1 /*- 2 * Copyright (c) 2010-2015 Solarflare Communications Inc. 3 * All rights reserved. 4 * 5 * This software was developed in part by Philip Paeps under contract for 6 * Solarflare Communications, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright notice, 14 * this list of conditions and the following disclaimer in the documentation 15 * and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 19 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 26 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 27 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * The views and conclusions contained in the software and documentation are 30 * those of the authors and should not be interpreted as representing official 31 * policies, either expressed or implied, of the FreeBSD Project. 32 */ 33 34 /* Theory of operation: 35 * 36 * Tx queues allocation and mapping 37 * 38 * One Tx queue with enabled checksum offload is allocated per Rx channel 39 * (event queue). Also 2 Tx queues (one without checksum offload and one 40 * with IP checksum offload only) are allocated and bound to event queue 0. 41 * sfxge_txq_type is used as Tx queue label. 42 * 43 * So, event queue plus label mapping to Tx queue index is: 44 * if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES) 45 * else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1 46 * See sfxge_get_txq_by_label() sfxge_ev.c 47 */ 48 49 #include <sys/cdefs.h> 50 __FBSDID("$FreeBSD$"); 51 52 #include <sys/types.h> 53 #include <sys/mbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 59 #include <net/bpf.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_vlan_var.h> 63 64 #include <netinet/in.h> 65 #include <netinet/ip.h> 66 #include <netinet/ip6.h> 67 #include <netinet/tcp.h> 68 69 #include "common/efx.h" 70 71 #include "sfxge.h" 72 #include "sfxge_tx.h" 73 74 75 #define SFXGE_PARAM_TX_DPL_GET_MAX SFXGE_PARAM(tx_dpl_get_max) 76 static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT; 77 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max); 78 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN, 79 &sfxge_tx_dpl_get_max, 0, 80 "Maximum number of any packets in deferred packet get-list"); 81 82 #define SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \ 83 SFXGE_PARAM(tx_dpl_get_non_tcp_max) 84 static int sfxge_tx_dpl_get_non_tcp_max = 85 SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT; 86 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max); 87 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN, 88 &sfxge_tx_dpl_get_non_tcp_max, 0, 89 "Maximum number of non-TCP packets in deferred packet get-list"); 90 91 #define SFXGE_PARAM_TX_DPL_PUT_MAX SFXGE_PARAM(tx_dpl_put_max) 92 static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT; 93 TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max); 94 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN, 95 &sfxge_tx_dpl_put_max, 0, 96 "Maximum number of any packets in deferred packet put-list"); 97 98 #define SFXGE_PARAM_TSO_FW_ASSISTED SFXGE_PARAM(tso_fw_assisted) 99 static int sfxge_tso_fw_assisted = 1; 100 TUNABLE_INT(SFXGE_PARAM_TSO_FW_ASSISTED, &sfxge_tso_fw_assisted); 101 SYSCTL_INT(_hw_sfxge, OID_AUTO, tso_fw_assisted, CTLFLAG_RDTUN, 102 &sfxge_tso_fw_assisted, 0, 103 "Use FW-assisted TSO if supported by NIC firmware"); 104 105 106 static const struct { 107 const char *name; 108 size_t offset; 109 } sfxge_tx_stats[] = { 110 #define SFXGE_TX_STAT(name, member) \ 111 { #name, offsetof(struct sfxge_txq, member) } 112 SFXGE_TX_STAT(tso_bursts, tso_bursts), 113 SFXGE_TX_STAT(tso_packets, tso_packets), 114 SFXGE_TX_STAT(tso_long_headers, tso_long_headers), 115 SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many), 116 SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc), 117 SFXGE_TX_STAT(tx_collapses, collapses), 118 SFXGE_TX_STAT(tx_drops, drops), 119 SFXGE_TX_STAT(tx_get_overflow, get_overflow), 120 SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow), 121 SFXGE_TX_STAT(tx_put_overflow, put_overflow), 122 SFXGE_TX_STAT(tx_netdown_drops, netdown_drops), 123 }; 124 125 126 /* Forward declarations. */ 127 static void sfxge_tx_qdpl_service(struct sfxge_txq *txq); 128 static void sfxge_tx_qlist_post(struct sfxge_txq *txq); 129 static void sfxge_tx_qunblock(struct sfxge_txq *txq); 130 static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, 131 const bus_dma_segment_t *dma_seg, int n_dma_seg, 132 int vlan_tagged); 133 134 static int 135 sfxge_tx_maybe_insert_tag(struct sfxge_txq *txq, struct mbuf *mbuf) 136 { 137 uint16_t this_tag = ((mbuf->m_flags & M_VLANTAG) ? 138 mbuf->m_pkthdr.ether_vtag : 139 0); 140 141 if (this_tag == txq->hw_vlan_tci) 142 return (0); 143 144 efx_tx_qdesc_vlantci_create(txq->common, 145 bswap16(this_tag), 146 &txq->pend_desc[0]); 147 txq->n_pend_desc = 1; 148 txq->hw_vlan_tci = this_tag; 149 return (1); 150 } 151 152 static inline void 153 sfxge_next_stmp(struct sfxge_txq *txq, struct sfxge_tx_mapping **pstmp) 154 { 155 KASSERT((*pstmp)->flags == 0, ("stmp flags are not 0")); 156 if (__predict_false(*pstmp == 157 &txq->stmp[txq->ptr_mask])) 158 *pstmp = &txq->stmp[0]; 159 else 160 (*pstmp)++; 161 } 162 163 164 void 165 sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq) 166 { 167 unsigned int completed; 168 169 SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); 170 171 completed = txq->completed; 172 while (completed != txq->pending) { 173 struct sfxge_tx_mapping *stmp; 174 unsigned int id; 175 176 id = completed++ & txq->ptr_mask; 177 178 stmp = &txq->stmp[id]; 179 if (stmp->flags & TX_BUF_UNMAP) { 180 bus_dmamap_unload(txq->packet_dma_tag, stmp->map); 181 if (stmp->flags & TX_BUF_MBUF) { 182 struct mbuf *m = stmp->u.mbuf; 183 do 184 m = m_free(m); 185 while (m != NULL); 186 } else { 187 free(stmp->u.heap_buf, M_SFXGE); 188 } 189 stmp->flags = 0; 190 } 191 } 192 txq->completed = completed; 193 194 /* Check whether we need to unblock the queue. */ 195 mb(); 196 if (txq->blocked) { 197 unsigned int level; 198 199 level = txq->added - txq->completed; 200 if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) 201 sfxge_tx_qunblock(txq); 202 } 203 } 204 205 static unsigned int 206 sfxge_is_mbuf_non_tcp(struct mbuf *mbuf) 207 { 208 /* Absense of TCP checksum flags does not mean that it is non-TCP 209 * but it should be true if user wants to achieve high throughput. 