xref: /freebsd/sys/dev/sge/if_sge.c (revision f3087bef11543b42e0d69b708f367097a4118d24)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
5  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
6  * Copyright (c) 1997, 1998, 1999
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
27  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
28  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
35  * OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 /*
40  * SiS 190/191 PCI Ethernet NIC driver.
41  *
42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46  * review and very useful comments.
47  *
48  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
49  * Linux and Solaris drivers.
50  */
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/mutex.h>
62 #include <sys/rman.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 
66 #include <net/bpf.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_types.h>
74 #include <net/if_vlan_var.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/ip.h>
79 #include <netinet/tcp.h>
80 
81 #include <machine/bus.h>
82 #include <machine/in_cksum.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 
90 #include <dev/sge/if_sgereg.h>
91 
92 MODULE_DEPEND(sge, pci, 1, 1, 1);
93 MODULE_DEPEND(sge, ether, 1, 1, 1);
94 MODULE_DEPEND(sge, miibus, 1, 1, 1);
95 
96 /* "device miibus0" required.  See GENERIC if you get errors here. */
97 #include "miibus_if.h"
98 
99 /*
100  * Various supported device vendors/types and their names.
101  */
102 static struct sge_type sge_devs[] = {
103 	{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
104 	{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
105 	{ 0, 0, NULL }
106 };
107 
108 static int	sge_probe(device_t);
109 static int	sge_attach(device_t);
110 static int	sge_detach(device_t);
111 static int	sge_shutdown(device_t);
112 static int	sge_suspend(device_t);
113 static int	sge_resume(device_t);
114 
115 static int	sge_miibus_readreg(device_t, int, int);
116 static int	sge_miibus_writereg(device_t, int, int, int);
117 static void	sge_miibus_statchg(device_t);
118 
119 static int	sge_newbuf(struct sge_softc *, int);
120 static int	sge_encap(struct sge_softc *, struct mbuf **);
121 static __inline void
122 		sge_discard_rxbuf(struct sge_softc *, int);
123 static void	sge_rxeof(struct sge_softc *);
124 static void	sge_txeof(struct sge_softc *);
125 static void	sge_intr(void *);
126 static void	sge_tick(void *);
127 static void	sge_start(if_t);
128 static void	sge_start_locked(if_t);
129 static int	sge_ioctl(if_t, u_long, caddr_t);
130 static void	sge_init(void *);
131 static void	sge_init_locked(struct sge_softc *);
132 static void	sge_stop(struct sge_softc *);
133 static void	sge_watchdog(struct sge_softc *);
134 static int	sge_ifmedia_upd(if_t);
135 static void	sge_ifmedia_sts(if_t, struct ifmediareq *);
136 
137 static int	sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
138 static int	sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
139 static uint16_t	sge_read_eeprom(struct sge_softc *, int);
140 
141 static void	sge_rxfilter(struct sge_softc *);
142 static void	sge_setvlan(struct sge_softc *);
143 static void	sge_reset(struct sge_softc *);
144 static int	sge_list_rx_init(struct sge_softc *);
145 static int	sge_list_rx_free(struct sge_softc *);
146 static int	sge_list_tx_init(struct sge_softc *);
147 static int	sge_list_tx_free(struct sge_softc *);
148 
149 static int	sge_dma_alloc(struct sge_softc *);
150 static void	sge_dma_free(struct sge_softc *);
151 static void	sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
152 
153 static device_method_t sge_methods[] = {
154 	/* Device interface */
155 	DEVMETHOD(device_probe,		sge_probe),
156 	DEVMETHOD(device_attach,	sge_attach),
157 	DEVMETHOD(device_detach,	sge_detach),
158 	DEVMETHOD(device_suspend,	sge_suspend),
159 	DEVMETHOD(device_resume,	sge_resume),
160 	DEVMETHOD(device_shutdown,	sge_shutdown),
161 
162 	/* MII interface */
163 	DEVMETHOD(miibus_readreg,	sge_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	sge_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	sge_miibus_statchg),
166 
167 	DEVMETHOD_END
168 };
169 
170 static driver_t sge_driver = {
171 	"sge", sge_methods, sizeof(struct sge_softc)
172 };
173 
174 DRIVER_MODULE(sge, pci, sge_driver, 0, 0);
175 DRIVER_MODULE(miibus, sge, miibus_driver, 0, 0);
176 
177 /*
178  * Register space access macros.
179  */
180 #define	CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sge_res, reg, val)
181 #define	CSR_WRITE_2(sc, reg, val)	bus_write_2(sc->sge_res, reg, val)
182 #define	CSR_WRITE_1(cs, reg, val)	bus_write_1(sc->sge_res, reg, val)
183 
184 #define	CSR_READ_4(sc, reg)		bus_read_4(sc->sge_res, reg)
185 #define	CSR_READ_2(sc, reg)		bus_read_2(sc->sge_res, reg)
186 #define	CSR_READ_1(sc, reg)		bus_read_1(sc->sge_res, reg)
187 
188 /* Define to show Tx/Rx error status. */
189 #undef SGE_SHOW_ERRORS
190 
191 #define	SGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
192 
193 static void
194 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
195 {
196 	bus_addr_t *p;
197 
198 	if (error != 0)
199 		return;
200 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
201 	p  = arg;
202 	*p = segs->ds_addr;
203 }
204 
205 /*
206  * Read a sequence of words from the EEPROM.
207  */
208 static uint16_t
209 sge_read_eeprom(struct sge_softc *sc, int offset)
210 {
211 	uint32_t val;
212 	int i;
213 
214 	KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
215 	CSR_WRITE_4(sc, ROMInterface,
216 	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
217 	DELAY(500);
218 	for (i = 0; i < SGE_TIMEOUT; i++) {
219 		val = CSR_READ_4(sc, ROMInterface);
220 		if ((val & EI_REQ) == 0)
221 			break;
222 		DELAY(100);
223 	}
224 	if (i == SGE_TIMEOUT) {
225 		device_printf(sc->sge_dev,
226 		    "EEPROM read timeout : 0x%08x\n", val);
227 		return (0xffff);
228 	}
229 
230 	return ((val & EI_DATA) >> EI_DATA_SHIFT);
231 }
232 
233 static int
234 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
235 {
236 	uint16_t val;
237 	int i;
238 
239 	val = sge_read_eeprom(sc, EEPROMSignature);
240 	if (val == 0xffff || val == 0) {
241 		device_printf(sc->sge_dev,
242 		    "invalid EEPROM signature : 0x%04x\n", val);
243 		return (EINVAL);
244 	}
245 
246 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
247 		val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
248 		dest[i + 0] = (uint8_t)val;
249 		dest[i + 1] = (uint8_t)(val >> 8);
250 	}
251 
252 	if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
253 		sc->sge_flags |= SGE_FLAG_RGMII;
254 	return (0);
255 }
256 
257 /*
258  * For SiS96x, APC CMOS RAM is used to store ethernet address.
259  * APC CMOS RAM is accessed through ISA bridge.
