xref: /freebsd/sys/dev/sge/if_sge.c (revision e0c4386e7e71d93b0edc0c8fa156263fc4a8b0b6)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
5  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
6  * Copyright (c) 1997, 1998, 1999
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
27  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
28  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
35  * OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 /*
40  * SiS 190/191 PCI Ethernet NIC driver.
41  *
42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46  * review and very useful comments.
47  *
48  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
49  * Linux and Solaris drivers.
50  */
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/mutex.h>
62 #include <sys/rman.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 
66 #include <net/bpf.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_types.h>
74 #include <net/if_vlan_var.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/ip.h>
79 #include <netinet/tcp.h>
80 
81 #include <machine/bus.h>
82 #include <machine/in_cksum.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 
90 #include <dev/sge/if_sgereg.h>
91 
92 MODULE_DEPEND(sge, pci, 1, 1, 1);
93 MODULE_DEPEND(sge, ether, 1, 1, 1);
94 MODULE_DEPEND(sge, miibus, 1, 1, 1);
95 
96 /* "device miibus0" required.  See GENERIC if you get errors here. */
97 #include "miibus_if.h"
98 
99 /*
100  * Various supported device vendors/types and their names.
101  */
102 static struct sge_type sge_devs[] = {
103 	{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
104 	{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
105 	{ 0, 0, NULL }
106 };
107 
108 static int	sge_probe(device_t);
109 static int	sge_attach(device_t);
110 static int	sge_detach(device_t);
111 static int	sge_shutdown(device_t);
112 static int	sge_suspend(device_t);
113 static int	sge_resume(device_t);
114 
115 static int	sge_miibus_readreg(device_t, int, int);
116 static int	sge_miibus_writereg(device_t, int, int, int);
117 static void	sge_miibus_statchg(device_t);
118 
119 static int	sge_newbuf(struct sge_softc *, int);
120 static int	sge_encap(struct sge_softc *, struct mbuf **);
121 static __inline void
122 		sge_discard_rxbuf(struct sge_softc *, int);
123 static void	sge_rxeof(struct sge_softc *);
124 static void	sge_txeof(struct sge_softc *);
125 static void	sge_intr(void *);
126 static void	sge_tick(void *);
127 static void	sge_start(if_t);
128 static void	sge_start_locked(if_t);
129 static int	sge_ioctl(if_t, u_long, caddr_t);
130 static void	sge_init(void *);
131 static void	sge_init_locked(struct sge_softc *);
132 static void	sge_stop(struct sge_softc *);
133 static void	sge_watchdog(struct sge_softc *);
134 static int	sge_ifmedia_upd(if_t);
135 static void	sge_ifmedia_sts(if_t, struct ifmediareq *);
136 
137 static int	sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
138 static int	sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
139 static uint16_t	sge_read_eeprom(struct sge_softc *, int);
140 
141 static void	sge_rxfilter(struct sge_softc *);
142 static void	sge_setvlan(struct sge_softc *);
143 static void	sge_reset(struct sge_softc *);
144 static int	sge_list_rx_init(struct sge_softc *);
145 static int	sge_list_rx_free(struct sge_softc *);
146 static int	sge_list_tx_init(struct sge_softc *);
147 static int	sge_list_tx_free(struct sge_softc *);
148 
149 static int	sge_dma_alloc(struct sge_softc *);
150 static void	sge_dma_free(struct sge_softc *);
151 static void	sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
152 
153 static device_method_t sge_methods[] = {
154 	/* Device interface */
155 	DEVMETHOD(device_probe,		sge_probe),
156 	DEVMETHOD(device_attach,	sge_attach),
157 	DEVMETHOD(device_detach,	sge_detach),
158 	DEVMETHOD(device_suspend,	sge_suspend),
159 	DEVMETHOD(device_resume,	sge_resume),
160 	DEVMETHOD(device_shutdown,	sge_shutdown),
161 
162 	/* MII interface */
163 	DEVMETHOD(miibus_readreg,	sge_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	sge_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	sge_miibus_statchg),
166 
167 	DEVMETHOD_END
168 };
169 
170 static driver_t sge_driver = {
171 	"sge", sge_methods, sizeof(struct sge_softc)
172 };
173 
174 DRIVER_MODULE(sge, pci, sge_driver, 0, 0);
175 DRIVER_MODULE(miibus, sge, miibus_driver, 0, 0);
176 
177 /*
178  * Register space access macros.
179  */
180 #define	CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sge_res, reg, val)
181 #define	CSR_WRITE_2(sc, reg, val)	bus_write_2(sc->sge_res, reg, val)
182 #define	CSR_WRITE_1(cs, reg, val)	bus_write_1(sc->sge_res, reg, val)
183 
184 #define	CSR_READ_4(sc, reg)		bus_read_4(sc->sge_res, reg)
185 #define	CSR_READ_2(sc, reg)		bus_read_2(sc->sge_res, reg)
186 #define	CSR_READ_1(sc, reg)		bus_read_1(sc->sge_res, reg)
187 
188 /* Define to show Tx/Rx error status. */
189 #undef SGE_SHOW_ERRORS
190 
191 #define	SGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
192 
193 static void
194 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
195 {
196 	bus_addr_t *p;
197 
198 	if (error != 0)
199 		return;
200 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
201 	p  = arg;
202 	*p = segs->ds_addr;
203 }
204 
205 /*
206  * Read a sequence of words from the EEPROM.
207  */
208 static uint16_t
209 sge_read_eeprom(struct sge_softc *sc, int offset)
210 {
211 	uint32_t val;
212 	int i;
213 
214 	KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
215 	CSR_WRITE_4(sc, ROMInterface,
216 	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
217 	DELAY(500);
218 	for (i = 0; i < SGE_TIMEOUT; i++) {
219 		val = CSR_READ_4(sc, ROMInterface);
220 		if ((val & EI_REQ) == 0)
221 			break;
222 		DELAY(100);
223 	}
224 	if (i == SGE_TIMEOUT) {
225 		device_printf(sc->sge_dev,
226 		    "EEPROM read timeout : 0x%08x\n", val);
227 		return (0xffff);
228 	}
229 
230 	return ((val & EI_DATA) >> EI_DATA_SHIFT);
231 }
232 
233 static int
234 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
235 {
236 	uint16_t val;
237 	int i;
238 
239 	val = sge_read_eeprom(sc, EEPROMSignature);
240 	if (val == 0xffff || val == 0) {
241 		device_printf(sc->sge_dev,
242 		    "invalid EEPROM signature : 0x%04x\n", val);
243 		return (EINVAL);
244 	}
245 
246 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
247 		val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
248 		dest[i + 0] = (uint8_t)val;
249 		dest[i + 1] = (uint8_t)(val >> 8);
250 	}
251 
252 	if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
253 		sc->sge_flags |= SGE_FLAG_RGMII;
254 	return (0);
255 }
256 
257 /*
258  * For SiS96x, APC CMOS RAM is used to store ethernet address.
259  * APC CMOS RAM is accessed through ISA bridge.
