error = 0, rid;
560 
561 	sc = device_get_softc(dev);
562 	sc->sge_dev = dev;
563 
564 	mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
565 	    MTX_DEF);
566         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
567 
568 	/*
569 	 * Map control/status registers.
570 	 */
571 	pci_enable_busmaster(dev);
572 
573 	/* Allocate resources. */
574 	sc->sge_res_id = PCIR_BAR(0);
575 	sc->sge_res_type = SYS_RES_MEMORY;
576 	sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
577 	    &sc->sge_res_id, RF_ACTIVE);
578 	if (sc->sge_res == NULL) {
579 		device_printf(dev, "couldn't allocate resource\n");
580 		error = ENXIO;
581 		goto fail;
582 	}
583 
584 	rid = 0;
585 	sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
586 	    RF_SHAREABLE | RF_ACTIVE);
587 	if (sc->sge_irq == NULL) {
588 		device_printf(dev, "couldn't allocate IRQ resources\n");
589 		error = ENXIO;
590 		goto fail;
591 	}
592 	sc->sge_rev = pci_get_revid(dev);
593 	if (pci_get_device(dev) == SIS_DEVICEID_190)
594 		sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
595 	/* Reset the adapter. */
596 	sge_reset(sc);
597 
598 	/* Get MAC address from the EEPROM. */
599 	if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
600 		sge_get_mac_addr_apc(sc, eaddr);
601 	else
602 		sge_get_mac_addr_eeprom(sc, eaddr);
603 
604 	if ((error = sge_dma_alloc(sc)) != 0)
605 		goto fail;
606 
607 	ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
608 	if (ifp == NULL) {
609 		device_printf(dev, "cannot allocate ifnet structure.\n");
610 		error = ENOSPC;
611 		goto fail;
612 	}
613 	ifp->if_softc = sc;
614 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
615 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
616 	ifp->if_ioctl = sge_ioctl;
617 	ifp->if_start = sge_start;
618 	ifp->if_init = sge_init;
619 	ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
620 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
621 	IFQ_SET_READY(&ifp->if_snd);
622 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
623 	ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
624 	ifp->if_capenable = ifp->if_capabilities;
625 	/*
626 	 * Do MII setup.
627 	 */
628 	error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
629 	    sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
630 	if (error != 0) {
631 		device_printf(dev, "attaching PHYs failed\n");
632 		goto fail;
633 	}
634 
635 	/*
636 	 * Call MI attach routine.
637 	 */
638 	ether_ifattach(ifp, eaddr);
639 
640 	/* VLAN setup. */
641 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
642 	    IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
643 	ifp->if_capenable = ifp->if_capabilities;
644 	/* Tell the upper layer(s) we support long frames. */
645 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
646 
647 	/* Hook interrupt last to avoid having to lock softc */
648 	error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
649 	    NULL, sge_intr, sc, &sc->sge_intrhand);
650 	if (error) {
651 		device_printf(dev, "couldn't set up irq\n");
652 		ether_ifdetach(ifp);
653 		goto fail;
654 	}
655 
656 fail:
657 	if (error)
658 		sge_detach(dev);
659 
660 	return (error);
661 }
662 
663 /*
664  * Shutdown hardware and free up resources.  This can be called any
665  * time after the mutex has been initialized.  It is called in both
666  * the error case in attach and the normal detach case so it needs
667  * to be careful about only freeing resources that have actually been
668  * allocated.
669  */
670 static int
671 sge_detach(device_t dev)
672 {
673 	struct sge_softc *sc;
674 	struct ifnet *ifp;
675 
676 	sc = device_get_softc(dev);
677 	ifp = sc->sge_ifp;
678 	/* These should only be active if attach succeeded. */
679 	if (device_is_attached(dev)) {
680 		ether_ifdetach(ifp);
681 		SGE_LOCK(sc);
682 		sge_stop(sc);
683 		SGE_UNLOCK(sc);
684 		callout_drain(&sc->sge_stat_ch);
685 	}
686 	if (sc->sge_miibus)
687 		device_delete_child(dev, sc->sge_miibus);
688 	bus_generic_detach(dev);
689 
690 	if (sc->sge_intrhand)
691 		bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
692 	if (sc->sge_irq)
693 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
694 	if (sc->sge_res)
695 		bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
696 		    sc->sge_res);
697 	if (ifp)
698 		if_free(ifp);
699 	sge_dma_free(sc);
700 	mtx_destroy(&sc->sge_mtx);
701 
702 	return (0);
703 }
704 
705 /*
706  * Stop all chip I/O so that the kernel's probe routines don't
707  * get confused by errant DMAs when rebooting.
