xref: /freebsd/sys/dev/sge/if_sge.c (revision eb9da1ada8b6b2c74378a5c17029ec5a7fb199e6)
1 /*-
2  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
3  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
26  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
31  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
33  * OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * SiS 190/191 PCI Ethernet NIC driver.
41  *
42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46  * review and very useful comments.
47  *
48  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
49  * Linux and Solaris drivers.
50  */
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/mutex.h>
62 #include <sys/rman.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 
66 #include <net/bpf.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_types.h>
74 #include <net/if_vlan_var.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/ip.h>
79 #include <netinet/tcp.h>
80 
81 #include <machine/bus.h>
82 #include <machine/in_cksum.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 
90 #include <dev/sge/if_sgereg.h>
91 
92 MODULE_DEPEND(sge, pci, 1, 1, 1);
93 MODULE_DEPEND(sge, ether, 1, 1, 1);
94 MODULE_DEPEND(sge, miibus, 1, 1, 1);
95 
96 /* "device miibus0" required.  See GENERIC if you get errors here. */
97 #include "miibus_if.h"
98 
99 /*
100  * Various supported device vendors/types and their names.
101  */
102 static struct sge_type sge_devs[] = {
103 	{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
104 	{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
105 	{ 0, 0, NULL }
106 };
107 
108 static int	sge_probe(device_t);
109 static int	sge_attach(device_t);
110 static int	sge_detach(device_t);
111 static int	sge_shutdown(device_t);
112 static int	sge_suspend(device_t);
113 static int	sge_resume(device_t);
114 
115 static int	sge_miibus_readreg(device_t, int, int);
116 static int	sge_miibus_writereg(device_t, int, int, int);
117 static void	sge_miibus_statchg(device_t);
118 
119 static int	sge_newbuf(struct sge_softc *, int);
120 static int	sge_encap(struct sge_softc *, struct mbuf **);
121 static __inline void
122 		sge_discard_rxbuf(struct sge_softc *, int);
123 static void	sge_rxeof(struct sge_softc *);
124 static void	sge_txeof(struct sge_softc *);
125 static void	sge_intr(void *);
126 static void	sge_tick(void *);
127 static void	sge_start(struct ifnet *);
128 static void	sge_start_locked(struct ifnet *);
129 static int	sge_ioctl(struct ifnet *, u_long, caddr_t);
130 static void	sge_init(void *);
131 static void	sge_init_locked(struct sge_softc *);
132 static void	sge_stop(struct sge_softc *);
133 static void	sge_watchdog(struct sge_softc *);
134 static int	sge_ifmedia_upd(struct ifnet *);
135 static void	sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
136 
137 static int	sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
138 static int	sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
139 static uint16_t	sge_read_eeprom(struct sge_softc *, int);
140 
141 static void	sge_rxfilter(struct sge_softc *);
142 static void	sge_setvlan(struct sge_softc *);
143 static void	sge_reset(struct sge_softc *);
144 static int	sge_list_rx_init(struct sge_softc *);
145 static int	sge_list_rx_free(struct sge_softc *);
146 static int	sge_list_tx_init(struct sge_softc *);
147 static int	sge_list_tx_free(struct sge_softc *);
148 
149 static int	sge_dma_alloc(struct sge_softc *);
150 static void	sge_dma_free(struct sge_softc *);
151 static void	sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
152 
153 static device_method_t sge_methods[] = {
154 	/* Device interface */
155 	DEVMETHOD(device_probe,		sge_probe),
156 	DEVMETHOD(device_attach,	sge_attach),
157 	DEVMETHOD(device_detach,	sge_detach),
158 	DEVMETHOD(device_suspend,	sge_suspend),
159 	DEVMETHOD(device_resume,	sge_resume),
160 	DEVMETHOD(device_shutdown,	sge_shutdown),
161 
162 	/* MII interface */
163 	DEVMETHOD(miibus_readreg,	sge_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	sge_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	sge_miibus_statchg),
166 
167 	DEVMETHOD_END
168 };
169 
170 static driver_t sge_driver = {
171 	"sge", sge_methods, sizeof(struct sge_softc)
172 };
173 
174 static devclass_t sge_devclass;
175 
176 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
177 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
178 
179 /*
180  * Register space access macros.
181  */
182 #define	CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sge_res, reg, val)
183 #define	CSR_WRITE_2(sc, reg, val)	bus_write_2(sc->sge_res, reg, val)
184 #define	CSR_WRITE_1(cs, reg, val)	bus_write_1(sc->sge_res, reg, val)
185 
186 #define	CSR_READ_4(sc, reg)		bus_read_4(sc->sge_res, reg)
187 #define	CSR_READ_2(sc, reg)		bus_read_2(sc->sge_res, reg)
188 #define	CSR_READ_1(sc, reg)		bus_read_1(sc->sge_res, reg)
189 
190 /* Define to show Tx/Rx error status. */
191 #undef SGE_SHOW_ERRORS
192 
193 #define	SGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
194 
195 static void
196 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
197 {
198 	bus_addr_t *p;
199 
200 	if (error != 0)
201 		return;
202 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
203 	p  = arg;
204 	*p = segs->ds_addr;
205 }
206 
207 /*
208  * Read a sequence of words from the EEPROM.
209  */
210 static uint16_t
211 sge_read_eeprom(struct sge_softc *sc, int offset)
212 {
213 	uint32_t val;
214 	int i;
215 
216 	KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
217 	CSR_WRITE_4(sc, ROMInterface,
218 	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
219 	DELAY(500);
220 	for (i = 0; i < SGE_TIMEOUT; i++) {
221 		val = CSR_READ_4(sc, ROMInterface);
222 		if ((val & EI_REQ) == 0)
223 			break;
224 		DELAY(100);
225 	}
226 	if (i == SGE_TIMEOUT) {
227 		device_printf(sc->sge_dev,
228 		    "EEPROM read timeout : 0x%08x\n", val);
229 		return (0xffff);
230 	}
231 
232 	return ((val & EI_DATA) >> EI_DATA_SHIFT);
233 }
234 
235 static int
236 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
237 {
238 	uint16_t val;
239 	int i;
240 
241 	val = sge_read_eeprom(sc, EEPROMSignature);
242 	if (val == 0xffff || val == 0) {
243 		device_printf(sc->sge_dev,
244 		    "invalid EEPROM signature : 0x%04x\n", val);
245 		return (EINVAL);
246 	}
247 
248 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
249 		val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
250 		dest[i + 0] = (uint8_t)val;
251 		dest[i + 1] = (uint8_t)(val >> 8);
252 	}
253 
254 	if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
255 		sc->sge_flags |= SGE_FLAG_RGMII;
256 	return (0);
257 }
258 
259 /*
260  * For SiS96x, APC CMOS RAM is used to store ethernet address.
261  * APC CMOS RAM is accessed through ISA bridge.