210 */ 211 return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP))); 212 } 213 214 /* 215 * Reorder the put list and append it to the get list. 216 */ 217 static void 218 sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq) 219 { 220 struct sfxge_tx_dpl *stdp; 221 struct mbuf *mbuf, *get_next, **get_tailp; 222 volatile uintptr_t *putp; 223 uintptr_t put; 224 unsigned int count; 225 unsigned int non_tcp_count; 226 227 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 228 229 stdp = &txq->dpl; 230 231 /* Acquire the put list. */ 232 putp = &stdp->std_put; 233 put = atomic_readandclear_ptr(putp); 234 mbuf = (void *)put; 235 236 if (mbuf == NULL) 237 return; 238 239 /* Reverse the put list. */ 240 get_tailp = &mbuf->m_nextpkt; 241 get_next = NULL; 242 243 count = 0; 244 non_tcp_count = 0; 245 do { 246 struct mbuf *put_next; 247 248 non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf); 249 put_next = mbuf->m_nextpkt; 250 mbuf->m_nextpkt = get_next; 251 get_next = mbuf; 252 mbuf = put_next; 253 254 count++; 255 } while (mbuf != NULL); 256 257 if (count > stdp->std_put_hiwat) 258 stdp->std_put_hiwat = count; 259 260 /* Append the reversed put list to the get list. */ 261 KASSERT(*get_tailp == NULL, ("*get_tailp != NULL")); 262 *stdp->std_getp = get_next; 263 stdp->std_getp = get_tailp; 264 stdp->std_get_count += count; 265 stdp->std_get_non_tcp_count += non_tcp_count; 266 } 267 268 static void 269 sfxge_tx_qreap(struct sfxge_txq *txq) 270 { 271 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 272 273 txq->reaped = txq->completed; 274 } 275 276 static void 277 sfxge_tx_qlist_post(struct sfxge_txq *txq) 278 { 279 unsigned int old_added; 280 unsigned int block_level; 281 unsigned int level; 282 int rc; 283 284 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 285 286 KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0")); 287 KASSERT(txq->n_pend_desc <= txq->max_pkt_desc, 288 ("txq->n_pend_desc too large")); 289 KASSERT(!txq->blocked, ("txq->blocked")); 290 291 old_added = txq->added; 292 293 /* Post the fragment list. */ 294 rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, txq->n_pend_desc, 295 txq->reaped, &txq->added); 296 KASSERT(rc == 0, ("efx_tx_qdesc_post() failed")); 297 298 /* If efx_tx_qdesc_post() had to refragment, our information about 299 * buffers to free may be associated with the wrong 300 * descriptors. 301 */ 302 KASSERT(txq->added - old_added == txq->n_pend_desc, 303 ("efx_tx_qdesc_post() refragmented descriptors")); 304 305 level = txq->added - txq->reaped; 306 KASSERT(level <= txq->entries, ("overfilled TX queue")); 307 308 /* Clear the fragment list. */ 309 txq->n_pend_desc = 0; 310 311 /* 312 * Set the block level to ensure there is space to generate a 313 * large number of descriptors for TSO. 314 */ 315 block_level = EFX_TXQ_LIMIT(txq->entries) - txq->max_pkt_desc; 316 317 /* Have we reached the block level? */ 318 if (level < block_level) 319 return; 320 321 /* Reap, and check again */ 322 sfxge_tx_qreap(txq); 323 level = txq->added - txq->reaped; 324 if (level < block_level) 325 return; 326 327 txq->blocked = 1; 328 329 /* 330 * Avoid a race with completion interrupt handling that could leave 331 * the queue blocked. 332 */ 333 mb(); 334 sfxge_tx_qreap(txq); 335 level = txq->added - txq->reaped; 336 if (level < block_level) { 337 mb(); 338 txq->blocked = 0; 339 } 340 } 341 342 static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf) 343 { 344 bus_dmamap_t *used_map; 345 bus_dmamap_t map; 346 bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG]; 347 unsigned int id; 348 struct sfxge_tx_mapping *stmp; 349 efx_desc_t *desc; 350 int n_dma_seg; 351 int rc; 352 int i; 353 int eop; 354 int vlan_tagged; 355 356 KASSERT(!txq->blocked, ("txq->blocked")); 357 358 if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) 359 prefetch_read_many(mbuf->m_data); 360 361 if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) { 362 rc = EINTR; 363 goto reject; 364 } 365 366 /* Load the packet for DMA. */ 367 id = txq->added & txq->ptr_mask; 368 stmp = &txq->stmp[id]; 369 rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map, 370 mbuf, dma_seg, &n_dma_seg, 0); 371 if (rc == EFBIG) { 372 /* Try again. */ 373 struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT, 374 SFXGE_TX_MAPPING_MAX_SEG); 375 if (new_mbuf == NULL) 376 goto reject; 377 ++txq->collapses; 378 mbuf = new_mbuf; 379 rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, 380 stmp->map, mbuf, 381 dma_seg, &n_dma_seg, 0); 382 } 383 if (rc != 0) 384 goto reject; 385 386 /* Make the packet visible to the hardware. */ 387 bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE); 388 389 used_map = &stmp->map; 390 391 vlan_tagged = sfxge_tx_maybe_insert_tag(txq, mbuf); 392 if (vlan_tagged) { 393 sfxge_next_stmp(txq, &stmp); 394 } 395 if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) { 396 rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg, vlan_tagged); 397 if (rc < 0) 398 goto reject_mapped; 399 stmp = &txq->stmp[(rc - 1) & txq->ptr_mask]; 400 } else { 401 /* Add the mapping to the fragment list, and set flags 402 * for the buffer. 403 */ 404 405 i = 0; 406 for (;;) { 407 desc = &txq->pend_desc[i + vlan_tagged]; 408 eop = (i == n_dma_seg - 1); 409 efx_tx_qdesc_dma_create(txq->common, 410 dma_seg[i].ds_addr, 411 dma_seg[i].ds_len, 412 eop, 413 desc); 414 if (eop) 415 break; 416 i++; 417 sfxge_next_stmp(txq, &stmp); 418 } 419 txq->n_pend_desc = n_dma_seg + vlan_tagged; 420 } 421 422 /* 423 * If the mapping required more than one descriptor 424 * then we need to associate the DMA map with the last 425 * descriptor, not the first. 426 */ 427 if (used_map != &stmp->map) { 428 map = stmp->map; 429 stmp->map = *used_map; 430 *used_map = map; 431 } 432 433 stmp->u.mbuf = mbuf; 434 stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF; 435 436 /* Post the fragment list. */ 437 sfxge_tx_qlist_post(txq); 438 439 return (0); 440 441 reject_mapped: 442 bus_dmamap_unload(txq->packet_dma_tag, *used_map); 443 reject: 444 /* Drop the packet on the floor. */ 445 m_freem(mbuf); 446 ++txq->drops; 447 448 return (rc); 449 } 450 451 /* 452 * Drain the deferred packet list into the transmit queue. 453 */ 454 static void 455 sfxge_tx_qdpl_drain(struct sfxge_txq *txq) 456 { 457 struct sfxge_softc *sc; 458 struct sfxge_tx_dpl *stdp; 459 struct mbuf *mbuf, *next; 460 unsigned int count; 461 unsigned int non_tcp_count; 462 unsigned int pushed; 463 int rc; 464 465 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 466 467 sc = txq->sc; 468 stdp = &txq->dpl; 469 pushed = txq->added; 470 471 if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) { 472 prefetch_read_many(sc->enp); 473 prefetch_read_many(txq->common); 474 } 475 476 mbuf = stdp->std_get; 477 count = stdp->std_get_count; 478 non_tcp_count = stdp->std_get_non_tcp_count; 479 480 if (count > stdp->std_get_hiwat) 481 stdp->std_get_hiwat = count; 482 483 while (count != 0) { 484 KASSERT(mbuf != NULL, ("mbuf == NULL")); 485 486 next = mbuf->m_nextpkt; 487 mbuf->m_nextpkt = NULL; 488 489 ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */ 490 491 if (next != NULL) 492 prefetch_read_many(next); 493 494 rc = sfxge_tx_queue_mbuf(txq, mbuf); 495 --count; 