260  */
261 static int
262 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
263 {
264 #if defined(__amd64__) || defined(__i386__)
265 	devclass_t pci;
266 	device_t bus, dev = NULL;
267 	device_t *kids;
268 	struct apc_tbl {
269 		uint16_t vid;
270 		uint16_t did;
271 	} *tp, apc_tbls[] = {
272 		{ SIS_VENDORID, 0x0965 },
273 		{ SIS_VENDORID, 0x0966 },
274 		{ SIS_VENDORID, 0x0968 }
275 	};
276 	uint8_t reg;
277 	int busnum, i, j, numkids;
278 
279 	pci = devclass_find("pci");
280 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
281 		bus = devclass_get_device(pci, busnum);
282 		if (!bus)
283 			continue;
284 		if (device_get_children(bus, &kids, &numkids) != 0)
285 			continue;
286 		for (i = 0; i < numkids; i++) {
287 			dev = kids[i];
288 			if (pci_get_class(dev) == PCIC_BRIDGE &&
289 			    pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
290 				tp = apc_tbls;
291 				for (j = 0; j < nitems(apc_tbls); j++) {
292 					if (pci_get_vendor(dev) == tp->vid &&
293 					    pci_get_device(dev) == tp->did) {
294 						free(kids, M_TEMP);
295 						goto apc_found;
296 					}
297 					tp++;
298 				}
299 			}
300                 }
301 		free(kids, M_TEMP);
302 	}
303 	device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
304 	return (EINVAL);
305 apc_found:
306 	/* Enable port 0x78 and 0x79 to access APC registers. */
307 	reg = pci_read_config(dev, 0x48, 1);
308 	pci_write_config(dev, 0x48, reg & ~0x02, 1);
309 	DELAY(50);
310 	pci_read_config(dev, 0x48, 1);
311 	/* Read stored ethernet address. */
312 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
313 		outb(0x78, 0x09 + i);
314 		dest[i] = inb(0x79);
315 	}
316 	outb(0x78, 0x12);
317 	if ((inb(0x79) & 0x80) != 0)
318 		sc->sge_flags |= SGE_FLAG_RGMII;
319 	/* Restore access to APC registers. */
320 	pci_write_config(dev, 0x48, reg, 1);
321 
322 	return (0);
323 #else
324 	return (EINVAL);
325 #endif
326 }
327 
328 static int
329 sge_miibus_readreg(device_t dev, int phy, int reg)
330 {
331 	struct sge_softc *sc;
332 	uint32_t val;
333 	int i;
334 
335 	sc = device_get_softc(dev);
336 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
337 	    (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
338 	DELAY(10);
339 	for (i = 0; i < SGE_TIMEOUT; i++) {
340 		val = CSR_READ_4(sc, GMIIControl);
341 		if ((val & GMI_REQ) == 0)
342 			break;
343 		DELAY(10);
344 	}
345 	if (i == SGE_TIMEOUT) {
346 		device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
347 		return (0);
348 	}
349 	return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
350 }
351 
352 static int
353 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
354 {
355 	struct sge_softc *sc;
356 	uint32_t val;
357 	int i;
358 
359 	sc = device_get_softc(dev);
360 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
361 	    (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
362 	    GMI_OP_WR | GMI_REQ);
363 	DELAY(10);
364 	for (i = 0; i < SGE_TIMEOUT; i++) {
365 		val = CSR_READ_4(sc, GMIIControl);
366 		if ((val & GMI_REQ) == 0)
367 			break;
368 		DELAY(10);
369 	}
370 	if (i == SGE_TIMEOUT)
371 		device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
372 	return (0);
373 }
374 
375 static void
376 sge_miibus_statchg(device_t dev)
377 {
378 	struct sge_softc *sc;
379 	struct mii_data *mii;
380 	if_t ifp;
381 	uint32_t ctl, speed;
382 
383 	sc = device_get_softc(dev);
384 	mii = device_get_softc(sc->sge_miibus);
385 	ifp = sc->sge_ifp;
386 	if (mii == NULL || ifp == NULL ||
387 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
388 		return;
389 	speed = 0;
390 	sc->sge_flags &= ~SGE_FLAG_LINK;
391 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
392 	    (IFM_ACTIVE | IFM_AVALID)) {
393 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
394 		case IFM_10_T:
395 			sc->sge_flags |= SGE_FLAG_LINK;
396 			speed = SC_SPEED_10;
397 			break;
398 		case IFM_100_TX:
399 			sc->sge_flags |= SGE_FLAG_LINK;
400 			speed = SC_SPEED_100;
401 			break;
402 		case IFM_1000_T:
403 			if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
404 				sc->sge_flags |= SGE_FLAG_LINK;
405 				speed = SC_SPEED_1000;
406 			}
407 			break;
408 		default:
409 			break;
410                 }
411         }
412 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
413 		return;
414 	/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
415 	ctl = CSR_READ_4(sc, StationControl);
416 	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
417 	if (speed == SC_SPEED_1000) {
418 		ctl |= 0x07000000;
419 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
420 	} else {
421 		ctl |= 0x04000000;
422 		sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
423 	}
424 #ifdef notyet
425 	if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
426 		ctl |= 0x03000000;
427 #endif
428 	ctl |= speed;
429 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
430 		ctl |= SC_FDX;
431 		sc->sge_flags |= SGE_FLAG_FDX;
432 	} else
433 		sc->sge_flags &= ~SGE_FLAG_FDX;
434 	CSR_WRITE_4(sc, StationControl, ctl);
435 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
436 		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
437 		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
438 	}
439 }
440 
441 static u_int
442 sge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int count)
443 {
444 	uint32_t crc, *hashes = arg;
445 
446 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
447 	hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
448 
449 	return (1);
450 }
451 
452 static void
453 sge_rxfilter(struct sge_softc *sc)
454 {
455 	if_t ifp;
456 	uint32_t hashes[2];
457 	uint16_t rxfilt;
458 
459 	SGE_LOCK_ASSERT(sc);
460 
461 	ifp = sc->sge_ifp;
462 	rxfilt = CSR_READ_2(sc, RxMacControl);
463 	rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
464 	rxfilt |= AcceptMyPhys;
465 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
466 		rxfilt |= AcceptBroadcast;
467 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
468 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
469 			rxfilt |= AcceptAllPhys;
470 		rxfilt |= AcceptMulticast;
471 		hashes[0] = 0xFFFFFFFF;
472 		hashes[1] = 0xFFFFFFFF;
473 	} else {
474 		rxfilt |= AcceptMulticast;
475 		hashes[0] = hashes[1] = 0;
476 		/* Now program new ones. */
477 		if_foreach_llmaddr(ifp, sge_hash_maddr, hashes);
478 	}
479 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
480 	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
481 	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
482 }
483 
484 static void
485 sge_setvlan(struct sge_softc *sc)
486 {
487 	if_t ifp;
488 	uint16_t rxfilt;
489 
490 	SGE_LOCK_ASSERT(sc);
491 
492 	ifp = sc->sge_ifp;
493 	if ((if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
494 		return;
495 	rxfilt = CSR_READ_2(sc, RxMacControl);
496 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
497 		rxfilt |= RXMAC_STRIP_VLAN;
498 	else
499 		rxfilt &= ~RXMAC_STRIP_VLAN;
500 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
501 }
502 
503 static void
504 sge_reset(struct sge_softc *sc)
505 {
506 
507 	CSR_WRITE_4(sc, IntrMask, 0);
508 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
509 
510 	/* Soft reset. */
511 	CSR_WRITE_4(sc, IntrControl, 0x8000);
512 	CSR_READ_4(sc, IntrControl);
513 	DELAY(100);
514 	CSR_WRITE_4(sc, IntrControl, 0);
515 	/* Stop MAC. */
516 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
517 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
518 
519 	CSR_WRITE_4(sc, IntrMask, 0);
520 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
521 
522 	CSR_WRITE_4(sc, GMIIControl, 0);
523 }
524 
525 /*
526  * Probe for an SiS chip. Check the PCI vendor and device
527  * IDs against our list and return a device name if we find a match.
