xref: /freebsd/sys/dev/sge/if_sge.c (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
5  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
6  * Copyright (c) 1997, 1998, 1999
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
27  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
28  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
35  * OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 /*
40  * SiS 190/191 PCI Ethernet NIC driver.
41  *
42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46  * review and very useful comments.
47  *
48  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
49  * Linux and Solaris drivers.
50  */
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/mutex.h>
62 #include <sys/rman.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 
66 #include <net/bpf.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_types.h>
74 #include <net/if_vlan_var.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/ip.h>
79 #include <netinet/tcp.h>
80 
81 #include <machine/bus.h>
82 #include <machine/in_cksum.h>
83 
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 
90 #include <dev/sge/if_sgereg.h>
91 
92 MODULE_DEPEND(sge, pci, 1, 1, 1);
93 MODULE_DEPEND(sge, ether, 1, 1, 1);
94 MODULE_DEPEND(sge, miibus, 1, 1, 1);
95 
96 /* "device miibus0" required.  See GENERIC if you get errors here. */
97 #include "miibus_if.h"
98 
99 /*
100  * Various supported device vendors/types and their names.
101  */
102 static struct sge_type sge_devs[] = {
103 	{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
104 	{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
105 	{ 0, 0, NULL }
106 };
107 
108 static int	sge_probe(device_t);
109 static int	sge_attach(device_t);
110 static int	sge_detach(device_t);
111 static int	sge_shutdown(device_t);
112 static int	sge_suspend(device_t);
113 static int	sge_resume(device_t);
114 
115 static int	sge_miibus_readreg(device_t, int, int);
116 static int	sge_miibus_writereg(device_t, int, int, int);
117 static void	sge_miibus_statchg(device_t);
118 
119 static int	sge_newbuf(struct sge_softc *, int);
120 static int	sge_encap(struct sge_softc *, struct mbuf **);
121 static __inline void
122 		sge_discard_rxbuf(struct sge_softc *, int);
123 static void	sge_rxeof(struct sge_softc *);
124 static void	sge_txeof(struct sge_softc *);
125 static void	sge_intr(void *);
126 static void	sge_tick(void *);
127 static void	sge_start(if_t);
128 static void	sge_start_locked(if_t);
129 static int	sge_ioctl(if_t, u_long, caddr_t);
130 static void	sge_init(void *);
131 static void	sge_init_locked(struct sge_softc *);
132 static void	sge_stop(struct sge_softc *);
133 static void	sge_watchdog(struct sge_softc *);
134 static int	sge_ifmedia_upd(if_t);
135 static void	sge_ifmedia_sts(if_t, struct ifmediareq *);
136 
137 static int	sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
138 static int	sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
139 static uint16_t	sge_read_eeprom(struct sge_softc *, int);
140 
141 static void	sge_rxfilter(struct sge_softc *);
142 static void	sge_setvlan(struct sge_softc *);
143 static void	sge_reset(struct sge_softc *);
144 static int	sge_list_rx_init(struct sge_softc *);
145 static int	sge_list_rx_free(struct sge_softc *);
146 static int	sge_list_tx_init(struct sge_softc *);
147 static int	sge_list_tx_free(struct sge_softc *);
148 
149 static int	sge_dma_alloc(struct sge_softc *);
150 static void	sge_dma_free(struct sge_softc *);
151 static void	sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
152 
153 static device_method_t sge_methods[] = {
154 	/* Device interface */
155 	DEVMETHOD(device_probe,		sge_probe),
156 	DEVMETHOD(device_attach,	sge_attach),
157 	DEVMETHOD(device_detach,	sge_detach),
158 	DEVMETHOD(device_suspend,	sge_suspend),
159 	DEVMETHOD(device_resume,	sge_resume),
160 	DEVMETHOD(device_shutdown,	sge_shutdown),
161 
162 	/* MII interface */
163 	DEVMETHOD(miibus_readreg,	sge_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	sge_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	sge_miibus_statchg),
166 
167 	DEVMETHOD_END
168 };
169 
170 static driver_t sge_driver = {
171 	"sge", sge_methods, sizeof(struct sge_softc)
172 };
173 
174 DRIVER_MODULE(sge, pci, sge_driver, 0, 0);
175 DRIVER_MODULE(miibus, sge, miibus_driver, 0, 0);
176 
177 /*
178  * Register space access macros.
179  */
180 #define	CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sge_res, reg, val)
181 #define	CSR_WRITE_2(sc, reg, val)	bus_write_2(sc->sge_res, reg, val)
182 #define	CSR_WRITE_1(cs, reg, val)	bus_write_1(sc->sge_res, reg, val)
183 
184 #define	CSR_READ_4(sc, reg)		bus_read_4(sc->sge_res, reg)
185 #define	CSR_READ_2(sc, reg)		bus_read_2(sc->sge_res, reg)
186 #define	CSR_READ_1(sc, reg)		bus_read_1(sc->sge_res, reg)
187 
188 /* Define to show Tx/Rx error status. */
189 #undef SGE_SHOW_ERRORS
190 
191 #define	SGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
192 
193 static void
194 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
195 {
196 	bus_addr_t *p;
197 
198 	if (error != 0)
199 		return;
200 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
201 	p  = arg;
202 	*p = segs->ds_addr;
203 }
204 
205 /*
206  * Read a sequence of words from the EEPROM.
207  */
208 static uint16_t
209 sge_read_eeprom(struct sge_softc *sc, int offset)
210 {
211 	uint32_t val;
212 	int i;
213 
214 	KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
215 	CSR_WRITE_4(sc, ROMInterface,
216 	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
217 	DELAY(500);
218 	for (i = 0; i < SGE_TIMEOUT; i++) {
219 		val = CSR_READ_4(sc, ROMInterface);
220 		if ((val & EI_REQ) == 0)
221 			break;
222 		DELAY(100);
223 	}
224 	if (i == SGE_TIMEOUT) {
225 		device_printf(sc->sge_dev,
226 		    "EEPROM read timeout : 0x%08x\n", val);
227 		return (0xffff);
228 	}
229 
230 	return ((val & EI_DATA) >> EI_DATA_SHIFT);
231 }
232 
233 static int
234 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
235 {
236 	uint16_t val;
237 	int i;
238 
239 	val = sge_read_eeprom(sc, EEPROMSignature);
240 	if (val == 0xffff || val == 0) {
241 		device_printf(sc->sge_dev,
242 		    "invalid EEPROM signature : 0x%04x\n", val);
243 		return (EINVAL);
244 	}
245 
246 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
247 		val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
248 		dest[i + 0] = (uint8_t)val;
249 		dest[i + 1] = (uint8_t)(val >> 8);
250 	}
251 
252 	if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
253 		sc->sge_flags |= SGE_FLAG_RGMII;
254 	return (0);
255 }
256 
257 /*
258  * For SiS96x, APC CMOS RAM is used to store ethernet address.
259  * APC CMOS RAM is accessed through ISA bridge.