708  */
709 static int
710 sge_shutdown(device_t dev)
711 {
712 	struct sge_softc *sc;
713 
714 	sc = device_get_softc(dev);
715 	SGE_LOCK(sc);
716 	sge_stop(sc);
717 	SGE_UNLOCK(sc);
718 	return (0);
719 }
720 
721 static int
722 sge_suspend(device_t dev)
723 {
724 	struct sge_softc *sc;
725 	struct ifnet *ifp;
726 
727 	sc = device_get_softc(dev);
728 	SGE_LOCK(sc);
729 	ifp = sc->sge_ifp;
730 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
731 		sge_stop(sc);
732 	SGE_UNLOCK(sc);
733 	return (0);
734 }
735 
736 static int
737 sge_resume(device_t dev)
738 {
739 	struct sge_softc *sc;
740 	struct ifnet *ifp;
741 
742 	sc = device_get_softc(dev);
743 	SGE_LOCK(sc);
744 	ifp = sc->sge_ifp;
745 	if ((ifp->if_flags & IFF_UP) != 0)
746 		sge_init_locked(sc);
747 	SGE_UNLOCK(sc);
748 	return (0);
749 }
750 
751 static int
752 sge_dma_alloc(struct sge_softc *sc)
753 {
754 	struct sge_chain_data *cd;
755 	struct sge_list_data *ld;
756 	struct sge_rxdesc *rxd;
757 	struct sge_txdesc *txd;
758 	int error, i;
759 
760 	cd = &sc->sge_cdata;
761 	ld = &sc->sge_ldata;
762 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
763 	    1, 0,			/* alignment, boundary */
764 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
765 	    BUS_SPACE_MAXADDR,		/* highaddr */
766 	    NULL, NULL,			/* filter, filterarg */
767 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
768 	    1,				/* nsegments */
769 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
770 	    0,				/* flags */
771 	    NULL,			/* lockfunc */
772 	    NULL,			/* lockarg */
773 	    &cd->sge_tag);
774 	if (error != 0) {
775 		device_printf(sc->sge_dev,
776 		    "could not create parent DMA tag.\n");
777 		goto fail;
778 	}
779 
780 	/* RX descriptor ring */
781 	error = bus_dma_tag_create(cd->sge_tag,
782 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
783 	    BUS_SPACE_MAXADDR,		/* lowaddr */
784 	    BUS_SPACE_MAXADDR,		/* highaddr */
785 	    NULL, NULL,			/* filter, filterarg */
786 	    SGE_RX_RING_SZ, 1,		/* maxsize,nsegments */
787 	    SGE_RX_RING_SZ,		/* maxsegsize */
788 	    0,				/* flags */
789 	    NULL,			/* lockfunc */
790 	    NULL,			/* lockarg */
791 	    &cd->sge_rx_tag);
792 	if (error != 0) {
793 		device_printf(sc->sge_dev,
794 		    "could not create Rx ring DMA tag.\n");
795 		goto fail;
796 	}
797 	/* Allocate DMA'able memory and load DMA map for RX ring. */
798 	error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
799 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
800 	    &cd->sge_rx_dmamap);
801 	if (error != 0) {
802 		device_printf(sc->sge_dev,
803 		    "could not allocate DMA'able memory for Rx ring.\n");
804 		goto fail;
805 	}
806 	error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
807 	    ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
808 	    &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
809 	if (error != 0) {
810 		device_printf(sc->sge_dev,
811 		    "could not load DMA'able memory for Rx ring.\n");
812 	}
813 
814 	/* TX descriptor ring */
815 	error = bus_dma_tag_create(cd->sge_tag,
816 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
817 	    BUS_SPACE_MAXADDR,		/* lowaddr */
818 	    BUS_SPACE_MAXADDR,		/* highaddr */
819 	    NULL, NULL,			/* filter, filterarg */
820 	    SGE_TX_RING_SZ, 1,		/* maxsize,nsegments */
821 	    SGE_TX_RING_SZ,		/* maxsegsize */
822 	    0,				/* flags */
823 	    NULL,			/* lockfunc */
824 	    NULL,			/* lockarg */
825 	    &cd->sge_tx_tag);
826 	if (error != 0) {
827 		device_printf(sc->sge_dev,
828 		    "could not create Rx ring DMA tag.\n");
829 		goto fail;
830 	}
831 	/* Allocate DMA'able memory and load DMA map for TX ring. */
832 	error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
833 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
834 	    &cd->sge_tx_dmamap);
835 	if (error != 0) {
836 		device_printf(sc->sge_dev,
837 		    "could not allocate DMA'able memory for Tx ring.\n");
838 		goto fail;
839 	}
840 	error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
841 	    ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
842 	    &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
843 	if (error != 0) {
844 		device_printf(sc->sge_dev,
845 		    "could not load DMA'able memory for Rx ring.\n");
846 		goto fail;
847 	}
848 
849 	/* Create DMA tag for Tx buffers. */
850 	error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
851 	    BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
852 	    SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
853 	if (error != 0) {
854 		device_printf(sc->sge_dev,
855 		    "could not create Tx mbuf DMA tag.\n");
856 		goto fail;
857 	}
858 
859 	/* Create DMA tag for Rx buffers. */
860 	error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
861 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
862 	    MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
863 	if (error != 0) {
864 		device_printf(sc->sge_dev,
865 		    "could not create Rx mbuf DMA tag.\n");
866 		goto fail;
867 	}
868 
869 	/* Create DMA maps for Tx buffers. */
870 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
871 		txd = &cd->sge_txdesc[i];
872 		txd->tx_m = NULL;
873 		txd->tx_dmamap = NULL;
874 		txd->tx_ndesc = 0;
875 		error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
876 		    &txd->tx_dmamap);
877 		if (error != 0) {
878 			device_printf(sc->sge_dev,
879 			    "could not create Tx DMA map.\n");
880 			goto fail;
