xref: /freebsd/sys/dev/sge/if_sge.c (revision b2d48be1bc7df45ddd13b143a160d0acb5a383c5)
1 /*-
2  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
3  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
26  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
31  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
33  * OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * SiS 190/191 PCI Ethernet NIC driver.
41  *
42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46  * review and very useful comments.
47  *
48  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
49  * Linux and Solaris drivers.
50  */
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/mutex.h>
62 #include <sys/rman.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 
66 #include <net/bpf.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_types.h>
74 #include <net/if_vlan_var.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/ip.h>
79 #include <netinet/tcp.h>
80 
81 #include <machine/bus.h>
82 #include <machine/in_cksum.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 
90 #include <dev/sge/if_sgereg.h>
91 
92 MODULE_DEPEND(sge, pci, 1, 1, 1);
93 MODULE_DEPEND(sge, ether, 1, 1, 1);
94 MODULE_DEPEND(sge, miibus, 1, 1, 1);
95 
96 /* "device miibus0" required.  See GENERIC if you get errors here. */
97 #include "miibus_if.h"
98 
99 /*
100  * Various supported device vendors/types and their names.
101  */
102 static struct sge_type sge_devs[] = {
103 	{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
104 	{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
105 	{ 0, 0, NULL }
106 };
107 
108 static int	sge_probe(device_t);
109 static int	sge_attach(device_t);
110 static int	sge_detach(device_t);
111 static int	sge_shutdown(device_t);
112 static int	sge_suspend(device_t);
113 static int	sge_resume(device_t);
114 
115 static int	sge_miibus_readreg(device_t, int, int);
116 static int	sge_miibus_writereg(device_t, int, int, int);
117 static void	sge_miibus_statchg(device_t);
118 
119 static int	sge_newbuf(struct sge_softc *, int);
120 static int	sge_encap(struct sge_softc *, struct mbuf **);
121 static __inline void
122 		sge_discard_rxbuf(struct sge_softc *, int);
123 static void	sge_rxeof(struct sge_softc *);
124 static void	sge_txeof(struct sge_softc *);
125 static void	sge_intr(void *);
126 static void	sge_tick(void *);
127 static void	sge_start(struct ifnet *);
128 static void	sge_start_locked(struct ifnet *);
129 static int	sge_ioctl(struct ifnet *, u_long, caddr_t);
130 static void	sge_init(void *);
131 static void	sge_init_locked(struct sge_softc *);
132 static void	sge_stop(struct sge_softc *);
133 static void	sge_watchdog(struct sge_softc *);
134 static int	sge_ifmedia_upd(struct ifnet *);
135 static void	sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
136 
137 static int	sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
138 static int	sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
139 static uint16_t	sge_read_eeprom(struct sge_softc *, int);
140 
141 static void	sge_rxfilter(struct sge_softc *);
142 static void	sge_setvlan(struct sge_softc *);
143 static void	sge_reset(struct sge_softc *);
144 static int	sge_list_rx_init(struct sge_softc *);
145 static int	sge_list_rx_free(struct sge_softc *);
146 static int	sge_list_tx_init(struct sge_softc *);
147 static int	sge_list_tx_free(struct sge_softc *);
148 
149 static int	sge_dma_alloc(struct sge_softc *);
150 static void	sge_dma_free(struct sge_softc *);
151 static void	sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
152 
153 static device_method_t sge_methods[] = {
154 	/* Device interface */
155 	DEVMETHOD(device_probe,		sge_probe),
156 	DEVMETHOD(device_attach,	sge_attach),
157 	DEVMETHOD(device_detach,	sge_detach),
158 	DEVMETHOD(device_suspend,	sge_suspend),
159 	DEVMETHOD(device_resume,	sge_resume),
160 	DEVMETHOD(device_shutdown,	sge_shutdown),
161 
162 	/* MII interface */
163 	DEVMETHOD(miibus_readreg,	sge_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	sge_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	sge_miibus_statchg),
166 
167 	DEVMETHOD_END
168 };
169 
170 static driver_t sge_driver = {
171 	"sge", sge_methods, sizeof(struct sge_softc)
172 };
173 
174 static devclass_t sge_devclass;
175 
176 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
177 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
178 
179 /*
180  * Register space access macros.
181  */
182 #define	CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sge_res, reg, val)
183 #define	CSR_WRITE_2(sc, reg, val)	bus_write_2(sc->sge_res, reg, val)
184 #define	CSR_WRITE_1(cs, reg, val)	bus_write_1(sc->sge_res, reg, val)
185 
186 #define	CSR_READ_4(sc, reg)		bus_read_4(sc->sge_res, reg)
187 #define	CSR_READ_2(sc, reg)		bus_read_2(sc->sge_res, reg)
188 #define	CSR_READ_1(sc, reg)		bus_read_1(sc->sge_res, reg)
189 
190 /* Define to show Tx/Rx error status. */
191 #undef SGE_SHOW_ERRORS
192 
193 #define	SGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
194 
195 static void
196 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
197 {
198 	bus_addr_t *p;
199 
200 	if (error != 0)
201 		return;
202 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
203 	p  = arg;
204 	*p = segs->ds_addr;
205 }
206 
207 /*
208  * Read a sequence of words from the EEPROM.
209  */
210 static uint16_t
211 sge_read_eeprom(struct sge_softc *sc, int offset)
212 {
213 	uint32_t val;
214 	int i;
215 
216 	KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
217 	CSR_WRITE_4(sc, ROMInterface,
218 	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
219 	DELAY(500);
220 	for (i = 0; i < SGE_TIMEOUT; i++) {
221 		val = CSR_READ_4(sc, ROMInterface);
222 		if ((val & EI_REQ) == 0)
223 			break;
224 		DELAY(100);
225 	}
226 	if (i == SGE_TIMEOUT) {
227 		device_printf(sc->sge_dev,
228 		    "EEPROM read timeout : 0x%08x\n", val);
229 		return (0xffff);
230 	}
231 
232 	return ((val & EI_DATA) >> EI_DATA_SHIFT);
233 }
234 
235 static int
236 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
237 {
238 	uint16_t val;
239 	int i;
240 
241 	val = sge_read_eeprom(sc, EEPROMSignature);
242 	if (val == 0xffff || val == 0) {
243 		device_printf(sc->sge_dev,
244 		    "invalid EEPROM signature : 0x%04x\n", val);
245 		return (EINVAL);
246 	}
247 
248 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
249 		val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
250 		dest[i + 0] = (uint8_t)val;
251 		dest[i + 1] = (uint8_t)(val >> 8);
252 	}
253 
254 	if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
255 		sc->sge_flags |= SGE_FLAG_RGMII;
256 	return (0);
257 }
258 
259 /*
260  * For SiS96x, APC CMOS RAM is used to store ethernet address.
261  * APC CMOS RAM is accessed through ISA bridge.