528  */
529 static int
530 sge_probe(device_t dev)
531 {
532 	struct sge_type *t;
533 
534 	t = sge_devs;
535 	while (t->sge_name != NULL) {
536 		if ((pci_get_vendor(dev) == t->sge_vid) &&
537 		    (pci_get_device(dev) == t->sge_did)) {
538 			device_set_desc(dev, t->sge_name);
539 			return (BUS_PROBE_DEFAULT);
540 		}
541 		t++;
542 	}
543 
544 	return (ENXIO);
545 }
546 
547 /*
548  * Attach the interface.  Allocate softc structures, do ifmedia
549  * setup and ethernet/BPF attach.
550  */
551 static int
552 sge_attach(device_t dev)
553 {
554 	struct sge_softc *sc;
555 	if_t ifp;
556 	uint8_t eaddr[ETHER_ADDR_LEN];
557 	int error = 0, rid;
558 
559 	sc = device_get_softc(dev);
560 	sc->sge_dev = dev;
561 
562 	mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
563 	    MTX_DEF);
564         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
565 
566 	/*
567 	 * Map control/status registers.
568 	 */
569 	pci_enable_busmaster(dev);
570 
571 	/* Allocate resources. */
572 	sc->sge_res_id = PCIR_BAR(0);
573 	sc->sge_res_type = SYS_RES_MEMORY;
574 	sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
575 	    &sc->sge_res_id, RF_ACTIVE);
576 	if (sc->sge_res == NULL) {
577 		device_printf(dev, "couldn't allocate resource\n");
578 		error = ENXIO;
579 		goto fail;
580 	}
581 
582 	rid = 0;
583 	sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
584 	    RF_SHAREABLE | RF_ACTIVE);
585 	if (sc->sge_irq == NULL) {
586 		device_printf(dev, "couldn't allocate IRQ resources\n");
587 		error = ENXIO;
588 		goto fail;
589 	}
590 	sc->sge_rev = pci_get_revid(dev);
591 	if (pci_get_device(dev) == SIS_DEVICEID_190)
592 		sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
593 	/* Reset the adapter. */
594 	sge_reset(sc);
595 
596 	/* Get MAC address from the EEPROM. */
597 	if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
598 		sge_get_mac_addr_apc(sc, eaddr);
599 	else
600 		sge_get_mac_addr_eeprom(sc, eaddr);
601 
602 	if ((error = sge_dma_alloc(sc)) != 0)
603 		goto fail;
604 
605 	ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
606 	if_setsoftc(ifp, sc);
607 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
608 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
609 	if_setioctlfn(ifp, sge_ioctl);
610 	if_setstartfn(ifp, sge_start);
611 	if_setinitfn(ifp, sge_init);
612 	if_setsendqlen(ifp, SGE_TX_RING_CNT - 1);
613 	if_setsendqready(ifp);
614 	if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4);
615 	if_sethwassist(ifp, SGE_CSUM_FEATURES | CSUM_TSO);
616 	if_setcapenable(ifp, if_getcapabilities(ifp));
617 	/*
618 	 * Do MII setup.
619 	 */
620 	error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
621 	    sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
622 	if (error != 0) {
623 		device_printf(dev, "attaching PHYs failed\n");
624 		goto fail;
625 	}
626 
627 	/*
628 	 * Call MI attach routine.
629 	 */
630 	ether_ifattach(ifp, eaddr);
631 
632 	/* VLAN setup. */
633 	if_setcapabilities(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
634 	    IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU);
635 	if_setcapenable(ifp, if_getcapabilities(ifp));
636 	/* Tell the upper layer(s) we support long frames. */
637 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
638 
639 	/* Hook interrupt last to avoid having to lock softc */
640 	error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
641 	    NULL, sge_intr, sc, &sc->sge_intrhand);
642 	if (error) {
643 		device_printf(dev, "couldn't set up irq\n");
644 		ether_ifdetach(ifp);
645 		goto fail;
646 	}
647 
648 fail:
649 	if (error)
650 		sge_detach(dev);
651 
652 	return (error);
653 }
654 
655 /*
656  * Shutdown hardware and free up resources.  This can be called any
657  * time after the mutex has been initialized.  It is called in both
658  * the error case in attach and the normal detach case so it needs
659  * to be careful about only freeing resources that have actually been
660  * allocated.
661  */
662 static int
663 sge_detach(device_t dev)
664 {
665 	struct sge_softc *sc;
666 	if_t ifp;
667 
668 	sc = device_get_softc(dev);
669 	ifp = sc->sge_ifp;
670 	/* These should only be active if attach succeeded. */
671 	if (device_is_attached(dev)) {
672 		ether_ifdetach(ifp);
673 		SGE_LOCK(sc);
674 		sge_stop(sc);
675 		SGE_UNLOCK(sc);
676 		callout_drain(&sc->sge_stat_ch);
677 	}
678 	bus_generic_detach(dev);
679 
680 	if (sc->sge_intrhand)
681 		bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
682 	if (sc->sge_irq)
683 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
684 	if (sc->sge_res)
685 		bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
686 		    sc->sge_res);
687 	if (ifp)
688 		if_free(ifp);
689 	sge_dma_free(sc);
690 	mtx_destroy(&sc->sge_mtx);
691 
692 	return (0);
693 }
694 
695 /*
696  * Stop all chip I/O so that the kernel's probe routines don't
697  * get confused by errant DMAs when rebooting.