262  */
263 static int
264 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
265 {
266 #if defined(__amd64__) || defined(__i386__)
267 	devclass_t pci;
268 	device_t bus, dev = NULL;
269 	device_t *kids;
270 	struct apc_tbl {
271 		uint16_t vid;
272 		uint16_t did;
273 	} *tp, apc_tbls[] = {
274 		{ SIS_VENDORID, 0x0965 },
275 		{ SIS_VENDORID, 0x0966 },
276 		{ SIS_VENDORID, 0x0968 }
277 	};
278 	uint8_t reg;
279 	int busnum, i, j, numkids;
280 
281 	pci = devclass_find("pci");
282 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
283 		bus = devclass_get_device(pci, busnum);
284 		if (!bus)
285 			continue;
286 		if (device_get_children(bus, &kids, &numkids) != 0)
287 			continue;
288 		for (i = 0; i < numkids; i++) {
289 			dev = kids[i];
290 			if (pci_get_class(dev) == PCIC_BRIDGE &&
291 			    pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
292 				tp = apc_tbls;
293 				for (j = 0; j < nitems(apc_tbls); j++) {
294 					if (pci_get_vendor(dev) == tp->vid &&
295 					    pci_get_device(dev) == tp->did) {
296 						free(kids, M_TEMP);
297 						goto apc_found;
298 					}
299 					tp++;
300 				}
301 			}
302                 }
303 		free(kids, M_TEMP);
304 	}
305 	device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
306 	return (EINVAL);
307 apc_found:
308 	/* Enable port 0x78 and 0x79 to access APC registers. */
309 	reg = pci_read_config(dev, 0x48, 1);
310 	pci_write_config(dev, 0x48, reg & ~0x02, 1);
311 	DELAY(50);
312 	pci_read_config(dev, 0x48, 1);
313 	/* Read stored ethernet address. */
314 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
315 		outb(0x78, 0x09 + i);
316 		dest[i] = inb(0x79);
317 	}
318 	outb(0x78, 0x12);
319 	if ((inb(0x79) & 0x80) != 0)
320 		sc->sge_flags |= SGE_FLAG_RGMII;
321 	/* Restore access to APC registers. */
322 	pci_write_config(dev, 0x48, reg, 1);
323 
324 	return (0);
325 #else
326 	return (EINVAL);
327 #endif
328 }
329 
330 static int
331 sge_miibus_readreg(device_t dev, int phy, int reg)
332 {
333 	struct sge_softc *sc;
334 	uint32_t val;
335 	int i;
336 
337 	sc = device_get_softc(dev);
338 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
339 	    (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
340 	DELAY(10);
341 	for (i = 0; i < SGE_TIMEOUT; i++) {
342 		val = CSR_READ_4(sc, GMIIControl);
343 		if ((val & GMI_REQ) == 0)
344 			break;
345 		DELAY(10);
346 	}
347 	if (i == SGE_TIMEOUT) {
348 		device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
349 		return (0);
350 	}
351 	return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
352 }
353 
354 static int
355 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
356 {
357 	struct sge_softc *sc;
358 	uint32_t val;
359 	int i;
360 
361 	sc = device_get_softc(dev);
362 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
363 	    (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
364 	    GMI_OP_WR | GMI_REQ);
365 	DELAY(10);
366 	for (i = 0; i < SGE_TIMEOUT; i++) {
367 		val = CSR_READ_4(sc, GMIIControl);
368 		if ((val & GMI_REQ) == 0)
369 			break;
370 		DELAY(10);
371 	}
372 	if (i == SGE_TIMEOUT)
373 		device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
374 	return (0);
375 }
376 
377 static void
378 sge_miibus_statchg(device_t dev)
379 {
380 	struct sge_softc *sc;
381 	struct mii_data *mii;
382 	struct ifnet *ifp;
383 	uint32_t ctl, speed;
384 
385 	sc = device_get_softc(dev);
386 	mii = device_get_softc(sc->sge_miibus);
387 	ifp = sc->sge_ifp;
388 	if (mii == NULL || ifp == NULL ||
389 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
390 		return;
391 	speed = 0;
392 	sc->sge_flags &= ~SGE_FLAG_LINK;
393 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
394 	    (IFM_ACTIVE | IFM_AVALID)) {
395 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
396 		case IFM_10_T:
397 			sc->sge_flags |= SGE_FLAG_LINK;
398 			speed = SC_SPEED_10;
399 			break;
400 		case IFM_100_TX:
401 			sc->sge_flags |= SGE_FLAG_LINK;
402 			speed = SC_SPEED_100;
403 			break;
404 		case IFM_1000_T:
405 			if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
406 				sc->sge_flags |= SGE_FLAG_LINK;
407 				speed = SC_SPEED_1000;
408 			}
409 			break;
410 		default:
411 			break;
412                 }
413         }
414 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
415 		return;
416 	/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
417 	ctl = CSR_READ_4(sc, StationControl);
418 	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
419 	if (speed == SC_SPEED_1000) {
420 		ctl |= 0x07000000;
421 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
422 	} else {
423 		ctl |= 0x04000000;
424 		sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
425 	}
426 #ifdef notyet
427 	if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
428 		ctl |= 0x03000000;
429 #endif
430 	ctl |= speed;
431 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
432 		ctl |= SC_FDX;
433 		sc->sge_flags |= SGE_FLAG_FDX;
434 	} else
435 		sc->sge_flags &= ~SGE_FLAG_FDX;
436 	CSR_WRITE_4(sc, StationControl, ctl);
437 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
438 		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
439 		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
440 	}
441 }
442 
443 static void
444 sge_rxfilter(struct sge_softc *sc)
445 {
446 	struct ifnet *ifp;
447 	struct ifmultiaddr *ifma;
448 	uint32_t crc, hashes[2];
449 	uint16_t rxfilt;
450 
451 	SGE_LOCK_ASSERT(sc);
452 
453 	ifp = sc->sge_ifp;
454 	rxfilt = CSR_READ_2(sc, RxMacControl);
455 	rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
456 	rxfilt |= AcceptMyPhys;
457 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
458 		rxfilt |= AcceptBroadcast;
459 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
460 		if ((ifp->if_flags & IFF_PROMISC) != 0)
461 			rxfilt |= AcceptAllPhys;
462 		rxfilt |= AcceptMulticast;
463 		hashes[0] = 0xFFFFFFFF;
464 		hashes[1] = 0xFFFFFFFF;
465 	} else {
466 		rxfilt |= AcceptMulticast;
467 		hashes[0] = hashes[1] = 0;
468 		/* Now program new ones. */
469 		if_maddr_rlock(ifp);
470 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
471 			if (ifma->ifma_addr->sa_family != AF_LINK)
472 				continue;
473 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
474 			    ifma->ifma_addr), ETHER_ADDR_LEN);
475 			hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
476 		}
477 		if_maddr_runlock(ifp);
478 	}
479 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
480 	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
481 	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
482 }
483 
484 static void
485 sge_setvlan(struct sge_softc *sc)
486 {
487 	struct ifnet *ifp;
488 	uint16_t rxfilt;
489 
490 	SGE_LOCK_ASSERT(sc);
491 
492 	ifp = sc->sge_ifp;
493 	if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
494 		return;
495 	rxfilt = CSR_READ_2(sc, RxMacControl);
496 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
497 		rxfilt |= RXMAC_STRIP_VLAN;
498 	else
499 		rxfilt &= ~RXMAC_STRIP_VLAN;
500 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
501 }
502 
503 static void
504 sge_reset(struct sge_softc *sc)
505 {
506 
507 	CSR_WRITE_4(sc, IntrMask, 0);
508 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
509 
510 	/* Soft reset. */
511 	CSR_WRITE_4(sc, IntrControl, 0x8000);
512 	CSR_READ_4(sc, IntrControl);
513 	DELAY(100);
514 	CSR_WRITE_4(sc, IntrControl, 0);
515 	/* Stop MAC. */
516 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
517 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
518 
519 	CSR_WRITE_4(sc, IntrMask, 0);
520 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
521 
522 	CSR_WRITE_4(sc, GMIIControl, 0);
523 }
524 
525 /*
526  * Probe for an SiS chip. Check the PCI vendor and device
527  * IDs against our list and return a device name if we find a match.