260  */
261 static int
262 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
263 {
264 #if defined(__amd64__) || defined(__i386__)
265 	devclass_t pci;
266 	device_t bus, dev = NULL;
267 	device_t *kids;
268 	struct apc_tbl {
269 		uint16_t vid;
270 		uint16_t did;
271 	} *tp, apc_tbls[] = {
272 		{ SIS_VENDORID, 0x0965 },
273 		{ SIS_VENDORID, 0x0966 },
274 		{ SIS_VENDORID, 0x0968 }
275 	};
276 	uint8_t reg;
277 	int busnum, i, j, numkids;
278 
279 	pci = devclass_find("pci");
280 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
281 		bus = devclass_get_device(pci, busnum);
282 		if (!bus)
283 			continue;
284 		if (device_get_children(bus, &kids, &numkids) != 0)
285 			continue;
286 		for (i = 0; i < numkids; i++) {
287 			dev = kids[i];
288 			if (pci_get_class(dev) == PCIC_BRIDGE &&
289 			    pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
290 				tp = apc_tbls;
291 				for (j = 0; j < nitems(apc_tbls); j++) {
292 					if (pci_get_vendor(dev) == tp->vid &&
293 					    pci_get_device(dev) == tp->did) {
294 						free(kids, M_TEMP);
295 						goto apc_found;
296 					}
297 					tp++;
298 				}
299 			}
300                 }
301 		free(kids, M_TEMP);
302 	}
303 	device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
304 	return (EINVAL);
305 apc_found:
306 	/* Enable port 0x78 and 0x79 to access APC registers. */
307 	reg = pci_read_config(dev, 0x48, 1);
308 	pci_write_config(dev, 0x48, reg & ~0x02, 1);
309 	DELAY(50);
310 	pci_read_config(dev, 0x48, 1);
311 	/* Read stored ethernet address. */
312 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
313 		outb(0x78, 0x09 + i);
314 		dest[i] = inb(0x79);
315 	}
316 	outb(0x78, 0x12);
317 	if ((inb(0x79) & 0x80) != 0)
318 		sc->sge_flags |= SGE_FLAG_RGMII;
319 	/* Restore access to APC registers. */
320 	pci_write_config(dev, 0x48, reg, 1);
321 
322 	return (0);
323 #else
324 	return (EINVAL);
325 #endif
326 }
327 
328 static int
329 sge_miibus_readreg(device_t dev, int phy, int reg)
330 {
331 	struct sge_softc *sc;
332 	uint32_t val;
333 	int i;
334 
335 	sc = device_get_softc(dev);
336 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
337 	    (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
338 	DELAY(10);
339 	for (i = 0; i < SGE_TIMEOUT; i++) {
340 		val = CSR_READ_4(sc, GMIIControl);
341 		if ((val & GMI_REQ) == 0)
342 			break;
343 		DELAY(10);
344 	}
345 	if (i == SGE_TIMEOUT) {
346 		device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
347 		return (0);
348 	}
349 	return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
350 }
351 
352 static int
353 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
354 {
355 	struct sge_softc *sc;
356 	uint32_t val;
357 	int i;
358 
359 	sc = device_get_softc(dev);
360 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
361 	    (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
362 	    GMI_OP_WR | GMI_REQ);
363 	DELAY(10);
364 	for (i = 0; i < SGE_TIMEOUT; i++) {
365 		val = CSR_READ_4(sc, GMIIControl);
366 		if ((val & GMI_REQ) == 0)
367 			break;
368 		DELAY(10);
369 	}
370 	if (i == SGE_TIMEOUT)
371 		device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
372 	return (0);
373 }
374 
375 static void
376 sge_miibus_statchg(device_t dev)
377 {
378 	struct sge_softc *sc;
379 	struct mii_data *mii;
380 	if_t ifp;
381 	uint32_t ctl, speed;
382 
383 	sc = device_get_softc(dev);
384 	mii = device_get_softc(sc->sge_miibus);
385 	ifp = sc->sge_ifp;
386 	if (mii == NULL || ifp == NULL ||
387 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
388 		return;
389 	speed = 0;
390 	sc->sge_flags &= ~SGE_FLAG_LINK;
391 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
392 	    (IFM_ACTIVE | IFM_AVALID)) {
393 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
394 		case IFM_10_T:
395 			sc->sge_flags |= SGE_FLAG_LINK;
396 			speed = SC_SPEED_10;
397 			break;
398 		case IFM_100_TX:
399 			sc->sge_flags |= SGE_FLAG_LINK;
400 			speed = SC_SPEED_100;
401 			break;
402 		case IFM_1000_T:
403 			if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
404 				sc->sge_flags |= SGE_FLAG_LINK;
405 				speed = SC_SPEED_1000;
406 			}
407 			break;
408 		default:
409 			break;
410                 }
411         }
412 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
413 		return;
414 	/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
415 	ctl = CSR_READ_4(sc, StationControl);
416 	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
417 	if (speed == SC_SPEED_1000) {
418 		ctl |= 0x07000000;
419 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
420 	} else {
421 		ctl |= 0x04000000;
422 		sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
423 	}
424 #ifdef notyet
425 	if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
426 		ctl |= 0x03000000;
427 #endif
428 	ctl |= speed;
429 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
430 		ctl |= SC_FDX;
431 		sc->sge_flags |= SGE_FLAG_FDX;
432 	} else
433 		sc->sge_flags &= ~SGE_FLAG_FDX;
434 	CSR_WRITE_4(sc, StationControl, ctl);
435 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
436 		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
437 		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
438 	}
439 }
440 
441 static u_int
442 sge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int count)
443 {
444 	uint32_t crc, *hashes = arg;
445 
446 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
447 	hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
448 
449 	return (1);
450 }
451 
452 static void
453 sge_rxfilter(struct sge_softc *sc)
454 {
455 	if_t ifp;
456 	uint32_t hashes[2];
457 	uint16_t rxfilt;
458 
459 	SGE_LOCK_ASSERT(sc);
460 
461 	ifp = sc->sge_ifp;
462 	rxfilt = CSR_READ_2(sc, RxMacControl);
463 	rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
464 	rxfilt |= AcceptMyPhys;
465 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
466 		rxfilt |= AcceptBroadcast;
467 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
468 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
469 			rxfilt |= AcceptAllPhys;
470 		rxfilt |= AcceptMulticast;
471 		hashes[0] = 0xFFFFFFFF;
472 		hashes[1] = 0xFFFFFFFF;
473 	} else {
474 		rxfilt |= AcceptMulticast;
475 		hashes[0] = hashes[1] = 0;
476 		/* Now program new ones. */
477 		if_foreach_llmaddr(ifp, sge_hash_maddr, hashes);
478 	}
479 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
480 	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
481 	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
482 }
483 
484 static void
485 sge_setvlan(struct sge_softc *sc)
486 {
487 	if_t ifp;
488 	uint16_t rxfilt;
489 
490 	SGE_LOCK_ASSERT(sc);
491 
492 	ifp = sc->sge_ifp;
493 	if ((if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
494 		return;
495 	rxfilt = CSR_READ_2(sc, RxMacControl);
496 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
497 		rxfilt |= RXMAC_STRIP_VLAN;
498 	else
499 		rxfilt &= ~RXMAC_STRIP_VLAN;
500 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
501 }
502 
503 static void
504 sge_reset(struct sge_softc *sc)
505 {
506 
507 	CSR_WRITE_4(sc, IntrMask, 0);
508 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
509 
510 	/* Soft reset. */
511 	CSR_WRITE_4(sc, IntrControl, 0x8000);
512 	CSR_READ_4(sc, IntrControl);
513 	DELAY(100);
514 	CSR_WRITE_4(sc, IntrControl, 0);
515 	/* Stop MAC. */
516 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
517 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
518 
519 	CSR_WRITE_4(sc, IntrMask, 0);
520 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
521 
522 	CSR_WRITE_4(sc, GMIIControl, 0);
523 }
524 
525 /*
526  * Probe for an SiS chip. Check the PCI vendor and device
527  * IDs against our list and return a device name if we find a match.