496 non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf); 497 mbuf = next; 498 if (rc != 0) 499 continue; 500 501 if (txq->blocked) 502 break; 503 504 /* Push the fragments to the hardware in batches. */ 505 if (txq->added - pushed >= SFXGE_TX_BATCH) { 506 efx_tx_qpush(txq->common, txq->added, pushed); 507 pushed = txq->added; 508 } 509 } 510 511 if (count == 0) { 512 KASSERT(mbuf == NULL, ("mbuf != NULL")); 513 KASSERT(non_tcp_count == 0, 514 ("inconsistent TCP/non-TCP detection")); 515 stdp->std_get = NULL; 516 stdp->std_get_count = 0; 517 stdp->std_get_non_tcp_count = 0; 518 stdp->std_getp = &stdp->std_get; 519 } else { 520 stdp->std_get = mbuf; 521 stdp->std_get_count = count; 522 stdp->std_get_non_tcp_count = non_tcp_count; 523 } 524 525 if (txq->added != pushed) 526 efx_tx_qpush(txq->common, txq->added, pushed); 527 528 KASSERT(txq->blocked || stdp->std_get_count == 0, 529 ("queue unblocked but count is non-zero")); 530 } 531 532 #define SFXGE_TX_QDPL_PENDING(_txq) ((_txq)->dpl.std_put != 0) 533 534 /* 535 * Service the deferred packet list. 536 * 537 * NOTE: drops the txq mutex! 538 */ 539 static void 540 sfxge_tx_qdpl_service(struct sfxge_txq *txq) 541 { 542 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 543 544 do { 545 if (SFXGE_TX_QDPL_PENDING(txq)) 546 sfxge_tx_qdpl_swizzle(txq); 547 548 if (!txq->blocked) 549 sfxge_tx_qdpl_drain(txq); 550 551 SFXGE_TXQ_UNLOCK(txq); 552 } while (SFXGE_TX_QDPL_PENDING(txq) && 553 SFXGE_TXQ_TRYLOCK(txq)); 554 } 555 556 /* 557 * Put a packet on the deferred packet get-list. 558 */ 559 static int 560 sfxge_tx_qdpl_put_locked(struct sfxge_txq *txq, struct mbuf *mbuf) 561 { 562 struct sfxge_tx_dpl *stdp; 563 564 stdp = &txq->dpl; 565 566 KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); 567 568 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 569 570 if (stdp->std_get_count >= stdp->std_get_max) { 571 txq->get_overflow++; 572 return (ENOBUFS); 573 } 574 if (sfxge_is_mbuf_non_tcp(mbuf)) { 575 if (stdp->std_get_non_tcp_count >= 576 stdp->std_get_non_tcp_max) { 577 txq->get_non_tcp_overflow++; 578 return (ENOBUFS); 579 } 580 stdp->std_get_non_tcp_count++; 581 } 582 583 *(stdp->std_getp) = mbuf; 584 stdp->std_getp = &mbuf->m_nextpkt; 585 stdp->std_get_count++; 586 587 return (0); 588 } 589 590 /* 591 * Put a packet on the deferred packet put-list. 592 * 593 * We overload the csum_data field in the mbuf to keep track of this length 594 * because there is no cheap alternative to avoid races. 595 */ 596 static int 597 sfxge_tx_qdpl_put_unlocked(struct sfxge_txq *txq, struct mbuf *mbuf) 598 { 599 struct sfxge_tx_dpl *stdp; 600 volatile uintptr_t *putp; 601 uintptr_t old; 602 uintptr_t new; 603 unsigned old_len; 604 605 KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); 606 607 SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq); 608 609 stdp = &txq->dpl; 610 putp = &stdp->std_put; 611 new = (uintptr_t)mbuf; 612 613 do { 614 old = *putp; 615 if (old != 0) { 616 struct mbuf *mp = (struct mbuf *)old; 617 old_len = mp->m_pkthdr.csum_data; 618 } else 619 old_len = 0; 620 if (old_len >= stdp->std_put_max) { 621 atomic_add_long(&txq->put_overflow, 1); 622 return (ENOBUFS); 623 } 624 mbuf->m_pkthdr.csum_data = old_len + 1; 625 mbuf->m_nextpkt = (void *)old; 626 } while (atomic_cmpset_ptr(putp, old, new) == 0); 627 628 return (0); 629 } 630 631 /* 632 * Called from if_transmit - will try to grab the txq lock and enqueue to the 633 * put list if it succeeds, otherwise try to push onto the defer list if space. 634 */ 635 static int 636 sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m) 637 { 638 int rc; 639 640 if (!SFXGE_LINK_UP(txq->sc)) { 641 atomic_add_long(&txq->netdown_drops, 1); 642 return (ENETDOWN); 643 } 644 645 /* 646 * Try to grab the txq lock. If we are able to get the lock, 647 * the packet will be appended to the "get list" of the deferred 648 * packet list. Otherwise, it will be pushed on the "put list". 649 */ 650 if (SFXGE_TXQ_TRYLOCK(txq)) { 651 /* First swizzle put-list to get-list to keep order */ 652 sfxge_tx_qdpl_swizzle(txq); 653 654 rc = sfxge_tx_qdpl_put_locked(txq, m); 655 656 /* Try to service the list. */ 657 sfxge_tx_qdpl_service(txq); 658 /* Lock has been dropped. */ 659 } else { 660 rc = sfxge_tx_qdpl_put_unlocked(txq, m); 661 662 /* 663 * Try to grab the lock again. 664 * 665 * If we are able to get the lock, we need to process 666 * the deferred packet list. If we are not able to get 667 * the lock, another thread is processing the list. 668 */ 669 if ((rc == 0) && SFXGE_TXQ_TRYLOCK(txq)) { 670 sfxge_tx_qdpl_service(txq); 671 /* Lock has been dropped. */ 672 } 673 } 674 675 SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq); 676 677 return (rc); 678 } 679 680 static void 681 sfxge_tx_qdpl_flush(struct sfxge_txq *txq) 682 { 683 struct sfxge_tx_dpl *stdp = &txq->dpl; 684 struct mbuf *mbuf, *next; 685 686 SFXGE_TXQ_LOCK(txq); 687 688 sfxge_tx_qdpl_swizzle(txq); 689 for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) { 690 next = mbuf->m_nextpkt; 691 m_freem(mbuf); 692 } 693 stdp->std_get = NULL; 694 stdp->std_get_count = 0; 695 stdp->std_get_non_tcp_count = 0; 696 stdp->std_getp = &stdp->std_get; 697 698 SFXGE_TXQ_UNLOCK(txq); 699 } 700 701 void 702 sfxge_if_qflush(struct ifnet *ifp) 703 { 704 struct sfxge_softc *sc; 705 unsigned int i; 706 707 sc = ifp->if_softc; 708 709 for (i = 0; i < sc->txq_count; i++) 710 sfxge_tx_qdpl_flush(sc->txq[i]); 711 } 712 713 #if SFXGE_TX_PARSE_EARLY 714 715 /* There is little space for user data in mbuf pkthdr, so we 716 * use l*hlen fields which are not used by the driver otherwise 717 * to store header offsets. 718 * The fields are 8-bit, but it's ok, no header may be longer than 255 bytes. 719 */ 720 721 722 #define TSO_MBUF_PROTO(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[0]) 723 /* We abuse l5hlen here because PH_loc can hold only 64 bits of data */ 724 #define TSO_MBUF_FLAGS(_mbuf) ((_mbuf)->m_pkthdr.l5hlen) 725 #define TSO_MBUF_PACKETID(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1]) 726 #define TSO_MBUF_SEQNUM(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.thirtytwo[1]) 727 728 static void sfxge_parse_tx_packet(struct mbuf *mbuf) 729 { 730 struct ether_header *eh = mtod(mbuf, struct ether_header *); 731 const struct tcphdr *th; 732 struct tcphdr th_copy; 733 734 /* Find network protocol and header */ 735 TSO_MBUF_PROTO(mbuf) = eh->ether_type; 736 if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_VLAN)) { 737 struct ether_vlan_header *veh = 738 mtod(mbuf, struct ether_vlan_header *); 739 TSO_MBUF_PROTO(mbuf) = veh->evl_proto; 740 mbuf->m_pkthdr.l2hlen = sizeof(*veh); 741 } else { 742 mbuf->m_pkthdr.l2hlen = sizeof(*eh); 743 } 744 745 /* Find TCP header */ 746 if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IP)) { 