260  */
261 static int
262 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
263 {
264 #if defined(__amd64__) || defined(__i386__)
265 	devclass_t pci;
266 	device_t bus, dev = NULL;
267 	device_t *kids;
268 	struct apc_tbl {
269 		uint16_t vid;
270 		uint16_t did;
271 	} *tp, apc_tbls[] = {
272 		{ SIS_VENDORID, 0x0965 },
273 		{ SIS_VENDORID, 0x0966 },
274 		{ SIS_VENDORID, 0x0968 }
275 	};
276 	uint8_t reg;
277 	int busnum, i, j, numkids;
278 
279 	pci = devclass_find("pci");
280 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
281 		bus = devclass_get_device(pci, busnum);
282 		if (!bus)
283 			continue;
284 		if (device_get_children(bus, &kids, &numkids) != 0)
285 			continue;
286 		for (i = 0; i < numkids; i++) {
287 			dev = kids[i];
288 			if (pci_get_class(dev) == PCIC_BRIDGE &&
289 			    pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
290 				tp = apc_tbls;
291 				for (j = 0; j < nitems(apc_tbls); j++) {
292 					if (pci_get_vendor(dev) == tp->vid &&
293 					    pci_get_device(dev) == tp->did) {
294 						free(kids, M_TEMP);
295 						goto apc_found;
296 					}
297 					tp++;
298 				}
299 			}
300                 }
301 		free(kids, M_TEMP);
302 	}
303 	device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
304 	return (EINVAL);
305 apc_found:
306 	/* Enable port 0x78 and 0x79 to access APC registers. */
307 	reg = pci_read_config(dev, 0x48, 1);
308 	pci_write_config(dev, 0x48, reg & ~0x02, 1);
309 	DELAY(50);
310 	pci_read_config(dev, 0x48, 1);
311 	/* Read stored ethernet address. */
312 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
313 		outb(0x78, 0x09 + i);
314 		dest[i] = inb(0x79);
315 	}
316 	outb(0x78, 0x12);
317 	if ((inb(0x79) & 0x80) != 0)
318 		sc->sge_flags |= SGE_FLAG_RGMII;
319 	/* Restore access to APC registers. */
320 	pci_write_config(dev, 0x48, reg, 1);
321 
322 	return (0);
323 #else
324 	return (EINVAL);
325 #endif
326 }
327 
328 static int
329 sge_miibus_readreg(device_t dev, int phy, int reg)
330 {
331 	struct sge_softc *sc;
332 	uint32_t val;
333 	int i;
334 
335 	sc = device_get_softc(dev);
336 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
337 	    (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
338 	DELAY(10);
339 	for (i = 0; i < SGE_TIMEOUT; i++) {
340 		val = CSR_READ_4(sc, GMIIControl);
341 		if ((val & GMI_REQ) == 0)
342 			break;
343 		DELAY(10);
344 	}
345 	if (i == SGE_TIMEOUT) {
346 		device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
347 		return (0);
348 	}
349 	return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
350 }
351 
352 static int
353 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
354 {
355 	struct sge_softc *sc;
356 	uint32_t val;
357 	int i;
358 
359 	sc = device_get_softc(dev);
360 	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
361 	    (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
362 	    GMI_OP_WR | GMI_REQ);
363 	DELAY(10);
364 	for (i = 0; i < SGE_TIMEOUT; i++) {
365 		val = CSR_READ_4(sc, GMIIControl);
366 		if ((val & GMI_REQ) == 0)
367 			break;
368 		DELAY(10);
369 	}
370 	if (i == SGE_TIMEOUT)
371 		device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
372 	return (0);
373 }
374 
375 static void
376 sge_miibus_statchg(device_t dev)
377 {
378 	struct sge_softc *sc;
379 	struct mii_data *mii;
380 	if_t ifp;
381 	uint32_t ctl, speed;
382 
383 	sc = device_get_softc(dev);
384 	mii = device_get_softc(sc->sge_miibus);
385 	ifp = sc->sge_ifp;
386 	if (mii == NULL || ifp == NULL ||
387 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
388 		return;
389 	speed = 0;
390 	sc->sge_flags &= ~SGE_FLAG_LINK;
391 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
392 	    (IFM_ACTIVE | IFM_AVALID)) {
393 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
394 		case IFM_10_T:
395 			sc->sge_flags |= SGE_FLAG_LINK;
396 			speed = SC_SPEED_10;
397 			break;
398 		case IFM_100_TX:
399 			sc->sge_flags |= SGE_FLAG_LINK;
400 			speed = SC_SPEED_100;
401 			break;
402 		case IFM_1000_T:
403 			if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
404 				sc->sge_flags |= SGE_FLAG_LINK;
405 				speed = SC_SPEED_1000;
406 			}
407 			break;
408 		default:
409 			break;
410                 }
411         }
412 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
413 		return;
414 	/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
415 	ctl = CSR_READ_4(sc, StationControl);
416 	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
417 	if (speed == SC_SPEED_1000) {
418 		ctl |= 0x07000000;
419 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
420 	} else {
421 		ctl |= 0x04000000;
422 		sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
423 	}
424 #ifdef notyet
425 	if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
426 		ctl |= 0x03000000;
427 #endif
428 	ctl |= speed;
429 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
430 		ctl |= SC_FDX;
431 		sc->sge_flags |= SGE_FLAG_FDX;
432 	} else
433 		sc->sge_flags &= ~SGE_FLAG_FDX;
434 	CSR_WRITE_4(sc, StationControl, ctl);
435 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
436 		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
437 		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
438 	}
439 }
440 
441 static u_int
442 sge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int count)
443 {
444 	uint32_t crc, *hashes = arg;
445 
446 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
447 	hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
448 
449 	return (1);
450 }
451 
452 static void
453 sge_rxfilter(struct sge_softc *sc)
454 {
455 	if_t ifp;
456 	uint32_t hashes[2];
457 	uint16_t rxfilt;
458 
459 	SGE_LOCK_ASSERT(sc);
460 
461 	ifp = sc->sge_ifp;
462 	rxfilt = CSR_READ_2(sc, RxMacControl);
463 	rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
464 	rxfilt |= AcceptMyPhys;
465 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
466 		rxfilt |= AcceptBroadcast;
467 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
468 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
469 			rxfilt |= AcceptAllPhys;
470 		rxfilt |= AcceptMulticast;
471 		hashes[0] = 0xFFFFFFFF;
472 		hashes[1] = 0xFFFFFFFF;
473 	} else {
474 		rxfilt |= AcceptMulticast;
475 		hashes[0] = hashes[1] = 0;
476 		/* Now program new ones. */
477 		if_foreach_llmaddr(ifp, sge_hash_maddr, hashes);
478 	}
479 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
480 	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
481 	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
482 }
483 
484 static void
485 sge_setvlan(struct sge_softc *sc)
486 {
487 	if_t ifp;
488 	uint16_t rxfilt;
489 
490 	SGE_LOCK_ASSERT(sc);
491 
492 	ifp = sc->sge_ifp;
493 	if ((if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
494 		return;
495 	rxfilt = CSR_READ_2(sc, RxMacControl);
496 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
497 		rxfilt |= RXMAC_STRIP_VLAN;
498 	else
499 		rxfilt &= ~RXMAC_STRIP_VLAN;
500 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
501 }
502 
503 static void
504 sge_reset(struct sge_softc *sc)
505 {
506 
507 	CSR_WRITE_4(sc, IntrMask, 0);
508 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
509 
510 	/* Soft reset. */
511 	CSR_WRITE_4(sc, IntrControl, 0x8000);
512 	CSR_READ_4(sc, IntrControl);
513 	DELAY(100);
514 	CSR_WRITE_4(sc, IntrControl, 0);
515 	/* Stop MAC. */
516 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
517 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
518 
519 	CSR_WRITE_4(sc, IntrMask, 0);
520 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
521 
522 	CSR_WRITE_4(sc, GMIIControl, 0);
523 }
524 
525 /*
526  * Probe for an SiS chip. Check the PCI vendor and device
527  * IDs against our list and return a device name if we find a match.