528  */
529 static int
530 sge_probe(device_t dev)
531 {
532 	struct sge_type *t;
533 
534 	t = sge_devs;
535 	while (t->sge_name != NULL) {
536 		if ((pci_get_vendor(dev) == t->sge_vid) &&
537 		    (pci_get_device(dev) == t->sge_did)) {
538 			device_set_desc(dev, t->sge_name);
539 			return (BUS_PROBE_DEFAULT);
540 		}
541 		t++;
542 	}
543 
544 	return (ENXIO);
545 }
546 
547 /*
548  * Attach the interface.  Allocate softc structures, do ifmedia
549  * setup and ethernet/BPF attach.
550  */
551 static int
552 sge_attach(device_t dev)
553 {
554 	struct sge_softc *sc;
555 	if_t ifp;
556 	uint8_t eaddr[ETHER_ADDR_LEN];
557 	int error = 0, rid;
558 
559 	sc = device_get_softc(dev);
560 	sc->sge_dev = dev;
561 
562 	mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
563 	    MTX_DEF);
564         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
565 
566 	/*
567 	 * Map control/status registers.
568 	 */
569 	pci_enable_busmaster(dev);
570 
571 	/* Allocate resources. */
572 	sc->sge_res_id = PCIR_BAR(0);
573 	sc->sge_res_type = SYS_RES_MEMORY;
574 	sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
575 	    &sc->sge_res_id, RF_ACTIVE);
576 	if (sc->sge_res == NULL) {
577 		device_printf(dev, "couldn't allocate resource\n");
578 		error = ENXIO;
579 		goto fail;
580 	}
581 
582 	rid = 0;
583 	sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
584 	    RF_SHAREABLE | RF_ACTIVE);
585 	if (sc->sge_irq == NULL) {
586 		device_printf(dev, "couldn't allocate IRQ resources\n");
587 		error = ENXIO;
588 		goto fail;
589 	}
590 	sc->sge_rev = pci_get_revid(dev);
591 	if (pci_get_device(dev) == SIS_DEVICEID_190)
592 		sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
593 	/* Reset the adapter. */
594 	sge_reset(sc);
595 
596 	/* Get MAC address from the EEPROM. */
597 	if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
598 		sge_get_mac_addr_apc(sc, eaddr);
599 	else
600 		sge_get_mac_addr_eeprom(sc, eaddr);
601 
602 	if ((error = sge_dma_alloc(sc)) != 0)
603 		goto fail;
604 
605 	ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
606 	if (ifp == NULL) {
607 		device_printf(dev, "cannot allocate ifnet structure.\n");
608 		error = ENOSPC;
609 		goto fail;
610 	}
611 	if_setsoftc(ifp, sc);
612 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
613 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
614 	if_setioctlfn(ifp, sge_ioctl);
615 	if_setstartfn(ifp, sge_start);
616 	if_setinitfn(ifp, sge_init);
617 	if_setsendqlen(ifp, SGE_TX_RING_CNT - 1);
618 	if_setsendqready(ifp);
619 	if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4);
620 	if_sethwassist(ifp, SGE_CSUM_FEATURES | CSUM_TSO);
621 	if_setcapenable(ifp, if_getcapabilities(ifp));
622 	/*
623 	 * Do MII setup.
624 	 */
625 	error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
626 	    sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
627 	if (error != 0) {
628 		device_printf(dev, "attaching PHYs failed\n");
629 		goto fail;
630 	}
631 
632 	/*
633 	 * Call MI attach routine.
634 	 */
635 	ether_ifattach(ifp, eaddr);
636 
637 	/* VLAN setup. */
638 	if_setcapabilities(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
639 	    IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU);
640 	if_setcapenable(ifp, if_getcapabilities(ifp));
641 	/* Tell the upper layer(s) we support long frames. */
642 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
643 
644 	/* Hook interrupt last to avoid having to lock softc */
645 	error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
646 	    NULL, sge_intr, sc, &sc->sge_intrhand);
647 	if (error) {
648 		device_printf(dev, "couldn't set up irq\n");
649 		ether_ifdetach(ifp);
650 		goto fail;
651 	}
652 
653 fail:
654 	if (error)
655 		sge_detach(dev);
656 
657 	return (error);
658 }
659 
660 /*
661  * Shutdown hardware and free up resources.  This can be called any
662  * time after the mutex has been initialized.  It is called in both
663  * the error case in attach and the normal detach case so it needs
664  * to be careful about only freeing resources that have actually been
665  * allocated.
666  */
667 static int
668 sge_detach(device_t dev)
669 {
670 	struct sge_softc *sc;
671 	if_t ifp;
672 
673 	sc = device_get_softc(dev);
674 	ifp = sc->sge_ifp;
675 	/* These should only be active if attach succeeded. */
676 	if (device_is_attached(dev)) {
677 		ether_ifdetach(ifp);
678 		SGE_LOCK(sc);
679 		sge_stop(sc);
680 		SGE_UNLOCK(sc);
681 		callout_drain(&sc->sge_stat_ch);
682 	}
683 	if (sc->sge_miibus)
684 		device_delete_child(dev, sc->sge_miibus);
685 	bus_generic_detach(dev);
686 
687 	if (sc->sge_intrhand)
688 		bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
689 	if (sc->sge_irq)
690 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
691 	if (sc->sge_res)
692 		bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
693 		    sc->sge_res);
694 	if (ifp)
695 		if_free(ifp);
696 	sge_dma_free(sc);
697 	mtx_destroy(&sc->sge_mtx);
698 
699 	return (0);
700 }
701 
702 /*
703  * Stop all chip I/O so that the kernel's probe routines don't
704  * get confused by errant DMAs when rebooting.