262  */
263 static int
264 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
265 {
266 #if defined(__amd64__) || defined(__i386__)
267 	devclass_t pci;
268 	device_t bus, dev = NULL;
269 	device_t *kids;
270 	struct apc_tbl {
271 		uint16_t vid;
272 		uint16_t did;
273 	} *tp, apc_tbls[] = {
274 		{ SIS_VENDORID, 0x0965 },
275 		{ SIS_VENDORID, 0x0966 },
276 		{ SIS_VENDORID, 0x0968 }
277 	};
278 	uint8_t reg;
279 	int busnum, cnt, i, j, numkids;
280 
281 	cnt = sizeof(apc_tbls) / sizeof(apc_tbls[0]);
282 	pci = devclass_find("pci");
283 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
284 		bus = devclass_get_device(pci, busnum);
285 		if (!bus)
286 			continue;
287 		if (device_get_children(bus, &kids, &numkids) != 0)
288 			continue;
289 		for (i = 0; i < numkids; i++) {
290 			dev = kids[i];
291 			if (pci_get_class(dev) == PCIC_BRIDGE &&
292 			    pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
293 				tp = apc_tbls;
294 				for (j = 0; j < cnt; j++) {
295 					if (pci_get_vendor(dev) == tp->vid &&
296 					    pci_get_device(dev) == tp->did) {
297 						free(kids, M_TEMP);
298 						goto apc_found;
299 					}
300 					tp++;
301 				}
302 			}
303                 }
304 		free(kids, M_TEMP);
305 	}
306 	device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
307 	return (EINVAL);
308 apc_found:
309 	/* Enable port 0x78 and 0x79 to access APC registers. */
310 	reg = pci_read_config(dev, 0x48, 1);
311 	pci_write_config(dev, 0x48, reg & ~0x02, 1);
312 	DELAY(50);
313 	pci_read_config(dev, 0x48, 1);
314 	/* Read stored ethernet address. */
315 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
316 		outb(0x78, 0x09 + i);
317 		dest[i] = inb(0x79);
318 	}
319 	outb(0x78, 0x12);
320 	if ((inb(0x79) & 0x80) != 0)
321 		sc->sge_flags |= SGE_FLAG_RGMII;
322 	/* Restore access to APC registers. */
323 	pci_write_config(dev, 0x48, reg, 1);
324 
325 	return (0);
326 #else
327 	return (EINVAL);
328 #endif
329 }
330 
331 static int
332 sge_miibus_readreg(device_t dev, int phy, int reg)
333 {
334 	struct sge_softc *sc;
335 	uint32_t val;
336 	int i;
337 
338 	sc = device_get_softc(dev);
339 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
340 	    (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
341 	DELAY(10);
342 	for (i = 0; i < SGE_TIMEOUT; i++) {
343 		val = CSR_READ_4(sc, GMIIControl);
344 		if ((val & GMI_REQ) == 0)
345 			break;
346 		DELAY(10);
347 	}
348 	if (i == SGE_TIMEOUT) {
349 		device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
350 		return (0);
351 	}
352 	return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
353 }
354 
355 static int
356 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
357 {
358 	struct sge_softc *sc;
359 	uint32_t val;
360 	int i;
361 
362 	sc = device_get_softc(dev);
363 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
364 	    (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
365 	    GMI_OP_WR | GMI_REQ);
366 	DELAY(10);
367 	for (i = 0; i < SGE_TIMEOUT; i++) {
368 		val = CSR_READ_4(sc, GMIIControl);
369 		if ((val & GMI_REQ) == 0)
370 			break;
371 		DELAY(10);
372 	}
373 	if (i == SGE_TIMEOUT)
374 		device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
375 	return (0);
376 }
377 
378 static void
379 sge_miibus_statchg(device_t dev)
380 {
381 	struct sge_softc *sc;
382 	struct mii_data *mii;
383 	struct ifnet *ifp;
384 	uint32_t ctl, speed;
385 
386 	sc = device_get_softc(dev);
387 	mii = device_get_softc(sc->sge_miibus);
388 	ifp = sc->sge_ifp;
389 	if (mii == NULL || ifp == NULL ||
390 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
391 		return;
392 	speed = 0;
393 	sc->sge_flags &= ~SGE_FLAG_LINK;
394 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
395 	    (IFM_ACTIVE | IFM_AVALID)) {
396 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
397 		case IFM_10_T:
398 			sc->sge_flags |= SGE_FLAG_LINK;
399 			speed = SC_SPEED_10;
400 			break;
401 		case IFM_100_TX:
402 			sc->sge_flags |= SGE_FLAG_LINK;
403 			speed = SC_SPEED_100;
404 			break;
405 		case IFM_1000_T:
406 			if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
407 				sc->sge_flags |= SGE_FLAG_LINK;
408 				speed = SC_SPEED_1000;
409 			}
410 			break;
411 		default:
412 			break;
413                 }
414         }
415 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
416 		return;
417 	/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
418 	ctl = CSR_READ_4(sc, StationControl);
419 	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
420 	if (speed == SC_SPEED_1000) {
421 		ctl |= 0x07000000;
422 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
423 	} else {
424 		ctl |= 0x04000000;
425 		sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
426 	}
427 #ifdef notyet
428 	if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
429 		ctl |= 0x03000000;
430 #endif
431 	ctl |= speed;
432 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
433 		ctl |= SC_FDX;
434 		sc->sge_flags |= SGE_FLAG_FDX;
435 	} else
436 		sc->sge_flags &= ~SGE_FLAG_FDX;
437 	CSR_WRITE_4(sc, StationControl, ctl);
438 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
439 		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
440 		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
441 	}
442 }
443 
444 static void
445 sge_rxfilter(struct sge_softc *sc)
446 {
447 	struct ifnet *ifp;
448 	struct ifmultiaddr *ifma;
449 	uint32_t crc, hashes[2];
450 	uint16_t rxfilt;
451 
452 	SGE_LOCK_ASSERT(sc);
453 
454 	ifp = sc->sge_ifp;
455 	rxfilt = CSR_READ_2(sc, RxMacControl);
456 	rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
457 	rxfilt |= AcceptMyPhys;
458 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
459 		rxfilt |= AcceptBroadcast;
460 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
461 		if ((ifp->if_flags & IFF_PROMISC) != 0)
462 			rxfilt |= AcceptAllPhys;
463 		rxfilt |= AcceptMulticast;
464 		hashes[0] = 0xFFFFFFFF;
465 		hashes[1] = 0xFFFFFFFF;
466 	} else {
467 		rxfilt |= AcceptMulticast;
468 		hashes[0] = hashes[1] = 0;
469 		/* Now program new ones. */
470 		if_maddr_rlock(ifp);
471 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
472 			if (ifma->ifma_addr->sa_family != AF_LINK)
473 				continue;
474 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
475 			    ifma->ifma_addr), ETHER_ADDR_LEN);
476 			hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
477 		}
478 		if_maddr_runlock(ifp);
479 	}
480 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
481 	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
482 	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
483 }
484 
485 static void
486 sge_setvlan(struct sge_softc *sc)
487 {
488 	struct ifnet *ifp;
489 	uint16_t rxfilt;
490 
491 	SGE_LOCK_ASSERT(sc);
492 
493 	ifp = sc->sge_ifp;
494 	if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
495 		return;
496 	rxfilt = CSR_READ_2(sc, RxMacControl);
497 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
498 		rxfilt |= RXMAC_STRIP_VLAN;
499 	else
500 		rxfilt &= ~RXMAC_STRIP_VLAN;
501 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
502 }
503 
504 static void
505 sge_reset(struct sge_softc *sc)
506 {
507 
508 	CSR_WRITE_4(sc, IntrMask, 0);
509 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
510 
511 	/* Soft reset. */
512 	CSR_WRITE_4(sc, IntrControl, 0x8000);
513 	CSR_READ_4(sc, IntrControl);
514 	DELAY(100);
515 	CSR_WRITE_4(sc, IntrControl, 0);
516 	/* Stop MAC. */
517 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
518 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
519 
520 	CSR_WRITE_4(sc, IntrMask, 0);
521 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
522 
523 	CSR_WRITE_4(sc, GMIIControl, 0);
524 }
525 
526 /*
527  * Probe for an SiS chip. Check the PCI vendor and device
528  * IDs against our list and return a device name if we find a match.