528  */
529 static int
530 sge_probe(device_t dev)
531 {
532 	struct sge_type *t;
533 
534 	t = sge_devs;
535 	while (t->sge_name != NULL) {
536 		if ((pci_get_vendor(dev) == t->sge_vid) &&
537 		    (pci_get_device(dev) == t->sge_did)) {
538 			device_set_desc(dev, t->sge_name);
539 			return (BUS_PROBE_DEFAULT);
540 		}
541 		t++;
542 	}
543 
544 	return (ENXIO);
545 }
546 
547 /*
548  * Attach the interface.  Allocate softc structures, do ifmedia
549  * setup and ethernet/BPF attach.
550  */
551 static int
552 sge_attach(device_t dev)
553 {
554 	struct sge_softc *sc;
555 	if_t ifp;
556 	uint8_t eaddr[ETHER_ADDR_LEN];
557 	int error = 0, rid;
558 
559 	sc = device_get_softc(dev);
560 	sc->sge_dev = dev;
561 
562 	mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
563 	    MTX_DEF);
564         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
565 
566 	/*
567 	 * Map control/status registers.
568 	 */
569 	pci_enable_busmaster(dev);
570 
571 	/* Allocate resources. */
572 	sc->sge_res_id = PCIR_BAR(0);
573 	sc->sge_res_type = SYS_RES_MEMORY;
574 	sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
575 	    &sc->sge_res_id, RF_ACTIVE);
576 	if (sc->sge_res == NULL) {
577 		device_printf(dev, "couldn't allocate resource\n");
578 		error = ENXIO;
579 		goto fail;
580 	}
581 
582 	rid = 0;
583 	sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
584 	    RF_SHAREABLE | RF_ACTIVE);
585 	if (sc->sge_irq == NULL) {
586 		device_printf(dev, "couldn't allocate IRQ resources\n");
587 		error = ENXIO;
588 		goto fail;
589 	}
590 	sc->sge_rev = pci_get_revid(dev);
591 	if (pci_get_device(dev) == SIS_DEVICEID_190)
592 		sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
593 	/* Reset the adapter. */
594 	sge_reset(sc);
595 
596 	/* Get MAC address from the EEPROM. */
597 	if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
598 		sge_get_mac_addr_apc(sc, eaddr);
599 	else
600 		sge_get_mac_addr_eeprom(sc, eaddr);
601 
602 	if ((error = sge_dma_alloc(sc)) != 0)
603 		goto fail;
604 
605 	ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
606 	if_setsoftc(ifp, sc);
607 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
608 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
609 	if_setioctlfn(ifp, sge_ioctl);
610 	if_setstartfn(ifp, sge_start);
611 	if_setinitfn(ifp, sge_init);
612 	if_setsendqlen(ifp, SGE_TX_RING_CNT - 1);
613 	if_setsendqready(ifp);
614 	if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4);
615 	if_sethwassist(ifp, SGE_CSUM_FEATURES | CSUM_TSO);
616 	if_setcapenable(ifp, if_getcapabilities(ifp));
617 	/*
618 	 * Do MII setup.
619 	 */
620 	error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
621 	    sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
622 	if (error != 0) {
623 		device_printf(dev, "attaching PHYs failed\n");
624 		goto fail;
625 	}
626 
627 	/*
628 	 * Call MI attach routine.
629 	 */
630 	ether_ifattach(ifp, eaddr);
631 
632 	/* VLAN setup. */
633 	if_setcapabilities(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
634 	    IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU);
635 	if_setcapenable(ifp, if_getcapabilities(ifp));
636 	/* Tell the upper layer(s) we support long frames. */
637 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
638 
639 	/* Hook interrupt last to avoid having to lock softc */
640 	error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
641 	    NULL, sge_intr, sc, &sc->sge_intrhand);
642 	if (error) {
643 		device_printf(dev, "couldn't set up irq\n");
644 		ether_ifdetach(ifp);
645 		goto fail;
646 	}
647 
648 fail:
649 	if (error)
650 		sge_detach(dev);
651 
652 	return (error);
653 }
654 
655 /*
656  * Shutdown hardware and free up resources.  This can be called any
657  * time after the mutex has been initialized.  It is called in both
658  * the error case in attach and the normal detach case so it needs
659  * to be careful about only freeing resources that have actually been
660  * allocated.
661  */
662 static int
663 sge_detach(device_t dev)
664 {
665 	struct sge_softc *sc;
666 	if_t ifp;
667 
668 	sc = device_get_softc(dev);
669 	ifp = sc->sge_ifp;
670 	/* These should only be active if attach succeeded. */
671 	if (device_is_attached(dev)) {
672 		ether_ifdetach(ifp);
673 		SGE_LOCK(sc);
674 		sge_stop(sc);
675 		SGE_UNLOCK(sc);
676 		callout_drain(&sc->sge_stat_ch);
677 	}
678 	if (sc->sge_miibus)
679 		device_delete_child(dev, sc->sge_miibus);
680 	bus_generic_detach(dev);
681 
682 	if (sc->sge_intrhand)
683 		bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
684 	if (sc->sge_irq)
685 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
686 	if (sc->sge_res)
687 		bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
688 		    sc->sge_res);
689 	if (ifp)
690 		if_free(ifp);
691 	sge_dma_free(sc);
692 	mtx_destroy(&sc->sge_mtx);
693 
694 	return (0);
695 }
696 
697 /*
698  * Stop all chip I/O so that the kernel's probe routines don't
699  * get confused by errant DMAs when rebooting.