705  */
706 static int
707 sge_shutdown(device_t dev)
708 {
709 	struct sge_softc *sc;
710 
711 	sc = device_get_softc(dev);
712 	SGE_LOCK(sc);
713 	sge_stop(sc);
714 	SGE_UNLOCK(sc);
715 	return (0);
716 }
717 
718 static int
719 sge_suspend(device_t dev)
720 {
721 	struct sge_softc *sc;
722 	if_t ifp;
723 
724 	sc = device_get_softc(dev);
725 	SGE_LOCK(sc);
726 	ifp = sc->sge_ifp;
727 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
728 		sge_stop(sc);
729 	SGE_UNLOCK(sc);
730 	return (0);
731 }
732 
733 static int
734 sge_resume(device_t dev)
735 {
736 	struct sge_softc *sc;
737 	if_t ifp;
738 
739 	sc = device_get_softc(dev);
740 	SGE_LOCK(sc);
741 	ifp = sc->sge_ifp;
742 	if ((if_getflags(ifp) & IFF_UP) != 0)
743 		sge_init_locked(sc);
744 	SGE_UNLOCK(sc);
745 	return (0);
746 }
747 
748 static int
749 sge_dma_alloc(struct sge_softc *sc)
750 {
751 	struct sge_chain_data *cd;
752 	struct sge_list_data *ld;
753 	struct sge_rxdesc *rxd;
754 	struct sge_txdesc *txd;
755 	int error, i;
756 
757 	cd = &sc->sge_cdata;
758 	ld = &sc->sge_ldata;
759 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
760 	    1, 0,			/* alignment, boundary */
761 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
762 	    BUS_SPACE_MAXADDR,		/* highaddr */
763 	    NULL, NULL,			/* filter, filterarg */
764 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
765 	    1,				/* nsegments */
766 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
767 	    0,				/* flags */
768 	    NULL,			/* lockfunc */
769 	    NULL,			/* lockarg */
770 	    &cd->sge_tag);
771 	if (error != 0) {
772 		device_printf(sc->sge_dev,
773 		    "could not create parent DMA tag.\n");
774 		goto fail;
775 	}
776 
777 	/* RX descriptor ring */
778 	error = bus_dma_tag_create(cd->sge_tag,
779 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
780 	    BUS_SPACE_MAXADDR,		/* lowaddr */
781 	    BUS_SPACE_MAXADDR,		/* highaddr */
782 	    NULL, NULL,			/* filter, filterarg */
783 	    SGE_RX_RING_SZ, 1,		/* maxsize,nsegments */
784 	    SGE_RX_RING_SZ,		/* maxsegsize */
785 	    0,				/* flags */
786 	    NULL,			/* lockfunc */
787 	    NULL,			/* lockarg */
788 	    &cd->sge_rx_tag);
789 	if (error != 0) {
790 		device_printf(sc->sge_dev,
791 		    "could not create Rx ring DMA tag.\n");
792 		goto fail;
793 	}
794 	/* Allocate DMA'able memory and load DMA map for RX ring. */
795 	error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
796 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
797 	    &cd->sge_rx_dmamap);
798 	if (error != 0) {
799 		device_printf(sc->sge_dev,
800 		    "could not allocate DMA'able memory for Rx ring.\n");
801 		goto fail;
802 	}
803 	error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
804 	    ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
805 	    &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
806 	if (error != 0) {
807 		device_printf(sc->sge_dev,
808 		    "could not load DMA'able memory for Rx ring.\n");
809 	}
810 
811 	/* TX descriptor ring */
812 	error = bus_dma_tag_create(cd->sge_tag,
813 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
814 	    BUS_SPACE_MAXADDR,		/* lowaddr */
815 	    BUS_SPACE_MAXADDR,		/* highaddr */
816 	    NULL, NULL,			/* filter, filterarg */
817 	    SGE_TX_RING_SZ, 1,		/* maxsize,nsegments */
818 	    SGE_TX_RING_SZ,		/* maxsegsize */
819 	    0,				/* flags */
820 	    NULL,			/* lockfunc */
821 	    NULL,			/* lockarg */
822 	    &cd->sge_tx_tag);
823 	if (error != 0) {
824 		device_printf(sc->sge_dev,
825 		    "could not create Rx ring DMA tag.\n");
826 		goto fail;
827 	}
828 	/* Allocate DMA'able memory and load DMA map for TX ring. */
829 	error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
830 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
831 	    &cd->sge_tx_dmamap);
832 	if (error != 0) {
833 		device_printf(sc->sge_dev,
834 		    "could not allocate DMA'able memory for Tx ring.\n");
835 		goto fail;
836 	}
837 	error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
838 	    ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
839 	    &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
840 	if (error != 0) {
841 		device_printf(sc->sge_dev,
842 		    "could not load DMA'able memory for Rx ring.\n");
843 		goto fail;
844 	}
845 
846 	/* Create DMA tag for Tx buffers. */
847 	error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
848 	    BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
849 	    SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
850 	if (error != 0) {
851 		device_printf(sc->sge_dev,
852 		    "could not create Tx mbuf DMA tag.\n");
853 		goto fail;
854 	}
855 
856 	/* Create DMA tag for Rx buffers. */
857 	error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
858 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
859 	    MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
860 	if (error != 0) {
861 		device_printf(sc->sge_dev,
862 		    "could not create Rx mbuf DMA tag.\n");
863 		goto fail;
864 	}
865 
866 	/* Create DMA maps for Tx buffers. */
867 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
868 		txd = &cd->sge_txdesc[i];
869 		txd->tx_m = NULL;
870 		txd->tx_dmamap = NULL;
871 		txd->tx_ndesc = 0;
872 		error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
873 		    &txd->tx_dmamap);
874 		if (error != 0) {
875 			device_printf(sc->sge_dev,
876 			    "could not create Tx DMA map.\n");
877 			goto fail;
878 		}
879 	}
880 	/* Create spare DMA map for Rx buffer. */
881 	error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
882 	if (error != 0) {
883 		device_printf(sc->sge_dev,
884 		    "could not create spare Rx DMA map.\n");
885 		goto fail;
886 	}
887 	/* Create DMA maps for Rx buffers. */
888 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
889 		rxd = &cd->sge_rxdesc[i];
890 		rxd->rx_m = NULL;
891 		rxd->rx_dmamap = NULL;
892 		error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
893 		    &rxd->rx_dmamap);
894 		if (error) {
895 			device_printf(sc->sge_dev,
896 			    "could not create Rx DMA map.\n");
897 			goto fail;
898 		}
899 	}
900 fail:
901 	return (error);
902 }
903 
904 static void
905 sge_dma_free(struct sge_softc *sc)
906 {
907 	struct sge_chain_data *cd;
908 	struct sge_list_data *ld;
909 	struct sge_rxdesc *rxd;
910 	struct sge_txdesc *txd;
911 	int i;
912 
913 	cd = &sc->sge_cdata;
914 	ld = &sc->sge_ldata;
915 	/* Rx ring. */
916 	if (cd->sge_rx_tag != NULL) {
917 		if (ld->sge_rx_paddr != 0)
918 			bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
919 		if (ld->sge_rx_ring != NULL)
920 			bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
921 			    cd->sge_rx_dmamap);
922 		ld->sge_rx_ring = NULL;
923 		ld->sge_rx_paddr = 0;
924 		bus_dma_tag_destroy(cd->sge_rx_tag);
925 		cd->sge_rx_tag = NULL;
926 	}
927 	/* Tx ring. */
928 	if (cd->sge_tx_tag != NULL) {
929 		if (ld->sge_tx_paddr != 0)
930 			bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
931 		if (ld->sge_tx_ring != NULL)
932 			bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
933 			    cd->sge_tx_dmamap);
934 		ld->sge_tx_ring = NULL;
935 		ld->sge_tx_paddr = 0;
936 		bus_dma_tag_destroy(cd->sge_tx_tag);
937 		cd->sge_tx_tag = NULL;
938 	}
939 	/* Rx buffers. */
940 	if (cd->sge_rxmbuf_tag != NULL) {
941 		for (i = 0; i < SGE_RX_RING_CNT; i++) {
942 			rxd = &cd->sge_rxdesc[i];
943 			if (rxd->rx_dmamap != NULL) {
944 				bus_dmamap_destroy(cd->sge_rxmbuf_tag,
945 				    rxd->rx_dmamap);
946 				rxd->rx_dmamap = NULL;
947 			}
948 		}
949 		if (cd->sge_rx_spare_map != NULL) {
950 			bus_dmamap_destroy(cd->sge_rxmbuf_tag,
951 			    cd->sge_rx_spare_map);
952 			cd->sge_rx_spare_map = NULL;
953 		}
954 		bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
955 		cd->sge_rxmbuf_tag = NULL;
956 	}
957 	/* Tx buffers. */
958 	if (cd->sge_txmbuf_tag != NULL) {
959 		for (i = 0; i < SGE_TX_RING_CNT; i++) {
960 			txd = &cd->sge_txdesc[i];
961 			if (txd->tx_dmamap != NULL) {
962 				bus_dmamap_destroy(cd->sge_txmbuf_tag,
963 				    txd->tx_dmamap);
964 				txd->tx_dmamap = NULL;
965 			}
966 		}
967 		bus_dma_tag_destroy(cd->sge_txmbuf_tag);
968 		cd->sge_txmbuf_tag = NULL;
969 	}
970 	if (cd->sge_tag != NULL)
971 		bus_dma_tag_destroy(cd->sge_tag);
972 	cd->sge_tag = NULL;
973 }
974 
975 /*
976  * Initialize the TX descriptors.