528  */
529 static int
530 sge_probe(device_t dev)
531 {
532 	struct sge_type *t;
533 
534 	t = sge_devs;
535 	while (t->sge_name != NULL) {
536 		if ((pci_get_vendor(dev) == t->sge_vid) &&
537 		    (pci_get_device(dev) == t->sge_did)) {
538 			device_set_desc(dev, t->sge_name);
539 			return (BUS_PROBE_DEFAULT);
540 		}
541 		t++;
542 	}
543 
544 	return (ENXIO);
545 }
546 
547 /*
548  * Attach the interface.  Allocate softc structures, do ifmedia
549  * setup and ethernet/BPF attach.
550  */
551 static int
552 sge_attach(device_t dev)
553 {
554 	struct sge_softc *sc;
555 	struct ifnet *ifp;
556 	uint8_t eaddr[ETHER_ADDR_LEN];
557 	int error = 0, rid;
558 
559 	sc = device_get_softc(dev);
560 	sc->sge_dev = dev;
561 
562 	mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
563 	    MTX_DEF);
564         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
565 
566 	/*
567 	 * Map control/status registers.
568 	 */
569 	pci_enable_busmaster(dev);
570 
571 	/* Allocate resources. */
572 	sc->sge_res_id = PCIR_BAR(0);
573 	sc->sge_res_type = SYS_RES_MEMORY;
574 	sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
575 	    &sc->sge_res_id, RF_ACTIVE);
576 	if (sc->sge_res == NULL) {
577 		device_printf(dev, "couldn't allocate resource\n");
578 		error = ENXIO;
579 		goto fail;
580 	}
581 
582 	rid = 0;
583 	sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
584 	    RF_SHAREABLE | RF_ACTIVE);
585 	if (sc->sge_irq == NULL) {
586 		device_printf(dev, "couldn't allocate IRQ resources\n");
587 		error = ENXIO;
588 		goto fail;
589 	}
590 	sc->sge_rev = pci_get_revid(dev);
591 	if (pci_get_device(dev) == SIS_DEVICEID_190)
592 		sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
593 	/* Reset the adapter. */
594 	sge_reset(sc);
595 
596 	/* Get MAC address from the EEPROM. */
597 	if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
598 		sge_get_mac_addr_apc(sc, eaddr);
599 	else
600 		sge_get_mac_addr_eeprom(sc, eaddr);
601 
602 	if ((error = sge_dma_alloc(sc)) != 0)
603 		goto fail;
604 
605 	ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
606 	if (ifp == NULL) {
607 		device_printf(dev, "cannot allocate ifnet structure.\n");
608 		error = ENOSPC;
609 		goto fail;
610 	}
611 	ifp->if_softc = sc;
612 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
613 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
614 	ifp->if_ioctl = sge_ioctl;
615 	ifp->if_start = sge_start;
616 	ifp->if_init = sge_init;
617 	ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
618 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
619 	IFQ_SET_READY(&ifp->if_snd);
620 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
621 	ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
622 	ifp->if_capenable = ifp->if_capabilities;
623 	/*
624 	 * Do MII setup.
625 	 */
626 	error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
627 	    sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
628 	if (error != 0) {
629 		device_printf(dev, "attaching PHYs failed\n");
630 		goto fail;
631 	}
632 
633 	/*
634 	 * Call MI attach routine.
635 	 */
636 	ether_ifattach(ifp, eaddr);
637 
638 	/* VLAN setup. */
639 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
640 	    IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
641 	ifp->if_capenable = ifp->if_capabilities;
642 	/* Tell the upper layer(s) we support long frames. */
643 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
644 
645 	/* Hook interrupt last to avoid having to lock softc */
646 	error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
647 	    NULL, sge_intr, sc, &sc->sge_intrhand);
648 	if (error) {
649 		device_printf(dev, "couldn't set up irq\n");
650 		ether_ifdetach(ifp);
651 		goto fail;
652 	}
653 
654 fail:
655 	if (error)
656 		sge_detach(dev);
657 
658 	return (error);
659 }
660 
661 /*
662  * Shutdown hardware and free up resources.  This can be called any
663  * time after the mutex has been initialized.  It is called in both
664  * the error case in attach and the normal detach case so it needs
665  * to be careful about only freeing resources that have actually been
666  * allocated.
667  */
668 static int
669 sge_detach(device_t dev)
670 {
671 	struct sge_softc *sc;
672 	struct ifnet *ifp;
673 
674 	sc = device_get_softc(dev);
675 	ifp = sc->sge_ifp;
676 	/* These should only be active if attach succeeded. */
677 	if (device_is_attached(dev)) {
678 		ether_ifdetach(ifp);
679 		SGE_LOCK(sc);
680 		sge_stop(sc);
681 		SGE_UNLOCK(sc);
682 		callout_drain(&sc->sge_stat_ch);
683 	}
684 	if (sc->sge_miibus)
685 		device_delete_child(dev, sc->sge_miibus);
686 	bus_generic_detach(dev);
687 
688 	if (sc->sge_intrhand)
689 		bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
690 	if (sc->sge_irq)
691 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
692 	if (sc->sge_res)
693 		bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
694 		    sc->sge_res);
695 	if (ifp)
696 		if_free(ifp);
697 	sge_dma_free(sc);
698 	mtx_destroy(&sc->sge_mtx);
699 
700 	return (0);
701 }
702 
703 /*
704  * Stop all chip I/O so that the kernel's probe routines don't
705  * get confused by errant DMAs when rebooting.
