1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2010-2016 Solarflare Communications Inc. 5 * All rights reserved. 6 * 7 * This software was developed in part by Philip Paeps under contract for 8 * Solarflare Communications, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright notice, 14 * this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * The views and conclusions contained in the software and documentation are 32 * those of the authors and should not be interpreted as representing official 33 * policies, either expressed or implied, of the FreeBSD Project. 34 */ 35 36 /* Theory of operation: 37 * 38 * Tx queues allocation and mapping on Siena 39 * 40 * One Tx queue with enabled checksum offload is allocated per Rx channel 41 * (event queue). Also 2 Tx queues (one without checksum offload and one 42 * with IP checksum offload only) are allocated and bound to event queue 0. 43 * sfxge_txq_type is used as Tx queue label. 44 * 45 * So, event queue plus label mapping to Tx queue index is: 46 * if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES) 47 * else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1 48 * See sfxge_get_txq_by_label() sfxge_ev.c 49 * 50 * Tx queue allocation and mapping on EF10 51 * 52 * One Tx queue with enabled checksum offload is allocated per Rx 53 * channel (event queue). Checksum offload on all Tx queues is enabled or 54 * disabled dynamically by inserting option descriptors, so the additional 55 * queues used on Siena are not required. 56 * 57 * TxQ label is always set to zero on EF10 hardware. 58 * So, event queue to Tx queue mapping is simple: 59 * TxQ-index = EvQ-index 60 */ 61 62 #include <sys/cdefs.h> 63 #include "opt_rss.h" 64 65 #include <sys/param.h> 66 #include <sys/malloc.h> 67 #include <sys/mbuf.h> 68 #include <sys/smp.h> 69 #include <sys/socket.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/limits.h> 73 74 #include <net/bpf.h> 75 #include <net/ethernet.h> 76 #include <net/if.h> 77 #include <net/if_vlan_var.h> 78 79 #include <netinet/in.h> 80 #include <netinet/ip.h> 81 #include <netinet/ip6.h> 82 #include <netinet/tcp.h> 83 84 #ifdef RSS 85 #include <net/rss_config.h> 86 #endif 87 88 #include "common/efx.h" 89 90 #include "sfxge.h" 91 #include "sfxge_tx.h" 92 93 #define SFXGE_PARAM_TX_DPL_GET_MAX SFXGE_PARAM(tx_dpl_get_max) 94 static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT; 95 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max); 96 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN, 97 &sfxge_tx_dpl_get_max, 0, 98 "Maximum number of any packets in deferred packet get-list"); 99 100 #define SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \ 101 SFXGE_PARAM(tx_dpl_get_non_tcp_max) 102 static int sfxge_tx_dpl_get_non_tcp_max = 103 SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT; 104 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max); 105 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN, 106 &sfxge_tx_dpl_get_non_tcp_max, 0, 107 "Maximum number of non-TCP packets in deferred packet get-list"); 108 109 #define SFXGE_PARAM_TX_DPL_PUT_MAX SFXGE_PARAM(tx_dpl_put_max) 110 static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT; 111 TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max); 112 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN, 113 &sfxge_tx_dpl_put_max, 0, 114 "Maximum number of any packets in deferred packet put-list"); 115 116 #define SFXGE_PARAM_TSO_FW_ASSISTED SFXGE_PARAM(tso_fw_assisted) 117 static int sfxge_tso_fw_assisted = (SFXGE_FATSOV1 | SFXGE_FATSOV2); 118 TUNABLE_INT(SFXGE_PARAM_TSO_FW_ASSISTED, &sfxge_tso_fw_assisted); 119 SYSCTL_INT(_hw_sfxge, OID_AUTO, tso_fw_assisted, CTLFLAG_RDTUN, 120 &sfxge_tso_fw_assisted, 0, 121 "Bitmask of FW-assisted TSO allowed to use if supported by NIC firmware"); 122 123 static const struct { 124 const char *name; 125 size_t offset; 126 } sfxge_tx_stats[] = { 127 #define SFXGE_TX_STAT(name, member) \ 128 { #name, offsetof(struct sfxge_txq, member) } 129 SFXGE_TX_STAT(tso_bursts, tso_bursts), 130 SFXGE_TX_STAT(tso_packets, tso_packets), 131 SFXGE_TX_STAT(tso_long_headers, tso_long_headers), 132 SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many), 133 SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc), 134 SFXGE_TX_STAT(tx_collapses, collapses), 135 SFXGE_TX_STAT(tx_drops, drops), 136 SFXGE_TX_STAT(tx_get_overflow, get_overflow), 137 SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow), 138 SFXGE_TX_STAT(tx_put_overflow, put_overflow), 139 SFXGE_TX_STAT(tx_netdown_drops, netdown_drops), 140 }; 141 142 /* Forward declarations. */ 143 static void sfxge_tx_qdpl_service(struct sfxge_txq *txq); 144 static void sfxge_tx_qlist_post(struct sfxge_txq *txq); 145 static void sfxge_tx_qunblock(struct sfxge_txq *txq); 146 static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, 147 const bus_dma_segment_t *dma_seg, int n_dma_seg, 148 int n_extra_descs); 149 150 static inline void 151 sfxge_next_stmp(struct sfxge_txq *txq, struct sfxge_tx_mapping **pstmp) 152 { 153 KASSERT((*pstmp)->flags == 0, ("stmp flags are not 0")); 154 if (__predict_false(*pstmp == 155 &txq->stmp[txq->ptr_mask])) 156 *pstmp = &txq->stmp[0]; 157 else 158 (*pstmp)++; 159 } 160 161 static int 162 sfxge_tx_maybe_toggle_cksum_offload(struct sfxge_txq *txq, struct mbuf *mbuf, 163 struct sfxge_tx_mapping **pstmp) 164 { 165 uint16_t new_hw_cksum_flags; 166 efx_desc_t *desc; 167 168 if (mbuf->m_pkthdr.csum_flags & 169 (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6 | CSUM_TSO)) { 170 /* 171 * We always set EFX_TXQ_CKSUM_IPV4 here because this 172 * configuration is the most useful, and this won't 173 * cause any trouble in case of IPv6 traffic anyway. 174 */ 175 new_hw_cksum_flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP; 176 } else if (mbuf->m_pkthdr.csum_flags & CSUM_DELAY_IP) { 177 new_hw_cksum_flags = EFX_TXQ_CKSUM_IPV4; 178 } else { 179 new_hw_cksum_flags = 0; 180 } 181 182 if (new_hw_cksum_flags == txq->hw_cksum_flags) 183 return (0); 184 185 desc = &txq->pend_desc[txq->n_pend_desc]; 186 efx_tx_qdesc_checksum_create(txq->common, new_hw_cksum_flags, desc); 187 txq->hw_cksum_flags = new_hw_cksum_flags; 188 txq->n_pend_desc++; 189 190 sfxge_next_stmp(txq, pstmp); 191 192 return (1); 193 } 194 195 static int 196 sfxge_tx_maybe_insert_tag(struct sfxge_txq *txq, struct mbuf *mbuf, 197 struct sfxge_tx_mapping **pstmp) 198 { 199 uint16_t this_tag = ((mbuf->m_flags & M_VLANTAG) ? 200 mbuf->m_pkthdr.ether_vtag : 201 0); 202 efx_desc_t *desc; 203 204 if (this_tag == txq->hw_vlan_tci) 205 return (0); 206 207 desc = &txq->pend_desc[txq->n_pend_desc]; 208 efx_tx_qdesc_vlantci_create(txq->common, bswap16(this_tag), desc); 209 txq->hw_vlan_tci = this_tag; 210 txq->n_pend_desc++; 211 212 sfxge_next_stmp(txq, pstmp); 213 214 return (1); 215 } 216 217 void 218 sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq) 219 { 220 unsigned int completed; 221 222 SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); 223 224 completed = txq->completed; 225 while (completed != txq->pending) { 226 struct sfxge_tx_mapping *stmp; 227 unsigned int id; 228 229 id = completed++ & txq->ptr_mask; 230 231 stmp = &txq->stmp[id]; 232 if (stmp->flags & TX_BUF_UNMAP) { 233 bus_dmamap_unload(txq->packet_dma_tag, stmp->map); 234 if (stmp->flags & TX_BUF_MBUF) { 235 struct mbuf *m = stmp->u.mbuf; 236 do 237 m = m_free(m); 238 while (m != NULL); 239 } else { 240 free(stmp->u.heap_buf, M_SFXGE); 241 } 242 stmp->flags = 0; 243 } 244 } 245 txq->completed = completed; 246 247 /* Check whether we need to unblock the queue. */ 248 mb(); 249 if (txq->blocked) { 250 unsigned int level; 251 252 level = txq->added - txq->completed; 253 if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) 254 sfxge_tx_qunblock(txq); 255 } 256 } 257 258 static unsigned int 259 sfxge_is_mbuf_non_tcp(struct mbuf *mbuf) 260 { 261 /* Absence of TCP checksum flags does not mean that it is non-TCP 262 * but it should be true if user wants to achieve high throughput. 