977  */
978 static int
979 sge_list_tx_init(struct sge_softc *sc)
980 {
981 	struct sge_list_data *ld;
982 	struct sge_chain_data *cd;
983 
984 	SGE_LOCK_ASSERT(sc);
985 	ld = &sc->sge_ldata;
986 	cd = &sc->sge_cdata;
987 	bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
988 	ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
989 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
990 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
991 	cd->sge_tx_prod = 0;
992 	cd->sge_tx_cons = 0;
993 	cd->sge_tx_cnt = 0;
994 	return (0);
995 }
996 
997 static int
998 sge_list_tx_free(struct sge_softc *sc)
999 {
1000 	struct sge_chain_data *cd;
1001 	struct sge_txdesc *txd;
1002 	int i;
1003 
1004 	SGE_LOCK_ASSERT(sc);
1005 	cd = &sc->sge_cdata;
1006 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
1007 		txd = &cd->sge_txdesc[i];
1008 		if (txd->tx_m != NULL) {
1009 			bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1010 			    BUS_DMASYNC_POSTWRITE);
1011 			bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1012 			m_freem(txd->tx_m);
1013 			txd->tx_m = NULL;
1014 			txd->tx_ndesc = 0;
1015 		}
1016 	}
1017 
1018 	return (0);
1019 }
1020 
1021 /*
1022  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1023  * we arrange the descriptors in a closed ring, so that the last descriptor
1024  * has RING_END flag set.
1025  */
1026 static int
1027 sge_list_rx_init(struct sge_softc *sc)
1028 {
1029 	struct sge_chain_data *cd;
1030 	int i;
1031 
1032 	SGE_LOCK_ASSERT(sc);
1033 	cd = &sc->sge_cdata;
1034 	cd->sge_rx_cons = 0;
1035 	bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1036 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1037 		if (sge_newbuf(sc, i) != 0)
1038 			return (ENOBUFS);
1039 	}
1040 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1041 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1042 	return (0);
1043 }
1044 
1045 static int
1046 sge_list_rx_free(struct sge_softc *sc)
1047 {
1048 	struct sge_chain_data *cd;
1049 	struct sge_rxdesc *rxd;
1050 	int i;
1051 
1052 	SGE_LOCK_ASSERT(sc);
1053 	cd = &sc->sge_cdata;
1054 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1055 		rxd = &cd->sge_rxdesc[i];
1056 		if (rxd->rx_m != NULL) {
1057 			bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1058 			    BUS_DMASYNC_POSTREAD);
1059 			bus_dmamap_unload(cd->sge_rxmbuf_tag,
1060 			    rxd->rx_dmamap);
1061 			m_freem(rxd->rx_m);
1062 			rxd->rx_m = NULL;
1063 		}
1064 	}
1065 	return (0);
1066 }
1067 
1068 /*
1069  * Initialize an RX descriptor and attach an MBUF cluster.
1070  */
1071 static int
1072 sge_newbuf(struct sge_softc *sc, int prod)
1073 {
1074 	struct mbuf *m;
1075 	struct sge_desc *desc;
1076 	struct sge_chain_data *cd;
1077 	struct sge_rxdesc *rxd;
1078 	bus_dma_segment_t segs[1];
1079 	bus_dmamap_t map;
1080 	int error, nsegs;
1081 
1082 	SGE_LOCK_ASSERT(sc);
1083 
1084 	cd = &sc->sge_cdata;
1085 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1086 	if (m == NULL)
1087 		return (ENOBUFS);
1088 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1089 	m_adj(m, SGE_RX_BUF_ALIGN);
1090 	error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1091 	    cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1092 	if (error != 0) {
1093 		m_freem(m);
1094 		return (error);
1095 	}
1096 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1097 	rxd = &cd->sge_rxdesc[prod];
1098 	if (rxd->rx_m != NULL) {
1099 		bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1100 		    BUS_DMASYNC_POSTREAD);
1101 		bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1102 	}
1103 	map = rxd->rx_dmamap;
1104 	rxd->rx_dmamap = cd->sge_rx_spare_map;
1105 	cd->sge_rx_spare_map = map;
1106 	bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1107 	    BUS_DMASYNC_PREREAD);
1108 	rxd->rx_m = m;
1109 
1110 	desc = &sc->sge_ldata.sge_rx_ring[prod];
1111 	desc->sge_sts_size = 0;
1112 	desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1113 	desc->sge_flags = htole32(segs[0].ds_len);
1114 	if (prod == SGE_RX_RING_CNT - 1)
1115 		desc->sge_flags |= htole32(RING_END);
1116 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1117 	return (0);
1118 }
1119 
1120 static __inline void
1121 sge_discard_rxbuf(struct sge_softc *sc, int index)
1122 {
1123 	struct sge_desc *desc;
1124 
1125 	desc = &sc->sge_ldata.sge_rx_ring[index];
1126 	desc->sge_sts_size = 0;
1127 	desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1128 	if (index == SGE_RX_RING_CNT - 1)
1129 		desc->sge_flags |= htole32(RING_END);
1130 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1131 }
1132 
1133 /*
1134  * A frame has been uploaded: pass the resulting mbuf chain up to
1135  * the higher level protocols.
1136  */
1137 static void
1138 sge_rxeof(struct sge_softc *sc)
1139 {
1140         if_t ifp;
1141         struct mbuf *m;
1142 	struct sge_chain_data *cd;
1143 	struct sge_desc	*cur_rx;
1144 	uint32_t rxinfo, rxstat;
1145 	int cons, prog;
1146 
1147 	SGE_LOCK_ASSERT(sc);
1148 
1149 	ifp = sc->sge_ifp;
1150 	cd = &sc->sge_cdata;
1151 
1152 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1153 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1154 	cons = cd->sge_rx_cons;
1155 	for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1156 	    SGE_INC(cons, SGE_RX_RING_CNT)) {
1157 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1158 			break;
1159 		cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1160 		rxinfo = le32toh(cur_rx->sge_cmdsts);
1161 		if ((rxinfo & RDC_OWN) != 0)
1162 			break;
1163 		rxstat = le32toh(cur_rx->sge_sts_size);
1164 		if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1165 		    SGE_RX_NSEGS(rxstat) != 1) {
1166 			/* XXX We don't support multi-segment frames yet. */
1167 #ifdef SGE_SHOW_ERRORS
1168 			device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1169 			    RX_ERR_BITS);
1170 #endif
1171 			sge_discard_rxbuf(sc, cons);
1172 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1173 			continue;
1174 		}
1175 		m = cd->sge_rxdesc[cons].rx_m;
1176 		if (sge_newbuf(sc, cons) != 0) {
1177 			sge_discard_rxbuf(sc, cons);
1178 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1179 			continue;
1180 		}
1181 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1182 			if ((rxinfo & RDC_IP_CSUM) != 0 &&
1183 			    (rxinfo & RDC_IP_CSUM_OK) != 0)
1184 				m->m_pkthdr.csum_flags |=
1185 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
1186 			if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1187 			    (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1188 			    ((rxinfo & RDC_UDP_CSUM) != 0 &&
1189 			    (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1190 				m->m_pkthdr.csum_flags |=
1191 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1192 				m->m_pkthdr.csum_data = 0xffff;
1193 			}
1194 		}
1195 		/* Check for VLAN tagged frame. */
1196 		if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1197 		    (rxstat & RDS_VLAN) != 0) {
1198 			m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1199 			m->m_flags |= M_VLANTAG;
1200 		}
1201 		/*
1202 		 * Account for 10bytes auto padding which is used
1203 		 * to align IP header on 32bit boundary.  Also note,
1204 		 * CRC bytes is automatically removed by the
1205 		 * hardware.