881 		}
882 	}
883 	/* Create spare DMA map for Rx buffer. */
884 	error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
885 	if (error != 0) {
886 		device_printf(sc->sge_dev,
887 		    "could not create spare Rx DMA map.\n");
888 		goto fail;
889 	}
890 	/* Create DMA maps for Rx buffers. */
891 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
892 		rxd = &cd->sge_rxdesc[i];
893 		rxd->rx_m = NULL;
894 		rxd->rx_dmamap = NULL;
895 		error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
896 		    &rxd->rx_dmamap);
897 		if (error) {
898 			device_printf(sc->sge_dev,
899 			    "could not create Rx DMA map.\n");
900 			goto fail;
901 		}
902 	}
903 fail:
904 	return (error);
905 }
906 
907 static void
908 sge_dma_free(struct sge_softc *sc)
909 {
910 	struct sge_chain_data *cd;
911 	struct sge_list_data *ld;
912 	struct sge_rxdesc *rxd;
913 	struct sge_txdesc *txd;
914 	int i;
915 
916 	cd = &sc->sge_cdata;
917 	ld = &sc->sge_ldata;
918 	/* Rx ring. */
919 	if (cd->sge_rx_tag != NULL) {
920 		if (ld->sge_rx_paddr != 0)
921 			bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
922 		if (ld->sge_rx_ring != NULL)
923 			bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
924 			    cd->sge_rx_dmamap);
925 		ld->sge_rx_ring = NULL;
926 		ld->sge_rx_paddr = 0;
927 		bus_dma_tag_destroy(cd->sge_rx_tag);
928 		cd->sge_rx_tag = NULL;
929 	}
930 	/* Tx ring. */
931 	if (cd->sge_tx_tag != NULL) {
932 		if (ld->sge_tx_paddr != 0)
933 			bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
934 		if (ld->sge_tx_ring != NULL)
935 			bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
936 			    cd->sge_tx_dmamap);
937 		ld->sge_tx_ring = NULL;
938 		ld->sge_tx_paddr = 0;
939 		bus_dma_tag_destroy(cd->sge_tx_tag);
940 		cd->sge_tx_tag = NULL;
941 	}
942 	/* Rx buffers. */
943 	if (cd->sge_rxmbuf_tag != NULL) {
944 		for (i = 0; i < SGE_RX_RING_CNT; i++) {
945 			rxd = &cd->sge_rxdesc[i];
946 			if (rxd->rx_dmamap != NULL) {
947 				bus_dmamap_destroy(cd->sge_rxmbuf_tag,
948 				    rxd->rx_dmamap);
949 				rxd->rx_dmamap = NULL;
950 			}
951 		}
952 		if (cd->sge_rx_spare_map != NULL) {
953 			bus_dmamap_destroy(cd->sge_rxmbuf_tag,
954 			    cd->sge_rx_spare_map);
955 			cd->sge_rx_spare_map = NULL;
956 		}
957 		bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
958 		cd->sge_rxmbuf_tag = NULL;
959 	}
960 	/* Tx buffers. */
961 	if (cd->sge_txmbuf_tag != NULL) {
962 		for (i = 0; i < SGE_TX_RING_CNT; i++) {
963 			txd = &cd->sge_txdesc[i];
964 			if (txd->tx_dmamap != NULL) {
965 				bus_dmamap_destroy(cd->sge_txmbuf_tag,
966 				    txd->tx_dmamap);
967 				txd->tx_dmamap = NULL;
968 			}
969 		}
970 		bus_dma_tag_destroy(cd->sge_txmbuf_tag);
971 		cd->sge_txmbuf_tag = NULL;
972 	}
973 	if (cd->sge_tag != NULL)
974 		bus_dma_tag_destroy(cd->sge_tag);
975 	cd->sge_tag = NULL;
976 }
977 
978 /*
979  * Initialize the TX descriptors.
980  */
981 static int
982 sge_list_tx_init(struct sge_softc *sc)
983 {
984 	struct sge_list_data *ld;
985 	struct sge_chain_data *cd;
986 
987 	SGE_LOCK_ASSERT(sc);
988 	ld = &sc->sge_ldata;
989 	cd = &sc->sge_cdata;
990 	bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
991 	ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
992 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
993 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
994 	cd->sge_tx_prod = 0;
995 	cd->sge_tx_cons = 0;
996 	cd->sge_tx_cnt = 0;
997 	return (0);
998 }
999 
1000 static int
1001 sge_list_tx_free(struct sge_softc *sc)
1002 {
1003 	struct sge_chain_data *cd;
1004 	struct sge_txdesc *txd;
1005 	int i;
1006 
1007 	SGE_LOCK_ASSERT(sc);
1008 	cd = &sc->sge_cdata;
1009 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
1010 		txd = &cd->sge_txdesc[i];
1011 		if (txd->tx_m != NULL) {
1012 			bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1013 			    BUS_DMASYNC_POSTWRITE);
1014 			bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1015 			m_freem(txd->tx_m);
1016 			txd->tx_m = NULL;
1017 			txd->tx_ndesc = 0;
1018 		}
1019 	}
1020 
1021 	return (0);
1022 }
1023 
1024 /*
1025  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1026  * we arrange the descriptors in a closed ring, so that the last descriptor
1027  * has RING_END flag set.
1028  */
1029 static int
1030 sge_list_rx_init(struct sge_softc *sc)
1031 {
1032 	struct sge_chain_data *cd;
1033 	int i;
1034 
1035 	SGE_LOCK_ASSERT(sc);
1036 	cd = &sc->sge_cdata;
1037 	cd->sge_rx_cons = 0;
1038 	bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1039 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1040 		if (sge_newbuf(sc, i) != 0)
1041 			return (ENOBUFS);
1042 	}
1043 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1044 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1045 	return (0);
1046 }
1047 
1048 static int
1049 sge_list_rx_free(struct sge_softc *sc)
1050 {
1051 	struct sge_chain_data *cd;
1052 	struct sge_rxdesc *rxd;
1053 	int i;
1054 
1055 	SGE_LOCK_ASSERT(sc);
1056 	cd = &sc->sge_cdata;
1057 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1058 		rxd = &cd->sge_rxdesc[i];
1059 		if (rxd->rx_m != NULL) {
1060 			bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1061 			    BUS_DMASYNC_POSTREAD);
1062 			bus_dmamap_unload(cd->sge_rxmbuf_tag,
1063 			    rxd->rx_dmamap);
1064 			m_freem(rxd->rx_m);
1065 			rxd->rx_m = NULL;
1066 		}
1067 	}
1068 	return (0);
1069 }
1070 
1071 /*
1072  * Initialize an RX descriptor and attach an MBUF cluster.