706  */
707 static int
708 sge_shutdown(device_t dev)
709 {
710 	struct sge_softc *sc;
711 
712 	sc = device_get_softc(dev);
713 	SGE_LOCK(sc);
714 	sge_stop(sc);
715 	SGE_UNLOCK(sc);
716 	return (0);
717 }
718 
719 static int
720 sge_suspend(device_t dev)
721 {
722 	struct sge_softc *sc;
723 	struct ifnet *ifp;
724 
725 	sc = device_get_softc(dev);
726 	SGE_LOCK(sc);
727 	ifp = sc->sge_ifp;
728 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
729 		sge_stop(sc);
730 	SGE_UNLOCK(sc);
731 	return (0);
732 }
733 
734 static int
735 sge_resume(device_t dev)
736 {
737 	struct sge_softc *sc;
738 	struct ifnet *ifp;
739 
740 	sc = device_get_softc(dev);
741 	SGE_LOCK(sc);
742 	ifp = sc->sge_ifp;
743 	if ((ifp->if_flags & IFF_UP) != 0)
744 		sge_init_locked(sc);
745 	SGE_UNLOCK(sc);
746 	return (0);
747 }
748 
749 static int
750 sge_dma_alloc(struct sge_softc *sc)
751 {
752 	struct sge_chain_data *cd;
753 	struct sge_list_data *ld;
754 	struct sge_rxdesc *rxd;
755 	struct sge_txdesc *txd;
756 	int error, i;
757 
758 	cd = &sc->sge_cdata;
759 	ld = &sc->sge_ldata;
760 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
761 	    1, 0,			/* alignment, boundary */
762 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
763 	    BUS_SPACE_MAXADDR,		/* highaddr */
764 	    NULL, NULL,			/* filter, filterarg */
765 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
766 	    1,				/* nsegments */
767 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
768 	    0,				/* flags */
769 	    NULL,			/* lockfunc */
770 	    NULL,			/* lockarg */
771 	    &cd->sge_tag);
772 	if (error != 0) {
773 		device_printf(sc->sge_dev,
774 		    "could not create parent DMA tag.\n");
775 		goto fail;
776 	}
777 
778 	/* RX descriptor ring */
779 	error = bus_dma_tag_create(cd->sge_tag,
780 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
781 	    BUS_SPACE_MAXADDR,		/* lowaddr */
782 	    BUS_SPACE_MAXADDR,		/* highaddr */
783 	    NULL, NULL,			/* filter, filterarg */
784 	    SGE_RX_RING_SZ, 1,		/* maxsize,nsegments */
785 	    SGE_RX_RING_SZ,		/* maxsegsize */
786 	    0,				/* flags */
787 	    NULL,			/* lockfunc */
788 	    NULL,			/* lockarg */
789 	    &cd->sge_rx_tag);
790 	if (error != 0) {
791 		device_printf(sc->sge_dev,
792 		    "could not create Rx ring DMA tag.\n");
793 		goto fail;
794 	}
795 	/* Allocate DMA'able memory and load DMA map for RX ring. */
796 	error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
797 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
798 	    &cd->sge_rx_dmamap);
799 	if (error != 0) {
800 		device_printf(sc->sge_dev,
801 		    "could not allocate DMA'able memory for Rx ring.\n");
802 		goto fail;
803 	}
804 	error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
805 	    ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
806 	    &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
807 	if (error != 0) {
808 		device_printf(sc->sge_dev,
809 		    "could not load DMA'able memory for Rx ring.\n");
810 	}
811 
812 	/* TX descriptor ring */
813 	error = bus_dma_tag_create(cd->sge_tag,
814 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
815 	    BUS_SPACE_MAXADDR,		/* lowaddr */
816 	    BUS_SPACE_MAXADDR,		/* highaddr */
817 	    NULL, NULL,			/* filter, filterarg */
818 	    SGE_TX_RING_SZ, 1,		/* maxsize,nsegments */
819 	    SGE_TX_RING_SZ,		/* maxsegsize */
820 	    0,				/* flags */
821 	    NULL,			/* lockfunc */
822 	    NULL,			/* lockarg */
823 	    &cd->sge_tx_tag);
824 	if (error != 0) {
825 		device_printf(sc->sge_dev,
826 		    "could not create Rx ring DMA tag.\n");
827 		goto fail;
828 	}
829 	/* Allocate DMA'able memory and load DMA map for TX ring. */
830 	error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
831 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
832 	    &cd->sge_tx_dmamap);
833 	if (error != 0) {
834 		device_printf(sc->sge_dev,
835 		    "could not allocate DMA'able memory for Tx ring.\n");
836 		goto fail;
837 	}
838 	error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
839 	    ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
840 	    &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
841 	if (error != 0) {
842 		device_printf(sc->sge_dev,
843 		    "could not load DMA'able memory for Rx ring.\n");
844 		goto fail;
845 	}
846 
847 	/* Create DMA tag for Tx buffers. */
848 	error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
849 	    BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
850 	    SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
851 	if (error != 0) {
852 		device_printf(sc->sge_dev,
853 		    "could not create Tx mbuf DMA tag.\n");
854 		goto fail;
855 	}
856 
857 	/* Create DMA tag for Rx buffers. */
858 	error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
859 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
860 	    MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
861 	if (error != 0) {
862 		device_printf(sc->sge_dev,
863 		    "could not create Rx mbuf DMA tag.\n");
864 		goto fail;
865 	}
866 
867 	/* Create DMA maps for Tx buffers. */
868 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
869 		txd = &cd->sge_txdesc[i];
870 		txd->tx_m = NULL;
871 		txd->tx_dmamap = NULL;
872 		txd->tx_ndesc = 0;
873 		error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
874 		    &txd->tx_dmamap);
875 		if (error != 0) {
876 			device_printf(sc->sge_dev,
877 			    "could not create Tx DMA map.\n");
878 			goto fail;
879 		}
880 	}
881 	/* Create spare DMA map for Rx buffer. */
882 	error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
883 	if (error != 0) {
884 		device_printf(sc->sge_dev,
885 		    "could not create spare Rx DMA map.\n");
886 		goto fail;
887 	}
888 	/* Create DMA maps for Rx buffers. */
889 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
890 		rxd = &cd->sge_rxdesc[i];
891 		rxd->rx_m = NULL;
892 		rxd->rx_dmamap = NULL;
893 		error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
894 		    &rxd->rx_dmamap);
895 		if (error) {
896 			device_printf(sc->sge_dev,
897 			    "could not create Rx DMA map.\n");
898 			goto fail;
899 		}
900 	}
901 fail:
902 	return (error);
903 }
904 
905 static void
906 sge_dma_free(struct sge_softc *sc)
907 {
908 	struct sge_chain_data *cd;
909 	struct sge_list_data *ld;
910 	struct sge_rxdesc *rxd;
911 	struct sge_txdesc *txd;
912 	int i;
913 
914 	cd = &sc->sge_cdata;
915 	ld = &sc->sge_ldata;
916 	/* Rx ring. */
917 	if (cd->sge_rx_tag != NULL) {
918 		if (ld->sge_rx_paddr != 0)
919 			bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
920 		if (ld->sge_rx_ring != NULL)
921 			bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
922 			    cd->sge_rx_dmamap);
923 		ld->sge_rx_ring = NULL;
924 		ld->sge_rx_paddr = 0;
925 		bus_dma_tag_destroy(cd->sge_rx_tag);
926 		cd->sge_rx_tag = NULL;
927 	}
928 	/* Tx ring. */
929 	if (cd->sge_tx_tag != NULL) {
930 		if (ld->sge_tx_paddr != 0)
931 			bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
932 		if (ld->sge_tx_ring != NULL)
933 			bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
934 			    cd->sge_tx_dmamap);
935 		ld->sge_tx_ring = NULL;
936 		ld->sge_tx_paddr = 0;
937 		bus_dma_tag_destroy(cd->sge_tx_tag);
938 		cd->sge_tx_tag = NULL;
939 	}
940 	/* Rx buffers. */
941 	if (cd->sge_rxmbuf_tag != NULL) {
942 		for (i = 0; i < SGE_RX_RING_CNT; i++) {
943 			rxd = &cd->sge_rxdesc[i];
944 			if (rxd->rx_dmamap != NULL) {
945 				bus_dmamap_destroy(cd->sge_rxmbuf_tag,
946 				    rxd->rx_dmamap);
947 				rxd->rx_dmamap = NULL;
948 			}
949 		}
950 		if (cd->sge_rx_spare_map != NULL) {
951 			bus_dmamap_destroy(cd->sge_rxmbuf_tag,
952 			    cd->sge_rx_spare_map);
953 			cd->sge_rx_spare_map = NULL;
954 		}
955 		bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
956 		cd->sge_rxmbuf_tag = NULL;
957 	}
958 	/* Tx buffers. */
959 	if (cd->sge_txmbuf_tag != NULL) {
960 		for (i = 0; i < SGE_TX_RING_CNT; i++) {
961 			txd = &cd->sge_txdesc[i];
962 			if (txd->tx_dmamap != NULL) {
963 				bus_dmamap_destroy(cd->sge_txmbuf_tag,
964 				    txd->tx_dmamap);
965 				txd->tx_dmamap = NULL;
966 			}
967 		}
968 		bus_dma_tag_destroy(cd->sge_txmbuf_tag);
969 		cd->sge_txmbuf_tag = NULL;
970 	}
971 	if (cd->sge_tag != NULL)
972 		bus_dma_tag_destroy(cd->sge_tag);
973 	cd->sge_tag = NULL;
974 }
975 
976 /*
977  * Initialize the TX descriptors.