263 */ 264 return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP))); 265 } 266 267 /* 268 * Reorder the put list and append it to the get list. 269 */ 270 static void 271 sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq) 272 { 273 struct sfxge_tx_dpl *stdp; 274 struct mbuf *mbuf, *get_next, **get_tailp; 275 volatile uintptr_t *putp; 276 uintptr_t put; 277 unsigned int count; 278 unsigned int non_tcp_count; 279 280 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 281 282 stdp = &txq->dpl; 283 284 /* Acquire the put list. */ 285 putp = &stdp->std_put; 286 put = atomic_readandclear_ptr(putp); 287 mbuf = (void *)put; 288 289 if (mbuf == NULL) 290 return; 291 292 /* Reverse the put list. */ 293 get_tailp = &mbuf->m_nextpkt; 294 get_next = NULL; 295 296 count = 0; 297 non_tcp_count = 0; 298 do { 299 struct mbuf *put_next; 300 301 non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf); 302 put_next = mbuf->m_nextpkt; 303 mbuf->m_nextpkt = get_next; 304 get_next = mbuf; 305 mbuf = put_next; 306 307 count++; 308 } while (mbuf != NULL); 309 310 if (count > stdp->std_put_hiwat) 311 stdp->std_put_hiwat = count; 312 313 /* Append the reversed put list to the get list. */ 314 KASSERT(*get_tailp == NULL, ("*get_tailp != NULL")); 315 *stdp->std_getp = get_next; 316 stdp->std_getp = get_tailp; 317 stdp->std_get_count += count; 318 stdp->std_get_non_tcp_count += non_tcp_count; 319 } 320 321 static void 322 sfxge_tx_qreap(struct sfxge_txq *txq) 323 { 324 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 325 326 txq->reaped = txq->completed; 327 } 328 329 static void 330 sfxge_tx_qlist_post(struct sfxge_txq *txq) 331 { 332 unsigned int old_added __diagused; 333 unsigned int block_level; 334 unsigned int level; 335 int rc __diagused; 336 337 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 338 339 KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0")); 340 KASSERT(txq->n_pend_desc <= txq->max_pkt_desc, 341 ("txq->n_pend_desc too large")); 342 KASSERT(!txq->blocked, ("txq->blocked")); 343 344 old_added = txq->added; 345 346 /* Post the fragment list. */ 347 rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, txq->n_pend_desc, 348 txq->reaped, &txq->added); 349 KASSERT(rc == 0, ("efx_tx_qdesc_post() failed")); 350 351 /* If efx_tx_qdesc_post() had to refragment, our information about 352 * buffers to free may be associated with the wrong 353 * descriptors. 354 */ 355 KASSERT(txq->added - old_added == txq->n_pend_desc, 356 ("efx_tx_qdesc_post() refragmented descriptors")); 357 358 level = txq->added - txq->reaped; 359 KASSERT(level <= txq->entries, ("overfilled TX queue")); 360 361 /* Clear the fragment list. */ 362 txq->n_pend_desc = 0; 363 364 /* 365 * Set the block level to ensure there is space to generate a 366 * large number of descriptors for TSO. 367 */ 368 block_level = EFX_TXQ_LIMIT(txq->entries) - txq->max_pkt_desc; 369 370 /* Have we reached the block level? */ 371 if (level < block_level) 372 return; 373 374 /* Reap, and check again */ 375 sfxge_tx_qreap(txq); 376 level = txq->added - txq->reaped; 377 if (level < block_level) 378 return; 379 380 txq->blocked = 1; 381 382 /* 383 * Avoid a race with completion interrupt handling that could leave 384 * the queue blocked. 385 */ 386 mb(); 387 sfxge_tx_qreap(txq); 388 level = txq->added - txq->reaped; 389 if (level < block_level) { 390 mb(); 391 txq->blocked = 0; 392 } 393 } 394 395 static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf) 396 { 397 bus_dmamap_t *used_map; 398 bus_dmamap_t map; 399 bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG]; 400 unsigned int id; 401 struct sfxge_tx_mapping *stmp; 402 efx_desc_t *desc; 403 int n_dma_seg; 404 int rc; 405 int i; 406 int eop; 407 uint16_t hw_cksum_flags_prev; 408 uint16_t hw_vlan_tci_prev; 409 int n_extra_descs; 410 411 KASSERT(!txq->blocked, ("txq->blocked")); 412 413 #if SFXGE_TX_PARSE_EARLY 414 /* 415 * If software TSO is used, we still need to copy packet header, 416 * even if we have already parsed it early before enqueue. 