698  */
699 static int
700 sge_shutdown(device_t dev)
701 {
702 	struct sge_softc *sc;
703 
704 	sc = device_get_softc(dev);
705 	SGE_LOCK(sc);
706 	sge_stop(sc);
707 	SGE_UNLOCK(sc);
708 	return (0);
709 }
710 
711 static int
712 sge_suspend(device_t dev)
713 {
714 	struct sge_softc *sc;
715 	if_t ifp;
716 
717 	sc = device_get_softc(dev);
718 	SGE_LOCK(sc);
719 	ifp = sc->sge_ifp;
720 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
721 		sge_stop(sc);
722 	SGE_UNLOCK(sc);
723 	return (0);
724 }
725 
726 static int
727 sge_resume(device_t dev)
728 {
729 	struct sge_softc *sc;
730 	if_t ifp;
731 
732 	sc = device_get_softc(dev);
733 	SGE_LOCK(sc);
734 	ifp = sc->sge_ifp;
735 	if ((if_getflags(ifp) & IFF_UP) != 0)
736 		sge_init_locked(sc);
737 	SGE_UNLOCK(sc);
738 	return (0);
739 }
740 
741 static int
742 sge_dma_alloc(struct sge_softc *sc)
743 {
744 	struct sge_chain_data *cd;
745 	struct sge_list_data *ld;
746 	struct sge_rxdesc *rxd;
747 	struct sge_txdesc *txd;
748 	int error, i;
749 
750 	cd = &sc->sge_cdata;
751 	ld = &sc->sge_ldata;
752 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
753 	    1, 0,			/* alignment, boundary */
754 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
755 	    BUS_SPACE_MAXADDR,		/* highaddr */
756 	    NULL, NULL,			/* filter, filterarg */
757 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
758 	    1,				/* nsegments */
759 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
760 	    0,				/* flags */
761 	    NULL,			/* lockfunc */
762 	    NULL,			/* lockarg */
763 	    &cd->sge_tag);
764 	if (error != 0) {
765 		device_printf(sc->sge_dev,
766 		    "could not create parent DMA tag.\n");
767 		goto fail;
768 	}
769 
770 	/* RX descriptor ring */
771 	error = bus_dma_tag_create(cd->sge_tag,
772 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
773 	    BUS_SPACE_MAXADDR,		/* lowaddr */
774 	    BUS_SPACE_MAXADDR,		/* highaddr */
775 	    NULL, NULL,			/* filter, filterarg */
776 	    SGE_RX_RING_SZ, 1,		/* maxsize,nsegments */
777 	    SGE_RX_RING_SZ,		/* maxsegsize */
778 	    0,				/* flags */
779 	    NULL,			/* lockfunc */
780 	    NULL,			/* lockarg */
781 	    &cd->sge_rx_tag);
782 	if (error != 0) {
783 		device_printf(sc->sge_dev,
784 		    "could not create Rx ring DMA tag.\n");
785 		goto fail;
786 	}
787 	/* Allocate DMA'able memory and load DMA map for RX ring. */
788 	error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
789 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
790 	    &cd->sge_rx_dmamap);
791 	if (error != 0) {
792 		device_printf(sc->sge_dev,
793 		    "could not allocate DMA'able memory for Rx ring.\n");
794 		goto fail;
795 	}
796 	error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
797 	    ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
798 	    &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
799 	if (error != 0) {
800 		device_printf(sc->sge_dev,
801 		    "could not load DMA'able memory for Rx ring.\n");
802 	}
803 
804 	/* TX descriptor ring */
805 	error = bus_dma_tag_create(cd->sge_tag,
806 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
807 	    BUS_SPACE_MAXADDR,		/* lowaddr */
808 	    BUS_SPACE_MAXADDR,		/* highaddr */
809 	    NULL, NULL,			/* filter, filterarg */
810 	    SGE_TX_RING_SZ, 1,		/* maxsize,nsegments */
811 	    SGE_TX_RING_SZ,		/* maxsegsize */
812 	    0,				/* flags */
813 	    NULL,			/* lockfunc */
814 	    NULL,			/* lockarg */
815 	    &cd->sge_tx_tag);
816 	if (error != 0) {
817 		device_printf(sc->sge_dev,
818 		    "could not create Rx ring DMA tag.\n");
819 		goto fail;
820 	}
821 	/* Allocate DMA'able memory and load DMA map for TX ring. */
822 	error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
823 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
824 	    &cd->sge_tx_dmamap);
825 	if (error != 0) {
826 		device_printf(sc->sge_dev,
827 		    "could not allocate DMA'able memory for Tx ring.\n");
828 		goto fail;
829 	}
830 	error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
831 	    ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
832 	    &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
833 	if (error != 0) {
834 		device_printf(sc->sge_dev,
835 		    "could not load DMA'able memory for Rx ring.\n");
836 		goto fail;
837 	}
838 
839 	/* Create DMA tag for Tx buffers. */
840 	error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
841 	    BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
842 	    SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
843 	if (error != 0) {
844 		device_printf(sc->sge_dev,
845 		    "could not create Tx mbuf DMA tag.\n");
846 		goto fail;
847 	}
848 
849 	/* Create DMA tag for Rx buffers. */
850 	error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
851 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
852 	    MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
853 	if (error != 0) {
854 		device_printf(sc->sge_dev,
855 		    "could not create Rx mbuf DMA tag.\n");
856 		goto fail;
857 	}
858 
859 	/* Create DMA maps for Tx buffers. */
860 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
861 		txd = &cd->sge_txdesc[i];
862 		txd->tx_m = NULL;
863 		txd->tx_dmamap = NULL;
864 		txd->tx_ndesc = 0;
865 		error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
866 		    &txd->tx_dmamap);
867 		if (error != 0) {
868 			device_printf(sc->sge_dev,
869 			    "could not create Tx DMA map.\n");
870 			goto fail;
871 		}
872 	}
873 	/* Create spare DMA map for Rx buffer. */
874 	error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
875 	if (error != 0) {
876 		device_printf(sc->sge_dev,
877 		    "could not create spare Rx DMA map.\n");
878 		goto fail;
879 	}
880 	/* Create DMA maps for Rx buffers. */
881 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
882 		rxd = &cd->sge_rxdesc[i];
883 		rxd->rx_m = NULL;
884 		rxd->rx_dmamap = NULL;
885 		error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
886 		    &rxd->rx_dmamap);
887 		if (error) {
888 			device_printf(sc->sge_dev,
889 			    "could not create Rx DMA map.\n");
890 			goto fail;
891 		}
892 	}
893 fail:
894 	return (error);
895 }
896 
897 static void
898 sge_dma_free(struct sge_softc *sc)
899 {
900 	struct sge_chain_data *cd;
901 	struct sge_list_data *ld;
902 	struct sge_rxdesc *rxd;
903 	struct sge_txdesc *txd;
904 	int i;
905 
906 	cd = &sc->sge_cdata;
907 	ld = &sc->sge_ldata;
908 	/* Rx ring. */
909 	if (cd->sge_rx_tag != NULL) {
910 		if (ld->sge_rx_paddr != 0)
911 			bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
912 		if (ld->sge_rx_ring != NULL)
913 			bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
914 			    cd->sge_rx_dmamap);
915 		ld->sge_rx_ring = NULL;
916 		ld->sge_rx_paddr = 0;
917 		bus_dma_tag_destroy(cd->sge_rx_tag);
918 		cd->sge_rx_tag = NULL;
919 	}
920 	/* Tx ring. */
921 	if (cd->sge_tx_tag != NULL) {
922 		if (ld->sge_tx_paddr != 0)
923 			bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
924 		if (ld->sge_tx_ring != NULL)
925 			bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
926 			    cd->sge_tx_dmamap);
927 		ld->sge_tx_ring = NULL;
928 		ld->sge_tx_paddr = 0;
929 		bus_dma_tag_destroy(cd->sge_tx_tag);
930 		cd->sge_tx_tag = NULL;
931 	}
932 	/* Rx buffers. */
933 	if (cd->sge_rxmbuf_tag != NULL) {
934 		for (i = 0; i < SGE_RX_RING_CNT; i++) {
935 			rxd = &cd->sge_rxdesc[i];
936 			if (rxd->rx_dmamap != NULL) {
937 				bus_dmamap_destroy(cd->sge_rxmbuf_tag,
938 				    rxd->rx_dmamap);
939 				rxd->rx_dmamap = NULL;
940 			}
941 		}
942 		if (cd->sge_rx_spare_map != NULL) {
943 			bus_dmamap_destroy(cd->sge_rxmbuf_tag,
944 			    cd->sge_rx_spare_map);
945 			cd->sge_rx_spare_map = NULL;
946 		}
947 		bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
948 		cd->sge_rxmbuf_tag = NULL;
949 	}
950 	/* Tx buffers. */
951 	if (cd->sge_txmbuf_tag != NULL) {
952 		for (i = 0; i < SGE_TX_RING_CNT; i++) {
953 			txd = &cd->sge_txdesc[i];
954 			if (txd->tx_dmamap != NULL) {
955 				bus_dmamap_destroy(cd->sge_txmbuf_tag,
956 				    txd->tx_dmamap);
957 				txd->tx_dmamap = NULL;
958 			}
959 		}
960 		bus_dma_tag_destroy(cd->sge_txmbuf_tag);
961 		cd->sge_txmbuf_tag = NULL;
962 	}
963 	if (cd->sge_tag != NULL)
964 		bus_dma_tag_destroy(cd->sge_tag);
965 	cd->sge_tag = NULL;
966 }
967 
968 /*
969  * Initialize the TX descriptors.