1206 		 */
1207 		m->m_data += SGE_RX_PAD_BYTES;
1208 		m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1209 		    SGE_RX_PAD_BYTES;
1210 		m->m_pkthdr.rcvif = ifp;
1211 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1212 		SGE_UNLOCK(sc);
1213 		if_input(ifp, m);
1214 		SGE_LOCK(sc);
1215 	}
1216 
1217 	if (prog > 0) {
1218 		bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1219 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1220 		cd->sge_rx_cons = cons;
1221 	}
1222 }
1223 
1224 /*
1225  * A frame was downloaded to the chip.  It's safe for us to clean up
1226  * the list buffers.
1227  */
1228 static void
1229 sge_txeof(struct sge_softc *sc)
1230 {
1231 	if_t ifp;
1232 	struct sge_list_data *ld;
1233 	struct sge_chain_data *cd;
1234 	struct sge_txdesc *txd;
1235 	uint32_t txstat;
1236 	int cons, nsegs, prod;
1237 
1238 	SGE_LOCK_ASSERT(sc);
1239 
1240 	ifp = sc->sge_ifp;
1241 	ld = &sc->sge_ldata;
1242 	cd = &sc->sge_cdata;
1243 
1244 	if (cd->sge_tx_cnt == 0)
1245 		return;
1246 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1247 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1248 	cons = cd->sge_tx_cons;
1249 	prod = cd->sge_tx_prod;
1250 	for (; cons != prod;) {
1251 		txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1252 		if ((txstat & TDC_OWN) != 0)
1253 			break;
1254 		/*
1255 		 * Only the first descriptor of multi-descriptor transmission
1256 		 * is updated by controller.  Driver should skip entire
1257 		 * chained buffers for the transmitted frame. In other words
1258 		 * TDC_OWN bit is valid only at the first descriptor of a
1259 		 * multi-descriptor transmission.
1260 		 */
1261 		if (SGE_TX_ERROR(txstat) != 0) {
1262 #ifdef SGE_SHOW_ERRORS
1263 			device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1264 			    txstat, TX_ERR_BITS);
1265 #endif
1266 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1267 		} else {
1268 #ifdef notyet
1269 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1270 #endif
1271 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1272 		}
1273 		txd = &cd->sge_txdesc[cons];
1274 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1275 			ld->sge_tx_ring[cons].sge_cmdsts = 0;
1276 			SGE_INC(cons, SGE_TX_RING_CNT);
1277 		}
1278 		/* Reclaim transmitted mbuf. */
1279 		KASSERT(txd->tx_m != NULL,
1280 		    ("%s: freeing NULL mbuf\n", __func__));
1281 		bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1282 		    BUS_DMASYNC_POSTWRITE);
1283 		bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1284 		m_freem(txd->tx_m);
1285 		txd->tx_m = NULL;
1286 		cd->sge_tx_cnt -= txd->tx_ndesc;
1287 		KASSERT(cd->sge_tx_cnt >= 0,
1288 		    ("%s: Active Tx desc counter was garbled\n", __func__));
1289 		txd->tx_ndesc = 0;
1290 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1291 	}
1292 	cd->sge_tx_cons = cons;
1293 	if (cd->sge_tx_cnt == 0)
1294 		sc->sge_timer = 0;
1295 }
1296 
1297 static void
1298 sge_tick(void *arg)
1299 {
1300 	struct sge_softc *sc;
1301 	struct mii_data *mii;
1302 	if_t ifp;
1303 
1304 	sc = arg;
1305 	SGE_LOCK_ASSERT(sc);
1306 
1307 	ifp = sc->sge_ifp;
1308 	mii = device_get_softc(sc->sge_miibus);
1309 	mii_tick(mii);
1310 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1311 		sge_miibus_statchg(sc->sge_dev);
1312 		if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1313 		    !if_sendq_empty(ifp))
1314 			sge_start_locked(ifp);
1315 	}
1316 	/*
1317 	 * Reclaim transmitted frames here as we do not request
1318 	 * Tx completion interrupt for every queued frames to
1319 	 * reduce excessive interrupts.
1320 	 */
1321 	sge_txeof(sc);
1322 	sge_watchdog(sc);
1323 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1324 }
1325 
1326 static void
1327 sge_intr(void *arg)
1328 {
1329 	struct sge_softc *sc;
1330 	if_t ifp;
1331 	uint32_t status;
1332 
1333 	sc = arg;
1334 	SGE_LOCK(sc);
1335 	ifp = sc->sge_ifp;
1336 
1337 	status = CSR_READ_4(sc, IntrStatus);
1338 	if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1339 		/* Not ours. */
1340 		SGE_UNLOCK(sc);
1341 		return;
1342 	}
1343 	/* Acknowledge interrupts. */
1344 	CSR_WRITE_4(sc, IntrStatus, status);
1345 	/* Disable further interrupts. */
1346 	CSR_WRITE_4(sc, IntrMask, 0);
1347 	/*
1348 	 * It seems the controller supports some kind of interrupt
1349 	 * moderation mechanism but we still don't know how to
1350 	 * enable that.  To reduce number of generated interrupts
1351 	 * under load we check pending interrupts in a loop.  This
1352 	 * will increase number of register access and is not correct
1353 	 * way to handle interrupt moderation but there seems to be
1354 	 * no other way at this time.
1355 	 */
1356 	for (;;) {
1357 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1358 			break;
1359 		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1360 			sge_rxeof(sc);
1361 			/* Wakeup Rx MAC. */
1362 			if ((status & INTR_RX_IDLE) != 0)
1363 				CSR_WRITE_4(sc, RX_CTL,
1364 				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1365 		}
1366 		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1367 			sge_txeof(sc);
1368 		status = CSR_READ_4(sc, IntrStatus);
1369 		if ((status & SGE_INTRS) == 0)
1370 			break;
1371 		/* Acknowledge interrupts. */
1372 		CSR_WRITE_4(sc, IntrStatus, status);
1373 	}
1374 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1375 		/* Re-enable interrupts */
1376 		CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1377 		if (!if_sendq_empty(ifp))
1378 			sge_start_locked(ifp);
1379 	}
1380 	SGE_UNLOCK(sc);
1381 }
1382 
1383 /*
1384  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1385  * pointers to the fragment pointers.