529  */
530 static int
531 sge_probe(device_t dev)
532 {
533 	struct sge_type *t;
534 
535 	t = sge_devs;
536 	while (t->sge_name != NULL) {
537 		if ((pci_get_vendor(dev) == t->sge_vid) &&
538 		    (pci_get_device(dev) == t->sge_did)) {
539 			device_set_desc(dev, t->sge_name);
540 			return (BUS_PROBE_DEFAULT);
541 		}
542 		t++;
543 	}
544 
545 	return (ENXIO);
546 }
547 
548 /*
549  * Attach the interface.  Allocate softc structures, do ifmedia
550  * setup and ethernet/BPF attach.
551  */
552 static int
553 sge_attach(device_t dev)
554 {
555 	struct sge_softc *sc;
556 	struct ifnet *ifp;
557 	uint8_t eaddr[ETHER_ADDR_LEN];
558 	int error = 0, rid;
559 
560 	sc = device_get_softc(dev);
561 	sc->sge_dev = dev;
562 
563 	mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
564 	    MTX_DEF);
565         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
566 
567 	/*
568 	 * Map control/status registers.
569 	 */
570 	pci_enable_busmaster(dev);
571 
572 	/* Allocate resources. */
573 	sc->sge_res_id = PCIR_BAR(0);
574 	sc->sge_res_type = SYS_RES_MEMORY;
575 	sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
576 	    &sc->sge_res_id, RF_ACTIVE);
577 	if (sc->sge_res == NULL) {
578 		device_printf(dev, "couldn't allocate resource\n");
579 		error = ENXIO;
580 		goto fail;
581 	}
582 
583 	rid = 0;
584 	sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
585 	    RF_SHAREABLE | RF_ACTIVE);
586 	if (sc->sge_irq == NULL) {
587 		device_printf(dev, "couldn't allocate IRQ resources\n");
588 		error = ENXIO;
589 		goto fail;
590 	}
591 	sc->sge_rev = pci_get_revid(dev);
592 	if (pci_get_device(dev) == SIS_DEVICEID_190)
593 		sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
594 	/* Reset the adapter. */
595 	sge_reset(sc);
596 
597 	/* Get MAC address from the EEPROM. */
598 	if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
599 		sge_get_mac_addr_apc(sc, eaddr);
600 	else
601 		sge_get_mac_addr_eeprom(sc, eaddr);
602 
603 	if ((error = sge_dma_alloc(sc)) != 0)
604 		goto fail;
605 
606 	ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
607 	if (ifp == NULL) {
608 		device_printf(dev, "cannot allocate ifnet structure.\n");
609 		error = ENOSPC;
610 		goto fail;
611 	}
612 	ifp->if_softc = sc;
613 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
614 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
615 	ifp->if_ioctl = sge_ioctl;
616 	ifp->if_start = sge_start;
617 	ifp->if_init = sge_init;
618 	ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
619 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
620 	IFQ_SET_READY(&ifp->if_snd);
621 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
622 	ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
623 	ifp->if_capenable = ifp->if_capabilities;
624 	/*
625 	 * Do MII setup.
626 	 */
627 	error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
628 	    sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
629 	if (error != 0) {
630 		device_printf(dev, "attaching PHYs failed\n");
631 		goto fail;
632 	}
633 
634 	/*
635 	 * Call MI attach routine.
636 	 */
637 	ether_ifattach(ifp, eaddr);
638 
639 	/* VLAN setup. */
640 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
641 	    IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
642 	ifp->if_capenable = ifp->if_capabilities;
643 	/* Tell the upper layer(s) we support long frames. */
644 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
645 
646 	/* Hook interrupt last to avoid having to lock softc */
647 	error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
648 	    NULL, sge_intr, sc, &sc->sge_intrhand);
649 	if (error) {
650 		device_printf(dev, "couldn't set up irq\n");
651 		ether_ifdetach(ifp);
652 		goto fail;
653 	}
654 
655 fail:
656 	if (error)
657 		sge_detach(dev);
658 
659 	return (error);
660 }
661 
662 /*
663  * Shutdown hardware and free up resources.  This can be called any
664  * time after the mutex has been initialized.  It is called in both
665  * the error case in attach and the normal detach case so it needs
666  * to be careful about only freeing resources that have actually been
667  * allocated.
668  */
669 static int
670 sge_detach(device_t dev)
671 {
672 	struct sge_softc *sc;
673 	struct ifnet *ifp;
674 
675 	sc = device_get_softc(dev);
676 	ifp = sc->sge_ifp;
677 	/* These should only be active if attach succeeded. */
678 	if (device_is_attached(dev)) {
679 		ether_ifdetach(ifp);
680 		SGE_LOCK(sc);
681 		sge_stop(sc);
682 		SGE_UNLOCK(sc);
683 		callout_drain(&sc->sge_stat_ch);
684 	}
685 	if (sc->sge_miibus)
686 		device_delete_child(dev, sc->sge_miibus);
687 	bus_generic_detach(dev);
688 
689 	if (sc->sge_intrhand)
690 		bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
691 	if (sc->sge_irq)
692 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
693 	if (sc->sge_res)
694 		bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
695 		    sc->sge_res);
696 	if (ifp)
697 		if_free(ifp);
698 	sge_dma_free(sc);
699 	mtx_destroy(&sc->sge_mtx);
700 
701 	return (0);
702 }
703 
704 /*
705  * Stop all chip I/O so that the kernel's probe routines don't
706  * get confused by errant DMAs when rebooting.