970  */
971 static int
972 sge_list_tx_init(struct sge_softc *sc)
973 {
974 	struct sge_list_data *ld;
975 	struct sge_chain_data *cd;
976 
977 	SGE_LOCK_ASSERT(sc);
978 	ld = &sc->sge_ldata;
979 	cd = &sc->sge_cdata;
980 	bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
981 	ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
982 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
983 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
984 	cd->sge_tx_prod = 0;
985 	cd->sge_tx_cons = 0;
986 	cd->sge_tx_cnt = 0;
987 	return (0);
988 }
989 
990 static int
991 sge_list_tx_free(struct sge_softc *sc)
992 {
993 	struct sge_chain_data *cd;
994 	struct sge_txdesc *txd;
995 	int i;
996 
997 	SGE_LOCK_ASSERT(sc);
998 	cd = &sc->sge_cdata;
999 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
1000 		txd = &cd->sge_txdesc[i];
1001 		if (txd->tx_m != NULL) {
1002 			bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1003 			    BUS_DMASYNC_POSTWRITE);
1004 			bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1005 			m_freem(txd->tx_m);
1006 			txd->tx_m = NULL;
1007 			txd->tx_ndesc = 0;
1008 		}
1009 	}
1010 
1011 	return (0);
1012 }
1013 
1014 /*
1015  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1016  * we arrange the descriptors in a closed ring, so that the last descriptor
1017  * has RING_END flag set.
1018  */
1019 static int
1020 sge_list_rx_init(struct sge_softc *sc)
1021 {
1022 	struct sge_chain_data *cd;
1023 	int i;
1024 
1025 	SGE_LOCK_ASSERT(sc);
1026 	cd = &sc->sge_cdata;
1027 	cd->sge_rx_cons = 0;
1028 	bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1029 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1030 		if (sge_newbuf(sc, i) != 0)
1031 			return (ENOBUFS);
1032 	}
1033 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1034 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1035 	return (0);
1036 }
1037 
1038 static int
1039 sge_list_rx_free(struct sge_softc *sc)
1040 {
1041 	struct sge_chain_data *cd;
1042 	struct sge_rxdesc *rxd;
1043 	int i;
1044 
1045 	SGE_LOCK_ASSERT(sc);
1046 	cd = &sc->sge_cdata;
1047 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1048 		rxd = &cd->sge_rxdesc[i];
1049 		if (rxd->rx_m != NULL) {
1050 			bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1051 			    BUS_DMASYNC_POSTREAD);
1052 			bus_dmamap_unload(cd->sge_rxmbuf_tag,
1053 			    rxd->rx_dmamap);
1054 			m_freem(rxd->rx_m);
1055 			rxd->rx_m = NULL;
1056 		}
1057 	}
1058 	return (0);
1059 }
1060 
1061 /*
1062  * Initialize an RX descriptor and attach an MBUF cluster.
1063  */
1064 static int
1065 sge_newbuf(struct sge_softc *sc, int prod)
1066 {
1067 	struct mbuf *m;
1068 	struct sge_desc *desc;
1069 	struct sge_chain_data *cd;
1070 	struct sge_rxdesc *rxd;
1071 	bus_dma_segment_t segs[1];
1072 	bus_dmamap_t map;
1073 	int error, nsegs;
1074 
1075 	SGE_LOCK_ASSERT(sc);
1076 
1077 	cd = &sc->sge_cdata;
1078 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1079 	if (m == NULL)
1080 		return (ENOBUFS);
1081 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1082 	m_adj(m, SGE_RX_BUF_ALIGN);
1083 	error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1084 	    cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1085 	if (error != 0) {
1086 		m_freem(m);
1087 		return (error);
1088 	}
1089 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1090 	rxd = &cd->sge_rxdesc[prod];
1091 	if (rxd->rx_m != NULL) {
1092 		bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1093 		    BUS_DMASYNC_POSTREAD);
1094 		bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1095 	}
1096 	map = rxd->rx_dmamap;
1097 	rxd->rx_dmamap = cd->sge_rx_spare_map;
1098 	cd->sge_rx_spare_map = map;
1099 	bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1100 	    BUS_DMASYNC_PREREAD);
1101 	rxd->rx_m = m;
1102 
1103 	desc = &sc->sge_ldata.sge_rx_ring[prod];
1104 	desc->sge_sts_size = 0;
1105 	desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1106 	desc->sge_flags = htole32(segs[0].ds_len);
1107 	if (prod == SGE_RX_RING_CNT - 1)
1108 		desc->sge_flags |= htole32(RING_END);
1109 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1110 	return (0);
1111 }
1112 
1113 static __inline void
1114 sge_discard_rxbuf(struct sge_softc *sc, int index)
1115 {
1116 	struct sge_desc *desc;
1117 
1118 	desc = &sc->sge_ldata.sge_rx_ring[index];
1119 	desc->sge_sts_size = 0;
1120 	desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1121 	if (index == SGE_RX_RING_CNT - 1)
1122 		desc->sge_flags |= htole32(RING_END);
1123 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1124 }
1125 
1126 /*
1127  * A frame has been uploaded: pass the resulting mbuf chain up to
1128  * the higher level protocols.
1129  */
1130 static void
1131 sge_rxeof(struct sge_softc *sc)
1132 {
1133         if_t ifp;
1134         struct mbuf *m;
1135 	struct sge_chain_data *cd;
1136 	struct sge_desc	*cur_rx;
1137 	uint32_t rxinfo, rxstat;
1138 	int cons, prog;
1139 
1140 	SGE_LOCK_ASSERT(sc);
1141 
1142 	ifp = sc->sge_ifp;
1143 	cd = &sc->sge_cdata;
1144 
1145 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1146 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1147 	cons = cd->sge_rx_cons;
1148 	for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1149 	    SGE_INC(cons, SGE_RX_RING_CNT)) {
1150 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1151 			break;
1152 		cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1153 		rxinfo = le32toh(cur_rx->sge_cmdsts);
1154 		if ((rxinfo & RDC_OWN) != 0)
1155 			break;
1156 		rxstat = le32toh(cur_rx->sge_sts_size);
1157 		if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1158 		    SGE_RX_NSEGS(rxstat) != 1) {
1159 			/* XXX We don't support multi-segment frames yet. */
1160 #ifdef SGE_SHOW_ERRORS
1161 			device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1162 			    RX_ERR_BITS);
1163 #endif
1164 			sge_discard_rxbuf(sc, cons);
1165 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1166 			continue;
1167 		}
1168 		m = cd->sge_rxdesc[cons].rx_m;
1169 		if (sge_newbuf(sc, cons) != 0) {
1170 			sge_discard_rxbuf(sc, cons);
1171 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1172 			continue;
1173 		}
1174 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1175 			if ((rxinfo & RDC_IP_CSUM) != 0 &&
1176 			    (rxinfo & RDC_IP_CSUM_OK) != 0)
1177 				m->m_pkthdr.csum_flags |=
1178 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
1179 			if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1180 			    (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1181 			    ((rxinfo & RDC_UDP_CSUM) != 0 &&
1182 			    (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1183 				m->m_pkthdr.csum_flags |=
1184 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1185 				m->m_pkthdr.csum_data = 0xffff;
1186 			}
1187 		}
1188 		/* Check for VLAN tagged frame. */
1189 		if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1190 		    (rxstat & RDS_VLAN) != 0) {
1191 			m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1192 			m->m_flags |= M_VLANTAG;
1193 		}
1194 		/*
1195 		 * Account for 10bytes auto padding which is used
1196 		 * to align IP header on 32bit boundary.  Also note,
1197 		 * CRC bytes is automatically removed by the
1198 		 * hardware.