1073  */
1074 static int
1075 sge_newbuf(struct sge_softc *sc, int prod)
1076 {
1077 	struct mbuf *m;
1078 	struct sge_desc *desc;
1079 	struct sge_chain_data *cd;
1080 	struct sge_rxdesc *rxd;
1081 	bus_dma_segment_t segs[1];
1082 	bus_dmamap_t map;
1083 	int error, nsegs;
1084 
1085 	SGE_LOCK_ASSERT(sc);
1086 
1087 	cd = &sc->sge_cdata;
1088 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1089 	if (m == NULL)
1090 		return (ENOBUFS);
1091 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1092 	m_adj(m, SGE_RX_BUF_ALIGN);
1093 	error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1094 	    cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1095 	if (error != 0) {
1096 		m_freem(m);
1097 		return (error);
1098 	}
1099 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1100 	rxd = &cd->sge_rxdesc[prod];
1101 	if (rxd->rx_m != NULL) {
1102 		bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1103 		    BUS_DMASYNC_POSTREAD);
1104 		bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1105 	}
1106 	map = rxd->rx_dmamap;
1107 	rxd->rx_dmamap = cd->sge_rx_spare_map;
1108 	cd->sge_rx_spare_map = map;
1109 	bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1110 	    BUS_DMASYNC_PREREAD);
1111 	rxd->rx_m = m;
1112 
1113 	desc = &sc->sge_ldata.sge_rx_ring[prod];
1114 	desc->sge_sts_size = 0;
1115 	desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1116 	desc->sge_flags = htole32(segs[0].ds_len);
1117 	if (prod == SGE_RX_RING_CNT - 1)
1118 		desc->sge_flags |= htole32(RING_END);
1119 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1120 	return (0);
1121 }
1122 
1123 static __inline void
1124 sge_discard_rxbuf(struct sge_softc *sc, int index)
1125 {
1126 	struct sge_desc *desc;
1127 
1128 	desc = &sc->sge_ldata.sge_rx_ring[index];
1129 	desc->sge_sts_size = 0;
1130 	desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1131 	if (index == SGE_RX_RING_CNT - 1)
1132 		desc->sge_flags |= htole32(RING_END);
1133 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1134 }
1135 
1136 /*
1137  * A frame has been uploaded: pass the resulting mbuf chain up to
1138  * the higher level protocols.
1139  */
1140 static void
1141 sge_rxeof(struct sge_softc *sc)
1142 {
1143         struct ifnet *ifp;
1144         struct mbuf *m;
1145 	struct sge_chain_data *cd;
1146 	struct sge_desc	*cur_rx;
1147 	uint32_t rxinfo, rxstat;
1148 	int cons, prog;
1149 
1150 	SGE_LOCK_ASSERT(sc);
1151 
1152 	ifp = sc->sge_ifp;
1153 	cd = &sc->sge_cdata;
1154 
1155 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1156 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1157 	cons = cd->sge_rx_cons;
1158 	for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1159 	    SGE_INC(cons, SGE_RX_RING_CNT)) {
1160 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1161 			break;
1162 		cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1163 		rxinfo = le32toh(cur_rx->sge_cmdsts);
1164 		if ((rxinfo & RDC_OWN) != 0)
1165 			break;
1166 		rxstat = le32toh(cur_rx->sge_sts_size);
1167 		if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1168 		    SGE_RX_NSEGS(rxstat) != 1) {
1169 			/* XXX We don't support multi-segment frames yet. */
1170 #ifdef SGE_SHOW_ERRORS
1171 			device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1172 			    RX_ERR_BITS);
1173 #endif
1174 			sge_discard_rxbuf(sc, cons);
1175 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1176 			continue;
1177 		}
1178 		m = cd->sge_rxdesc[cons].rx_m;
1179 		if (sge_newbuf(sc, cons) != 0) {
1180 			sge_discard_rxbuf(sc, cons);
1181 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1182 			continue;
1183 		}
1184 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1185 			if ((rxinfo & RDC_IP_CSUM) != 0 &&
1186 			    (rxinfo & RDC_IP_CSUM_OK) != 0)
1187 				m->m_pkthdr.csum_flags |=
1188 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
1189 			if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1190 			    (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1191 			    ((rxinfo & RDC_UDP_CSUM) != 0 &&
1192 			    (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1193 				m->m_pkthdr.csum_flags |=
1194 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1195 				m->m_pkthdr.csum_data = 0xffff;
1196 			}
1197 		}
1198 		/* Check for VLAN tagged frame. */
1199 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1200 		    (rxstat & RDS_VLAN) != 0) {
1201 			m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1202 			m->m_flags |= M_VLANTAG;
1203 		}
1204 		/*
1205 		 * Account for 10bytes auto padding which is used
1206 		 * to align IP header on 32bit boundary.  Also note,
1207 		 * CRC bytes is automatically removed by the
1208 		 * hardware.