707  */
708 static int
709 sge_shutdown(device_t dev)
710 {
711 	struct sge_softc *sc;
712 
713 	sc = device_get_softc(dev);
714 	SGE_LOCK(sc);
715 	sge_stop(sc);
716 	SGE_UNLOCK(sc);
717 	return (0);
718 }
719 
720 static int
721 sge_suspend(device_t dev)
722 {
723 	struct sge_softc *sc;
724 	struct ifnet *ifp;
725 
726 	sc = device_get_softc(dev);
727 	SGE_LOCK(sc);
728 	ifp = sc->sge_ifp;
729 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
730 		sge_stop(sc);
731 	SGE_UNLOCK(sc);
732 	return (0);
733 }
734 
735 static int
736 sge_resume(device_t dev)
737 {
738 	struct sge_softc *sc;
739 	struct ifnet *ifp;
740 
741 	sc = device_get_softc(dev);
742 	SGE_LOCK(sc);
743 	ifp = sc->sge_ifp;
744 	if ((ifp->if_flags & IFF_UP) != 0)
745 		sge_init_locked(sc);
746 	SGE_UNLOCK(sc);
747 	return (0);
748 }
749 
750 static int
751 sge_dma_alloc(struct sge_softc *sc)
752 {
753 	struct sge_chain_data *cd;
754 	struct sge_list_data *ld;
755 	struct sge_rxdesc *rxd;
756 	struct sge_txdesc *txd;
757 	int error, i;
758 
759 	cd = &sc->sge_cdata;
760 	ld = &sc->sge_ldata;
761 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
762 	    1, 0,			/* alignment, boundary */
763 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
764 	    BUS_SPACE_MAXADDR,		/* highaddr */
765 	    NULL, NULL,			/* filter, filterarg */
766 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
767 	    1,				/* nsegments */
768 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
769 	    0,				/* flags */
770 	    NULL,			/* lockfunc */
771 	    NULL,			/* lockarg */
772 	    &cd->sge_tag);
773 	if (error != 0) {
774 		device_printf(sc->sge_dev,
775 		    "could not create parent DMA tag.\n");
776 		goto fail;
777 	}
778 
779 	/* RX descriptor ring */
780 	error = bus_dma_tag_create(cd->sge_tag,
781 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
782 	    BUS_SPACE_MAXADDR,		/* lowaddr */
783 	    BUS_SPACE_MAXADDR,		/* highaddr */
784 	    NULL, NULL,			/* filter, filterarg */
785 	    SGE_RX_RING_SZ, 1,		/* maxsize,nsegments */
786 	    SGE_RX_RING_SZ,		/* maxsegsize */
787 	    0,				/* flags */
788 	    NULL,			/* lockfunc */
789 	    NULL,			/* lockarg */
790 	    &cd->sge_rx_tag);
791 	if (error != 0) {
792 		device_printf(sc->sge_dev,
793 		    "could not create Rx ring DMA tag.\n");
794 		goto fail;
795 	}
796 	/* Allocate DMA'able memory and load DMA map for RX ring. */
797 	error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
798 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
799 	    &cd->sge_rx_dmamap);
800 	if (error != 0) {
801 		device_printf(sc->sge_dev,
802 		    "could not allocate DMA'able memory for Rx ring.\n");
803 		goto fail;
804 	}
805 	error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
806 	    ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
807 	    &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
808 	if (error != 0) {
809 		device_printf(sc->sge_dev,
810 		    "could not load DMA'able memory for Rx ring.\n");
811 	}
812 
813 	/* TX descriptor ring */
814 	error = bus_dma_tag_create(cd->sge_tag,
815 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
816 	    BUS_SPACE_MAXADDR,		/* lowaddr */
817 	    BUS_SPACE_MAXADDR,		/* highaddr */
818 	    NULL, NULL,			/* filter, filterarg */
819 	    SGE_TX_RING_SZ, 1,		/* maxsize,nsegments */
820 	    SGE_TX_RING_SZ,		/* maxsegsize */
821 	    0,				/* flags */
822 	    NULL,			/* lockfunc */
823 	    NULL,			/* lockarg */
824 	    &cd->sge_tx_tag);
825 	if (error != 0) {
826 		device_printf(sc->sge_dev,
827 		    "could not create Rx ring DMA tag.\n");
828 		goto fail;
829 	}
830 	/* Allocate DMA'able memory and load DMA map for TX ring. */
831 	error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
832 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
833 	    &cd->sge_tx_dmamap);
834 	if (error != 0) {
835 		device_printf(sc->sge_dev,
836 		    "could not allocate DMA'able memory for Tx ring.\n");
837 		goto fail;
838 	}
839 	error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
840 	    ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
841 	    &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
842 	if (error != 0) {
843 		device_printf(sc->sge_dev,
844 		    "could not load DMA'able memory for Rx ring.\n");
845 		goto fail;
846 	}
847 
848 	/* Create DMA tag for Tx buffers. */
849 	error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
850 	    BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
851 	    SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
852 	if (error != 0) {
853 		device_printf(sc->sge_dev,
854 		    "could not create Tx mbuf DMA tag.\n");
855 		goto fail;
856 	}
857 
858 	/* Create DMA tag for Rx buffers. */
859 	error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
860 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
861 	    MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
862 	if (error != 0) {
863 		device_printf(sc->sge_dev,
864 		    "could not create Rx mbuf DMA tag.\n");
865 		goto fail;
866 	}
867 
868 	/* Create DMA maps for Tx buffers. */
869 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
870 		txd = &cd->sge_txdesc[i];
871 		txd->tx_m = NULL;
872 		txd->tx_dmamap = NULL;
873 		txd->tx_ndesc = 0;
874 		error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
875 		    &txd->tx_dmamap);
876 		if (error != 0) {
877 			device_printf(sc->sge_dev,
878 			    "could not create Tx DMA map.\n");
879 			goto fail;
880 		}
881 	}
882 	/* Create spare DMA map for Rx buffer. */
883 	error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
884 	if (error != 0) {
885 		device_printf(sc->sge_dev,
886 		    "could not create spare Rx DMA map.\n");
887 		goto fail;
888 	}
889 	/* Create DMA maps for Rx buffers. */
890 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
891 		rxd = &cd->sge_rxdesc[i];
892 		rxd->rx_m = NULL;
893 		rxd->rx_dmamap = NULL;
894 		error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
895 		    &rxd->rx_dmamap);
896 		if (error) {
897 			device_printf(sc->sge_dev,
898 			    "could not create Rx DMA map.\n");
899 			goto fail;
900 		}
901 	}
902 fail:
903 	return (error);
904 }
905 
906 static void
907 sge_dma_free(struct sge_softc *sc)
908 {
909 	struct sge_chain_data *cd;
910 	struct sge_list_data *ld;
911 	struct sge_rxdesc *rxd;
912 	struct sge_txdesc *txd;
913 	int i;
914 
915 	cd = &sc->sge_cdata;
916 	ld = &sc->sge_ldata;
917 	/* Rx ring. */
918 	if (cd->sge_rx_tag != NULL) {
919 		if (ld->sge_rx_paddr != 0)
920 			bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
921 		if (ld->sge_rx_ring != NULL)
922 			bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
923 			    cd->sge_rx_dmamap);
924 		ld->sge_rx_ring = NULL;
925 		ld->sge_rx_paddr = 0;
926 		bus_dma_tag_destroy(cd->sge_rx_tag);
927 		cd->sge_rx_tag = NULL;
928 	}
929 	/* Tx ring. */
930 	if (cd->sge_tx_tag != NULL) {
931 		if (ld->sge_tx_paddr != 0)
932 			bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
933 		if (ld->sge_tx_ring != NULL)
934 			bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
935 			    cd->sge_tx_dmamap);
936 		ld->sge_tx_ring = NULL;
937 		ld->sge_tx_paddr = 0;
938 		bus_dma_tag_destroy(cd->sge_tx_tag);
939 		cd->sge_tx_tag = NULL;
940 	}
941 	/* Rx buffers. */
942 	if (cd->sge_rxmbuf_tag != NULL) {
943 		for (i = 0; i < SGE_RX_RING_CNT; i++) {
944 			rxd = &cd->sge_rxdesc[i];
945 			if (rxd->rx_dmamap != NULL) {
946 				bus_dmamap_destroy(cd->sge_rxmbuf_tag,
947 				    rxd->rx_dmamap);
948 				rxd->rx_dmamap = NULL;
949 			}
950 		}
951 		if (cd->sge_rx_spare_map != NULL) {
952 			bus_dmamap_destroy(cd->sge_rxmbuf_tag,
953 			    cd->sge_rx_spare_map);
954 			cd->sge_rx_spare_map = NULL;
955 		}
956 		bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
957 		cd->sge_rxmbuf_tag = NULL;
958 	}
959 	/* Tx buffers. */
960 	if (cd->sge_txmbuf_tag != NULL) {
961 		for (i = 0; i < SGE_TX_RING_CNT; i++) {
962 			txd = &cd->sge_txdesc[i];
963 			if (txd->tx_dmamap != NULL) {
964 				bus_dmamap_destroy(cd->sge_txmbuf_tag,
965 				    txd->tx_dmamap);
966 				txd->tx_dmamap = NULL;
967 			}
968 		}
969 		bus_dma_tag_destroy(cd->sge_txmbuf_tag);
970 		cd->sge_txmbuf_tag = NULL;
971 	}
972 	if (cd->sge_tag != NULL)
973 		bus_dma_tag_destroy(cd->sge_tag);
974 	cd->sge_tag = NULL;
975 }
976 
977 /*
978  * Initialize the TX descriptors.