1386  */
1387 static int
1388 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1389 {
1390 	struct mbuf *m;
1391 	struct sge_desc *desc;
1392 	struct sge_txdesc *txd;
1393 	bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1394 	uint32_t cflags, mss;
1395 	int error, i, nsegs, prod, si;
1396 
1397 	SGE_LOCK_ASSERT(sc);
1398 
1399 	si = prod = sc->sge_cdata.sge_tx_prod;
1400 	txd = &sc->sge_cdata.sge_txdesc[prod];
1401 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1402 		struct ether_header *eh;
1403 		struct ip *ip;
1404 		struct tcphdr *tcp;
1405 		uint32_t ip_off, poff;
1406 
1407 		if (M_WRITABLE(*m_head) == 0) {
1408 			/* Get a writable copy. */
1409 			m = m_dup(*m_head, M_NOWAIT);
1410 			m_freem(*m_head);
1411 			if (m == NULL) {
1412 				*m_head = NULL;
1413 				return (ENOBUFS);
1414 			}
1415 			*m_head = m;
1416 		}
1417 		ip_off = sizeof(struct ether_header);
1418 		m = m_pullup(*m_head, ip_off);
1419 		if (m == NULL) {
1420 			*m_head = NULL;
1421 			return (ENOBUFS);
1422 		}
1423 		eh = mtod(m, struct ether_header *);
1424 		/* Check the existence of VLAN tag. */
1425 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1426 			ip_off = sizeof(struct ether_vlan_header);
1427 			m = m_pullup(m, ip_off);
1428 			if (m == NULL) {
1429 				*m_head = NULL;
1430 				return (ENOBUFS);
1431 			}
1432 		}
1433 		m = m_pullup(m, ip_off + sizeof(struct ip));
1434 		if (m == NULL) {
1435 			*m_head = NULL;
1436 			return (ENOBUFS);
1437 		}
1438 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1439 		poff = ip_off + (ip->ip_hl << 2);
1440 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1441 		if (m == NULL) {
1442 			*m_head = NULL;
1443 			return (ENOBUFS);
1444 		}
1445 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1446 		m = m_pullup(m, poff + (tcp->th_off << 2));
1447 		if (m == NULL) {
1448 			*m_head = NULL;
1449 			return (ENOBUFS);
1450 		}
1451 		/*
1452 		 * Reset IP checksum and recompute TCP pseudo
1453 		 * checksum that NDIS specification requires.
1454 		 */
1455 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1456 		ip->ip_sum = 0;
1457 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1458 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1459 		    htons(IPPROTO_TCP));
1460 		*m_head = m;
1461 	}
1462 
1463 	error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1464 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1465 	if (error == EFBIG) {
1466 		m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1467 		if (m == NULL) {
1468 			m_freem(*m_head);
1469 			*m_head = NULL;
1470 			return (ENOBUFS);
1471 		}
1472 		*m_head = m;
1473 		error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1474 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1475 		if (error != 0) {
1476 			m_freem(*m_head);
1477 			*m_head = NULL;
1478 			return (error);
1479 		}
1480 	} else if (error != 0)
1481 		return (error);
1482 
1483 	KASSERT(nsegs != 0, ("zero segment returned"));
1484 	/* Check descriptor overrun. */
1485 	if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1486 		bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1487 		return (ENOBUFS);
1488 	}
1489 	bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1490 	    BUS_DMASYNC_PREWRITE);
1491 
1492 	m = *m_head;
1493 	cflags = 0;
1494 	mss = 0;
1495 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1496 		cflags |= TDC_LS;
1497 		mss = (uint32_t)m->m_pkthdr.tso_segsz;
1498 		mss <<= 16;
1499 	} else {
1500 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1501 			cflags |= TDC_IP_CSUM;
1502 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1503 			cflags |= TDC_TCP_CSUM;
1504 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1505 			cflags |= TDC_UDP_CSUM;
1506 	}
1507 	for (i = 0; i < nsegs; i++) {
1508 		desc = &sc->sge_ldata.sge_tx_ring[prod];
1509 		if (i == 0) {
1510 			desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1511 			desc->sge_cmdsts = 0;
1512 		} else {
1513 			desc->sge_sts_size = 0;
1514 			desc->sge_cmdsts = htole32(TDC_OWN);
1515 		}
1516 		desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1517 		desc->sge_flags = htole32(txsegs[i].ds_len);
1518 		if (prod == SGE_TX_RING_CNT - 1)
1519 			desc->sge_flags |= htole32(RING_END);
1520 		sc->sge_cdata.sge_tx_cnt++;
1521 		SGE_INC(prod, SGE_TX_RING_CNT);
1522 	}
1523 	/* Update producer index. */
1524 	sc->sge_cdata.sge_tx_prod = prod;
1525 
1526 	desc = &sc->sge_ldata.sge_tx_ring[si];
1527 	/* Configure VLAN. */
1528 	if((m->m_flags & M_VLANTAG) != 0) {
1529 		cflags |= m->m_pkthdr.ether_vtag;
1530 		desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1531 	}
1532 	desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1533 #if 1
1534 	if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1535 		desc->sge_cmdsts |= htole32(TDC_BST);
1536 #else
1537 	if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1538 		desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1539 		if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1540 			desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1541 	}
1542 #endif
1543 	/* Request interrupt and give ownership to controller. */
1544 	desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1545 	txd->tx_m = m;
1546 	txd->tx_ndesc = nsegs;
1547 	return (0);
1548 }
1549 
1550 static void
1551 sge_start(if_t ifp)
1552 {
1553 	struct sge_softc *sc;
1554 
1555 	sc = if_getsoftc(ifp);
1556 	SGE_LOCK(sc);
1557 	sge_start_locked(ifp);
1558 	SGE_UNLOCK(sc);
1559 }
1560 
1561 static void
1562 sge_start_locked(if_t ifp)
1563 {
1564 	struct sge_softc *sc;
1565 	struct mbuf *m_head;
1566 	int queued = 0;
1567 
1568 	sc = if_getsoftc(ifp);
1569 	SGE_LOCK_ASSERT(sc);
1570 
1571 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1572 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1573 	    IFF_DRV_RUNNING)
1574 		return;
1575 
1576 	for (queued = 0; !if_sendq_empty(ifp); ) {
1577 		if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1578 		    SGE_MAXTXSEGS)) {
1579 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1580 			break;
1581 		}
1582 		m_head = if_dequeue(ifp);
1583 		if (m_head == NULL)
1584 			break;
1585 		if (sge_encap(sc, &m_head)) {
1586 			if (m_head == NULL)
1587 				break;
1588 			if_sendq_prepend(ifp, m_head);
1589 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1590 			break;
1591 		}
1592 		queued++;
1593 		/*
1594 		 * If there's a BPF listener, bounce a copy of this frame
1595 		 * to him.
1596 		 */
1597 		BPF_MTAP(ifp, m_head);
1598 	}
1599 
1600 	if (queued > 0) {
1601 		bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1602 		    sc->sge_cdata.sge_tx_dmamap,
1603 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1604 		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1605 		sc->sge_timer = 5;
1606 	}
1607 }
1608 
1609 static void
1610 sge_init(void *arg)
1611 {
1612 	struct sge_softc *sc;
1613 
1614 	sc = arg;
1615 	SGE_LOCK(sc);
1616 	sge_init_locked(sc);
1617 	SGE_UNLOCK(sc);
1618 }
1619 
1620 static void
1621 sge_init_locked(struct sge_softc *sc)
1622 {
1623 	if_t ifp;
1624 	struct mii_data *mii;
1625 	uint16_t rxfilt;
1626 	int i;
1627 
1628 	SGE_LOCK_ASSERT(sc);
1629 	ifp = sc->sge_ifp;
1630 	mii = device_get_softc(sc->sge_miibus);
1631 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1632 		return;
1633 	/*
1634 	 * Cancel pending I/O and free all RX/TX buffers.
1635 	 */
1636 	sge_stop(sc);
1637 	sge_reset(sc);
1638 
1639 	/* Init circular RX list. */
1640 	if (sge_list_rx_init(sc) == ENOBUFS) {
1641 		device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1642 		sge_stop(sc);
1643 		return;
1644 	}
1645 	/* Init TX descriptors. */
1646 	sge_list_tx_init(sc);
1647 	/*
1648 	 * Load the address of the RX and TX lists.