978  */
979 static int
980 sge_list_tx_init(struct sge_softc *sc)
981 {
982 	struct sge_list_data *ld;
983 	struct sge_chain_data *cd;
984 
985 	SGE_LOCK_ASSERT(sc);
986 	ld = &sc->sge_ldata;
987 	cd = &sc->sge_cdata;
988 	bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
989 	ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
990 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
991 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
992 	cd->sge_tx_prod = 0;
993 	cd->sge_tx_cons = 0;
994 	cd->sge_tx_cnt = 0;
995 	return (0);
996 }
997 
998 static int
999 sge_list_tx_free(struct sge_softc *sc)
1000 {
1001 	struct sge_chain_data *cd;
1002 	struct sge_txdesc *txd;
1003 	int i;
1004 
1005 	SGE_LOCK_ASSERT(sc);
1006 	cd = &sc->sge_cdata;
1007 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
1008 		txd = &cd->sge_txdesc[i];
1009 		if (txd->tx_m != NULL) {
1010 			bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1011 			    BUS_DMASYNC_POSTWRITE);
1012 			bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1013 			m_freem(txd->tx_m);
1014 			txd->tx_m = NULL;
1015 			txd->tx_ndesc = 0;
1016 		}
1017 	}
1018 
1019 	return (0);
1020 }
1021 
1022 /*
1023  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1024  * we arrange the descriptors in a closed ring, so that the last descriptor
1025  * has RING_END flag set.
1026  */
1027 static int
1028 sge_list_rx_init(struct sge_softc *sc)
1029 {
1030 	struct sge_chain_data *cd;
1031 	int i;
1032 
1033 	SGE_LOCK_ASSERT(sc);
1034 	cd = &sc->sge_cdata;
1035 	cd->sge_rx_cons = 0;
1036 	bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1037 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1038 		if (sge_newbuf(sc, i) != 0)
1039 			return (ENOBUFS);
1040 	}
1041 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1042 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1043 	return (0);
1044 }
1045 
1046 static int
1047 sge_list_rx_free(struct sge_softc *sc)
1048 {
1049 	struct sge_chain_data *cd;
1050 	struct sge_rxdesc *rxd;
1051 	int i;
1052 
1053 	SGE_LOCK_ASSERT(sc);
1054 	cd = &sc->sge_cdata;
1055 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1056 		rxd = &cd->sge_rxdesc[i];
1057 		if (rxd->rx_m != NULL) {
1058 			bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1059 			    BUS_DMASYNC_POSTREAD);
1060 			bus_dmamap_unload(cd->sge_rxmbuf_tag,
1061 			    rxd->rx_dmamap);
1062 			m_freem(rxd->rx_m);
1063 			rxd->rx_m = NULL;
1064 		}
1065 	}
1066 	return (0);
1067 }
1068 
1069 /*
1070  * Initialize an RX descriptor and attach an MBUF cluster.
1071  */
1072 static int
1073 sge_newbuf(struct sge_softc *sc, int prod)
1074 {
1075 	struct mbuf *m;
1076 	struct sge_desc *desc;
1077 	struct sge_chain_data *cd;
1078 	struct sge_rxdesc *rxd;
1079 	bus_dma_segment_t segs[1];
1080 	bus_dmamap_t map;
1081 	int error, nsegs;
1082 
1083 	SGE_LOCK_ASSERT(sc);
1084 
1085 	cd = &sc->sge_cdata;
1086 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1087 	if (m == NULL)
1088 		return (ENOBUFS);
1089 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1090 	m_adj(m, SGE_RX_BUF_ALIGN);
1091 	error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1092 	    cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1093 	if (error != 0) {
1094 		m_freem(m);
1095 		return (error);
1096 	}
1097 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1098 	rxd = &cd->sge_rxdesc[prod];
1099 	if (rxd->rx_m != NULL) {
1100 		bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1101 		    BUS_DMASYNC_POSTREAD);
1102 		bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1103 	}
1104 	map = rxd->rx_dmamap;
1105 	rxd->rx_dmamap = cd->sge_rx_spare_map;
1106 	cd->sge_rx_spare_map = map;
1107 	bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1108 	    BUS_DMASYNC_PREREAD);
1109 	rxd->rx_m = m;
1110 
1111 	desc = &sc->sge_ldata.sge_rx_ring[prod];
1112 	desc->sge_sts_size = 0;
1113 	desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1114 	desc->sge_flags = htole32(segs[0].ds_len);
1115 	if (prod == SGE_RX_RING_CNT - 1)
1116 		desc->sge_flags |= htole32(RING_END);
1117 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1118 	return (0);
1119 }
1120 
1121 static __inline void
1122 sge_discard_rxbuf(struct sge_softc *sc, int index)
1123 {
1124 	struct sge_desc *desc;
1125 
1126 	desc = &sc->sge_ldata.sge_rx_ring[index];
1127 	desc->sge_sts_size = 0;
1128 	desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1129 	if (index == SGE_RX_RING_CNT - 1)
1130 		desc->sge_flags |= htole32(RING_END);
1131 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1132 }
1133 
1134 /*
1135  * A frame has been uploaded: pass the resulting mbuf chain up to
1136  * the higher level protocols.
1137  */
1138 static void
1139 sge_rxeof(struct sge_softc *sc)
1140 {
1141         struct ifnet *ifp;
1142         struct mbuf *m;
1143 	struct sge_chain_data *cd;
1144 	struct sge_desc	*cur_rx;
1145 	uint32_t rxinfo, rxstat;
1146 	int cons, prog;
1147 
1148 	SGE_LOCK_ASSERT(sc);
1149 
1150 	ifp = sc->sge_ifp;
1151 	cd = &sc->sge_cdata;
1152 
1153 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1154 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1155 	cons = cd->sge_rx_cons;
1156 	for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1157 	    SGE_INC(cons, SGE_RX_RING_CNT)) {
1158 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1159 			break;
1160 		cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1161 		rxinfo = le32toh(cur_rx->sge_cmdsts);
1162 		if ((rxinfo & RDC_OWN) != 0)
1163 			break;
1164 		rxstat = le32toh(cur_rx->sge_sts_size);
1165 		if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1166 		    SGE_RX_NSEGS(rxstat) != 1) {
1167 			/* XXX We don't support multi-segment frames yet. */
1168 #ifdef SGE_SHOW_ERRORS
1169 			device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1170 			    RX_ERR_BITS);
1171 #endif
1172 			sge_discard_rxbuf(sc, cons);
1173 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1174 			continue;
1175 		}
1176 		m = cd->sge_rxdesc[cons].rx_m;
1177 		if (sge_newbuf(sc, cons) != 0) {
1178 			sge_discard_rxbuf(sc, cons);
1179 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1180 			continue;
1181 		}
1182 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1183 			if ((rxinfo & RDC_IP_CSUM) != 0 &&
1184 			    (rxinfo & RDC_IP_CSUM_OK) != 0)
1185 				m->m_pkthdr.csum_flags |=
1186 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
1187 			if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1188 			    (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1189 			    ((rxinfo & RDC_UDP_CSUM) != 0 &&
1190 			    (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1191 				m->m_pkthdr.csum_flags |=
1192 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1193 				m->m_pkthdr.csum_data = 0xffff;
1194 			}
1195 		}
1196 		/* Check for VLAN tagged frame. */
1197 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1198 		    (rxstat & RDS_VLAN) != 0) {
1199 			m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1200 			m->m_flags |= M_VLANTAG;
1201 		}
1202 		/*
1203 		 * Account for 10bytes auto padding which is used
1204 		 * to align IP header on 32bit boundary.  Also note,
1205 		 * CRC bytes is automatically removed by the
1206 		 * hardware.