700  */
701 static int
702 sge_shutdown(device_t dev)
703 {
704 	struct sge_softc *sc;
705 
706 	sc = device_get_softc(dev);
707 	SGE_LOCK(sc);
708 	sge_stop(sc);
709 	SGE_UNLOCK(sc);
710 	return (0);
711 }
712 
713 static int
714 sge_suspend(device_t dev)
715 {
716 	struct sge_softc *sc;
717 	if_t ifp;
718 
719 	sc = device_get_softc(dev);
720 	SGE_LOCK(sc);
721 	ifp = sc->sge_ifp;
722 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
723 		sge_stop(sc);
724 	SGE_UNLOCK(sc);
725 	return (0);
726 }
727 
728 static int
729 sge_resume(device_t dev)
730 {
731 	struct sge_softc *sc;
732 	if_t ifp;
733 
734 	sc = device_get_softc(dev);
735 	SGE_LOCK(sc);
736 	ifp = sc->sge_ifp;
737 	if ((if_getflags(ifp) & IFF_UP) != 0)
738 		sge_init_locked(sc);
739 	SGE_UNLOCK(sc);
740 	return (0);
741 }
742 
743 static int
744 sge_dma_alloc(struct sge_softc *sc)
745 {
746 	struct sge_chain_data *cd;
747 	struct sge_list_data *ld;
748 	struct sge_rxdesc *rxd;
749 	struct sge_txdesc *txd;
750 	int error, i;
751 
752 	cd = &sc->sge_cdata;
753 	ld = &sc->sge_ldata;
754 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
755 	    1, 0,			/* alignment, boundary */
756 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
757 	    BUS_SPACE_MAXADDR,		/* highaddr */
758 	    NULL, NULL,			/* filter, filterarg */
759 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
760 	    1,				/* nsegments */
761 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
762 	    0,				/* flags */
763 	    NULL,			/* lockfunc */
764 	    NULL,			/* lockarg */
765 	    &cd->sge_tag);
766 	if (error != 0) {
767 		device_printf(sc->sge_dev,
768 		    "could not create parent DMA tag.\n");
769 		goto fail;
770 	}
771 
772 	/* RX descriptor ring */
773 	error = bus_dma_tag_create(cd->sge_tag,
774 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
775 	    BUS_SPACE_MAXADDR,		/* lowaddr */
776 	    BUS_SPACE_MAXADDR,		/* highaddr */
777 	    NULL, NULL,			/* filter, filterarg */
778 	    SGE_RX_RING_SZ, 1,		/* maxsize,nsegments */
779 	    SGE_RX_RING_SZ,		/* maxsegsize */
780 	    0,				/* flags */
781 	    NULL,			/* lockfunc */
782 	    NULL,			/* lockarg */
783 	    &cd->sge_rx_tag);
784 	if (error != 0) {
785 		device_printf(sc->sge_dev,
786 		    "could not create Rx ring DMA tag.\n");
787 		goto fail;
788 	}
789 	/* Allocate DMA'able memory and load DMA map for RX ring. */
790 	error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
791 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
792 	    &cd->sge_rx_dmamap);
793 	if (error != 0) {
794 		device_printf(sc->sge_dev,
795 		    "could not allocate DMA'able memory for Rx ring.\n");
796 		goto fail;
797 	}
798 	error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
799 	    ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
800 	    &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
801 	if (error != 0) {
802 		device_printf(sc->sge_dev,
803 		    "could not load DMA'able memory for Rx ring.\n");
804 	}
805 
806 	/* TX descriptor ring */
807 	error = bus_dma_tag_create(cd->sge_tag,
808 	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
809 	    BUS_SPACE_MAXADDR,		/* lowaddr */
810 	    BUS_SPACE_MAXADDR,		/* highaddr */
811 	    NULL, NULL,			/* filter, filterarg */
812 	    SGE_TX_RING_SZ, 1,		/* maxsize,nsegments */
813 	    SGE_TX_RING_SZ,		/* maxsegsize */
814 	    0,				/* flags */
815 	    NULL,			/* lockfunc */
816 	    NULL,			/* lockarg */
817 	    &cd->sge_tx_tag);
818 	if (error != 0) {
819 		device_printf(sc->sge_dev,
820 		    "could not create Rx ring DMA tag.\n");
821 		goto fail;
822 	}
823 	/* Allocate DMA'able memory and load DMA map for TX ring. */
824 	error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
825 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
826 	    &cd->sge_tx_dmamap);
827 	if (error != 0) {
828 		device_printf(sc->sge_dev,
829 		    "could not allocate DMA'able memory for Tx ring.\n");
830 		goto fail;
831 	}
832 	error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
833 	    ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
834 	    &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
835 	if (error != 0) {
836 		device_printf(sc->sge_dev,
837 		    "could not load DMA'able memory for Rx ring.\n");
838 		goto fail;
839 	}
840 
841 	/* Create DMA tag for Tx buffers. */
842 	error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
843 	    BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
844 	    SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
845 	if (error != 0) {
846 		device_printf(sc->sge_dev,
847 		    "could not create Tx mbuf DMA tag.\n");
848 		goto fail;
849 	}
850 
851 	/* Create DMA tag for Rx buffers. */
852 	error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
853 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
854 	    MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
855 	if (error != 0) {
856 		device_printf(sc->sge_dev,
857 		    "could not create Rx mbuf DMA tag.\n");
858 		goto fail;
859 	}
860 
861 	/* Create DMA maps for Tx buffers. */
862 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
863 		txd = &cd->sge_txdesc[i];
864 		txd->tx_m = NULL;
865 		txd->tx_dmamap = NULL;
866 		txd->tx_ndesc = 0;
867 		error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
868 		    &txd->tx_dmamap);
869 		if (error != 0) {
870 			device_printf(sc->sge_dev,
871 			    "could not create Tx DMA map.\n");
872 			goto fail;
873 		}
874 	}
875 	/* Create spare DMA map for Rx buffer. */
876 	error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
877 	if (error != 0) {
878 		device_printf(sc->sge_dev,
879 		    "could not create spare Rx DMA map.\n");
880 		goto fail;
881 	}
882 	/* Create DMA maps for Rx buffers. */
883 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
884 		rxd = &cd->sge_rxdesc[i];
885 		rxd->rx_m = NULL;
886 		rxd->rx_dmamap = NULL;
887 		error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
888 		    &rxd->rx_dmamap);
889 		if (error) {
890 			device_printf(sc->sge_dev,
891 			    "could not create Rx DMA map.\n");
892 			goto fail;
893 		}
894 	}
895 fail:
896 	return (error);
897 }
898 
899 static void
900 sge_dma_free(struct sge_softc *sc)
901 {
902 	struct sge_chain_data *cd;
903 	struct sge_list_data *ld;
904 	struct sge_rxdesc *rxd;
905 	struct sge_txdesc *txd;
906 	int i;
907 
908 	cd = &sc->sge_cdata;
909 	ld = &sc->sge_ldata;
910 	/* Rx ring. */
911 	if (cd->sge_rx_tag != NULL) {
912 		if (ld->sge_rx_paddr != 0)
913 			bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
914 		if (ld->sge_rx_ring != NULL)
915 			bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
916 			    cd->sge_rx_dmamap);
917 		ld->sge_rx_ring = NULL;
918 		ld->sge_rx_paddr = 0;
919 		bus_dma_tag_destroy(cd->sge_rx_tag);
920 		cd->sge_rx_tag = NULL;
921 	}
922 	/* Tx ring. */
923 	if (cd->sge_tx_tag != NULL) {
924 		if (ld->sge_tx_paddr != 0)
925 			bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
926 		if (ld->sge_tx_ring != NULL)
927 			bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
928 			    cd->sge_tx_dmamap);
929 		ld->sge_tx_ring = NULL;
930 		ld->sge_tx_paddr = 0;
931 		bus_dma_tag_destroy(cd->sge_tx_tag);
932 		cd->sge_tx_tag = NULL;
933 	}
934 	/* Rx buffers. */
935 	if (cd->sge_rxmbuf_tag != NULL) {
936 		for (i = 0; i < SGE_RX_RING_CNT; i++) {
937 			rxd = &cd->sge_rxdesc[i];
938 			if (rxd->rx_dmamap != NULL) {
939 				bus_dmamap_destroy(cd->sge_rxmbuf_tag,
940 				    rxd->rx_dmamap);
941 				rxd->rx_dmamap = NULL;
942 			}
943 		}
944 		if (cd->sge_rx_spare_map != NULL) {
945 			bus_dmamap_destroy(cd->sge_rxmbuf_tag,
946 			    cd->sge_rx_spare_map);
947 			cd->sge_rx_spare_map = NULL;
948 		}
949 		bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
950 		cd->sge_rxmbuf_tag = NULL;
951 	}
952 	/* Tx buffers. */
953 	if (cd->sge_txmbuf_tag != NULL) {
954 		for (i = 0; i < SGE_TX_RING_CNT; i++) {
955 			txd = &cd->sge_txdesc[i];
956 			if (txd->tx_dmamap != NULL) {
957 				bus_dmamap_destroy(cd->sge_txmbuf_tag,
958 				    txd->tx_dmamap);
959 				txd->tx_dmamap = NULL;
960 			}
961 		}
962 		bus_dma_tag_destroy(cd->sge_txmbuf_tag);
963 		cd->sge_txmbuf_tag = NULL;
964 	}
965 	if (cd->sge_tag != NULL)
966 		bus_dma_tag_destroy(cd->sge_tag);
967 	cd->sge_tag = NULL;
968 }
969 
970 /*
971  * Initialize the TX descriptors.