1199 		 */
1200 		m->m_data += SGE_RX_PAD_BYTES;
1201 		m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1202 		    SGE_RX_PAD_BYTES;
1203 		m->m_pkthdr.rcvif = ifp;
1204 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1205 		SGE_UNLOCK(sc);
1206 		if_input(ifp, m);
1207 		SGE_LOCK(sc);
1208 	}
1209 
1210 	if (prog > 0) {
1211 		bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1212 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1213 		cd->sge_rx_cons = cons;
1214 	}
1215 }
1216 
1217 /*
1218  * A frame was downloaded to the chip.  It's safe for us to clean up
1219  * the list buffers.
1220  */
1221 static void
1222 sge_txeof(struct sge_softc *sc)
1223 {
1224 	if_t ifp;
1225 	struct sge_list_data *ld;
1226 	struct sge_chain_data *cd;
1227 	struct sge_txdesc *txd;
1228 	uint32_t txstat;
1229 	int cons, nsegs, prod;
1230 
1231 	SGE_LOCK_ASSERT(sc);
1232 
1233 	ifp = sc->sge_ifp;
1234 	ld = &sc->sge_ldata;
1235 	cd = &sc->sge_cdata;
1236 
1237 	if (cd->sge_tx_cnt == 0)
1238 		return;
1239 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1240 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1241 	cons = cd->sge_tx_cons;
1242 	prod = cd->sge_tx_prod;
1243 	for (; cons != prod;) {
1244 		txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1245 		if ((txstat & TDC_OWN) != 0)
1246 			break;
1247 		/*
1248 		 * Only the first descriptor of multi-descriptor transmission
1249 		 * is updated by controller.  Driver should skip entire
1250 		 * chained buffers for the transmitted frame. In other words
1251 		 * TDC_OWN bit is valid only at the first descriptor of a
1252 		 * multi-descriptor transmission.
1253 		 */
1254 		if (SGE_TX_ERROR(txstat) != 0) {
1255 #ifdef SGE_SHOW_ERRORS
1256 			device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1257 			    txstat, TX_ERR_BITS);
1258 #endif
1259 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1260 		} else {
1261 #ifdef notyet
1262 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1263 #endif
1264 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1265 		}
1266 		txd = &cd->sge_txdesc[cons];
1267 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1268 			ld->sge_tx_ring[cons].sge_cmdsts = 0;
1269 			SGE_INC(cons, SGE_TX_RING_CNT);
1270 		}
1271 		/* Reclaim transmitted mbuf. */
1272 		KASSERT(txd->tx_m != NULL,
1273 		    ("%s: freeing NULL mbuf\n", __func__));
1274 		bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1275 		    BUS_DMASYNC_POSTWRITE);
1276 		bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1277 		m_freem(txd->tx_m);
1278 		txd->tx_m = NULL;
1279 		cd->sge_tx_cnt -= txd->tx_ndesc;
1280 		KASSERT(cd->sge_tx_cnt >= 0,
1281 		    ("%s: Active Tx desc counter was garbled\n", __func__));
1282 		txd->tx_ndesc = 0;
1283 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1284 	}
1285 	cd->sge_tx_cons = cons;
1286 	if (cd->sge_tx_cnt == 0)
1287 		sc->sge_timer = 0;
1288 }
1289 
1290 static void
1291 sge_tick(void *arg)
1292 {
1293 	struct sge_softc *sc;
1294 	struct mii_data *mii;
1295 	if_t ifp;
1296 
1297 	sc = arg;
1298 	SGE_LOCK_ASSERT(sc);
1299 
1300 	ifp = sc->sge_ifp;
1301 	mii = device_get_softc(sc->sge_miibus);
1302 	mii_tick(mii);
1303 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1304 		sge_miibus_statchg(sc->sge_dev);
1305 		if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1306 		    !if_sendq_empty(ifp))
1307 			sge_start_locked(ifp);
1308 	}
1309 	/*
1310 	 * Reclaim transmitted frames here as we do not request
1311 	 * Tx completion interrupt for every queued frames to
1312 	 * reduce excessive interrupts.
1313 	 */
1314 	sge_txeof(sc);
1315 	sge_watchdog(sc);
1316 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1317 }
1318 
1319 static void
1320 sge_intr(void *arg)
1321 {
1322 	struct sge_softc *sc;
1323 	if_t ifp;
1324 	uint32_t status;
1325 
1326 	sc = arg;
1327 	SGE_LOCK(sc);
1328 	ifp = sc->sge_ifp;
1329 
1330 	status = CSR_READ_4(sc, IntrStatus);
1331 	if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1332 		/* Not ours. */
1333 		SGE_UNLOCK(sc);
1334 		return;
1335 	}
1336 	/* Acknowledge interrupts. */
1337 	CSR_WRITE_4(sc, IntrStatus, status);
1338 	/* Disable further interrupts. */
1339 	CSR_WRITE_4(sc, IntrMask, 0);
1340 	/*
1341 	 * It seems the controller supports some kind of interrupt
1342 	 * moderation mechanism but we still don't know how to
1343 	 * enable that.  To reduce number of generated interrupts
1344 	 * under load we check pending interrupts in a loop.  This
1345 	 * will increase number of register access and is not correct
1346 	 * way to handle interrupt moderation but there seems to be
1347 	 * no other way at this time.
1348 	 */
1349 	for (;;) {
1350 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1351 			break;
1352 		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1353 			sge_rxeof(sc);
1354 			/* Wakeup Rx MAC. */
1355 			if ((status & INTR_RX_IDLE) != 0)
1356 				CSR_WRITE_4(sc, RX_CTL,
1357 				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1358 		}
1359 		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1360 			sge_txeof(sc);
1361 		status = CSR_READ_4(sc, IntrStatus);
1362 		if ((status & SGE_INTRS) == 0)
1363 			break;
1364 		/* Acknowledge interrupts. */
1365 		CSR_WRITE_4(sc, IntrStatus, status);
1366 	}
1367 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1368 		/* Re-enable interrupts */
1369 		CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1370 		if (!if_sendq_empty(ifp))
1371 			sge_start_locked(ifp);
1372 	}
1373 	SGE_UNLOCK(sc);
1374 }
1375 
1376 /*
1377  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1378  * pointers to the fragment pointers.