747 const struct ip *iph = (const struct ip *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen); 748 749 KASSERT(iph->ip_p == IPPROTO_TCP, 750 ("TSO required on non-TCP packet")); 751 mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + 4 * iph->ip_hl; 752 TSO_MBUF_PACKETID(mbuf) = iph->ip_id; 753 } else { 754 KASSERT(TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IPV6), 755 ("TSO required on non-IP packet")); 756 KASSERT(((const struct ip6_hdr *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen))->ip6_nxt == 757 IPPROTO_TCP, 758 ("TSO required on non-TCP packet")); 759 mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + sizeof(struct ip6_hdr); 760 TSO_MBUF_PACKETID(mbuf) = 0; 761 } 762 763 KASSERT(mbuf->m_len >= mbuf->m_pkthdr.l3hlen, 764 ("network header is fragmented in mbuf")); 765 766 /* We need TCP header including flags (window is the next) */ 767 if (mbuf->m_len < mbuf->m_pkthdr.l3hlen + offsetof(struct tcphdr, th_win)) { 768 m_copydata(mbuf, mbuf->m_pkthdr.l3hlen, sizeof(th_copy), 769 (caddr_t)&th_copy); 770 th = &th_copy; 771 } else { 772 th = (const struct tcphdr *)mtodo(mbuf, mbuf->m_pkthdr.l3hlen); 773 } 774 775 mbuf->m_pkthdr.l4hlen = mbuf->m_pkthdr.l3hlen + 4 * th->th_off; 776 TSO_MBUF_SEQNUM(mbuf) = ntohl(th->th_seq); 777 778 /* These flags must not be duplicated */ 779 /* 780 * RST should not be duplicated as well, but FreeBSD kernel 781 * generates TSO packets with RST flag. So, do not assert 782 * its absence. 783 */ 784 KASSERT(!(th->th_flags & (TH_URG | TH_SYN)), 785 ("incompatible TCP flag 0x%x on TSO packet", 786 th->th_flags & (TH_URG | TH_SYN))); 787 TSO_MBUF_FLAGS(mbuf) = th->th_flags; 788 } 789 #endif 790 791 /* 792 * TX start -- called by the stack. 793 */ 794 int 795 sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m) 796 { 797 struct sfxge_softc *sc; 798 struct sfxge_txq *txq; 799 int rc; 800 801 sc = (struct sfxge_softc *)ifp->if_softc; 802 803 /* 804 * Transmit may be called when interface is up from the kernel 805 * point of view, but not yet up (in progress) from the driver 806 * point of view. I.e. link aggregation bring up. 807 * Transmit may be called when interface is up from the driver 808 * point of view, but already down from the kernel point of 809 * view. I.e. Rx when interface shutdown is in progress. 810 */ 811 KASSERT((ifp->if_flags & IFF_UP) || (sc->if_flags & IFF_UP), 812 ("interface not up")); 813 814 /* Pick the desired transmit queue. */ 815 if (m->m_pkthdr.csum_flags & 816 (CSUM_DELAY_DATA | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_TSO)) { 817 int index = 0; 818 819 /* check if flowid is set */ 820 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 821 uint32_t hash = m->m_pkthdr.flowid; 822 823 index = sc->rx_indir_table[hash % SFXGE_RX_SCALE_MAX]; 824 } 825 #if SFXGE_TX_PARSE_EARLY 826 if (m->m_pkthdr.csum_flags & CSUM_TSO) 827 sfxge_parse_tx_packet(m); 828 #endif 829 txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index]; 830 } else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) { 831 txq = sc->txq[SFXGE_TXQ_IP_CKSUM]; 832 } else { 833 txq = sc->txq[SFXGE_TXQ_NON_CKSUM]; 834 } 835 836 rc = sfxge_tx_packet_add(txq, m); 837 if (rc != 0) 838 m_freem(m); 839 840 return (rc); 841 } 842 843 /* 844 * Software "TSO". Not quite as good as doing it in hardware, but 845 * still faster than segmenting in the stack. 846 */ 847 848 struct sfxge_tso_state { 849 /* Output position */ 850 unsigned out_len; /* Remaining length in current segment */ 851 unsigned seqnum; /* Current sequence number */ 852 unsigned packet_space; /* Remaining space in current packet */ 853 854 /* Input position */ 855 uint64_t dma_addr; /* DMA address of current position */ 856 unsigned in_len; /* Remaining length in current mbuf */ 857 858 const struct mbuf *mbuf; /* Input mbuf (head of chain) */ 859 u_short protocol; /* Network protocol (after VLAN decap) */ 860 ssize_t nh_off; /* Offset of network header */ 861 ssize_t tcph_off; /* Offset of TCP header */ 862 unsigned header_len; /* Number of bytes of header */ 863 unsigned seg_size; /* TCP segment size */ 864 int fw_assisted; /* Use FW-assisted TSO */ 865 u_short packet_id; /* IPv4 packet ID from the original packet */ 866 uint8_t tcp_flags; /* TCP flags */ 867 efx_desc_t header_desc; /* Precomputed header descriptor for 868 * FW-assisted TSO */ 869 }; 870 871 #if !SFXGE_TX_PARSE_EARLY 872 static const struct ip *tso_iph(const struct sfxge_tso_state *tso) 873 { 874 KASSERT(tso->protocol == htons(ETHERTYPE_IP), 875 ("tso_iph() in non-IPv4 state")); 876 return (const struct ip *)(tso->mbuf->m_data + tso->nh_off); 877 } 878 879 static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso) 880 { 881 KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), 882 ("tso_ip6h() in non-IPv6 state")); 883 return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off); 884 } 885 886 static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso) 887 { 888 return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off); 889 } 890 #endif 891 892 893 /* Size of preallocated TSO header buffers. Larger blocks must be 894 * allocated from the heap. 895 */ 896 #define TSOH_STD_SIZE 128 897 898 /* At most half the descriptors in the queue at any time will refer to 899 * a TSO header buffer, since they must always be followed by a 900 * payload descriptor referring to an mbuf. 901 */ 902 #define TSOH_COUNT(_txq_entries) ((_txq_entries) / 2u) 903 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE) 904 #define TSOH_PAGE_COUNT(_txq_entries) \ 905 ((TSOH_COUNT(_txq_entries) + TSOH_PER_PAGE - 1) / TSOH_PER_PAGE) 906 907 static int tso_init(struct sfxge_txq *txq) 908 { 909 struct sfxge_softc *sc = txq->sc; 910 unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries); 911 int i, rc; 912 913 /* Allocate TSO header buffers */ 914 txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]), 915 M_SFXGE, M_WAITOK); 916 917 for (i = 0; i < tsoh_page_count; i++) { 918 rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]); 919 if (rc != 0) 920 goto fail; 921 } 922 923 return (0); 924 925 fail: 926 while (i-- > 0) 927 sfxge_dma_free(&txq->tsoh_buffer[i]); 928 free(txq->tsoh_buffer, M_SFXGE); 929 txq->tsoh_buffer = NULL; 930 return (rc); 931 } 932 933 static void tso_fini(struct sfxge_txq *txq) 934 { 935 int i; 936 937 if (txq->tsoh_buffer != NULL) { 938 for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++) 939 sfxge_dma_free(&txq->tsoh_buffer[i]); 940 free(txq->tsoh_buffer, M_SFXGE); 941 } 942 } 943 944 static void tso_start(struct sfxge_txq *txq, struct sfxge_tso_state *tso, 945 const bus_dma_segment_t *hdr_dma_seg, 946 struct mbuf *mbuf) 947 { 948 const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->sc->enp); 949 #if !SFXGE_TX_PARSE_EARLY 950 struct