972  */
973 static int
974 sge_list_tx_init(struct sge_softc *sc)
975 {
976 	struct sge_list_data *ld;
977 	struct sge_chain_data *cd;
978 
979 	SGE_LOCK_ASSERT(sc);
980 	ld = &sc->sge_ldata;
981 	cd = &sc->sge_cdata;
982 	bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
983 	ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
984 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
985 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
986 	cd->sge_tx_prod = 0;
987 	cd->sge_tx_cons = 0;
988 	cd->sge_tx_cnt = 0;
989 	return (0);
990 }
991 
992 static int
993 sge_list_tx_free(struct sge_softc *sc)
994 {
995 	struct sge_chain_data *cd;
996 	struct sge_txdesc *txd;
997 	int i;
998 
999 	SGE_LOCK_ASSERT(sc);
1000 	cd = &sc->sge_cdata;
1001 	for (i = 0; i < SGE_TX_RING_CNT; i++) {
1002 		txd = &cd->sge_txdesc[i];
1003 		if (txd->tx_m != NULL) {
1004 			bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1005 			    BUS_DMASYNC_POSTWRITE);
1006 			bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1007 			m_freem(txd->tx_m);
1008 			txd->tx_m = NULL;
1009 			txd->tx_ndesc = 0;
1010 		}
1011 	}
1012 
1013 	return (0);
1014 }
1015 
1016 /*
1017  * Initialize the RX descriptors and allocate mbufs for them.  Note that
1018  * we arrange the descriptors in a closed ring, so that the last descriptor
1019  * has RING_END flag set.
1020  */
1021 static int
1022 sge_list_rx_init(struct sge_softc *sc)
1023 {
1024 	struct sge_chain_data *cd;
1025 	int i;
1026 
1027 	SGE_LOCK_ASSERT(sc);
1028 	cd = &sc->sge_cdata;
1029 	cd->sge_rx_cons = 0;
1030 	bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1031 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1032 		if (sge_newbuf(sc, i) != 0)
1033 			return (ENOBUFS);
1034 	}
1035 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1036 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1037 	return (0);
1038 }
1039 
1040 static int
1041 sge_list_rx_free(struct sge_softc *sc)
1042 {
1043 	struct sge_chain_data *cd;
1044 	struct sge_rxdesc *rxd;
1045 	int i;
1046 
1047 	SGE_LOCK_ASSERT(sc);
1048 	cd = &sc->sge_cdata;
1049 	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1050 		rxd = &cd->sge_rxdesc[i];
1051 		if (rxd->rx_m != NULL) {
1052 			bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1053 			    BUS_DMASYNC_POSTREAD);
1054 			bus_dmamap_unload(cd->sge_rxmbuf_tag,
1055 			    rxd->rx_dmamap);
1056 			m_freem(rxd->rx_m);
1057 			rxd->rx_m = NULL;
1058 		}
1059 	}
1060 	return (0);
1061 }
1062 
1063 /*
1064  * Initialize an RX descriptor and attach an MBUF cluster.
1065  */
1066 static int
1067 sge_newbuf(struct sge_softc *sc, int prod)
1068 {
1069 	struct mbuf *m;
1070 	struct sge_desc *desc;
1071 	struct sge_chain_data *cd;
1072 	struct sge_rxdesc *rxd;
1073 	bus_dma_segment_t segs[1];
1074 	bus_dmamap_t map;
1075 	int error, nsegs;
1076 
1077 	SGE_LOCK_ASSERT(sc);
1078 
1079 	cd = &sc->sge_cdata;
1080 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1081 	if (m == NULL)
1082 		return (ENOBUFS);
1083 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1084 	m_adj(m, SGE_RX_BUF_ALIGN);
1085 	error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1086 	    cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1087 	if (error != 0) {
1088 		m_freem(m);
1089 		return (error);
1090 	}
1091 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1092 	rxd = &cd->sge_rxdesc[prod];
1093 	if (rxd->rx_m != NULL) {
1094 		bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1095 		    BUS_DMASYNC_POSTREAD);
1096 		bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1097 	}
1098 	map = rxd->rx_dmamap;
1099 	rxd->rx_dmamap = cd->sge_rx_spare_map;
1100 	cd->sge_rx_spare_map = map;
1101 	bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1102 	    BUS_DMASYNC_PREREAD);
1103 	rxd->rx_m = m;
1104 
1105 	desc = &sc->sge_ldata.sge_rx_ring[prod];
1106 	desc->sge_sts_size = 0;
1107 	desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1108 	desc->sge_flags = htole32(segs[0].ds_len);
1109 	if (prod == SGE_RX_RING_CNT - 1)
1110 		desc->sge_flags |= htole32(RING_END);
1111 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1112 	return (0);
1113 }
1114 
1115 static __inline void
1116 sge_discard_rxbuf(struct sge_softc *sc, int index)
1117 {
1118 	struct sge_desc *desc;
1119 
1120 	desc = &sc->sge_ldata.sge_rx_ring[index];
1121 	desc->sge_sts_size = 0;
1122 	desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1123 	if (index == SGE_RX_RING_CNT - 1)
1124 		desc->sge_flags |= htole32(RING_END);
1125 	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1126 }
1127 
1128 /*
1129  * A frame has been uploaded: pass the resulting mbuf chain up to
1130  * the higher level protocols.
1131  */
1132 static void
1133 sge_rxeof(struct sge_softc *sc)
1134 {
1135         if_t ifp;
1136         struct mbuf *m;
1137 	struct sge_chain_data *cd;
1138 	struct sge_desc	*cur_rx;
1139 	uint32_t rxinfo, rxstat;
1140 	int cons, prog;
1141 
1142 	SGE_LOCK_ASSERT(sc);
1143 
1144 	ifp = sc->sge_ifp;
1145 	cd = &sc->sge_cdata;
1146 
1147 	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1148 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1149 	cons = cd->sge_rx_cons;
1150 	for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1151 	    SGE_INC(cons, SGE_RX_RING_CNT)) {
1152 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1153 			break;
1154 		cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1155 		rxinfo = le32toh(cur_rx->sge_cmdsts);
1156 		if ((rxinfo & RDC_OWN) != 0)
1157 			break;
1158 		rxstat = le32toh(cur_rx->sge_sts_size);
1159 		if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1160 		    SGE_RX_NSEGS(rxstat) != 1) {
1161 			/* XXX We don't support multi-segment frames yet. */
1162 #ifdef SGE_SHOW_ERRORS
1163 			device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1164 			    RX_ERR_BITS);
1165 #endif
1166 			sge_discard_rxbuf(sc, cons);
1167 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1168 			continue;
1169 		}
1170 		m = cd->sge_rxdesc[cons].rx_m;
1171 		if (sge_newbuf(sc, cons) != 0) {
1172 			sge_discard_rxbuf(sc, cons);
1173 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1174 			continue;
1175 		}
1176 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1177 			if ((rxinfo & RDC_IP_CSUM) != 0 &&
1178 			    (rxinfo & RDC_IP_CSUM_OK) != 0)
1179 				m->m_pkthdr.csum_flags |=
1180 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
1181 			if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1182 			    (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1183 			    ((rxinfo & RDC_UDP_CSUM) != 0 &&
1184 			    (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1185 				m->m_pkthdr.csum_flags |=
1186 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1187 				m->m_pkthdr.csum_data = 0xffff;
1188 			}
1189 		}
1190 		/* Check for VLAN tagged frame. */
1191 		if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1192 		    (rxstat & RDS_VLAN) != 0) {
1193 			m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1194 			m->m_flags |= M_VLANTAG;
1195 		}
1196 		/*
1197 		 * Account for 10bytes auto padding which is used
1198 		 * to align IP header on 32bit boundary.  Also note,
1199 		 * CRC bytes is automatically removed by the
1200 		 * hardware.