1209 		 */
1210 		m->m_data += SGE_RX_PAD_BYTES;
1211 		m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1212 		    SGE_RX_PAD_BYTES;
1213 		m->m_pkthdr.rcvif = ifp;
1214 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1215 		SGE_UNLOCK(sc);
1216 		(*ifp->if_input)(ifp, m);
1217 		SGE_LOCK(sc);
1218 	}
1219 
1220 	if (prog > 0) {
1221 		bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1222 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1223 		cd->sge_rx_cons = cons;
1224 	}
1225 }
1226 
1227 /*
1228  * A frame was downloaded to the chip.  It's safe for us to clean up
1229  * the list buffers.
1230  */
1231 static void
1232 sge_txeof(struct sge_softc *sc)
1233 {
1234 	struct ifnet *ifp;
1235 	struct sge_list_data *ld;
1236 	struct sge_chain_data *cd;
1237 	struct sge_txdesc *txd;
1238 	uint32_t txstat;
1239 	int cons, nsegs, prod;
1240 
1241 	SGE_LOCK_ASSERT(sc);
1242 
1243 	ifp = sc->sge_ifp;
1244 	ld = &sc->sge_ldata;
1245 	cd = &sc->sge_cdata;
1246 
1247 	if (cd->sge_tx_cnt == 0)
1248 		return;
1249 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1250 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1251 	cons = cd->sge_tx_cons;
1252 	prod = cd->sge_tx_prod;
1253 	for (; cons != prod;) {
1254 		txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1255 		if ((txstat & TDC_OWN) != 0)
1256 			break;
1257 		/*
1258 		 * Only the first descriptor of multi-descriptor transmission
1259 		 * is updated by controller.  Driver should skip entire
1260 		 * chained buffers for the transmitted frame. In other words
1261 		 * TDC_OWN bit is valid only at the first descriptor of a
1262 		 * multi-descriptor transmission.
1263 		 */
1264 		if (SGE_TX_ERROR(txstat) != 0) {
1265 #ifdef SGE_SHOW_ERRORS
1266 			device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1267 			    txstat, TX_ERR_BITS);
1268 #endif
1269 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1270 		} else {
1271 #ifdef notyet
1272 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1273 #endif
1274 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1275 		}
1276 		txd = &cd->sge_txdesc[cons];
1277 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1278 			ld->sge_tx_ring[cons].sge_cmdsts = 0;
1279 			SGE_INC(cons, SGE_TX_RING_CNT);
1280 		}
1281 		/* Reclaim transmitted mbuf. */
1282 		KASSERT(txd->tx_m != NULL,
1283 		    ("%s: freeing NULL mbuf\n", __func__));
1284 		bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1285 		    BUS_DMASYNC_POSTWRITE);
1286 		bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1287 		m_freem(txd->tx_m);
1288 		txd->tx_m = NULL;
1289 		cd->sge_tx_cnt -= txd->tx_ndesc;
1290 		KASSERT(cd->sge_tx_cnt >= 0,
1291 		    ("%s: Active Tx desc counter was garbled\n", __func__));
1292 		txd->tx_ndesc = 0;
1293 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1294 	}
1295 	cd->sge_tx_cons = cons;
1296 	if (cd->sge_tx_cnt == 0)
1297 		sc->sge_timer = 0;
1298 }
1299 
1300 static void
1301 sge_tick(void *arg)
1302 {
1303 	struct sge_softc *sc;
1304 	struct mii_data *mii;
1305 	struct ifnet *ifp;
1306 
1307 	sc = arg;
1308 	SGE_LOCK_ASSERT(sc);
1309 
1310 	ifp = sc->sge_ifp;
1311 	mii = device_get_softc(sc->sge_miibus);
1312 	mii_tick(mii);
1313 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1314 		sge_miibus_statchg(sc->sge_dev);
1315 		if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1316 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1317 			sge_start_locked(ifp);
1318 	}
1319 	/*
1320 	 * Reclaim transmitted frames here as we do not request
1321 	 * Tx completion interrupt for every queued frames to
1322 	 * reduce excessive interrupts.
1323 	 */
1324 	sge_txeof(sc);
1325 	sge_watchdog(sc);
1326 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1327 }
1328 
1329 static void
1330 sge_intr(void *arg)
1331 {
1332 	struct sge_softc *sc;
1333 	struct ifnet *ifp;
1334 	uint32_t status;
1335 
1336 	sc = arg;
1337 	SGE_LOCK(sc);
1338 	ifp = sc->sge_ifp;
1339 
1340 	status = CSR_READ_4(sc, IntrStatus);
1341 	if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1342 		/* Not ours. */
1343 		SGE_UNLOCK(sc);
1344 		return;
1345 	}
1346 	/* Acknowledge interrupts. */
1347 	CSR_WRITE_4(sc, IntrStatus, status);
1348 	/* Disable further interrupts. */
1349 	CSR_WRITE_4(sc, IntrMask, 0);
1350 	/*
1351 	 * It seems the controller supports some kind of interrupt
1352 	 * moderation mechanism but we still don't know how to
1353 	 * enable that.  To reduce number of generated interrupts
1354 	 * under load we check pending interrupts in a loop.  This
1355 	 * will increase number of register access and is not correct
1356 	 * way to handle interrupt moderation but there seems to be
1357 	 * no other way at this time.