979  */
980 static int
981 sge_list_tx_init(struct sge_softc *sc)
982 {
983 	struct sge_list_data *ld;
984 	struct sge_chain_data *cd;
985 
986 	SGE_LOCK_ASSERT(sc);
987 	ld = &sc->sge_ldata;
988 	cd = &sc->sge_cdata;
989 	bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
990 	ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
991 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
992 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
993 	cd->sge_tx_prod = 0;
994 	cd->sge_tx_cons = 0;
995 	cd->sge_tx_cnt = 0;
996 	return (0);
997 }
998 
999 static int
1000 sge_list_tx_free(struct sge_softc *sc)
1001 {
1002 	struct sge_chain_data *cd;
1003 	struct sge_txdesc *txd;
1004 	int i;
1005 
1006 	SGE_LOCK_ASSERT(sc);
1007 	cd = &sc->sge_cdata;
1008 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
1009 		txd = &cd->sge_txdesc[i];
1010 		if (txd->tx_m != NULL) {
1011 			bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1012 			    BUS_DMASYNC_POSTWRITE);
1013 			bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1014 			m_freem(txd->tx_m);
1015 			txd->tx_m = NULL;
1016 			txd->tx_ndesc = 0;
1017 		}
1018 	}
1019 
1020 	return (0);
1021 }
1022 
1023 /*
1024  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1025  * we arrange the descriptors in a closed ring, so that the last descriptor
1026  * has RING_END flag set.
1027  */
1028 static int
1029 sge_list_rx_init(struct sge_softc *sc)
1030 {
1031 	struct sge_chain_data *cd;
1032 	int i;
1033 
1034 	SGE_LOCK_ASSERT(sc);
1035 	cd = &sc->sge_cdata;
1036 	cd->sge_rx_cons = 0;
1037 	bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1038 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1039 		if (sge_newbuf(sc, i) != 0)
1040 			return (ENOBUFS);
1041 	}
1042 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1043 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1044 	return (0);
1045 }
1046 
1047 static int
1048 sge_list_rx_free(struct sge_softc *sc)
1049 {
1050 	struct sge_chain_data *cd;
1051 	struct sge_rxdesc *rxd;
1052 	int i;
1053 
1054 	SGE_LOCK_ASSERT(sc);
1055 	cd = &sc->sge_cdata;
1056 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1057 		rxd = &cd->sge_rxdesc[i];
1058 		if (rxd->rx_m != NULL) {
1059 			bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1060 			    BUS_DMASYNC_POSTREAD);
1061 			bus_dmamap_unload(cd->sge_rxmbuf_tag,
1062 			    rxd->rx_dmamap);
1063 			m_freem(rxd->rx_m);
1064 			rxd->rx_m = NULL;
1065 		}
1066 	}
1067 	return (0);
1068 }
1069 
1070 /*
1071  * Initialize an RX descriptor and attach an MBUF cluster.
1072  */
1073 static int
1074 sge_newbuf(struct sge_softc *sc, int prod)
1075 {
1076 	struct mbuf *m;
1077 	struct sge_desc *desc;
1078 	struct sge_chain_data *cd;
1079 	struct sge_rxdesc *rxd;
1080 	bus_dma_segment_t segs[1];
1081 	bus_dmamap_t map;
1082 	int error, nsegs;
1083 
1084 	SGE_LOCK_ASSERT(sc);
1085 
1086 	cd = &sc->sge_cdata;
1087 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1088 	if (m == NULL)
1089 		return (ENOBUFS);
1090 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1091 	m_adj(m, SGE_RX_BUF_ALIGN);
1092 	error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1093 	    cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1094 	if (error != 0) {
1095 		m_freem(m);
1096 		return (error);
1097 	}
1098 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1099 	rxd = &cd->sge_rxdesc[prod];
1100 	if (rxd->rx_m != NULL) {
1101 		bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1102 		    BUS_DMASYNC_POSTREAD);
1103 		bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1104 	}
1105 	map = rxd->rx_dmamap;
1106 	rxd->rx_dmamap = cd->sge_rx_spare_map;
1107 	cd->sge_rx_spare_map = map;
1108 	bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1109 	    BUS_DMASYNC_PREREAD);
1110 	rxd->rx_m = m;
1111 
1112 	desc = &sc->sge_ldata.sge_rx_ring[prod];
1113 	desc->sge_sts_size = 0;
1114 	desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1115 	desc->sge_flags = htole32(segs[0].ds_len);
1116 	if (prod == SGE_RX_RING_CNT - 1)
1117 		desc->sge_flags |= htole32(RING_END);
1118 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1119 	return (0);
1120 }
1121 
1122 static __inline void
1123 sge_discard_rxbuf(struct sge_softc *sc, int index)
1124 {
1125 	struct sge_desc *desc;
1126 
1127 	desc = &sc->sge_ldata.sge_rx_ring[index];
1128 	desc->sge_sts_size = 0;
1129 	desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1130 	if (index == SGE_RX_RING_CNT - 1)
1131 		desc->sge_flags |= htole32(RING_END);
1132 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1133 }
1134 
1135 /*
1136  * A frame has been uploaded: pass the resulting mbuf chain up to
1137  * the higher level protocols.
1138  */
1139 static void
1140 sge_rxeof(struct sge_softc *sc)
1141 {
1142         struct ifnet *ifp;
1143         struct mbuf *m;
1144 	struct sge_chain_data *cd;
1145 	struct sge_desc	*cur_rx;
1146 	uint32_t rxinfo, rxstat;
1147 	int cons, prog;
1148 
1149 	SGE_LOCK_ASSERT(sc);
1150 
1151 	ifp = sc->sge_ifp;
1152 	cd = &sc->sge_cdata;
1153 
1154 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1155 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1156 	cons = cd->sge_rx_cons;
1157 	for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1158 	    SGE_INC(cons, SGE_RX_RING_CNT)) {
1159 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1160 			break;
1161 		cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1162 		rxinfo = le32toh(cur_rx->sge_cmdsts);
1163 		if ((rxinfo & RDC_OWN) != 0)
1164 			break;
1165 		rxstat = le32toh(cur_rx->sge_sts_size);
1166 		if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1167 		    SGE_RX_NSEGS(rxstat) != 1) {
1168 			/* XXX We don't support multi-segment frames yet. */
1169 #ifdef SGE_SHOW_ERRORS
1170 			device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1171 			    RX_ERR_BITS);
1172 #endif
1173 			sge_discard_rxbuf(sc, cons);
1174 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1175 			continue;
1176 		}
1177 		m = cd->sge_rxdesc[cons].rx_m;
1178 		if (sge_newbuf(sc, cons) != 0) {
1179 			sge_discard_rxbuf(sc, cons);
1180 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1181 			continue;
1182 		}
1183 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1184 			if ((rxinfo & RDC_IP_CSUM) != 0 &&
1185 			    (rxinfo & RDC_IP_CSUM_OK) != 0)
1186 				m->m_pkthdr.csum_flags |=
1187 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
1188 			if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1189 			    (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1190 			    ((rxinfo & RDC_UDP_CSUM) != 0 &&
1191 			    (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1192 				m->m_pkthdr.csum_flags |=
1193 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1194 				m->m_pkthdr.csum_data = 0xffff;
1195 			}
1196 		}
1197 		/* Check for VLAN tagged frame. */
1198 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1199 		    (rxstat & RDS_VLAN) != 0) {
1200 			m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1201 			m->m_flags |= M_VLANTAG;
1202 		}
1203 		/*
1204 		 * Account for 10bytes auto padding which is used
1205 		 * to align IP header on 32bit boundary.  Also note,
1206 		 * CRC bytes is automatically removed by the
1207 		 * hardware.