1201 		 */
1202 		m->m_data += SGE_RX_PAD_BYTES;
1203 		m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1204 		    SGE_RX_PAD_BYTES;
1205 		m->m_pkthdr.rcvif = ifp;
1206 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1207 		SGE_UNLOCK(sc);
1208 		if_input(ifp, m);
1209 		SGE_LOCK(sc);
1210 	}
1211 
1212 	if (prog > 0) {
1213 		bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1214 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1215 		cd->sge_rx_cons = cons;
1216 	}
1217 }
1218 
1219 /*
1220  * A frame was downloaded to the chip.  It's safe for us to clean up
1221  * the list buffers.
1222  */
1223 static void
1224 sge_txeof(struct sge_softc *sc)
1225 {
1226 	if_t ifp;
1227 	struct sge_list_data *ld;
1228 	struct sge_chain_data *cd;
1229 	struct sge_txdesc *txd;
1230 	uint32_t txstat;
1231 	int cons, nsegs, prod;
1232 
1233 	SGE_LOCK_ASSERT(sc);
1234 
1235 	ifp = sc->sge_ifp;
1236 	ld = &sc->sge_ldata;
1237 	cd = &sc->sge_cdata;
1238 
1239 	if (cd->sge_tx_cnt == 0)
1240 		return;
1241 	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1242 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1243 	cons = cd->sge_tx_cons;
1244 	prod = cd->sge_tx_prod;
1245 	for (; cons != prod;) {
1246 		txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1247 		if ((txstat & TDC_OWN) != 0)
1248 			break;
1249 		/*
1250 		 * Only the first descriptor of multi-descriptor transmission
1251 		 * is updated by controller.  Driver should skip entire
1252 		 * chained buffers for the transmitted frame. In other words
1253 		 * TDC_OWN bit is valid only at the first descriptor of a
1254 		 * multi-descriptor transmission.
1255 		 */
1256 		if (SGE_TX_ERROR(txstat) != 0) {
1257 #ifdef SGE_SHOW_ERRORS
1258 			device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1259 			    txstat, TX_ERR_BITS);
1260 #endif
1261 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1262 		} else {
1263 #ifdef notyet
1264 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1265 #endif
1266 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1267 		}
1268 		txd = &cd->sge_txdesc[cons];
1269 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1270 			ld->sge_tx_ring[cons].sge_cmdsts = 0;
1271 			SGE_INC(cons, SGE_TX_RING_CNT);
1272 		}
1273 		/* Reclaim transmitted mbuf. */
1274 		KASSERT(txd->tx_m != NULL,
1275 		    ("%s: freeing NULL mbuf\n", __func__));
1276 		bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1277 		    BUS_DMASYNC_POSTWRITE);
1278 		bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1279 		m_freem(txd->tx_m);
1280 		txd->tx_m = NULL;
1281 		cd->sge_tx_cnt -= txd->tx_ndesc;
1282 		KASSERT(cd->sge_tx_cnt >= 0,
1283 		    ("%s: Active Tx desc counter was garbled\n", __func__));
1284 		txd->tx_ndesc = 0;
1285 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1286 	}
1287 	cd->sge_tx_cons = cons;
1288 	if (cd->sge_tx_cnt == 0)
1289 		sc->sge_timer = 0;
1290 }
1291 
1292 static void
1293 sge_tick(void *arg)
1294 {
1295 	struct sge_softc *sc;
1296 	struct mii_data *mii;
1297 	if_t ifp;
1298 
1299 	sc = arg;
1300 	SGE_LOCK_ASSERT(sc);
1301 
1302 	ifp = sc->sge_ifp;
1303 	mii = device_get_softc(sc->sge_miibus);
1304 	mii_tick(mii);
1305 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1306 		sge_miibus_statchg(sc->sge_dev);
1307 		if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1308 		    !if_sendq_empty(ifp))
1309 			sge_start_locked(ifp);
1310 	}
1311 	/*
1312 	 * Reclaim transmitted frames here as we do not request
1313 	 * Tx completion interrupt for every queued frames to
1314 	 * reduce excessive interrupts.
1315 	 */
1316 	sge_txeof(sc);
1317 	sge_watchdog(sc);
1318 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1319 }
1320 
1321 static void
1322 sge_intr(void *arg)
1323 {
1324 	struct sge_softc *sc;
1325 	if_t ifp;
1326 	uint32_t status;
1327 
1328 	sc = arg;
1329 	SGE_LOCK(sc);
1330 	ifp = sc->sge_ifp;
1331 
1332 	status = CSR_READ_4(sc, IntrStatus);
1333 	if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1334 		/* Not ours. */
1335 		SGE_UNLOCK(sc);
1336 		return;
1337 	}
1338 	/* Acknowledge interrupts. */
1339 	CSR_WRITE_4(sc, IntrStatus, status);
1340 	/* Disable further interrupts. */
1341 	CSR_WRITE_4(sc, IntrMask, 0);
1342 	/*
1343 	 * It seems the controller supports some kind of interrupt
1344 	 * moderation mechanism but we still don't know how to
1345 	 * enable that.  To reduce number of generated interrupts
1346 	 * under load we check pending interrupts in a loop.  This
1347 	 * will increase number of register access and is not correct
1348 	 * way to handle interrupt moderation but there seems to be
1349 	 * no other way at this time.
1350 	 */
1351 	for (;;) {
1352 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1353 			break;
1354 		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1355 			sge_rxeof(sc);
1356 			/* Wakeup Rx MAC. */
1357 			if ((status & INTR_RX_IDLE) != 0)
1358 				CSR_WRITE_4(sc, RX_CTL,
1359 				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1360 		}
1361 		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1362 			sge_txeof(sc);
1363 		status = CSR_READ_4(sc, IntrStatus);
1364 		if ((status & SGE_INTRS) == 0)
1365 			break;
1366 		/* Acknowledge interrupts. */
1367 		CSR_WRITE_4(sc, IntrStatus, status);
1368 	}
1369 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1370 		/* Re-enable interrupts */
1371 		CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1372 		if (!if_sendq_empty(ifp))
1373 			sge_start_locked(ifp);
1374 	}
1375 	SGE_UNLOCK(sc);
1376 }
1377 
1378 /*
1379  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1380  * pointers to the fragment pointers.