1207 		 */
1208 		m->m_data += SGE_RX_PAD_BYTES;
1209 		m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1210 		    SGE_RX_PAD_BYTES;
1211 		m->m_pkthdr.rcvif = ifp;
1212 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1213 		SGE_UNLOCK(sc);
1214 		(*ifp->if_input)(ifp, m);
1215 		SGE_LOCK(sc);
1216 	}
1217 
1218 	if (prog > 0) {
1219 		bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1220 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1221 		cd->sge_rx_cons = cons;
1222 	}
1223 }
1224 
1225 /*
1226  * A frame was downloaded to the chip.  It's safe for us to clean up
1227  * the list buffers.
1228  */
1229 static void
1230 sge_txeof(struct sge_softc *sc)
1231 {
1232 	struct ifnet *ifp;
1233 	struct sge_list_data *ld;
1234 	struct sge_chain_data *cd;
1235 	struct sge_txdesc *txd;
1236 	uint32_t txstat;
1237 	int cons, nsegs, prod;
1238 
1239 	SGE_LOCK_ASSERT(sc);
1240 
1241 	ifp = sc->sge_ifp;
1242 	ld = &sc->sge_ldata;
1243 	cd = &sc->sge_cdata;
1244 
1245 	if (cd->sge_tx_cnt == 0)
1246 		return;
1247 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1248 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1249 	cons = cd->sge_tx_cons;
1250 	prod = cd->sge_tx_prod;
1251 	for (; cons != prod;) {
1252 		txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1253 		if ((txstat & TDC_OWN) != 0)
1254 			break;
1255 		/*
1256 		 * Only the first descriptor of multi-descriptor transmission
1257 		 * is updated by controller.  Driver should skip entire
1258 		 * chained buffers for the transmitted frame. In other words
1259 		 * TDC_OWN bit is valid only at the first descriptor of a
1260 		 * multi-descriptor transmission.
1261 		 */
1262 		if (SGE_TX_ERROR(txstat) != 0) {
1263 #ifdef SGE_SHOW_ERRORS
1264 			device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1265 			    txstat, TX_ERR_BITS);
1266 #endif
1267 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1268 		} else {
1269 #ifdef notyet
1270 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1271 #endif
1272 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1273 		}
1274 		txd = &cd->sge_txdesc[cons];
1275 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1276 			ld->sge_tx_ring[cons].sge_cmdsts = 0;
1277 			SGE_INC(cons, SGE_TX_RING_CNT);
1278 		}
1279 		/* Reclaim transmitted mbuf. */
1280 		KASSERT(txd->tx_m != NULL,
1281 		    ("%s: freeing NULL mbuf\n", __func__));
1282 		bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1283 		    BUS_DMASYNC_POSTWRITE);
1284 		bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1285 		m_freem(txd->tx_m);
1286 		txd->tx_m = NULL;
1287 		cd->sge_tx_cnt -= txd->tx_ndesc;
1288 		KASSERT(cd->sge_tx_cnt >= 0,
1289 		    ("%s: Active Tx desc counter was garbled\n", __func__));
1290 		txd->tx_ndesc = 0;
1291 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1292 	}
1293 	cd->sge_tx_cons = cons;
1294 	if (cd->sge_tx_cnt == 0)
1295 		sc->sge_timer = 0;
1296 }
1297 
1298 static void
1299 sge_tick(void *arg)
1300 {
1301 	struct sge_softc *sc;
1302 	struct mii_data *mii;
1303 	struct ifnet *ifp;
1304 
1305 	sc = arg;
1306 	SGE_LOCK_ASSERT(sc);
1307 
1308 	ifp = sc->sge_ifp;
1309 	mii = device_get_softc(sc->sge_miibus);
1310 	mii_tick(mii);
1311 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1312 		sge_miibus_statchg(sc->sge_dev);
1313 		if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1314 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1315 			sge_start_locked(ifp);
1316 	}
1317 	/*
1318 	 * Reclaim transmitted frames here as we do not request
1319 	 * Tx completion interrupt for every queued frames to
1320 	 * reduce excessive interrupts.
1321 	 */
1322 	sge_txeof(sc);
1323 	sge_watchdog(sc);
1324 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1325 }
1326 
1327 static void
1328 sge_intr(void *arg)
1329 {
1330 	struct sge_softc *sc;
1331 	struct ifnet *ifp;
1332 	uint32_t status;
1333 
1334 	sc = arg;
1335 	SGE_LOCK(sc);
1336 	ifp = sc->sge_ifp;
1337 
1338 	status = CSR_READ_4(sc, IntrStatus);
1339 	if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1340 		/* Not ours. */
1341 		SGE_UNLOCK(sc);
1342 		return;
1343 	}
1344 	/* Acknowledge interrupts. */
1345 	CSR_WRITE_4(sc, IntrStatus, status);
1346 	/* Disable further interrupts. */
1347 	CSR_WRITE_4(sc, IntrMask, 0);
1348 	/*
1349 	 * It seems the controller supports some kind of interrupt
1350 	 * moderation mechanism but we still don't know how to
1351 	 * enable that.  To reduce number of generated interrupts
1352 	 * under load we check pending interrupts in a loop.  This
1353 	 * will increase number of register access and is not correct
1354 	 * way to handle interrupt moderation but there seems to be
1355 	 * no other way at this time.
1356 	 */
1357 	for (;;) {
1358 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1359 			break;
1360 		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1361 			sge_rxeof(sc);
1362 			/* Wakeup Rx MAC. */
1363 			if ((status & INTR_RX_IDLE) != 0)
1364 				CSR_WRITE_4(sc, RX_CTL,
1365 				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1366 		}
1367 		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1368 			sge_txeof(sc);
1369 		status = CSR_READ_4(sc, IntrStatus);
1370 		if ((status & SGE_INTRS) == 0)
1371 			break;
1372 		/* Acknowledge interrupts. */
1373 		CSR_WRITE_4(sc, IntrStatus, status);
1374 	}
1375 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1376 		/* Re-enable interrupts */
1377 		CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1378 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1379 			sge_start_locked(ifp);
1380 	}
1381 	SGE_UNLOCK(sc);
1382 }
1383 
1384 /*
1385  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1386  * pointers to the fragment pointers.