ether_header *eh = mtod(mbuf, struct ether_header *); 951 const struct tcphdr *th; 952 struct tcphdr th_copy; 953 #endif 954 955 tso->fw_assisted = txq->sc->tso_fw_assisted; 956 tso->mbuf = mbuf; 957 958 /* Find network protocol and header */ 959 #if !SFXGE_TX_PARSE_EARLY 960 tso->protocol = eh->ether_type; 961 if (tso->protocol == htons(ETHERTYPE_VLAN)) { 962 struct ether_vlan_header *veh = 963 mtod(mbuf, struct ether_vlan_header *); 964 tso->protocol = veh->evl_proto; 965 tso->nh_off = sizeof(*veh); 966 } else { 967 tso->nh_off = sizeof(*eh); 968 } 969 #else 970 tso->protocol = TSO_MBUF_PROTO(mbuf); 971 tso->nh_off = mbuf->m_pkthdr.l2hlen; 972 tso->tcph_off = mbuf->m_pkthdr.l3hlen; 973 tso->packet_id = TSO_MBUF_PACKETID(mbuf); 974 #endif 975 976 #if !SFXGE_TX_PARSE_EARLY 977 /* Find TCP header */ 978 if (tso->protocol == htons(ETHERTYPE_IP)) { 979 KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP, 980 ("TSO required on non-TCP packet")); 981 tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl; 982 tso->packet_id = tso_iph(tso)->ip_id; 983 } else { 984 KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), 985 ("TSO required on non-IP packet")); 986 KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP, 987 ("TSO required on non-TCP packet")); 988 tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr); 989 tso->packet_id = 0; 990 } 991 #endif 992 993 994 if (tso->fw_assisted && 995 __predict_false(tso->tcph_off > 996 encp->enc_tx_tso_tcp_header_offset_limit)) { 997 tso->fw_assisted = 0; 998 } 999 1000 1001 #if !SFXGE_TX_PARSE_EARLY 1002 KASSERT(mbuf->m_len >= tso->tcph_off, 1003 ("network header is fragmented in mbuf")); 1004 /* We need TCP header including flags (window is the next) */ 1005 if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) { 1006 m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy), 1007 (caddr_t)&th_copy); 1008 th = &th_copy; 1009 } else { 1010 th = tso_tcph(tso); 1011 } 1012 tso->header_len = tso->tcph_off + 4 * th->th_off; 1013 #else 1014 tso->header_len = mbuf->m_pkthdr.l4hlen; 1015 #endif 1016 tso->seg_size = mbuf->m_pkthdr.tso_segsz; 1017 1018 #if !SFXGE_TX_PARSE_EARLY 1019 tso->seqnum = ntohl(th->th_seq); 1020 1021 /* These flags must not be duplicated */ 1022 /* 1023 * RST should not be duplicated as well, but FreeBSD kernel 1024 * generates TSO packets with RST flag. So, do not assert 1025 * its absence. 1026 */ 1027 KASSERT(!(th->th_flags & (TH_URG | TH_SYN)), 1028 ("incompatible TCP flag 0x%x on TSO packet", 1029 th->th_flags & (TH_URG | TH_SYN))); 1030 tso->tcp_flags = th->th_flags; 1031 #else 1032 tso->seqnum = TSO_MBUF_SEQNUM(mbuf); 1033 tso->tcp_flags = TSO_MBUF_FLAGS(mbuf); 1034 #endif 1035 1036 tso->out_len = mbuf->m_pkthdr.len - tso->header_len; 1037 1038 if (tso->fw_assisted) { 1039 if (hdr_dma_seg->ds_len >= tso->header_len) 1040 efx_tx_qdesc_dma_create(txq->common, 1041 hdr_dma_seg->ds_addr, 1042 tso->header_len, 1043 B_FALSE, 1044 &tso->header_desc); 1045 else 1046 tso->fw_assisted = 0; 1047 } 1048 } 1049 1050 /* 1051 * tso_fill_packet_with_fragment - form descriptors for the current fragment 1052 * 1053 * Form descriptors for the current fragment, until we reach the end 1054 * of fragment or end-of-packet. Return 0 on success, 1 if not enough 1055 * space. 1056 */ 1057 static void tso_fill_packet_with_fragment(struct sfxge_txq *txq, 1058 struct sfxge_tso_state *tso) 1059 { 1060 efx_desc_t *desc; 1061 int n; 1062 1063 if (tso->in_len == 0 || tso->packet_space == 0) 1064 return; 1065 1066 KASSERT(tso->in_len > 0, ("TSO input length went negative")); 1067 KASSERT(tso->packet_space > 0, ("TSO packet space went negative")); 1068 1069 n = min(tso->in_len, tso->packet_space); 1070 1071 tso->packet_space -= n; 1072 tso->out_len -= n; 1073 tso->in_len -= n; 1074 1075 desc = &txq->pend_desc[txq->n_pend_desc++]; 1076 efx_tx_qdesc_dma_create(txq->common, 1077 tso->dma_addr, 1078 n, 1079 tso->out_len == 0 || tso->packet_space == 0, 1080 desc); 1081 1082 tso->dma_addr += n; 1083 } 1084 1085 /* Callback from bus_dmamap_load() for long TSO headers. */ 1086 static void tso_map_long_header(void *dma_addr_ret, 1087 bus_dma_segment_t *segs, int nseg, 1088 int error) 1089 { 1090 *(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) && 1091 __predict_true(nseg == 1)) ? 1092 segs->ds_addr : 0); 1093 } 1094 1095 /* 1096 * tso_start_new_packet - generate a new header and prepare for the new packet 1097 * 1098 * Generate a new header and prepare for the new packet. Return 0 on 1099 * success, or an error code if failed to alloc header. 1100 */ 1101 static int tso_start_new_packet(struct sfxge_txq *txq, 1102 struct sfxge_tso_state *tso, 1103 unsigned int *idp) 1104 { 1105 unsigned int id = *idp; 1106 struct tcphdr *tsoh_th; 1107 unsigned ip_length; 1108 caddr_t header; 1109 uint64_t dma_addr; 1110 bus_dmamap_t map; 1111 efx_desc_t *desc; 1112 int rc; 1113 1114 if (tso->fw_assisted) { 1115 uint8_t tcp_flags = tso->tcp_flags; 1116 1117 if (tso->out_len > tso->seg_size) 1118 tcp_flags &= ~(TH_FIN | TH_PUSH); 1119 1120 /* TSO option descriptor */ 1121 desc = &txq->pend_desc[txq->n_pend_desc++]; 1122 efx_tx_qdesc_tso_create(txq->common, 1123 tso->packet_id, 1124 tso->seqnum, 1125 tcp_flags, 1126 desc++); 1127 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1128 id = (id + 1) & txq->ptr_mask; 1129 1130 /* Header DMA descriptor */ 1131 *desc = tso->header_desc; 1132 txq->n_pend_desc++; 1133 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1134 id = (id + 1) & txq->ptr_mask; 1135 1136 tso->seqnum += tso->seg_size; 1137 } else { 1138 /* Allocate a DMA-mapped header buffer. */ 1139 if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) { 1140 unsigned int page_index = (id / 2) / TSOH_PER_PAGE; 1141 unsigned int buf_index = (id / 2) % TSOH_PER_PAGE; 1142 1143 header = (txq->tsoh_buffer[page_index].esm_base + 1144 buf_index * TSOH_STD_SIZE); 1145 dma_addr = (txq->tsoh_buffer[page_index].esm_addr + 1146 buf_index * TSOH_STD_SIZE); 1147 map = txq->tsoh_buffer[page_index].esm_map; 1148 1149 KASSERT(txq->stmp[id].flags == 0, 1150 ("stmp flags are not 0")); 1151 } else { 1152 struct sfxge_tx_mapping *stmp = &txq->stmp[id]; 1153 1154 /* We cannot use bus_dmamem_alloc() as that may sleep */ 1155 header = malloc(tso->header_len, M_SFXGE, M_NOWAIT); 1156 if (__predict_false(!header)) 1157 return (ENOMEM); 1158 rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map, 1159 header, tso->header_len, 1160 tso_map_long_header, &dma_addr, 1161 BUS_DMA_NOWAIT); 1162 if (__predict_false(dma_addr == 0)) { 1163 if (rc == 0) { 1164 /* Succeeded but got >1 segment */ 1165 bus_dmamap_unload(txq->packet_dma_tag, 1166 stmp->map); 1167 rc = EINVAL; 1168 } 1169 free(header, M_SFXGE); 1170 return (rc); 1171 } 1172 map = stmp->map; 1173 1174 txq->tso_long_headers++; 1175 stmp->u.heap_buf = header; 1176 stmp->flags = TX_BUF_UNMAP; 1177 } 1178 1179 tsoh_th = (struct tcphdr *)(header + tso->tcph_off); 1180 1181 /* Copy and update the headers. */ 1182 m_copydata(tso->mbuf, 0, tso->header_len, header); 1183 1184 tsoh_th->th_seq = htonl(tso->seqnum); 1185 tso->seqnum += tso->seg_size; 1186 if (tso->out_len > tso->seg_size) { 1187 /* This packet will not finish the TSO burst. */ 1188 ip_length = tso->header_len - tso->nh_off + tso->seg_size; 1189 tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH); 1190 } else { 1191 /* This packet will be the last in the TSO burst. */ 1192 ip_length = tso->header_len - tso->nh_off + tso->out_len; 1193 } 1194 1195 if (tso->protocol == htons(ETHERTYPE_IP)) { 1196 struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off); 1197 tsoh_iph->ip_len = htons(ip_length); 1198 /* XXX We should increment ip_id, but FreeBSD doesn't 1199 * currently allocate extra IDs for multiple segments. 