1649 	 */
1650 	CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1651 	CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1652 
1653 	CSR_WRITE_4(sc, TxMacControl, 0x60);
1654 	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1655 	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1656 	/* Allow receiving VLAN frames. */
1657 	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1658 	    SGE_RX_PAD_BYTES);
1659 
1660 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1661 		CSR_WRITE_1(sc, RxMacAddr + i, if_getlladdr(ifp)[i]);
1662 	/* Configure RX MAC. */
1663 	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1664 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1665 	sge_rxfilter(sc);
1666 	sge_setvlan(sc);
1667 
1668 	/* Initialize default speed/duplex information. */
1669 	if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1670 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
1671 	sc->sge_flags |= SGE_FLAG_FDX;
1672 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1673 		CSR_WRITE_4(sc, StationControl, 0x04008001);
1674 	else
1675 		CSR_WRITE_4(sc, StationControl, 0x04000001);
1676 	/*
1677 	 * XXX Try to mitigate interrupts.
1678 	 */
1679 	CSR_WRITE_4(sc, IntrControl, 0x08880000);
1680 #ifdef notyet
1681 	if (sc->sge_intrcontrol != 0)
1682 		CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1683 	if (sc->sge_intrtimer != 0)
1684 		CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1685 #endif
1686 
1687 	/*
1688 	 * Clear and enable interrupts.
1689 	 */
1690 	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1691 	CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1692 
1693 	/* Enable receiver and transmitter. */
1694 	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1695 	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1696 
1697 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1698 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1699 
1700 	sc->sge_flags &= ~SGE_FLAG_LINK;
1701 	mii_mediachg(mii);
1702 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1703 }
1704 
1705 /*
1706  * Set media options.
1707  */
1708 static int
1709 sge_ifmedia_upd(if_t ifp)
1710 {
1711 	struct sge_softc *sc;
1712 	struct mii_data *mii;
1713 		struct mii_softc *miisc;
1714 	int error;
1715 
1716 	sc = if_getsoftc(ifp);
1717 	SGE_LOCK(sc);
1718 	mii = device_get_softc(sc->sge_miibus);
1719 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1720 		PHY_RESET(miisc);
1721 	error = mii_mediachg(mii);
1722 	SGE_UNLOCK(sc);
1723 
1724 	return (error);
1725 }
1726 
1727 /*
1728  * Report current media status.
1729  */
1730 static void
1731 sge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1732 {
1733 	struct sge_softc *sc;
1734 	struct mii_data *mii;
1735 
1736 	sc = if_getsoftc(ifp);
1737 	SGE_LOCK(sc);
1738 	mii = device_get_softc(sc->sge_miibus);
1739 	if ((if_getflags(ifp) & IFF_UP) == 0) {
1740 		SGE_UNLOCK(sc);
1741 		return;
1742 	}
1743 	mii_pollstat(mii);
1744 	ifmr->ifm_active = mii->mii_media_active;
1745 	ifmr->ifm_status = mii->mii_media_status;
1746 	SGE_UNLOCK(sc);
1747 }
1748 
1749 static int
1750 sge_ioctl(if_t ifp, u_long command, caddr_t data)
1751 {
1752 	struct sge_softc *sc;
1753 	struct ifreq *ifr;
1754 	struct mii_data *mii;
1755 	int error = 0, mask, reinit;
1756 
1757 	sc = if_getsoftc(ifp);
1758 	ifr = (struct ifreq *)data;
1759 
1760 	switch(command) {
1761 	case SIOCSIFFLAGS:
1762 		SGE_LOCK(sc);
1763 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1764 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1765 			    ((if_getflags(ifp) ^ sc->sge_if_flags) &
1766 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1767 				sge_rxfilter(sc);
1768 			else
1769 				sge_init_locked(sc);
1770 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1771 			sge_stop(sc);
1772 		sc->sge_if_flags = if_getflags(ifp);
1773 		SGE_UNLOCK(sc);
1774 		break;
1775 	case SIOCSIFCAP:
1776 		SGE_LOCK(sc);
1777 		reinit = 0;
1778 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1779 		if ((mask & IFCAP_TXCSUM) != 0 &&
1780 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1781 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1782 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1783 				if_sethwassistbits(ifp, SGE_CSUM_FEATURES, 0);
1784 			else
1785 				if_sethwassistbits(ifp, 0, SGE_CSUM_FEATURES);
1786 		}
1787 		if ((mask & IFCAP_RXCSUM) != 0 &&
1788 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
1789 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1790 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1791 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
1792 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1793 		if ((mask & IFCAP_TSO4) != 0 &&
1794 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1795 			if_togglecapenable(ifp, IFCAP_TSO4);
1796 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
1797 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1798 			else
1799 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1800 		}
1801 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1802 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1803 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1804 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1805 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1806 			/*
1807 			 * Due to unknown reason, toggling VLAN hardware
1808 			 * tagging require interface reinitialization.
1809 			 */
1810 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1811 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1812 				if_setcapenablebit(ifp, 0,
1813 				    IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1814 			reinit = 1;
1815 		}
1816 		if (reinit > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1817 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1818 			sge_init_locked(sc);
1819 		}
1820 		SGE_UNLOCK(sc);
1821 		VLAN_CAPABILITIES(ifp);
1822 		break;
1823 	case SIOCADDMULTI:
1824 	case SIOCDELMULTI:
1825 		SGE_LOCK(sc);
1826 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1827 			sge_rxfilter(sc);
1828 		SGE_UNLOCK(sc);
1829 		break;
1830 	case SIOCGIFMEDIA:
1831 	case SIOCSIFMEDIA:
1832 		mii = device_get_softc(sc->sge_miibus);
1833 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1834 		break;
1835 	default:
1836 		error = ether_ioctl(ifp, command, data);
1837 		break;
1838 	}
1839 
1840 	return (error);
1841 }
1842 
1843 static void
1844 sge_watchdog(struct sge_softc *sc)
1845 {
1846 	if_t ifp;
1847 
1848 	SGE_LOCK_ASSERT(sc);
1849 	if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1850 		return;
1851 
1852 	ifp = sc->sge_ifp;
1853 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1854 		if (1 || bootverbose)
1855 			device_printf(sc->sge_dev,
1856 			    "watchdog timeout (lost link)\n");
1857 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1858 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1859 		sge_init_locked(sc);
1860 		return;
1861 	}
1862 	device_printf(sc->sge_dev, "watchdog timeout\n");
1863 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1864 
1865 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1866 	sge_init_locked(sc);
1867 	if (!if_sendq_empty(sc->sge_ifp))
1868 		sge_start_locked(ifp);
1869 }
1870 
1871 /*
1872  * Stop the adapter and free any mbufs allocated to the
1873  * RX and TX lists.
1874  */
1875 static void
1876 sge_stop(struct sge_softc *sc)
1877 {
1878 	if_t ifp;
1879 
1880 	ifp = sc->sge_ifp;
1881 
1882 	SGE_LOCK_ASSERT(sc);
1883 
1884 	sc->sge_timer = 0;
1885 	callout_stop(&sc->sge_stat_ch);
1886 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1887 
1888 	CSR_WRITE_4(sc, IntrMask, 0);
1889 	CSR_READ_4(sc, IntrMask);
1890 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1891 	/* Stop TX/RX MAC. */
1892 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1893 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1894 	/* XXX Can we assume active DMA cycles gone? */
1895 	DELAY(2000);
1896 	CSR_WRITE_4(sc, IntrMask, 0);
1897 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1898 
1899 	sc->sge_flags &= ~SGE_FLAG_LINK;
1900 	sge_list_rx_free(sc);
1901 	sge_list_tx_free(sc);
1902 }
1903