1387  */
1388 static int
1389 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1390 {
1391 	struct mbuf *m;
1392 	struct sge_desc *desc;
1393 	struct sge_txdesc *txd;
1394 	bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1395 	uint32_t cflags, mss;
1396 	int error, i, nsegs, prod, si;
1397 
1398 	SGE_LOCK_ASSERT(sc);
1399 
1400 	si = prod = sc->sge_cdata.sge_tx_prod;
1401 	txd = &sc->sge_cdata.sge_txdesc[prod];
1402 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1403 		struct ether_header *eh;
1404 		struct ip *ip;
1405 		struct tcphdr *tcp;
1406 		uint32_t ip_off, poff;
1407 
1408 		if (M_WRITABLE(*m_head) == 0) {
1409 			/* Get a writable copy. */
1410 			m = m_dup(*m_head, M_NOWAIT);
1411 			m_freem(*m_head);
1412 			if (m == NULL) {
1413 				*m_head = NULL;
1414 				return (ENOBUFS);
1415 			}
1416 			*m_head = m;
1417 		}
1418 		ip_off = sizeof(struct ether_header);
1419 		m = m_pullup(*m_head, ip_off);
1420 		if (m == NULL) {
1421 			*m_head = NULL;
1422 			return (ENOBUFS);
1423 		}
1424 		eh = mtod(m, struct ether_header *);
1425 		/* Check the existence of VLAN tag. */
1426 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1427 			ip_off = sizeof(struct ether_vlan_header);
1428 			m = m_pullup(m, ip_off);
1429 			if (m == NULL) {
1430 				*m_head = NULL;
1431 				return (ENOBUFS);
1432 			}
1433 		}
1434 		m = m_pullup(m, ip_off + sizeof(struct ip));
1435 		if (m == NULL) {
1436 			*m_head = NULL;
1437 			return (ENOBUFS);
1438 		}
1439 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1440 		poff = ip_off + (ip->ip_hl << 2);
1441 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1442 		if (m == NULL) {
1443 			*m_head = NULL;
1444 			return (ENOBUFS);
1445 		}
1446 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1447 		m = m_pullup(m, poff + (tcp->th_off << 2));
1448 		if (m == NULL) {
1449 			*m_head = NULL;
1450 			return (ENOBUFS);
1451 		}
1452 		/*
1453 		 * Reset IP checksum and recompute TCP pseudo
1454 		 * checksum that NDIS specification requires.
1455 		 */
1456 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1457 		ip->ip_sum = 0;
1458 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1459 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1460 		    htons(IPPROTO_TCP));
1461 		*m_head = m;
1462 	}
1463 
1464 	error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1465 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1466 	if (error == EFBIG) {
1467 		m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1468 		if (m == NULL) {
1469 			m_freem(*m_head);
1470 			*m_head = NULL;
1471 			return (ENOBUFS);
1472 		}
1473 		*m_head = m;
1474 		error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1475 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1476 		if (error != 0) {
1477 			m_freem(*m_head);
1478 			*m_head = NULL;
1479 			return (error);
1480 		}
1481 	} else if (error != 0)
1482 		return (error);
1483 
1484 	KASSERT(nsegs != 0, ("zero segment returned"));
1485 	/* Check descriptor overrun. */
1486 	if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1487 		bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1488 		return (ENOBUFS);
1489 	}
1490 	bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1491 	    BUS_DMASYNC_PREWRITE);
1492 
1493 	m = *m_head;
1494 	cflags = 0;
1495 	mss = 0;
1496 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1497 		cflags |= TDC_LS;
1498 		mss = (uint32_t)m->m_pkthdr.tso_segsz;
1499 		mss <<= 16;
1500 	} else {
1501 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1502 			cflags |= TDC_IP_CSUM;
1503 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1504 			cflags |= TDC_TCP_CSUM;
1505 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1506 			cflags |= TDC_UDP_CSUM;
1507 	}
1508 	for (i = 0; i < nsegs; i++) {
1509 		desc = &sc->sge_ldata.sge_tx_ring[prod];
1510 		if (i == 0) {
1511 			desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1512 			desc->sge_cmdsts = 0;
1513 		} else {
1514 			desc->sge_sts_size = 0;
1515 			desc->sge_cmdsts = htole32(TDC_OWN);
1516 		}
1517 		desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1518 		desc->sge_flags = htole32(txsegs[i].ds_len);
1519 		if (prod == SGE_TX_RING_CNT - 1)
1520 			desc->sge_flags |= htole32(RING_END);
1521 		sc->sge_cdata.sge_tx_cnt++;
1522 		SGE_INC(prod, SGE_TX_RING_CNT);
1523 	}
1524 	/* Update producer index. */
1525 	sc->sge_cdata.sge_tx_prod = prod;
1526 
1527 	desc = &sc->sge_ldata.sge_tx_ring[si];
1528 	/* Configure VLAN. */
1529 	if((m->m_flags & M_VLANTAG) != 0) {
1530 		cflags |= m->m_pkthdr.ether_vtag;
1531 		desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1532 	}
1533 	desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1534 #if 1
1535 	if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1536 		desc->sge_cmdsts |= htole32(TDC_BST);
1537 #else
1538 	if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1539 		desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1540 		if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1541 			desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1542 	}
1543 #endif
1544 	/* Request interrupt and give ownership to controller. */
1545 	desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1546 	txd->tx_m = m;
1547 	txd->tx_ndesc = nsegs;
1548 	return (0);
1549 }
1550 
1551 static void
1552 sge_start(struct ifnet *ifp)
1553 {
1554 	struct sge_softc *sc;
1555 
1556 	sc = ifp->if_softc;
1557 	SGE_LOCK(sc);
1558 	sge_start_locked(ifp);
1559 	SGE_UNLOCK(sc);
1560 }
1561 
1562 static void
1563 sge_start_locked(struct ifnet *ifp)
1564 {
1565 	struct sge_softc *sc;
1566 	struct mbuf *m_head;
1567 	int queued = 0;
1568 
1569 	sc = ifp->if_softc;
1570 	SGE_LOCK_ASSERT(sc);
1571 
1572 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1573 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1574 	    IFF_DRV_RUNNING)
1575 		return;
1576 
1577 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1578 		if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1579 		    SGE_MAXTXSEGS)) {
1580 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1581 			break;
1582 		}
1583 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1584 		if (m_head == NULL)
1585 			break;
1586 		if (sge_encap(sc, &m_head)) {
1587 			if (m_head == NULL)
1588 				break;
1589 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1590 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1591 			break;
1592 		}
1593 		queued++;
1594 		/*
1595 		 * If there's a BPF listener, bounce a copy of this frame
1596 		 * to him.
1597 		 */
1598 		BPF_MTAP(ifp, m_head);
1599 	}
1600 
1601 	if (queued > 0) {
1602 		bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1603 		    sc->sge_cdata.sge_tx_dmamap,
1604 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1605 		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1606 		sc->sge_timer = 5;
1607 	}
1608 }
1609 
1610 static void
1611 sge_init(void *arg)
1612 {
1613 	struct sge_softc *sc;
1614 
1615 	sc = arg;
1616 	SGE_LOCK(sc);
1617 	sge_init_locked(sc);
1618 	SGE_UNLOCK(sc);
1619 }
1620 
1621 static void
1622 sge_init_locked(struct sge_softc *sc)
1623 {
1624 	struct ifnet *ifp;
1625 	struct mii_data *mii;
1626 	uint16_t rxfilt;
1627 	int i;
1628 
1629 	SGE_LOCK_ASSERT(sc);
1630 	ifp = sc->sge_ifp;
1631 	mii = device_get_softc(sc->sge_miibus);
1632 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1633 		return;
1634 	/*
1635 	 * Cancel pending I/O and free all RX/TX buffers.
1636 	 */
1637 	sge_stop(sc);
1638 	sge_reset(sc);
1639 
1640 	/* Init circular RX list. */
1641 	if (sge_list_rx_init(sc) == ENOBUFS) {
1642 		device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1643 		sge_stop(sc);
1644 		return;
1645 	}
1646 	/* Init TX descriptors. */
1647 	sge_list_tx_init(sc);
1648 	/*
1649 	 * Load the address of the RX and TX lists.