1208 		 */
1209 		m->m_data += SGE_RX_PAD_BYTES;
1210 		m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1211 		    SGE_RX_PAD_BYTES;
1212 		m->m_pkthdr.rcvif = ifp;
1213 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1214 		SGE_UNLOCK(sc);
1215 		(*ifp->if_input)(ifp, m);
1216 		SGE_LOCK(sc);
1217 	}
1218 
1219 	if (prog > 0) {
1220 		bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1221 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1222 		cd->sge_rx_cons = cons;
1223 	}
1224 }
1225 
1226 /*
1227  * A frame was downloaded to the chip.  It's safe for us to clean up
1228  * the list buffers.
1229  */
1230 static void
1231 sge_txeof(struct sge_softc *sc)
1232 {
1233 	struct ifnet *ifp;
1234 	struct sge_list_data *ld;
1235 	struct sge_chain_data *cd;
1236 	struct sge_txdesc *txd;
1237 	uint32_t txstat;
1238 	int cons, nsegs, prod;
1239 
1240 	SGE_LOCK_ASSERT(sc);
1241 
1242 	ifp = sc->sge_ifp;
1243 	ld = &sc->sge_ldata;
1244 	cd = &sc->sge_cdata;
1245 
1246 	if (cd->sge_tx_cnt == 0)
1247 		return;
1248 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1249 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1250 	cons = cd->sge_tx_cons;
1251 	prod = cd->sge_tx_prod;
1252 	for (; cons != prod;) {
1253 		txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1254 		if ((txstat & TDC_OWN) != 0)
1255 			break;
1256 		/*
1257 		 * Only the first descriptor of multi-descriptor transmission
1258 		 * is updated by controller.  Driver should skip entire
1259 		 * chained buffers for the transmitted frame. In other words
1260 		 * TDC_OWN bit is valid only at the first descriptor of a
1261 		 * multi-descriptor transmission.
1262 		 */
1263 		if (SGE_TX_ERROR(txstat) != 0) {
1264 #ifdef SGE_SHOW_ERRORS
1265 			device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1266 			    txstat, TX_ERR_BITS);
1267 #endif
1268 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1269 		} else {
1270 #ifdef notyet
1271 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1272 #endif
1273 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1274 		}
1275 		txd = &cd->sge_txdesc[cons];
1276 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1277 			ld->sge_tx_ring[cons].sge_cmdsts = 0;
1278 			SGE_INC(cons, SGE_TX_RING_CNT);
1279 		}
1280 		/* Reclaim transmitted mbuf. */
1281 		KASSERT(txd->tx_m != NULL,
1282 		    ("%s: freeing NULL mbuf\n", __func__));
1283 		bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1284 		    BUS_DMASYNC_POSTWRITE);
1285 		bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1286 		m_freem(txd->tx_m);
1287 		txd->tx_m = NULL;
1288 		cd->sge_tx_cnt -= txd->tx_ndesc;
1289 		KASSERT(cd->sge_tx_cnt >= 0,
1290 		    ("%s: Active Tx desc counter was garbled\n", __func__));
1291 		txd->tx_ndesc = 0;
1292 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1293 	}
1294 	cd->sge_tx_cons = cons;
1295 	if (cd->sge_tx_cnt == 0)
1296 		sc->sge_timer = 0;
1297 }
1298 
1299 static void
1300 sge_tick(void *arg)
1301 {
1302 	struct sge_softc *sc;
1303 	struct mii_data *mii;
1304 	struct ifnet *ifp;
1305 
1306 	sc = arg;
1307 	SGE_LOCK_ASSERT(sc);
1308 
1309 	ifp = sc->sge_ifp;
1310 	mii = device_get_softc(sc->sge_miibus);
1311 	mii_tick(mii);
1312 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1313 		sge_miibus_statchg(sc->sge_dev);
1314 		if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1315 		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1316 			sge_start_locked(ifp);
1317 	}
1318 	/*
1319 	 * Reclaim transmitted frames here as we do not request
1320 	 * Tx completion interrupt for every queued frames to
1321 	 * reduce excessive interrupts.
1322 	 */
1323 	sge_txeof(sc);
1324 	sge_watchdog(sc);
1325 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1326 }
1327 
1328 static void
1329 sge_intr(void *arg)
1330 {
1331 	struct sge_softc *sc;
1332 	struct ifnet *ifp;
1333 	uint32_t status;
1334 
1335 	sc = arg;
1336 	SGE_LOCK(sc);
1337 	ifp = sc->sge_ifp;
1338 
1339 	status = CSR_READ_4(sc, IntrStatus);
1340 	if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1341 		/* Not ours. */
1342 		SGE_UNLOCK(sc);
1343 		return;
1344 	}
1345 	/* Acknowledge interrupts. */
1346 	CSR_WRITE_4(sc, IntrStatus, status);
1347 	/* Disable further interrupts. */
1348 	CSR_WRITE_4(sc, IntrMask, 0);
1349 	/*
1350 	 * It seems the controller supports some kind of interrupt
1351 	 * moderation mechanism but we still don't know how to
1352 	 * enable that.  To reduce number of generated interrupts
1353 	 * under load we check pending interrupts in a loop.  This
1354 	 * will increase number of register access and is not correct
1355 	 * way to handle interrupt moderation but there seems to be
1356 	 * no other way at this time.
1357 	 */
1358 	for (;;) {
1359 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1360 			break;
1361 		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1362 			sge_rxeof(sc);
1363 			/* Wakeup Rx MAC. */
1364 			if ((status & INTR_RX_IDLE) != 0)
1365 				CSR_WRITE_4(sc, RX_CTL,
1366 				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1367 		}
1368 		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1369 			sge_txeof(sc);
1370 		status = CSR_READ_4(sc, IntrStatus);
1371 		if ((status & SGE_INTRS) == 0)
1372 			break;
1373 		/* Acknowledge interrupts. */
1374 		CSR_WRITE_4(sc, IntrStatus, status);
1375 	}
1376 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1377 		/* Re-enable interrupts */
1378 		CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1379 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1380 			sge_start_locked(ifp);
1381 	}
1382 	SGE_UNLOCK(sc);
1383 }
1384 
1385 /*
1386  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1387  * pointers to the fragment pointers.