1358 	 */
1359 	for (;;) {
1360 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1361 			break;
1362 		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1363 			sge_rxeof(sc);
1364 			/* Wakeup Rx MAC. */
1365 			if ((status & INTR_RX_IDLE) != 0)
1366 				CSR_WRITE_4(sc, RX_CTL,
1367 				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1368 		}
1369 		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1370 			sge_txeof(sc);
1371 		status = CSR_READ_4(sc, IntrStatus);
1372 		if ((status & SGE_INTRS) == 0)
1373 			break;
1374 		/* Acknowledge interrupts. */
1375 		CSR_WRITE_4(sc, IntrStatus, status);
1376 	}
1377 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1378 		/* Re-enable interrupts */
1379 		CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1380 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1381 			sge_start_locked(ifp);
1382 	}
1383 	SGE_UNLOCK(sc);
1384 }
1385 
1386 /*
1387  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1388  * pointers to the fragment pointers.
1389  */
1390 static int
1391 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1392 {
1393 	struct mbuf *m;
1394 	struct sge_desc *desc;
1395 	struct sge_txdesc *txd;
1396 	bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1397 	uint32_t cflags, mss;
1398 	int error, i, nsegs, prod, si;
1399 
1400 	SGE_LOCK_ASSERT(sc);
1401 
1402 	si = prod = sc->sge_cdata.sge_tx_prod;
1403 	txd = &sc->sge_cdata.sge_txdesc[prod];
1404 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1405 		struct ether_header *eh;
1406 		struct ip *ip;
1407 		struct tcphdr *tcp;
1408 		uint32_t ip_off, poff;
1409 
1410 		if (M_WRITABLE(*m_head) == 0) {
1411 			/* Get a writable copy. */
1412 			m = m_dup(*m_head, M_NOWAIT);
1413 			m_freem(*m_head);
1414 			if (m == NULL) {
1415 				*m_head = NULL;
1416 				return (ENOBUFS);
1417 			}
1418 			*m_head = m;
1419 		}
1420 		ip_off = sizeof(struct ether_header);
1421 		m = m_pullup(*m_head, ip_off);
1422 		if (m == NULL) {
1423 			*m_head = NULL;
1424 			return (ENOBUFS);
1425 		}
1426 		eh = mtod(m, struct ether_header *);
1427 		/* Check the existence of VLAN tag. */
1428 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1429 			ip_off = sizeof(struct ether_vlan_header);
1430 			m = m_pullup(m, ip_off);
1431 			if (m == NULL) {
1432 				*m_head = NULL;
1433 				return (ENOBUFS);
1434 			}
1435 		}
1436 		m = m_pullup(m, ip_off + sizeof(struct ip));
1437 		if (m == NULL) {
1438 			*m_head = NULL;
1439 			return (ENOBUFS);
1440 		}
1441 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1442 		poff = ip_off + (ip->ip_hl << 2);
1443 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1444 		if (m == NULL) {
1445 			*m_head = NULL;
1446 			return (ENOBUFS);
1447 		}
1448 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1449 		m = m_pullup(m, poff + (tcp->th_off << 2));
1450 		if (m == NULL) {
1451 			*m_head = NULL;
1452 			return (ENOBUFS);
1453 		}
1454 		/*
1455 		 * Reset IP checksum and recompute TCP pseudo
1456 		 * checksum that NDIS specification requires.
1457 		 */
1458 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1459 		ip->ip_sum = 0;
1460 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1461 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1462 		    htons(IPPROTO_TCP));
1463 		*m_head = m;
1464 	}
1465 
1466 	error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1467 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1468 	if (error == EFBIG) {
1469 		m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1470 		if (m == NULL) {
1471 			m_freem(*m_head);
1472 			*m_head = NULL;
1473 			return (ENOBUFS);
1474 		}
1475 		*m_head = m;
1476 		error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1477 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1478 		if (error != 0) {
1479 			m_freem(*m_head);
1480 			*m_head = NULL;
1481 			return (error);
1482 		}
1483 	} else if (error != 0)
1484 		return (error);
1485 
1486 	KASSERT(nsegs != 0, ("zero segment returned"));
1487 	/* Check descriptor overrun. */
1488 	if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1489 		bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1490 		return (ENOBUFS);
1491 	}
1492 	bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1493 	    BUS_DMASYNC_PREWRITE);
1494 
1495 	m = *m_head;
1496 	cflags = 0;
1497 	mss = 0;
1498 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1499 		cflags |= TDC_LS;
1500 		mss = (uint32_t)m->m_pkthdr.tso_segsz;
1501 		mss <<= 16;
1502 	} else {
1503 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1504 			cflags |= TDC_IP_CSUM;
1505 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1506 			cflags |= TDC_TCP_CSUM;
1507 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1508 			cflags |= TDC_UDP_CSUM;
1509 	}
1510 	for (i = 0; i < nsegs; i++) {
1511 		desc = &sc->sge_ldata.sge_tx_ring[prod];
1512 		if (i == 0) {
1513 			desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1514 			desc->sge_cmdsts = 0;
1515 		} else {
1516 			desc->sge_sts_size = 0;
1517 			desc->sge_cmdsts = htole32(TDC_OWN);
1518 		}
1519 		desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1520 		desc->sge_flags = htole32(txsegs[i].ds_len);
1521 		if (prod == SGE_TX_RING_CNT - 1)
1522 			desc->sge_flags |= htole32(RING_END);
1523 		sc->sge_cdata.sge_tx_cnt++;
1524 		SGE_INC(prod, SGE_TX_RING_CNT);
1525 	}
1526 	/* Update producer index. */
1527 	sc->sge_cdata.sge_tx_prod = prod;
1528 
1529 	desc = &sc->sge_ldata.sge_tx_ring[si];
1530 	/* Configure VLAN. */
1531 	if((m->m_flags & M_VLANTAG) != 0) {
1532 		cflags |= m->m_pkthdr.ether_vtag;
1533 		desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1534 	}
1535 	desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1536 #if 1