1650 	 */
1651 	CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1652 	CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1653 
1654 	CSR_WRITE_4(sc, TxMacControl, 0x60);
1655 	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1656 	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1657 	/* Allow receiving VLAN frames. */
1658 	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1659 	    SGE_RX_PAD_BYTES);
1660 
1661 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1662 		CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1663 	/* Configure RX MAC. */
1664 	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1665 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1666 	sge_rxfilter(sc);
1667 	sge_setvlan(sc);
1668 
1669 	/* Initialize default speed/duplex information. */
1670 	if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1671 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
1672 	sc->sge_flags |= SGE_FLAG_FDX;
1673 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1674 		CSR_WRITE_4(sc, StationControl, 0x04008001);
1675 	else
1676 		CSR_WRITE_4(sc, StationControl, 0x04000001);
1677 	/*
1678 	 * XXX Try to mitigate interrupts.
1679 	 */
1680 	CSR_WRITE_4(sc, IntrControl, 0x08880000);
1681 #ifdef notyet
1682 	if (sc->sge_intrcontrol != 0)
1683 		CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1684 	if (sc->sge_intrtimer != 0)
1685 		CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1686 #endif
1687 
1688 	/*
1689 	 * Clear and enable interrupts.
1690 	 */
1691 	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1692 	CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1693 
1694 	/* Enable receiver and transmitter. */
1695 	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1696 	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1697 
1698 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1699 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1700 
1701 	sc->sge_flags &= ~SGE_FLAG_LINK;
1702 	mii_mediachg(mii);
1703 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1704 }
1705 
1706 /*
1707  * Set media options.
1708  */
1709 static int
1710 sge_ifmedia_upd(struct ifnet *ifp)
1711 {
1712 	struct sge_softc *sc;
1713 	struct mii_data *mii;
1714 		struct mii_softc *miisc;
1715 	int error;
1716 
1717 	sc = ifp->if_softc;
1718 	SGE_LOCK(sc);
1719 	mii = device_get_softc(sc->sge_miibus);
1720 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1721 		PHY_RESET(miisc);
1722 	error = mii_mediachg(mii);
1723 	SGE_UNLOCK(sc);
1724 
1725 	return (error);
1726 }
1727 
1728 /*
1729  * Report current media status.
1730  */
1731 static void
1732 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1733 {
1734 	struct sge_softc *sc;
1735 	struct mii_data *mii;
1736 
1737 	sc = ifp->if_softc;
1738 	SGE_LOCK(sc);
1739 	mii = device_get_softc(sc->sge_miibus);
1740 	if ((ifp->if_flags & IFF_UP) == 0) {
1741 		SGE_UNLOCK(sc);
1742 		return;
1743 	}
1744 	mii_pollstat(mii);
1745 	ifmr->ifm_active = mii->mii_media_active;
1746 	ifmr->ifm_status = mii->mii_media_status;
1747 	SGE_UNLOCK(sc);
1748 }
1749 
1750 static int
1751 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1752 {
1753 	struct sge_softc *sc;
1754 	struct ifreq *ifr;
1755 	struct mii_data *mii;
1756 	int error = 0, mask, reinit;
1757 
1758 	sc = ifp->if_softc;
1759 	ifr = (struct ifreq *)data;
1760 
1761 	switch(command) {
1762 	case SIOCSIFFLAGS:
1763 		SGE_LOCK(sc);
1764 		if ((ifp->if_flags & IFF_UP) != 0) {
1765 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1766 			    ((ifp->if_flags ^ sc->sge_if_flags) &
1767 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1768 				sge_rxfilter(sc);
1769 			else
1770 				sge_init_locked(sc);
1771 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1772 			sge_stop(sc);
1773 		sc->sge_if_flags = ifp->if_flags;
1774 		SGE_UNLOCK(sc);
1775 		break;
1776 	case SIOCSIFCAP:
1777 		SGE_LOCK(sc);
1778 		reinit = 0;
1779 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1780 		if ((mask & IFCAP_TXCSUM) != 0 &&
1781 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1782 			ifp->if_capenable ^= IFCAP_TXCSUM;
1783 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1784 				ifp->if_hwassist |= SGE_CSUM_FEATURES;
1785 			else
1786 				ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1787 		}
1788 		if ((mask & IFCAP_RXCSUM) != 0 &&
1789 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1790 			ifp->if_capenable ^= IFCAP_RXCSUM;
1791 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1792 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1793 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1794 		if ((mask & IFCAP_TSO4) != 0 &&
1795 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1796 			ifp->if_capenable ^= IFCAP_TSO4;
1797 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1798 				ifp->if_hwassist |= CSUM_TSO;
1799 			else
1800 				ifp->if_hwassist &= ~CSUM_TSO;
1801 		}
1802 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1803 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1804 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1805 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1806 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1807 			/*
1808 			 * Due to unknown reason, toggling VLAN hardware
1809 			 * tagging require interface reinitialization.
1810 			 */
1811 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1812 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1813 				ifp->if_capenable &=
1814 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1815 			reinit = 1;
1816 		}
1817 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1818 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1819 			sge_init_locked(sc);
1820 		}
1821 		SGE_UNLOCK(sc);
1822 		VLAN_CAPABILITIES(ifp);
1823 		break;
1824 	case SIOCADDMULTI:
1825 	case SIOCDELMULTI:
1826 		SGE_LOCK(sc);
1827 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1828 			sge_rxfilter(sc);
1829 		SGE_UNLOCK(sc);
1830 		break;
1831 	case SIOCGIFMEDIA:
1832 	case SIOCSIFMEDIA:
1833 		mii = device_get_softc(sc->sge_miibus);
1834 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1835 		break;
1836 	default:
1837 		error = ether_ioctl(ifp, command, data);
1838 		break;
1839 	}
1840 
1841 	return (error);
1842 }
1843 
1844 static void
1845 sge_watchdog(struct sge_softc *sc)
1846 {
1847 	struct ifnet *ifp;
1848 
1849 	SGE_LOCK_ASSERT(sc);
1850 	if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1851 		return;
1852 
1853 	ifp = sc->sge_ifp;
1854 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1855 		if (1 || bootverbose)
1856 			device_printf(sc->sge_dev,
1857 			    "watchdog timeout (lost link)\n");
1858 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1859 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1860 		sge_init_locked(sc);
1861 		return;
1862 	}
1863 	device_printf(sc->sge_dev, "watchdog timeout\n");
1864 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1865 
1866 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1867 	sge_init_locked(sc);
1868 	if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1869 		sge_start_locked(ifp);
1870 }
1871 
1872 /*
1873  * Stop the adapter and free any mbufs allocated to the
1874  * RX and TX lists.
1875  */
1876 static void
1877 sge_stop(struct sge_softc *sc)
1878 {
1879 	struct ifnet *ifp;
1880 
1881 	ifp = sc->sge_ifp;
1882 
1883 	SGE_LOCK_ASSERT(sc);
1884 
1885 	sc->sge_timer = 0;
1886 	callout_stop(&sc->sge_stat_ch);
1887 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1888 
1889 	CSR_WRITE_4(sc, IntrMask, 0);
1890 	CSR_READ_4(sc, IntrMask);
1891 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1892 	/* Stop TX/RX MAC. */
1893 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1894 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1895 	/* XXX Can we assume active DMA cycles gone? */
1896 	DELAY(2000);
1897 	CSR_WRITE_4(sc, IntrMask, 0);
1898 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1899 
1900 	sc->sge_flags &= ~SGE_FLAG_LINK;
1901 	sge_list_rx_free(sc);
1902 	sge_list_tx_free(sc);
1903 }
1904