1388  */
1389 static int
1390 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1391 {
1392 	struct mbuf *m;
1393 	struct sge_desc *desc;
1394 	struct sge_txdesc *txd;
1395 	bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1396 	uint32_t cflags, mss;
1397 	int error, i, nsegs, prod, si;
1398 
1399 	SGE_LOCK_ASSERT(sc);
1400 
1401 	si = prod = sc->sge_cdata.sge_tx_prod;
1402 	txd = &sc->sge_cdata.sge_txdesc[prod];
1403 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1404 		struct ether_header *eh;
1405 		struct ip *ip;
1406 		struct tcphdr *tcp;
1407 		uint32_t ip_off, poff;
1408 
1409 		if (M_WRITABLE(*m_head) == 0) {
1410 			/* Get a writable copy. */
1411 			m = m_dup(*m_head, M_NOWAIT);
1412 			m_freem(*m_head);
1413 			if (m == NULL) {
1414 				*m_head = NULL;
1415 				return (ENOBUFS);
1416 			}
1417 			*m_head = m;
1418 		}
1419 		ip_off = sizeof(struct ether_header);
1420 		m = m_pullup(*m_head, ip_off);
1421 		if (m == NULL) {
1422 			*m_head = NULL;
1423 			return (ENOBUFS);
1424 		}
1425 		eh = mtod(m, struct ether_header *);
1426 		/* Check the existence of VLAN tag. */
1427 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1428 			ip_off = sizeof(struct ether_vlan_header);
1429 			m = m_pullup(m, ip_off);
1430 			if (m == NULL) {
1431 				*m_head = NULL;
1432 				return (ENOBUFS);
1433 			}
1434 		}
1435 		m = m_pullup(m, ip_off + sizeof(struct ip));
1436 		if (m == NULL) {
1437 			*m_head = NULL;
1438 			return (ENOBUFS);
1439 		}
1440 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1441 		poff = ip_off + (ip->ip_hl << 2);
1442 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1443 		if (m == NULL) {
1444 			*m_head = NULL;
1445 			return (ENOBUFS);
1446 		}
1447 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1448 		m = m_pullup(m, poff + (tcp->th_off << 2));
1449 		if (m == NULL) {
1450 			*m_head = NULL;
1451 			return (ENOBUFS);
1452 		}
1453 		/*
1454 		 * Reset IP checksum and recompute TCP pseudo
1455 		 * checksum that NDIS specification requires.
1456 		 */
1457 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1458 		ip->ip_sum = 0;
1459 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1460 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1461 		    htons(IPPROTO_TCP));
1462 		*m_head = m;
1463 	}
1464 
1465 	error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1466 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1467 	if (error == EFBIG) {
1468 		m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1469 		if (m == NULL) {
1470 			m_freem(*m_head);
1471 			*m_head = NULL;
1472 			return (ENOBUFS);
1473 		}
1474 		*m_head = m;
1475 		error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1476 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1477 		if (error != 0) {
1478 			m_freem(*m_head);
1479 			*m_head = NULL;
1480 			return (error);
1481 		}
1482 	} else if (error != 0)
1483 		return (error);
1484 
1485 	KASSERT(nsegs != 0, ("zero segment returned"));
1486 	/* Check descriptor overrun. */
1487 	if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1488 		bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1489 		return (ENOBUFS);
1490 	}
1491 	bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1492 	    BUS_DMASYNC_PREWRITE);
1493 
1494 	m = *m_head;
1495 	cflags = 0;
1496 	mss = 0;
1497 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1498 		cflags |= TDC_LS;
1499 		mss = (uint32_t)m->m_pkthdr.tso_segsz;
1500 		mss <<= 16;
1501 	} else {
1502 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1503 			cflags |= TDC_IP_CSUM;
1504 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1505 			cflags |= TDC_TCP_CSUM;
1506 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1507 			cflags |= TDC_UDP_CSUM;
1508 	}
1509 	for (i = 0; i < nsegs; i++) {
1510 		desc = &sc->sge_ldata.sge_tx_ring[prod];
1511 		if (i == 0) {
1512 			desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1513 			desc->sge_cmdsts = 0;
1514 		} else {
1515 			desc->sge_sts_size = 0;
1516 			desc->sge_cmdsts = htole32(TDC_OWN);
1517 		}
1518 		desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1519 		desc->sge_flags = htole32(txsegs[i].ds_len);
1520 		if (prod == SGE_TX_RING_CNT - 1)
1521 			desc->sge_flags |= htole32(RING_END);
1522 		sc->sge_cdata.sge_tx_cnt++;
1523 		SGE_INC(prod, SGE_TX_RING_CNT);
1524 	}
1525 	/* Update producer index. */
1526 	sc->sge_cdata.sge_tx_prod = prod;
1527 
1528 	desc = &sc->sge_ldata.sge_tx_ring[si];
1529 	/* Configure VLAN. */
1530 	if((m->m_flags & M_VLANTAG) != 0) {
1531 		cflags |= m->m_pkthdr.ether_vtag;
1532 		desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1533 	}
1534 	desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1535 #if 1
1536 	if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1537 		desc->sge_cmdsts |= htole32(TDC_BST);
1538 #else
1539 	if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1540 		desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1541 		if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1542 			desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1543 	}
1544 #endif
1545 	/* Request interrupt and give ownership to controller. */
1546 	desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1547 	txd->tx_m = m;
1548 	txd->tx_ndesc = nsegs;
1549 	return (0);
1550 }
1551 
1552 static void
1553 sge_start(struct ifnet *ifp)
1554 {
1555 	struct sge_softc *sc;
1556 
1557 	sc = ifp->if_softc;
1558 	SGE_LOCK(sc);
1559 	sge_start_locked(ifp);
1560 	SGE_UNLOCK(sc);
1561 }
1562 
1563 static void
1564 sge_start_locked(struct ifnet *ifp)
1565 {
1566 	struct sge_softc *sc;
1567 	struct mbuf *m_head;
1568 	int queued = 0;
1569 
1570 	sc = ifp->if_softc;
1571 	SGE_LOCK_ASSERT(sc);
1572 
1573 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1574 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1575 	    IFF_DRV_RUNNING)
1576 		return;
1577 
1578 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1579 		if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1580 		    SGE_MAXTXSEGS)) {
1581 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1582 			break;
1583 		}
1584 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1585 		if (m_head == NULL)
1586 			break;
1587 		if (sge_encap(sc, &m_head)) {
1588 			if (m_head == NULL)
1589 				break;
1590 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1591 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1592 			break;
1593 		}
1594 		queued++;
1595 		/*
1596 		 * If there's a BPF listener, bounce a copy of this frame
1597 		 * to him.
1598 		 */
1599 		BPF_MTAP(ifp, m_head);
1600 	}
1601 
1602 	if (queued > 0) {
1603 		bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1604 		    sc->sge_cdata.sge_tx_dmamap,
1605 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1606 		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1607 		sc->sge_timer = 5;
1608 	}
1609 }
1610 
1611 static void
1612 sge_init(void *arg)
1613 {
1614 	struct sge_softc *sc;
1615 
1616 	sc = arg;
1617 	SGE_LOCK(sc);
1618 	sge_init_locked(sc);
1619 	SGE_UNLOCK(sc);
1620 }
1621 
1622 static void
1623 sge_init_locked(struct sge_softc *sc)
1624 {
1625 	struct ifnet *ifp;
1626 	struct mii_data *mii;
1627 	uint16_t rxfilt;
1628 	int i;
1629 
1630 	SGE_LOCK_ASSERT(sc);
1631 	ifp = sc->sge_ifp;
1632 	mii = device_get_softc(sc->sge_miibus);
1633 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1634 		return;
1635 	/*
1636 	 * Cancel pending I/O and free all RX/TX buffers.
1637 	 */
1638 	sge_stop(sc);
1639 	sge_reset(sc);
1640 
1641 	/* Init circular RX list. */
1642 	if (sge_list_rx_init(sc) == ENOBUFS) {
1643 		device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1644 		sge_stop(sc);
1645 		return;
1646 	}
1647 	/* Init TX descriptors. */
1648 	sge_list_tx_init(sc);
1649 	/*
1650 	 * Load the address of the RX and TX lists.