1537 	if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1538 		desc->sge_cmdsts |= htole32(TDC_BST);
1539 #else
1540 	if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1541 		desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1542 		if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1543 			desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1544 	}
1545 #endif
1546 	/* Request interrupt and give ownership to controller. */
1547 	desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1548 	txd->tx_m = m;
1549 	txd->tx_ndesc = nsegs;
1550 	return (0);
1551 }
1552 
1553 static void
1554 sge_start(struct ifnet *ifp)
1555 {
1556 	struct sge_softc *sc;
1557 
1558 	sc = ifp->if_softc;
1559 	SGE_LOCK(sc);
1560 	sge_start_locked(ifp);
1561 	SGE_UNLOCK(sc);
1562 }
1563 
1564 static void
1565 sge_start_locked(struct ifnet *ifp)
1566 {
1567 	struct sge_softc *sc;
1568 	struct mbuf *m_head;
1569 	int queued = 0;
1570 
1571 	sc = ifp->if_softc;
1572 	SGE_LOCK_ASSERT(sc);
1573 
1574 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1575 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1576 	    IFF_DRV_RUNNING)
1577 		return;
1578 
1579 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1580 		if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1581 		    SGE_MAXTXSEGS)) {
1582 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1583 			break;
1584 		}
1585 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1586 		if (m_head == NULL)
1587 			break;
1588 		if (sge_encap(sc, &m_head)) {
1589 			if (m_head == NULL)
1590 				break;
1591 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1592 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1593 			break;
1594 		}
1595 		queued++;
1596 		/*
1597 		 * If there's a BPF listener, bounce a copy of this frame
1598 		 * to him.
1599 		 */
1600 		BPF_MTAP(ifp, m_head);
1601 	}
1602 
1603 	if (queued > 0) {
1604 		bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1605 		    sc->sge_cdata.sge_tx_dmamap,
1606 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1607 		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1608 		sc->sge_timer = 5;
1609 	}
1610 }
1611 
1612 static void
1613 sge_init(void *arg)
1614 {
1615 	struct sge_softc *sc;
1616 
1617 	sc = arg;
1618 	SGE_LOCK(sc);
1619 	sge_init_locked(sc);
1620 	SGE_UNLOCK(sc);
1621 }
1622 
1623 static void
1624 sge_init_locked(struct sge_softc *sc)
1625 {
1626 	struct ifnet *ifp;
1627 	struct mii_data *mii;
1628 	uint16_t rxfilt;
1629 	int i;
1630 
1631 	SGE_LOCK_ASSERT(sc);
1632 	ifp = sc->sge_ifp;
1633 	mii = device_get_softc(sc->sge_miibus);
1634 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1635 		return;
1636 	/*
1637 	 * Cancel pending I/O and free all RX/TX buffers.
1638 	 */
1639 	sge_stop(sc);
1640 	sge_reset(sc);
1641 
1642 	/* Init circular RX list. */
1643 	if (sge_list_rx_init(sc) == ENOBUFS) {
1644 		device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1645 		sge_stop(sc);
1646 		return;
1647 	}
1648 	/* Init TX descriptors. */
1649 	sge_list_tx_init(sc);
1650 	/*
1651 	 * Load the address of the RX and TX lists.
1652 	 */
1653 	CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1654 	CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1655 
1656 	CSR_WRITE_4(sc, TxMacControl, 0x60);
1657 	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1658 	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1659 	/* Allow receiving VLAN frames. */
1660 	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1661 	    SGE_RX_PAD_BYTES);
1662 
1663 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1664 		CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1665 	/* Configure RX MAC. */
1666 	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1667 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1668 	sge_rxfilter(sc);
1669 	sge_setvlan(sc);
1670 
1671 	/* Initialize default speed/duplex information. */
1672 	if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1673 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
1674 	sc->sge_flags |= SGE_FLAG_FDX;
1675 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1676 		CSR_WRITE_4(sc, StationControl, 0x04008001);
1677 	else
1678 		CSR_WRITE_4(sc, StationControl, 0x04000001);
1679 	/*
1680 	 * XXX Try to mitigate interrupts.
1681 	 */
1682 	CSR_WRITE_4(sc, IntrControl, 0x08880000);
1683 #ifdef notyet
1684 	if (sc->sge_intrcontrol != 0)
1685 		CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1686 	if (sc->sge_intrtimer != 0)
1687 		CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1688 #endif
1689 
1690 	/*
1691 	 * Clear and enable interrupts.
1692 	 */
1693 	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1694 	CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1695 
1696 	/* Enable receiver and transmitter. */
1697 	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1698 	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1699 
1700 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1701 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1702 
1703 	sc->sge_flags &= ~SGE_FLAG_LINK;
1704 	mii_mediachg(mii);
1705 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1706 }
1707 
1708 /*
1709  * Set media options.
1710  */
1711 static int
1712 sge_ifmedia_upd(struct ifnet *ifp)
1713 {
1714 	struct sge_softc *sc;
1715 	struct mii_data *mii;
1716 		struct mii_softc *miisc;
1717 	int error;
1718 
1719 	sc = ifp->if_softc;
1720 	SGE_LOCK(sc);
1721 	mii = device_get_softc(sc->sge_miibus);
1722 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1723 		PHY_RESET(miisc);
1724 	error = mii_mediachg(mii);
1725 	SGE_UNLOCK(sc);
1726 
1727 	return (error);
1728 }
1729 
1730 /*
1731  * Report current media status.