1200 */ 1201 } else { 1202 struct ip6_hdr *tsoh_iph = 1203 (struct ip6_hdr *)(header + tso->nh_off); 1204 tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph)); 1205 } 1206 1207 /* Make the header visible to the hardware. */ 1208 bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE); 1209 1210 /* Form a descriptor for this header. */ 1211 desc = &txq->pend_desc[txq->n_pend_desc++]; 1212 efx_tx_qdesc_dma_create(txq->common, 1213 dma_addr, 1214 tso->header_len, 1215 0, 1216 desc); 1217 id = (id + 1) & txq->ptr_mask; 1218 } 1219 tso->packet_space = tso->seg_size; 1220 txq->tso_packets++; 1221 *idp = id; 1222 1223 return (0); 1224 } 1225 1226 static int 1227 sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, 1228 const bus_dma_segment_t *dma_seg, int n_dma_seg, 1229 int vlan_tagged) 1230 { 1231 struct sfxge_tso_state tso; 1232 unsigned int id; 1233 unsigned skipped = 0; 1234 1235 tso_start(txq, &tso, dma_seg, mbuf); 1236 1237 while (dma_seg->ds_len + skipped <= tso.header_len) { 1238 skipped += dma_seg->ds_len; 1239 --n_dma_seg; 1240 KASSERT(n_dma_seg, ("no payload found in TSO packet")); 1241 ++dma_seg; 1242 } 1243 tso.in_len = dma_seg->ds_len - (tso.header_len - skipped); 1244 tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped); 1245 1246 id = (txq->added + vlan_tagged) & txq->ptr_mask; 1247 if (__predict_false(tso_start_new_packet(txq, &tso, &id))) 1248 return (-1); 1249 1250 while (1) { 1251 tso_fill_packet_with_fragment(txq, &tso); 1252 /* Exactly one DMA descriptor is added */ 1253 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1254 id = (id + 1) & txq->ptr_mask; 1255 1256 /* Move onto the next fragment? */ 1257 if (tso.in_len == 0) { 1258 --n_dma_seg; 1259 if (n_dma_seg == 0) 1260 break; 1261 ++dma_seg; 1262 tso.in_len = dma_seg->ds_len; 1263 tso.dma_addr = dma_seg->ds_addr; 1264 } 1265 1266 /* End of packet? */ 1267 if (tso.packet_space == 0) { 1268 /* If the queue is now full due to tiny MSS, 1269 * or we can't create another header, discard 1270 * the remainder of the input mbuf but do not 1271 * roll back the work we have done. 1272 */ 1273 if (txq->n_pend_desc + tso.fw_assisted + 1274 1 /* header */ + n_dma_seg > 1275 txq->max_pkt_desc) { 1276 txq->tso_pdrop_too_many++; 1277 break; 1278 } 1279 if (__predict_false(tso_start_new_packet(txq, &tso, 1280 &id))) { 1281 txq->tso_pdrop_no_rsrc++; 1282 break; 1283 } 1284 } 1285 } 1286 1287 txq->tso_bursts++; 1288 return (id); 1289 } 1290 1291 static void 1292 sfxge_tx_qunblock(struct sfxge_txq *txq) 1293 { 1294 struct sfxge_softc *sc; 1295 struct sfxge_evq *evq; 1296 1297 sc = txq->sc; 1298 evq = sc->evq[txq->evq_index]; 1299 1300 SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); 1301 1302 if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) 1303 return; 1304 1305 SFXGE_TXQ_LOCK(txq); 1306 1307 if (txq->blocked) { 1308 unsigned int level; 1309 1310 level = txq->added - txq->completed; 1311 if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) { 1312 /* reaped must be in sync with blocked */ 1313 sfxge_tx_qreap(txq); 1314 txq->blocked = 0; 1315 } 1316 } 1317 1318 sfxge_tx_qdpl_service(txq); 1319 /* note: lock has been dropped */ 1320 } 1321 1322 void 1323 sfxge_tx_qflush_done(struct sfxge_txq *txq) 1324 { 1325 1326 txq->flush_state = SFXGE_FLUSH_DONE; 1327 } 1328 1329 static void 1330 sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index) 1331 { 1332 struct sfxge_txq *txq; 1333 struct sfxge_evq *evq; 1334 unsigned int count; 1335 1336 SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); 1337 1338 txq = sc->txq[index]; 1339 evq = sc->evq[txq->evq_index]; 1340 1341 SFXGE_EVQ_LOCK(evq); 1342 SFXGE_TXQ_LOCK(txq); 1343 1344 KASSERT(txq->init_state == SFXGE_TXQ_STARTED, 1345 ("txq->init_state != SFXGE_TXQ_STARTED")); 1346 1347 txq->init_state = SFXGE_TXQ_INITIALIZED; 1348 1349 if (txq->flush_state != SFXGE_FLUSH_DONE) { 1350 txq->flush_state = SFXGE_FLUSH_PENDING; 1351 1352 SFXGE_EVQ_UNLOCK(evq); 1353 SFXGE_TXQ_UNLOCK(txq); 1354 1355 /* Flush the transmit queue. */ 1356 if (efx_tx_qflush(txq->common) != 0) { 1357 log(LOG_ERR, "%s: Flushing Tx queue %u failed\n", 1358 device_get_nameunit(sc->dev), index); 1359 txq->flush_state = SFXGE_FLUSH_DONE; 1360 } else { 1361 count = 0; 1362 do { 1363 /* Spin for 100ms. */ 1364 DELAY(100000); 1365 if (txq->flush_state != SFXGE_FLUSH_PENDING) 1366 break; 1367 } while (++count < 20); 1368 } 1369 SFXGE_EVQ_LOCK(evq); 1370 SFXGE_TXQ_LOCK(txq); 1371 1372 KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED, 1373 ("txq->flush_state == SFXGE_FLUSH_FAILED")); 1374 1375 if (txq->flush_state != SFXGE_FLUSH_DONE) { 1376 /* Flush timeout */ 1377 log(LOG_ERR, "%s: Cannot flush Tx queue %u\n", 1378 device_get_nameunit(sc->dev), index); 1379 txq->flush_state = SFXGE_FLUSH_DONE; 1380 } 1381 } 1382 1383 txq->blocked = 0; 1384 txq->pending = txq->added; 1385 1386 sfxge_tx_qcomplete(txq, evq); 1387 KASSERT(txq->completed == txq->added, 1388 ("txq->completed != txq->added")); 1389 1390 sfxge_tx_qreap(txq); 1391 KASSERT(txq->reaped == txq->completed, 1392 ("txq->reaped != txq->completed")); 1393 1394 txq->added = 0; 1395 txq->pending = 0; 1396 txq->completed = 0; 1397 txq->reaped = 0; 1398 1399 /* Destroy the common code transmit queue. */ 1400 efx_tx_qdestroy(txq->common); 1401 txq->common = NULL; 1402 1403 efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, 1404 EFX_TXQ_NBUFS(sc->txq_entries)); 1405 1406 SFXGE_EVQ_UNLOCK(evq); 1407 SFXGE_TXQ_UNLOCK(txq); 1408 } 1409 1410 static int 1411 sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index) 1412 { 1413 struct sfxge_txq *txq; 1414 efsys_mem_t *esmp; 1415 uint16_t flags; 1416 struct sfxge_evq *evq; 1417 unsigned int desc_index; 1418 int rc; 1419 1420 SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); 1421 1422 txq = sc->txq[index]; 1423 esmp = &txq->mem; 1424 evq = sc->evq[txq->evq_index]; 1425 1426 KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, 1427 ("txq->init_state != SFXGE_TXQ_INITIALIZED")); 1428 KASSERT(evq->init_state == SFXGE_EVQ_STARTED, 1429 ("evq->init_state != SFXGE_EVQ_STARTED")); 1430 1431 /* Program the buffer table. */ 1432 if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp, 1433 EFX_TXQ_NBUFS(sc->txq_entries))) != 0) 1434 return (rc); 1435 1436 /* Determine the kind of queue we are creating. */ 1437 switch (txq->type) { 1438 case SFXGE_TXQ_NON_CKSUM: 1439 flags = 0; 1440 break; 1441 case SFXGE_TXQ_IP_CKSUM: 1442 flags = EFX_CKSUM_IPV4; 1443 break; 1444 case SFXGE_TXQ_IP_TCP_UDP_CKSUM: 1445 flags = EFX_CKSUM_IPV4 | EFX_CKSUM_TCPUDP; 1446 break; 1447 default: 1448 KASSERT(0, ("Impossible TX queue")); 1449 flags = 0; 1450 break; 1451 } 1452 1453 /* Create the common code transmit queue. */ 1454 if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp, 1455 sc->txq_entries, txq->buf_base_id, flags, evq->common, 1456 &txq->common, &desc_index)) != 0) 1457 goto fail; 1458 1459 /* Initialise queue descriptor indexes */ 1460 txq->added = txq->pending = txq->completed = txq->reaped = desc_index; 1461 1462 SFXGE_TXQ_LOCK(txq); 1463 1464 /* Enable the transmit queue. */ 1465 efx_tx_qenable(txq->common); 1466 1467 txq->init_state = SFXGE_TXQ_STARTED; 1468 txq->flush_state = SFXGE_FLUSH_REQUIRED; 1469 1470 SFXGE_TXQ_UNLOCK(txq); 1471 1472 return (0); 1473 1474 fail: 1475 efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, 1476 EFX_TXQ_NBUFS(sc->txq_entries)); 1477 return (rc); 1478 } 1479 1480 void 1481 sfxge_tx_stop(struct sfxge_softc *sc) 1482 { 1483 int index; 1484 1485 index = sc->txq_count; 1486 while (--index >= 0) 1487 sfxge_tx_qstop(sc, index); 1488 1489 /* Tear down the transmit module */ 1490 efx_tx_fini(sc->enp); 1491 } 1492 1493 int 1494 sfxge_tx_start(struct sfxge_softc *sc) 1495 { 1496 int index; 1497 int rc; 1498 1499 /* Initialize the common code transmit module. */ 1500 if ((rc = efx_tx_init(sc->enp)) != 0) 1501 return (rc); 1502 1503 for (index = 0; index < sc->txq_count; index++) { 1504 if ((rc = sfxge_tx_qstart(sc, index)) != 0) 1505 goto fail; 1506 } 1507 1508 return (0); 1509 1510 fail: 1511 while (--index >= 0) 1512 sfxge_tx_qstop(sc, index); 1513 1514 efx_tx_fini(sc->enp); 1515 1516 return (rc); 1517 } 1518 1519 static int 1520 sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node) 1521 { 1522 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev); 1523 struct sysctl_oid *stat_node; 1524 unsigned int id; 1525 1526 stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO, 1527 "stats", CTLFLAG_RD, NULL, 1528 "Tx queue statistics"); 1529 if (stat_node == NULL) 1530 return (ENOMEM); 1531 1532 for (id = 0; id < nitems(sfxge_tx_stats); id++) { 1533 SYSCTL_ADD_ULONG( 1534 ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO, 1535 sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS, 1536 (unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset), 1537 ""); 1538 } 1539 1540 return (0); 1541 } 1542 1543 /** 1544 * Destroy a transmit queue. 1545 */ 1546 static void 1547 sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index) 1548 { 1549 struct sfxge_txq *txq; 1550 unsigned int nmaps; 1551 1552 txq = sc->txq[index]; 1553 1554 KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, 1555 ("txq->init_state != SFXGE_TXQ_INITIALIZED")); 1556 1557 if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) 1558 tso_fini(txq); 1559 1560 /* Free the context arrays. */ 1561 free(txq->pend_desc, M_SFXGE); 1562 nmaps = sc->txq_entries; 1563 while (nmaps-- != 0) 1564 bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); 1565 free(txq->stmp, M_SFXGE); 1566 1567 /* Release DMA memory mapping. */ 1568 sfxge_dma_free(&txq->mem); 1569 1570 sc->txq[index] = NULL; 1571 1572 SFXGE_TXQ_LOCK_DESTROY(txq); 1573 1574 free(txq, M_SFXGE); 1575 } 1576 1577 /* 1578 * Estimate maximum number of Tx descriptors required for TSO packet. 1579 * With minimum MSS and maximum mbuf length we might need more (even 1580 * than a ring-ful of descriptors), but this should not happen in 1581 * practice except due to deliberate attack. In that case we will 1582 * truncate the output at a packet boundary. 1583 */ 1584 static unsigned int 1585 sfxge_tx_max_pkt_desc(const struct sfxge_softc *sc, enum sfxge_txq_type type) 1586 { 1587 /* One descriptor for every input fragment */ 1588 unsigned int max_descs = SFXGE_TX_MAPPING_MAX_SEG; 1589 1590 /* VLAN tagging Tx option descriptor may be required */ 1591 if (efx_nic_cfg_get(sc->enp)->enc_hw_tx_insert_vlan_enabled) 1592 max_descs++; 1593 1594 if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) { 1595 /* 1596 * Plus header and payload descriptor for each output segment. 1597 * Minus one since header fragment is already counted. 1598 */ 1599 max_descs += SFXGE_TSO_MAX_SEGS * 2 - 1; 1600 1601 /* FW assisted TSO requires one more descriptor per segment */ 1602 if (sc->tso_fw_assisted) 1603 max_descs += SFXGE_TSO_MAX_SEGS; 1604 } 1605 1606 return (max_descs); 1607 } 1608 1609 static int 1610 sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index, 1611 enum sfxge_txq_type type, unsigned int evq_index) 1612 { 1613 char name[16]; 1614 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); 1615 struct sysctl_oid *txq_node; 1616 struct sfxge_txq *txq; 1617 struct sfxge_evq *evq; 1618 struct sfxge_tx_dpl *stdp; 1619 struct sysctl_oid *dpl_node; 1620 efsys_mem_t *esmp; 1621 unsigned int nmaps; 1622 int rc; 1623 1624 txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK); 1625 txq->sc = sc; 1626 txq->entries = sc->txq_entries; 1627 txq->ptr_mask = txq->entries - 1; 1628 1629 sc->txq[txq_index] = txq; 1630 esmp = &txq->mem; 1631 1632 evq = sc->evq[evq_index]; 1633 1634 /* Allocate and zero DMA space for the descriptor ring. */ 1635 if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0) 1636 return (rc); 1637 1638 /* Allocate buffer table entries. */ 1639 sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries), 1640 &txq->buf_base_id); 1641 1642 /* Create a DMA tag for packet mappings. */ 1643 if (bus_dma_tag_create(sc->parent_dma_tag, 1, 0x1000, 1644 MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL, 1645 NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 0x1000, 0, NULL, NULL, 1646 &txq->packet_dma_tag) != 0) { 1647 device_printf(sc->dev, "Couldn't allocate txq DMA tag\n"); 1648 rc = ENOMEM; 1649 goto fail; 1650 } 1651 1652 /* Allocate pending descriptor array for batching writes. */ 1653 txq->pend_desc = malloc(sizeof(efx_desc_t) * sc->txq_entries, 1654 M_SFXGE, M_ZERO | M_WAITOK); 1655 1656 /* Allocate and initialise mbuf DMA mapping array. */ 1657 txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries, 1658 M_SFXGE, M_ZERO | M_WAITOK); 1659 