1651 	 */
1652 	CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1653 	CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1654 
1655 	CSR_WRITE_4(sc, TxMacControl, 0x60);
1656 	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1657 	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1658 	/* Allow receiving VLAN frames. */
1659 	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1660 	    SGE_RX_PAD_BYTES);
1661 
1662 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1663 		CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1664 	/* Configure RX MAC. */
1665 	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1666 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1667 	sge_rxfilter(sc);
1668 	sge_setvlan(sc);
1669 
1670 	/* Initialize default speed/duplex information. */
1671 	if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1672 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
1673 	sc->sge_flags |= SGE_FLAG_FDX;
1674 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1675 		CSR_WRITE_4(sc, StationControl, 0x04008001);
1676 	else
1677 		CSR_WRITE_4(sc, StationControl, 0x04000001);
1678 	/*
1679 	 * XXX Try to mitigate interrupts.
1680 	 */
1681 	CSR_WRITE_4(sc, IntrControl, 0x08880000);
1682 #ifdef notyet
1683 	if (sc->sge_intrcontrol != 0)
1684 		CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1685 	if (sc->sge_intrtimer != 0)
1686 		CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1687 #endif
1688 
1689 	/*
1690 	 * Clear and enable interrupts.
1691 	 */
1692 	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1693 	CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1694 
1695 	/* Enable receiver and transmitter. */
1696 	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1697 	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1698 
1699 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1700 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1701 
1702 	sc->sge_flags &= ~SGE_FLAG_LINK;
1703 	mii_mediachg(mii);
1704 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1705 }
1706 
1707 /*
1708  * Set media options.
1709  */
1710 static int
1711 sge_ifmedia_upd(struct ifnet *ifp)
1712 {
1713 	struct sge_softc *sc;
1714 	struct mii_data *mii;
1715 		struct mii_softc *miisc;
1716 	int error;
1717 
1718 	sc = ifp->if_softc;
1719 	SGE_LOCK(sc);
1720 	mii = device_get_softc(sc->sge_miibus);
1721 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1722 		PHY_RESET(miisc);
1723 	error = mii_mediachg(mii);
1724 	SGE_UNLOCK(sc);
1725 
1726 	return (error);
1727 }
1728 
1729 /*
1730  * Report current media status.
1731  */
1732 static void
1733 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1734 {
1735 	struct sge_softc *sc;
1736 	struct mii_data *mii;
1737 
1738 	sc = ifp->if_softc;
1739 	SGE_LOCK(sc);
1740 	mii = device_get_softc(sc->sge_miibus);
1741 	if ((ifp->if_flags & IFF_UP) == 0) {
1742 		SGE_UNLOCK(sc);
1743 		return;
1744 	}
1745 	mii_pollstat(mii);
1746 	ifmr->ifm_active = mii->mii_media_active;
1747 	ifmr->ifm_status = mii->mii_media_status;
1748 	SGE_UNLOCK(sc);
1749 }
1750 
1751 static int
1752 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1753 {
1754 	struct sge_softc *sc;
1755 	struct ifreq *ifr;
1756 	struct mii_data *mii;
1757 	int error = 0, mask, reinit;
1758 
1759 	sc = ifp->if_softc;
1760 	ifr = (struct ifreq *)data;
1761 
1762 	switch(command) {
1763 	case SIOCSIFFLAGS:
1764 		SGE_LOCK(sc);
1765 		if ((ifp->if_flags & IFF_UP) != 0) {
1766 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1767 			    ((ifp->if_flags ^ sc->sge_if_flags) &
1768 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1769 				sge_rxfilter(sc);
1770 			else
1771 				sge_init_locked(sc);
1772 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1773 			sge_stop(sc);
1774 		sc->sge_if_flags = ifp->if_flags;
1775 		SGE_UNLOCK(sc);
1776 		break;
1777 	case SIOCSIFCAP:
1778 		SGE_LOCK(sc);
1779 		reinit = 0;
1780 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1781 		if ((mask & IFCAP_TXCSUM) != 0 &&
1782 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1783 			ifp->if_capenable ^= IFCAP_TXCSUM;
1784 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1785 				ifp->if_hwassist |= SGE_CSUM_FEATURES;
1786 			else
1787 				ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1788 		}
1789 		if ((mask & IFCAP_RXCSUM) != 0 &&
1790 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1791 			ifp->if_capenable ^= IFCAP_RXCSUM;
1792 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1793 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1794 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1795 		if ((mask & IFCAP_TSO4) != 0 &&
1796 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1797 			ifp->if_capenable ^= IFCAP_TSO4;
1798 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1799 				ifp->if_hwassist |= CSUM_TSO;
1800 			else
1801 				ifp->if_hwassist &= ~CSUM_TSO;
1802 		}
1803 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1804 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1805 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1806 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1807 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1808 			/*
1809 			 * Due to unknown reason, toggling VLAN hardware
1810 			 * tagging require interface reinitialization.
1811 			 */
1812 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1813 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1814 				ifp->if_capenable &=
1815 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1816 			reinit = 1;
1817 		}
1818 		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1819 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1820 			sge_init_locked(sc);
1821 		}
1822 		SGE_UNLOCK(sc);
1823 		VLAN_CAPABILITIES(ifp);
1824 		break;
1825 	case SIOCADDMULTI:
1826 	case SIOCDELMULTI:
1827 		SGE_LOCK(sc);
1828 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1829 			sge_rxfilter(sc);
1830 		SGE_UNLOCK(sc);
1831 		break;
1832 	case SIOCGIFMEDIA:
1833 	case SIOCSIFMEDIA:
1834 		mii = device_get_softc(sc->sge_miibus);
1835 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1836 		break;
1837 	default:
1838 		error = ether_ioctl(ifp, command, data);
1839 		break;
1840 	}
1841 
1842 	return (error);
1843 }
1844 
1845 static void
1846 sge_watchdog(struct sge_softc *sc)
1847 {
1848 	struct ifnet *ifp;
1849 
1850 	SGE_LOCK_ASSERT(sc);
1851 	if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1852 		return;
1853 
1854 	ifp = sc->sge_ifp;
1855 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1856 		if (1 || bootverbose)
1857 			device_printf(sc->sge_dev,
1858 			    "watchdog timeout (lost link)\n");
1859 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1860 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1861 		sge_init_locked(sc);
1862 		return;
1863 	}
1864 	device_printf(sc->sge_dev, "watchdog timeout\n");
1865 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1866 
1867 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1868 	sge_init_locked(sc);
1869 	if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1870 		sge_start_locked(ifp);
1871 }
1872 
1873 /*
1874  * Stop the adapter and free any mbufs allocated to the
1875  * RX and TX lists.
1876  */
1877 static void
1878 sge_stop(struct sge_softc *sc)
1879 {
1880 	struct ifnet *ifp;
1881 
1882 	ifp = sc->sge_ifp;
1883 
1884 	SGE_LOCK_ASSERT(sc);
1885 
1886 	sc->sge_timer = 0;
1887 	callout_stop(&sc->sge_stat_ch);
1888 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1889 
1890 	CSR_WRITE_4(sc, IntrMask, 0);
1891 	CSR_READ_4(sc, IntrMask);
1892 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1893 	/* Stop TX/RX MAC. */
1894 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1895 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1896 	/* XXX Can we assume active DMA cycles gone? */
1897 	DELAY(2000);
1898 	CSR_WRITE_4(sc, IntrMask, 0);
1899 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1900 
1901 	sc->sge_flags &= ~SGE_FLAG_LINK;
1902 	sge_list_rx_free(sc);
1903 	sge_list_tx_free(sc);
1904 }
1905