417 */ 418 if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) && 419 (txq->tso_fw_assisted == 0)) 420 prefetch_read_many(mbuf->m_data); 421 #else 422 /* 423 * Prefetch packet header since we need to parse it and extract 424 * IP ID, TCP sequence number and flags. 425 */ 426 if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) 427 prefetch_read_many(mbuf->m_data); 428 #endif 429 430 if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) { 431 rc = EINTR; 432 goto reject; 433 } 434 435 /* Load the packet for DMA. */ 436 id = txq->added & txq->ptr_mask; 437 stmp = &txq->stmp[id]; 438 rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map, 439 mbuf, dma_seg, &n_dma_seg, 0); 440 if (rc == EFBIG) { 441 /* Try again. */ 442 struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT, 443 SFXGE_TX_MAPPING_MAX_SEG); 444 if (new_mbuf == NULL) 445 goto reject; 446 ++txq->collapses; 447 mbuf = new_mbuf; 448 rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, 449 stmp->map, mbuf, 450 dma_seg, &n_dma_seg, 0); 451 } 452 if (rc != 0) 453 goto reject; 454 455 /* Make the packet visible to the hardware. */ 456 bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE); 457 458 used_map = &stmp->map; 459 460 hw_cksum_flags_prev = txq->hw_cksum_flags; 461 hw_vlan_tci_prev = txq->hw_vlan_tci; 462 463 /* 464 * The order of option descriptors, which are used to leverage VLAN tag 465 * and checksum offloads, might be important. Changing checksum offload 466 * between VLAN option and packet descriptors probably does not work. 467 */ 468 n_extra_descs = sfxge_tx_maybe_toggle_cksum_offload(txq, mbuf, &stmp); 469 n_extra_descs += sfxge_tx_maybe_insert_tag(txq, mbuf, &stmp); 470 471 if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) { 472 rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg, 473 n_extra_descs); 474 if (rc < 0) 475 goto reject_mapped; 476 stmp = &txq->stmp[(rc - 1) & txq->ptr_mask]; 477 } else { 478 /* Add the mapping to the fragment list, and set flags 479 * for the buffer. 480 */ 481 482 i = 0; 483 for (;;) { 484 desc = &txq->pend_desc[i + n_extra_descs]; 485 eop = (i == n_dma_seg - 1); 486 efx_tx_qdesc_dma_create(txq->common, 487 dma_seg[i].ds_addr, 488 dma_seg[i].ds_len, 489 eop, 490 desc); 491 if (eop) 492 break; 493 i++; 494 sfxge_next_stmp(txq, &stmp); 495 } 496 txq->n_pend_desc = n_dma_seg + n_extra_descs; 497 } 498 499 /* 500 * If the mapping required more than one descriptor 501 * then we need to associate the DMA map with the last 502 * descriptor, not the first. 503 */ 504 if (used_map != &stmp->map) { 505 map = stmp->map; 506 stmp->map = *used_map; 507 *used_map = map; 508 } 509 510 stmp->u.mbuf = mbuf; 511 stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF; 512 513 /* Post the fragment list. */ 514 sfxge_tx_qlist_post(txq); 515 516 return (0); 517 518 reject_mapped: 519 txq->hw_vlan_tci = hw_vlan_tci_prev; 520 txq->hw_cksum_flags = hw_cksum_flags_prev; 521 bus_dmamap_unload(txq->packet_dma_tag, *used_map); 522 reject: 523 /* Drop the packet on the floor. */ 524 m_freem(mbuf); 525 ++txq->drops; 526 527 return (rc); 528 } 529 530 /* 531 * Drain the deferred packet list into the transmit queue. 