1381  */
1382 static int
1383 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1384 {
1385 	struct mbuf *m;
1386 	struct sge_desc *desc;
1387 	struct sge_txdesc *txd;
1388 	bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1389 	uint32_t cflags, mss;
1390 	int error, i, nsegs, prod, si;
1391 
1392 	SGE_LOCK_ASSERT(sc);
1393 
1394 	si = prod = sc->sge_cdata.sge_tx_prod;
1395 	txd = &sc->sge_cdata.sge_txdesc[prod];
1396 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1397 		struct ether_header *eh;
1398 		struct ip *ip;
1399 		struct tcphdr *tcp;
1400 		uint32_t ip_off, poff;
1401 
1402 		if (M_WRITABLE(*m_head) == 0) {
1403 			/* Get a writable copy. */
1404 			m = m_dup(*m_head, M_NOWAIT);
1405 			m_freem(*m_head);
1406 			if (m == NULL) {
1407 				*m_head = NULL;
1408 				return (ENOBUFS);
1409 			}
1410 			*m_head = m;
1411 		}
1412 		ip_off = sizeof(struct ether_header);
1413 		m = m_pullup(*m_head, ip_off);
1414 		if (m == NULL) {
1415 			*m_head = NULL;
1416 			return (ENOBUFS);
1417 		}
1418 		eh = mtod(m, struct ether_header *);
1419 		/* Check the existence of VLAN tag. */
1420 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1421 			ip_off = sizeof(struct ether_vlan_header);
1422 			m = m_pullup(m, ip_off);
1423 			if (m == NULL) {
1424 				*m_head = NULL;
1425 				return (ENOBUFS);
1426 			}
1427 		}
1428 		m = m_pullup(m, ip_off + sizeof(struct ip));
1429 		if (m == NULL) {
1430 			*m_head = NULL;
1431 			return (ENOBUFS);
1432 		}
1433 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1434 		poff = ip_off + (ip->ip_hl << 2);
1435 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1436 		if (m == NULL) {
1437 			*m_head = NULL;
1438 			return (ENOBUFS);
1439 		}
1440 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1441 		m = m_pullup(m, poff + (tcp->th_off << 2));
1442 		if (m == NULL) {
1443 			*m_head = NULL;
1444 			return (ENOBUFS);
1445 		}
1446 		/*
1447 		 * Reset IP checksum and recompute TCP pseudo
1448 		 * checksum that NDIS specification requires.
1449 		 */
1450 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1451 		ip->ip_sum = 0;
1452 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1453 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1454 		    htons(IPPROTO_TCP));
1455 		*m_head = m;
1456 	}
1457 
1458 	error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1459 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1460 	if (error == EFBIG) {
1461 		m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1462 		if (m == NULL) {
1463 			m_freem(*m_head);
1464 			*m_head = NULL;
1465 			return (ENOBUFS);
1466 		}
1467 		*m_head = m;
1468 		error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1469 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1470 		if (error != 0) {
1471 			m_freem(*m_head);
1472 			*m_head = NULL;
1473 			return (error);
1474 		}
1475 	} else if (error != 0)
1476 		return (error);
1477 
1478 	KASSERT(nsegs != 0, ("zero segment returned"));
1479 	/* Check descriptor overrun. */
1480 	if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1481 		bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1482 		return (ENOBUFS);
1483 	}
1484 	bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1485 	    BUS_DMASYNC_PREWRITE);
1486 
1487 	m = *m_head;
1488 	cflags = 0;
1489 	mss = 0;
1490 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1491 		cflags |= TDC_LS;
1492 		mss = (uint32_t)m->m_pkthdr.tso_segsz;
1493 		mss <<= 16;
1494 	} else {
1495 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1496 			cflags |= TDC_IP_CSUM;
1497 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1498 			cflags |= TDC_TCP_CSUM;
1499 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1500 			cflags |= TDC_UDP_CSUM;
1501 	}
1502 	for (i = 0; i < nsegs; i++) {
1503 		desc = &sc->sge_ldata.sge_tx_ring[prod];
1504 		if (i == 0) {
1505 			desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1506 			desc->sge_cmdsts = 0;
1507 		} else {
1508 			desc->sge_sts_size = 0;
1509 			desc->sge_cmdsts = htole32(TDC_OWN);
1510 		}
1511 		desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1512 		desc->sge_flags = htole32(txsegs[i].ds_len);
1513 		if (prod == SGE_TX_RING_CNT - 1)
1514 			desc->sge_flags |= htole32(RING_END);
1515 		sc->sge_cdata.sge_tx_cnt++;
1516 		SGE_INC(prod, SGE_TX_RING_CNT);
1517 	}
1518 	/* Update producer index. */
1519 	sc->sge_cdata.sge_tx_prod = prod;
1520 
1521 	desc = &sc->sge_ldata.sge_tx_ring[si];
1522 	/* Configure VLAN. */
1523 	if((m->m_flags & M_VLANTAG) != 0) {
1524 		cflags |= m->m_pkthdr.ether_vtag;
1525 		desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1526 	}
1527 	desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1528 #if 1
1529 	if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1530 		desc->sge_cmdsts |= htole32(TDC_BST);
1531 #else
1532 	if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1533 		desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1534 		if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1535 			desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1536 	}
1537 #endif
1538 	/* Request interrupt and give ownership to controller. */
1539 	desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1540 	txd->tx_m = m;
1541 	txd->tx_ndesc = nsegs;
1542 	return (0);
1543 }
1544 
1545 static void
1546 sge_start(if_t ifp)
1547 {
1548 	struct sge_softc *sc;
1549 
1550 	sc = if_getsoftc(ifp);
1551 	SGE_LOCK(sc);
1552 	sge_start_locked(ifp);
1553 	SGE_UNLOCK(sc);
1554 }
1555 
1556 static void
1557 sge_start_locked(if_t ifp)
1558 {
1559 	struct sge_softc *sc;
1560 	struct mbuf *m_head;
1561 	int queued = 0;
1562 
1563 	sc = if_getsoftc(ifp);
1564 	SGE_LOCK_ASSERT(sc);
1565 
1566 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1567 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1568 	    IFF_DRV_RUNNING)
1569 		return;
1570 
1571 	for (queued = 0; !if_sendq_empty(ifp); ) {
1572 		if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1573 		    SGE_MAXTXSEGS)) {
1574 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1575 			break;
1576 		}
1577 		m_head = if_dequeue(ifp);
1578 		if (m_head == NULL)
1579 			break;
1580 		if (sge_encap(sc, &m_head)) {
1581 			if (m_head == NULL)
1582 				break;
1583 			if_sendq_prepend(ifp, m_head);
1584 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1585 			break;
1586 		}
1587 		queued++;
1588 		/*
1589 		 * If there's a BPF listener, bounce a copy of this frame
1590 		 * to him.
1591 		 */
1592 		BPF_MTAP(ifp, m_head);
1593 	}
1594 
1595 	if (queued > 0) {
1596 		bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1597 		    sc->sge_cdata.sge_tx_dmamap,
1598 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1599 		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1600 		sc->sge_timer = 5;
1601 	}
1602 }
1603 
1604 static void
1605 sge_init(void *arg)
1606 {
1607 	struct sge_softc *sc;
1608 
1609 	sc = arg;
1610 	SGE_LOCK(sc);
1611 	sge_init_locked(sc);
1612 	SGE_UNLOCK(sc);
1613 }
1614 
1615 static void
1616 sge_init_locked(struct sge_softc *sc)
1617 {
1618 	if_t ifp;
1619 	struct mii_data *mii;
1620 	uint16_t rxfilt;
1621 	int i;
1622 
1623 	SGE_LOCK_ASSERT(sc);
1624 	ifp = sc->sge_ifp;
1625 	mii = device_get_softc(sc->sge_miibus);
1626 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1627 		return;
1628 	/*
1629 	 * Cancel pending I/O and free all RX/TX buffers.
1630 	 */
1631 	sge_stop(sc);
1632 	sge_reset(sc);
1633 
1634 	/* Init circular RX list. */
1635 	if (sge_list_rx_init(sc) == ENOBUFS) {
1636 		device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1637 		sge_stop(sc);
1638 		return;
1639 	}
1640 	/* Init TX descriptors. */
1641 	sge_list_tx_init(sc);
1642 	/*
1643 	 * Load the address of the RX and TX lists.