1379  */
1380 static int
1381 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1382 {
1383 	struct mbuf *m;
1384 	struct sge_desc *desc;
1385 	struct sge_txdesc *txd;
1386 	bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1387 	uint32_t cflags, mss;
1388 	int error, i, nsegs, prod, si;
1389 
1390 	SGE_LOCK_ASSERT(sc);
1391 
1392 	si = prod = sc->sge_cdata.sge_tx_prod;
1393 	txd = &sc->sge_cdata.sge_txdesc[prod];
1394 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1395 		struct ether_header *eh;
1396 		struct ip *ip;
1397 		struct tcphdr *tcp;
1398 		uint32_t ip_off, poff;
1399 
1400 		if (M_WRITABLE(*m_head) == 0) {
1401 			/* Get a writable copy. */
1402 			m = m_dup(*m_head, M_NOWAIT);
1403 			m_freem(*m_head);
1404 			if (m == NULL) {
1405 				*m_head = NULL;
1406 				return (ENOBUFS);
1407 			}
1408 			*m_head = m;
1409 		}
1410 		ip_off = sizeof(struct ether_header);
1411 		m = m_pullup(*m_head, ip_off);
1412 		if (m == NULL) {
1413 			*m_head = NULL;
1414 			return (ENOBUFS);
1415 		}
1416 		eh = mtod(m, struct ether_header *);
1417 		/* Check the existence of VLAN tag. */
1418 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1419 			ip_off = sizeof(struct ether_vlan_header);
1420 			m = m_pullup(m, ip_off);
1421 			if (m == NULL) {
1422 				*m_head = NULL;
1423 				return (ENOBUFS);
1424 			}
1425 		}
1426 		m = m_pullup(m, ip_off + sizeof(struct ip));
1427 		if (m == NULL) {
1428 			*m_head = NULL;
1429 			return (ENOBUFS);
1430 		}
1431 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1432 		poff = ip_off + (ip->ip_hl << 2);
1433 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1434 		if (m == NULL) {
1435 			*m_head = NULL;
1436 			return (ENOBUFS);
1437 		}
1438 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1439 		m = m_pullup(m, poff + (tcp->th_off << 2));
1440 		if (m == NULL) {
1441 			*m_head = NULL;
1442 			return (ENOBUFS);
1443 		}
1444 		/*
1445 		 * Reset IP checksum and recompute TCP pseudo
1446 		 * checksum that NDIS specification requires.
1447 		 */
1448 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1449 		ip->ip_sum = 0;
1450 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1451 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1452 		    htons(IPPROTO_TCP));
1453 		*m_head = m;
1454 	}
1455 
1456 	error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1457 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1458 	if (error == EFBIG) {
1459 		m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1460 		if (m == NULL) {
1461 			m_freem(*m_head);
1462 			*m_head = NULL;
1463 			return (ENOBUFS);
1464 		}
1465 		*m_head = m;
1466 		error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1467 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1468 		if (error != 0) {
1469 			m_freem(*m_head);
1470 			*m_head = NULL;
1471 			return (error);
1472 		}
1473 	} else if (error != 0)
1474 		return (error);
1475 
1476 	KASSERT(nsegs != 0, ("zero segment returned"));
1477 	/* Check descriptor overrun. */
1478 	if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1479 		bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1480 		return (ENOBUFS);
1481 	}
1482 	bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1483 	    BUS_DMASYNC_PREWRITE);
1484 
1485 	m = *m_head;
1486 	cflags = 0;
1487 	mss = 0;
1488 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1489 		cflags |= TDC_LS;
1490 		mss = (uint32_t)m->m_pkthdr.tso_segsz;
1491 		mss <<= 16;
1492 	} else {
1493 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1494 			cflags |= TDC_IP_CSUM;
1495 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1496 			cflags |= TDC_TCP_CSUM;
1497 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1498 			cflags |= TDC_UDP_CSUM;
1499 	}
1500 	for (i = 0; i < nsegs; i++) {
1501 		desc = &sc->sge_ldata.sge_tx_ring[prod];
1502 		if (i == 0) {
1503 			desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1504 			desc->sge_cmdsts = 0;
1505 		} else {
1506 			desc->sge_sts_size = 0;
1507 			desc->sge_cmdsts = htole32(TDC_OWN);
1508 		}
1509 		desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1510 		desc->sge_flags = htole32(txsegs[i].ds_len);
1511 		if (prod == SGE_TX_RING_CNT - 1)
1512 			desc->sge_flags |= htole32(RING_END);
1513 		sc->sge_cdata.sge_tx_cnt++;
1514 		SGE_INC(prod, SGE_TX_RING_CNT);
1515 	}
1516 	/* Update producer index. */
1517 	sc->sge_cdata.sge_tx_prod = prod;
1518 
1519 	desc = &sc->sge_ldata.sge_tx_ring[si];
1520 	/* Configure VLAN. */
1521 	if((m->m_flags & M_VLANTAG) != 0) {
1522 		cflags |= m->m_pkthdr.ether_vtag;
1523 		desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1524 	}
1525 	desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1526 #if 1
1527 	if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1528 		desc->sge_cmdsts |= htole32(TDC_BST);
1529 #else
1530 	if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1531 		desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1532 		if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1533 			desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1534 	}
1535 #endif
1536 	/* Request interrupt and give ownership to controller. */
1537 	desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1538 	txd->tx_m = m;
1539 	txd->tx_ndesc = nsegs;
1540 	return (0);
1541 }
1542 
1543 static void
1544 sge_start(if_t ifp)
1545 {
1546 	struct sge_softc *sc;
1547 
1548 	sc = if_getsoftc(ifp);
1549 	SGE_LOCK(sc);
1550 	sge_start_locked(ifp);
1551 	SGE_UNLOCK(sc);
1552 }
1553 
1554 static void
1555 sge_start_locked(if_t ifp)
1556 {
1557 	struct sge_softc *sc;
1558 	struct mbuf *m_head;
1559 	int queued = 0;
1560 
1561 	sc = if_getsoftc(ifp);
1562 	SGE_LOCK_ASSERT(sc);
1563 
1564 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1565 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1566 	    IFF_DRV_RUNNING)
1567 		return;
1568 
1569 	for (queued = 0; !if_sendq_empty(ifp); ) {
1570 		if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1571 		    SGE_MAXTXSEGS)) {
1572 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1573 			break;
1574 		}
1575 		m_head = if_dequeue(ifp);
1576 		if (m_head == NULL)
1577 			break;
1578 		if (sge_encap(sc, &m_head)) {
1579 			if (m_head == NULL)
1580 				break;
1581 			if_sendq_prepend(ifp, m_head);
1582 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1583 			break;
1584 		}
1585 		queued++;
1586 		/*
1587 		 * If there's a BPF listener, bounce a copy of this frame
1588 		 * to him.
1589 		 */
1590 		BPF_MTAP(ifp, m_head);
1591 	}
1592 
1593 	if (queued > 0) {
1594 		bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1595 		    sc->sge_cdata.sge_tx_dmamap,
1596 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1597 		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1598 		sc->sge_timer = 5;
1599 	}
1600 }
1601 
1602 static void
1603 sge_init(void *arg)
1604 {
1605 	struct sge_softc *sc;
1606 
1607 	sc = arg;
1608 	SGE_LOCK(sc);
1609 	sge_init_locked(sc);
1610 	SGE_UNLOCK(sc);
1611 }
1612 
1613 static void
1614 sge_init_locked(struct sge_softc *sc)
1615 {
1616 	if_t ifp;
1617 	struct mii_data *mii;
1618 	uint16_t rxfilt;
1619 	int i;
1620 
1621 	SGE_LOCK_ASSERT(sc);
1622 	ifp = sc->sge_ifp;
1623 	mii = device_get_softc(sc->sge_miibus);
1624 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1625 		return;
1626 	/*
1627 	 * Cancel pending I/O and free all RX/TX buffers.
1628 	 */
1629 	sge_stop(sc);
1630 	sge_reset(sc);
1631 
1632 	/* Init circular RX list. */
1633 	if (sge_list_rx_init(sc) == ENOBUFS) {
1634 		device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1635 		sge_stop(sc);
1636 		return;
1637 	}
1638 	/* Init TX descriptors. */
1639 	sge_list_tx_init(sc);
1640 	/*
1641 	 * Load the address of the RX and TX lists.