for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) { 1660 rc = bus_dmamap_create(txq->packet_dma_tag, 0, 1661 &txq->stmp[nmaps].map); 1662 if (rc != 0) 1663 goto fail2; 1664 } 1665 1666 snprintf(name, sizeof(name), "%u", txq_index); 1667 txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node), 1668 OID_AUTO, name, CTLFLAG_RD, NULL, ""); 1669 if (txq_node == NULL) { 1670 rc = ENOMEM; 1671 goto fail_txq_node; 1672 } 1673 1674 if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM && 1675 (rc = tso_init(txq)) != 0) 1676 goto fail3; 1677 1678 if (sfxge_tx_dpl_get_max <= 0) { 1679 log(LOG_ERR, "%s=%d must be greater than 0", 1680 SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max); 1681 rc = EINVAL; 1682 goto fail_tx_dpl_get_max; 1683 } 1684 if (sfxge_tx_dpl_get_non_tcp_max <= 0) { 1685 log(LOG_ERR, "%s=%d must be greater than 0", 1686 SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, 1687 sfxge_tx_dpl_get_non_tcp_max); 1688 rc = EINVAL; 1689 goto fail_tx_dpl_get_max; 1690 } 1691 if (sfxge_tx_dpl_put_max < 0) { 1692 log(LOG_ERR, "%s=%d must be greater or equal to 0", 1693 SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max); 1694 rc = EINVAL; 1695 goto fail_tx_dpl_put_max; 1696 } 1697 1698 /* Initialize the deferred packet list. */ 1699 stdp = &txq->dpl; 1700 stdp->std_put_max = sfxge_tx_dpl_put_max; 1701 stdp->std_get_max = sfxge_tx_dpl_get_max; 1702 stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max; 1703 stdp->std_getp = &stdp->std_get; 1704 1705 SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index); 1706 1707 dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO, 1708 "dpl", CTLFLAG_RD, NULL, 1709 "Deferred packet list statistics"); 1710 if (dpl_node == NULL) { 1711 rc = ENOMEM; 1712 goto fail_dpl_node; 1713 } 1714 1715 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1716 "get_count", CTLFLAG_RD | CTLFLAG_STATS, 1717 &stdp->std_get_count, 0, ""); 1718 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1719 "get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS, 1720 &stdp->std_get_non_tcp_count, 0, ""); 1721 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1722 "get_hiwat", CTLFLAG_RD | CTLFLAG_STATS, 1723 &stdp->std_get_hiwat, 0, ""); 1724 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1725 "put_hiwat", CTLFLAG_RD | CTLFLAG_STATS, 1726 &stdp->std_put_hiwat, 0, ""); 1727 1728 rc = sfxge_txq_stat_init(txq, txq_node); 1729 if (rc != 0) 1730 goto fail_txq_stat_init; 1731 1732 txq->type = type; 1733 txq->evq_index = evq_index; 1734 txq->txq_index = txq_index; 1735 txq->init_state = SFXGE_TXQ_INITIALIZED; 1736 txq->hw_vlan_tci = 0; 1737 1738 txq->max_pkt_desc = sfxge_tx_max_pkt_desc(sc, type); 1739 1740 return (0); 1741 1742 fail_txq_stat_init: 1743 fail_dpl_node: 1744 fail_tx_dpl_put_max: 1745 fail_tx_dpl_get_max: 1746 fail3: 1747 fail_txq_node: 1748 free(txq->pend_desc, M_SFXGE); 1749 fail2: 1750 while (nmaps-- != 0) 1751 bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); 1752 free(txq->stmp, M_SFXGE); 1753 bus_dma_tag_destroy(txq->packet_dma_tag); 1754 1755 fail: 1756 sfxge_dma_free(esmp); 1757 1758 return (rc); 1759 } 1760 1761 static int 1762 sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS) 1763 { 1764 struct sfxge_softc *sc = arg1; 1765 unsigned int id = arg2; 1766 unsigned long sum; 1767 unsigned int index; 1768 1769 /* Sum across all TX queues */ 1770 sum = 0; 1771 for (index = 0; index < sc->txq_count; index++) 1772 sum += *(unsigned long *)((caddr_t)sc->txq[index] + 1773 sfxge_tx_stats[id].offset); 1774 1775 return (SYSCTL_OUT(req, &sum, sizeof(sum))); 1776 } 1777 1778 static void 1779 sfxge_tx_stat_init(struct sfxge_softc *sc) 1780 { 1781 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); 1782 struct sysctl_oid_list *stat_list; 1783 unsigned int id; 1784 1785 stat_list = SYSCTL_CHILDREN(sc->stats_node); 1786 1787 for (id = 0; id < nitems(sfxge_tx_stats); id++) { 1788 SYSCTL_ADD_PROC( 1789 ctx, stat_list, 1790 OID_AUTO, sfxge_tx_stats[id].name, 1791 CTLTYPE_ULONG|CTLFLAG_RD, 1792 sc, id, sfxge_tx_stat_handler, "LU", 1793 ""); 1794 } 1795 } 1796 1797 uint64_t 1798 sfxge_tx_get_drops(struct sfxge_softc *sc) 1799 { 1800 unsigned int index; 1801 uint64_t drops = 0; 1802 struct sfxge_txq *txq; 1803 1804 /* Sum across all TX queues */ 1805 for (index = 0; index < sc->txq_count; index++) { 1806 txq = sc->txq[index]; 1807 /* 1808 * In theory, txq->put_overflow and txq->netdown_drops 1809 * should use atomic operation and other should be 1810 * obtained under txq lock, but it is just statistics. 1811 */ 1812 drops += txq->drops + txq->get_overflow + 1813 txq->get_non_tcp_overflow + 1814 txq->put_overflow + txq->netdown_drops + 1815 txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc; 1816 } 1817 return (drops); 1818 } 1819 1820 void 1821 sfxge_tx_fini(struct sfxge_softc *sc) 1822 { 1823 int index; 1824 1825 index = sc->txq_count; 1826 while (--index >= 0) 1827 sfxge_tx_qfini(sc, index); 1828 1829 sc->txq_count = 0; 1830 } 1831 1832 1833 int 1834 sfxge_tx_init(struct sfxge_softc *sc) 1835 { 1836 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp); 1837 struct sfxge_intr *intr; 1838 int index; 1839 int rc; 1840 1841 intr = &sc->intr; 1842 1843 KASSERT(intr->state == SFXGE_INTR_INITIALIZED, 1844 ("intr->state != SFXGE_INTR_INITIALIZED")); 1845 1846 sc->txq_count = SFXGE_TXQ_NTYPES - 1 + sc->intr.n_alloc; 1847 1848 sc->tso_fw_assisted = sfxge_tso_fw_assisted; 1849 if (sc->tso_fw_assisted) 1850 sc->tso_fw_assisted = 1851 (encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO) && 1852 (encp->enc_fw_assisted_tso_enabled); 1853 1854 sc->txqs_node = SYSCTL_ADD_NODE( 1855 device_get_sysctl_ctx(sc->dev), 1856 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), 1857 OID_AUTO, "txq", CTLFLAG_RD, NULL, "Tx queues"); 1858 if (sc->txqs_node == NULL) { 1859 rc = ENOMEM; 1860 goto fail_txq_node; 1861 } 1862 1863 /* Initialize the transmit queues */ 1864 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM, 1865 SFXGE_TXQ_NON_CKSUM, 0)) != 0) 1866 goto fail; 1867 1868 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM, 1869 SFXGE_TXQ_IP_CKSUM, 0)) != 0) 1870 goto fail2; 1871 1872 for (index = 0; 1873 index < sc->txq_count - SFXGE_TXQ_NTYPES + 1; 1874 index++) { 1875 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NTYPES - 1 + index, 1876 SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0) 1877 goto fail3; 1878 } 1879 1880 sfxge_tx_stat_init(sc); 1881 1882 return (0); 1883 1884 fail3: 1885 while (--index >= 0) 1886 sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index); 1887 1888 sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM); 1889 1890 fail2: 1891 sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM); 1892 1893 fail: 1894 fail_txq_node: 1895 sc->txq_count = 0; 1896 return (rc); 1897 } 1898