1644 	 */
1645 	CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1646 	CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1647 
1648 	CSR_WRITE_4(sc, TxMacControl, 0x60);
1649 	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1650 	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1651 	/* Allow receiving VLAN frames. */
1652 	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1653 	    SGE_RX_PAD_BYTES);
1654 
1655 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1656 		CSR_WRITE_1(sc, RxMacAddr + i, if_getlladdr(ifp)[i]);
1657 	/* Configure RX MAC. */
1658 	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1659 	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1660 	sge_rxfilter(sc);
1661 	sge_setvlan(sc);
1662 
1663 	/* Initialize default speed/duplex information. */
1664 	if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1665 		sc->sge_flags |= SGE_FLAG_SPEED_1000;
1666 	sc->sge_flags |= SGE_FLAG_FDX;
1667 	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1668 		CSR_WRITE_4(sc, StationControl, 0x04008001);
1669 	else
1670 		CSR_WRITE_4(sc, StationControl, 0x04000001);
1671 	/*
1672 	 * XXX Try to mitigate interrupts.
1673 	 */
1674 	CSR_WRITE_4(sc, IntrControl, 0x08880000);
1675 #ifdef notyet
1676 	if (sc->sge_intrcontrol != 0)
1677 		CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1678 	if (sc->sge_intrtimer != 0)
1679 		CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1680 #endif
1681 
1682 	/*
1683 	 * Clear and enable interrupts.
1684 	 */
1685 	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1686 	CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1687 
1688 	/* Enable receiver and transmitter. */
1689 	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1690 	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1691 
1692 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1693 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1694 
1695 	sc->sge_flags &= ~SGE_FLAG_LINK;
1696 	mii_mediachg(mii);
1697 	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1698 }
1699 
1700 /*
1701  * Set media options.
1702  */
1703 static int
1704 sge_ifmedia_upd(if_t ifp)
1705 {
1706 	struct sge_softc *sc;
1707 	struct mii_data *mii;
1708 		struct mii_softc *miisc;
1709 	int error;
1710 
1711 	sc = if_getsoftc(ifp);
1712 	SGE_LOCK(sc);
1713 	mii = device_get_softc(sc->sge_miibus);
1714 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1715 		PHY_RESET(miisc);
1716 	error = mii_mediachg(mii);
1717 	SGE_UNLOCK(sc);
1718 
1719 	return (error);
1720 }
1721 
1722 /*
1723  * Report current media status.
1724  */
1725 static void
1726 sge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1727 {
1728 	struct sge_softc *sc;
1729 	struct mii_data *mii;
1730 
1731 	sc = if_getsoftc(ifp);
1732 	SGE_LOCK(sc);
1733 	mii = device_get_softc(sc->sge_miibus);
1734 	if ((if_getflags(ifp) & IFF_UP) == 0) {
1735 		SGE_UNLOCK(sc);
1736 		return;
1737 	}
1738 	mii_pollstat(mii);
1739 	ifmr->ifm_active = mii->mii_media_active;
1740 	ifmr->ifm_status = mii->mii_media_status;
1741 	SGE_UNLOCK(sc);
1742 }
1743 
1744 static int
1745 sge_ioctl(if_t ifp, u_long command, caddr_t data)
1746 {
1747 	struct sge_softc *sc;
1748 	struct ifreq *ifr;
1749 	struct mii_data *mii;
1750 	int error = 0, mask, reinit;
1751 
1752 	sc = if_getsoftc(ifp);
1753 	ifr = (struct ifreq *)data;
1754 
1755 	switch(command) {
1756 	case SIOCSIFFLAGS:
1757 		SGE_LOCK(sc);
1758 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1759 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1760 			    ((if_getflags(ifp) ^ sc->sge_if_flags) &
1761 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1762 				sge_rxfilter(sc);
1763 			else
1764 				sge_init_locked(sc);
1765 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1766 			sge_stop(sc);
1767 		sc->sge_if_flags = if_getflags(ifp);
1768 		SGE_UNLOCK(sc);
1769 		break;
1770 	case SIOCSIFCAP:
1771 		SGE_LOCK(sc);
1772 		reinit = 0;
1773 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1774 		if ((mask & IFCAP_TXCSUM) != 0 &&
1775 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1776 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1777 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1778 				if_sethwassistbits(ifp, SGE_CSUM_FEATURES, 0);
1779 			else
1780 				if_sethwassistbits(ifp, 0, SGE_CSUM_FEATURES);
1781 		}
1782 		if ((mask & IFCAP_RXCSUM) != 0 &&
1783 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
1784 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1785 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1786 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
1787 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1788 		if ((mask & IFCAP_TSO4) != 0 &&
1789 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1790 			if_togglecapenable(ifp, IFCAP_TSO4);
1791 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
1792 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1793 			else
1794 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1795 		}
1796 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1797 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1798 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1799 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1800 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1801 			/*
1802 			 * Due to unknown reason, toggling VLAN hardware
1803 			 * tagging require interface reinitialization.
1804 			 */
1805 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1806 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1807 				if_setcapenablebit(ifp, 0,
1808 				    IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1809 			reinit = 1;
1810 		}
1811 		if (reinit > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1812 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1813 			sge_init_locked(sc);
1814 		}
1815 		SGE_UNLOCK(sc);
1816 		VLAN_CAPABILITIES(ifp);
1817 		break;
1818 	case SIOCADDMULTI:
1819 	case SIOCDELMULTI:
1820 		SGE_LOCK(sc);
1821 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1822 			sge_rxfilter(sc);
1823 		SGE_UNLOCK(sc);
1824 		break;
1825 	case SIOCGIFMEDIA:
1826 	case SIOCSIFMEDIA:
1827 		mii = device_get_softc(sc->sge_miibus);
1828 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1829 		break;
1830 	default:
1831 		error = ether_ioctl(ifp, command, data);
1832 		break;
1833 	}
1834 
1835 	return (error);
1836 }
1837 
1838 static void
1839 sge_watchdog(struct sge_softc *sc)
1840 {
1841 	if_t ifp;
1842 
1843 	SGE_LOCK_ASSERT(sc);
1844 	if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1845 		return;
1846 
1847 	ifp = sc->sge_ifp;
1848 	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1849 		if (1 || bootverbose)
1850 			device_printf(sc->sge_dev,
1851 			    "watchdog timeout (lost link)\n");
1852 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1853 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1854 		sge_init_locked(sc);
1855 		return;
1856 	}
1857 	device_printf(sc->sge_dev, "watchdog timeout\n");
1858 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1859 
1860 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1861 	sge_init_locked(sc);
1862 	if (!if_sendq_empty(sc->sge_ifp))
1863 		sge_start_locked(ifp);
1864 }
1865 
1866 /*
1867  * Stop the adapter and free any mbufs allocated to the
1868  * RX and TX lists.
1869  */
1870 static void
1871 sge_stop(struct sge_softc *sc)
1872 {
1873 	if_t ifp;
1874 
1875 	ifp = sc->sge_ifp;
1876 
1877 	SGE_LOCK_ASSERT(sc);
1878 
1879 	sc->sge_timer = 0;
1880 	callout_stop(&sc->sge_stat_ch);
1881 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1882 
1883 	CSR_WRITE_4(sc, IntrMask, 0);
1884 	CSR_READ_4(sc, IntrMask);
1885 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1886 	/* Stop TX/RX MAC. */
1887 	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1888 	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1889 	/* XXX Can we assume active DMA cycles gone? */
1890 	DELAY(2000);
1891 	CSR_WRITE_4(sc, IntrMask, 0);
1892 	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1893 
1894 	sc->sge_flags &= ~SGE_FLAG_LINK;
1895 	sge_list_rx_free(sc);
1896 	sge_list_tx_free(sc);
1897 }
1898