1642 	 */
1643 	CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1644 	CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1645 
1646 	CSR_WRITE_4(sc, TxMacControl, 0x60);
1647 	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1648 	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1649 	/* Allow receiving VLAN frames. */
1650 	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1651 	    SGE_RX_PAD_BYTES);
1652 
1653 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1654 		CSR_WRITE_1(sc, RxMacAddr + i, if_getlladdr(ifp)[i]);
1655 	/* Configure RX MAC. */
1656 	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1657 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1658 	sge_rxfilter(sc);
1659 	sge_setvlan(sc);
1660 
1661 	/* Initialize default speed/duplex information. */
1662 	if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1663 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
1664 	sc->sge_flags |= SGE_FLAG_FDX;
1665 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1666 		CSR_WRITE_4(sc, StationControl, 0x04008001);
1667 	else
1668 		CSR_WRITE_4(sc, StationControl, 0x04000001);
1669 	/*
1670 	 * XXX Try to mitigate interrupts.
1671 	 */
1672 	CSR_WRITE_4(sc, IntrControl, 0x08880000);
1673 #ifdef notyet
1674 	if (sc->sge_intrcontrol != 0)
1675 		CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1676 	if (sc->sge_intrtimer != 0)
1677 		CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1678 #endif
1679 
1680 	/*
1681 	 * Clear and enable interrupts.
1682 	 */
1683 	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1684 	CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1685 
1686 	/* Enable receiver and transmitter. */
1687 	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1688 	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1689 
1690 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1691 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1692 
1693 	sc->sge_flags &= ~SGE_FLAG_LINK;
1694 	mii_mediachg(mii);
1695 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1696 }
1697 
1698 /*
1699  * Set media options.
1700  */
1701 static int
1702 sge_ifmedia_upd(if_t ifp)
1703 {
1704 	struct sge_softc *sc;
1705 	struct mii_data *mii;
1706 		struct mii_softc *miisc;
1707 	int error;
1708 
1709 	sc = if_getsoftc(ifp);
1710 	SGE_LOCK(sc);
1711 	mii = device_get_softc(sc->sge_miibus);
1712 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1713 		PHY_RESET(miisc);
1714 	error = mii_mediachg(mii);
1715 	SGE_UNLOCK(sc);
1716 
1717 	return (error);
1718 }
1719 
1720 /*
1721  * Report current media status.
1722  */
1723 static void
1724 sge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1725 {
1726 	struct sge_softc *sc;
1727 	struct mii_data *mii;
1728 
1729 	sc = if_getsoftc(ifp);
1730 	SGE_LOCK(sc);
1731 	mii = device_get_softc(sc->sge_miibus);
1732 	if ((if_getflags(ifp) & IFF_UP) == 0) {
1733 		SGE_UNLOCK(sc);
1734 		return;
1735 	}
1736 	mii_pollstat(mii);
1737 	ifmr->ifm_active = mii->mii_media_active;
1738 	ifmr->ifm_status = mii->mii_media_status;
1739 	SGE_UNLOCK(sc);
1740 }
1741 
1742 static int
1743 sge_ioctl(if_t ifp, u_long command, caddr_t data)
1744 {
1745 	struct sge_softc *sc;
1746 	struct ifreq *ifr;
1747 	struct mii_data *mii;
1748 	int error = 0, mask, reinit;
1749 
1750 	sc = if_getsoftc(ifp);
1751 	ifr = (struct ifreq *)data;
1752 
1753 	switch(command) {
1754 	case SIOCSIFFLAGS:
1755 		SGE_LOCK(sc);
1756 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1757 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1758 			    ((if_getflags(ifp) ^ sc->sge_if_flags) &
1759 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1760 				sge_rxfilter(sc);
1761 			else
1762 				sge_init_locked(sc);
1763 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1764 			sge_stop(sc);
1765 		sc->sge_if_flags = if_getflags(ifp);
1766 		SGE_UNLOCK(sc);
1767 		break;
1768 	case SIOCSIFCAP:
1769 		SGE_LOCK(sc);
1770 		reinit = 0;
1771 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1772 		if ((mask & IFCAP_TXCSUM) != 0 &&
1773 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1774 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1775 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1776 				if_sethwassistbits(ifp, SGE_CSUM_FEATURES, 0);
1777 			else
1778 				if_sethwassistbits(ifp, 0, SGE_CSUM_FEATURES);
1779 		}
1780 		if ((mask & IFCAP_RXCSUM) != 0 &&
1781 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
1782 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1783 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1784 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
1785 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1786 		if ((mask & IFCAP_TSO4) != 0 &&
1787 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1788 			if_togglecapenable(ifp, IFCAP_TSO4);
1789 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
1790 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1791 			else
1792 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1793 		}
1794 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1795 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1796 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1797 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1798 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1799 			/*
1800 			 * Due to unknown reason, toggling VLAN hardware
1801 			 * tagging require interface reinitialization.
1802 			 */
1803 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1804 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1805 				if_setcapenablebit(ifp, 0,
1806 				    IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1807 			reinit = 1;
1808 		}
1809 		if (reinit > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1810 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1811 			sge_init_locked(sc);
1812 		}
1813 		SGE_UNLOCK(sc);
1814 		VLAN_CAPABILITIES(ifp);
1815 		break;
1816 	case SIOCADDMULTI:
1817 	case SIOCDELMULTI:
1818 		SGE_LOCK(sc);
1819 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1820 			sge_rxfilter(sc);
1821 		SGE_UNLOCK(sc);
1822 		break;
1823 	case SIOCGIFMEDIA:
1824 	case SIOCSIFMEDIA:
1825 		mii = device_get_softc(sc->sge_miibus);
1826 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1827 		break;
1828 	default:
1829 		error = ether_ioctl(ifp, command, data);
1830 		break;
1831 	}
1832 
1833 	return (error);
1834 }
1835 
1836 static void
1837 sge_watchdog(struct sge_softc *sc)
1838 {
1839 	if_t ifp;
1840 
1841 	SGE_LOCK_ASSERT(sc);
1842 	if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1843 		return;
1844 
1845 	ifp = sc->sge_ifp;
1846 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1847 		if (1 || bootverbose)
1848 			device_printf(sc->sge_dev,
1849 			    "watchdog timeout (lost link)\n");
1850 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1851 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1852 		sge_init_locked(sc);
1853 		return;
1854 	}
1855 	device_printf(sc->sge_dev, "watchdog timeout\n");
1856 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1857 
1858 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1859 	sge_init_locked(sc);
1860 	if (!if_sendq_empty(sc->sge_ifp))
1861 		sge_start_locked(ifp);
1862 }
1863 
1864 /*
1865  * Stop the adapter and free any mbufs allocated to the
1866  * RX and TX lists.
1867  */
1868 static void
1869 sge_stop(struct sge_softc *sc)
1870 {
1871 	if_t ifp;
1872 
1873 	ifp = sc->sge_ifp;
1874 
1875 	SGE_LOCK_ASSERT(sc);
1876 
1877 	sc->sge_timer = 0;
1878 	callout_stop(&sc->sge_stat_ch);
1879 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1880 
1881 	CSR_WRITE_4(sc, IntrMask, 0);
1882 	CSR_READ_4(sc, IntrMask);
1883 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1884 	/* Stop TX/RX MAC. */
1885 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1886 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1887 	/* XXX Can we assume active DMA cycles gone? */
1888 	DELAY(2000);
1889 	CSR_WRITE_4(sc, IntrMask, 0);
1890 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1891 
1892 	sc->sge_flags &= ~SGE_FLAG_LINK;
1893 	sge_list_rx_free(sc);
1894 	sge_list_tx_free(sc);
1895 }
1896