1732  */
1733 static void
1734 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1735 {
1736 	struct sge_softc *sc;
1737 	struct mii_data *mii;
1738 
1739 	sc = ifp->if_softc;
1740 	SGE_LOCK(sc);
1741 	mii = device_get_softc(sc->sge_miibus);
1742 	if ((ifp->if_flags & IFF_UP) == 0) {
1743 		SGE_UNLOCK(sc);
1744 		return;
1745 	}
1746 	mii_pollstat(mii);
1747 	ifmr->ifm_active = mii->mii_media_active;
1748 	ifmr->ifm_status = mii->mii_media_status;
1749 	SGE_UNLOCK(sc);
1750 }
1751 
1752 static int
1753 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1754 {
1755 	struct sge_softc *sc;
1756 	struct ifreq *ifr;
1757 	struct mii_data *mii;
1758 	int error = 0, mask, reinit;
1759 
1760 	sc = ifp->if_softc;
1761 	ifr = (struct ifreq *)data;
1762 
1763 	switch(command) {
1764 	case SIOCSIFFLAGS:
1765 		SGE_LOCK(sc);
1766 		if ((ifp->if_flags & IFF_UP) != 0) {
1767 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1768 			    ((ifp->if_flags ^ sc->sge_if_flags) &
1769 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1770 				sge_rxfilter(sc);
1771 			else
1772 				sge_init_locked(sc);
1773 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1774 			sge_stop(sc);
1775 		sc->sge_if_flags = ifp->if_flags;
1776 		SGE_UNLOCK(sc);
1777 		break;
1778 	case SIOCSIFCAP:
1779 		SGE_LOCK(sc);
1780 		reinit = 0;
1781 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1782 		if ((mask & IFCAP_TXCSUM) != 0 &&
1783 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1784 			ifp->if_capenable ^= IFCAP_TXCSUM;
1785 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1786 				ifp->if_hwassist |= SGE_CSUM_FEATURES;
1787 			else
1788 				ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1789 		}
1790 		if ((mask & IFCAP_RXCSUM) != 0 &&
1791 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1792 			ifp->if_capenable ^= IFCAP_RXCSUM;
1793 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1794 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1795 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1796 		if ((mask & IFCAP_TSO4) != 0 &&
1797 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1798 			ifp->if_capenable ^= IFCAP_TSO4;
1799 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1800 				ifp->if_hwassist |= CSUM_TSO;
1801 			else
1802 				ifp->if_hwassist &= ~CSUM_TSO;
1803 		}
1804 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1805 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1806 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1807 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1808 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1809 			/*
1810 			 * Due to unknown reason, toggling VLAN hardware
1811 			 * tagging require interface reinitialization.
1812 			 */
1813 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1814 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1815 				ifp->if_capenable &=
1816 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1817 			reinit = 1;
1818 		}
1819 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1820 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1821 			sge_init_locked(sc);
1822 		}
1823 		SGE_UNLOCK(sc);
1824 		VLAN_CAPABILITIES(ifp);
1825 		break;
1826 	case SIOCADDMULTI:
1827 	case SIOCDELMULTI:
1828 		SGE_LOCK(sc);
1829 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1830 			sge_rxfilter(sc);
1831 		SGE_UNLOCK(sc);
1832 		break;
1833 	case SIOCGIFMEDIA:
1834 	case SIOCSIFMEDIA:
1835 		mii = device_get_softc(sc->sge_miibus);
1836 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1837 		break;
1838 	default:
1839 		error = ether_ioctl(ifp, command, data);
1840 		break;
1841 	}
1842 
1843 	return (error);
1844 }
1845 
1846 static void
1847 sge_watchdog(struct sge_softc *sc)
1848 {
1849 	struct ifnet *ifp;
1850 
1851 	SGE_LOCK_ASSERT(sc);
1852 	if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1853 		return;
1854 
1855 	ifp = sc->sge_ifp;
1856 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1857 		if (1 || bootverbose)
1858 			device_printf(sc->sge_dev,
1859 			    "watchdog timeout (lost link)\n");
1860 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1861 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1862 		sge_init_locked(sc);
1863 		return;
1864 	}
1865 	device_printf(sc->sge_dev, "watchdog timeout\n");
1866 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1867 
1868 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1869 	sge_init_locked(sc);
1870 	if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1871 		sge_start_locked(ifp);
1872 }
1873 
1874 /*
1875  * Stop the adapter and free any mbufs allocated to the
1876  * RX and TX lists.
1877  */
1878 static void
1879 sge_stop(struct sge_softc *sc)
1880 {
1881 	struct ifnet *ifp;
1882 
1883 	ifp = sc->sge_ifp;
1884 
1885 	SGE_LOCK_ASSERT(sc);
1886 
1887 	sc->sge_timer = 0;
1888 	callout_stop(&sc->sge_stat_ch);
1889 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1890 
1891 	CSR_WRITE_4(sc, IntrMask, 0);
1892 	CSR_READ_4(sc, IntrMask);
1893 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1894 	/* Stop TX/RX MAC. */
1895 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1896 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1897 	/* XXX Can we assume active DMA cycles gone? */
1898 	DELAY(2000);
1899 	CSR_WRITE_4(sc, IntrMask, 0);
1900 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1901 
1902 	sc->sge_flags &= ~SGE_FLAG_LINK;
1903 	sge_list_rx_free(sc);
1904 	sge_list_tx_free(sc);
1905 }
1906