532 */ 533 static void 534 sfxge_tx_qdpl_drain(struct sfxge_txq *txq) 535 { 536 struct sfxge_softc *sc; 537 struct sfxge_tx_dpl *stdp; 538 struct mbuf *mbuf, *next; 539 unsigned int count; 540 unsigned int non_tcp_count; 541 unsigned int pushed; 542 int rc; 543 544 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 545 546 sc = txq->sc; 547 stdp = &txq->dpl; 548 pushed = txq->added; 549 550 if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) { 551 prefetch_read_many(sc->enp); 552 prefetch_read_many(txq->common); 553 } 554 555 mbuf = stdp->std_get; 556 count = stdp->std_get_count; 557 non_tcp_count = stdp->std_get_non_tcp_count; 558 559 if (count > stdp->std_get_hiwat) 560 stdp->std_get_hiwat = count; 561 562 while (count != 0) { 563 KASSERT(mbuf != NULL, ("mbuf == NULL")); 564 565 next = mbuf->m_nextpkt; 566 mbuf->m_nextpkt = NULL; 567 568 ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */ 569 570 if (next != NULL) 571 prefetch_read_many(next); 572 573 rc = sfxge_tx_queue_mbuf(txq, mbuf); 574 --count; 575 non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf); 576 mbuf = next; 577 if (rc != 0) 578 continue; 579 580 if (txq->blocked) 581 break; 582 583 /* Push the fragments to the hardware in batches. */ 584 if (txq->added - pushed >= SFXGE_TX_BATCH) { 585 efx_tx_qpush(txq->common, txq->added, pushed); 586 pushed = txq->added; 587 } 588 } 589 590 if (count == 0) { 591 KASSERT(mbuf == NULL, ("mbuf != NULL")); 592 KASSERT(non_tcp_count == 0, 593 ("inconsistent TCP/non-TCP detection")); 594 stdp->std_get = NULL; 595 stdp->std_get_count = 0; 596 stdp->std_get_non_tcp_count = 0; 597 stdp->std_getp = &stdp->std_get; 598 } else { 599 stdp->std_get = mbuf; 600 stdp->std_get_count = count; 601 stdp->std_get_non_tcp_count = non_tcp_count; 602 } 603 604 if (txq->added != pushed) 605 efx_tx_qpush(txq->common, txq->added, pushed); 606 607 KASSERT(txq->blocked || stdp->std_get_count == 0, 608 ("queue unblocked but count is non-zero")); 609 } 610 611 #define SFXGE_TX_QDPL_PENDING(_txq) ((_txq)->dpl.std_put != 0) 612 613 /* 614 * Service the deferred packet list. 615 * 616 * NOTE: drops the txq mutex! 617 */ 618 static void 619 sfxge_tx_qdpl_service(struct sfxge_txq *txq) 620 { 621 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 622 623 do { 624 if (SFXGE_TX_QDPL_PENDING(txq)) 625 sfxge_tx_qdpl_swizzle(txq); 626 627 if (!txq->blocked) 628 sfxge_tx_qdpl_drain(txq); 629 630 SFXGE_TXQ_UNLOCK(txq); 631 } while (SFXGE_TX_QDPL_PENDING(txq) && 632 SFXGE_TXQ_TRYLOCK(txq)); 633 } 634 635 /* 636 * Put a packet on the deferred packet get-list. 637 */ 638 static int 639 sfxge_tx_qdpl_put_locked(struct sfxge_txq *txq, struct mbuf *mbuf) 640 { 641 struct sfxge_tx_dpl *stdp; 642 643 stdp = &txq->dpl; 644 645 KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); 646 647 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 648 649 if (stdp->std_get_count >= stdp->std_get_max) { 650 txq->get_overflow++; 651 return (ENOBUFS); 652 } 653 if (sfxge_is_mbuf_non_tcp(mbuf)) { 654 if (stdp->std_get_non_tcp_count >= 655 stdp->std_get_non_tcp_max) { 656 txq->get_non_tcp_overflow++; 657 return (ENOBUFS); 658 } 659 stdp->std_get_non_tcp_count++; 660 } 661 662 *(stdp->std_getp) = mbuf; 663 stdp->std_getp = &mbuf->m_nextpkt; 664 stdp->std_get_count++; 665 666 return (0); 667 } 668 669 /* 670 * Put a packet on the deferred packet put-list. 671 * 672 * We overload the csum_data field in the mbuf to keep track of this length 673 * because there is no cheap alternative to avoid races. 674 */ 675 static int 676 sfxge_tx_qdpl_put_unlocked(struct sfxge_txq *txq, struct mbuf *mbuf) 677 { 678 struct sfxge_tx_dpl *stdp; 679 volatile uintptr_t *putp; 680 uintptr_t old; 681 uintptr_t new; 682 unsigned int put_count; 683 684 KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); 685 686 SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq); 687 688 stdp = &txq->dpl; 689 putp = &stdp->std_put; 690 new = (uintptr_t)mbuf; 691 692 do { 693 old = *putp; 694 if (old != 0) { 695 struct mbuf *mp = (struct mbuf *)old; 696 put_count = mp->m_pkthdr.csum_data; 697 } else 698 put_count = 0; 699 if (put_count >= stdp->std_put_max) { 700 atomic_add_long(&txq->put_overflow, 1); 701 return (ENOBUFS); 702 } 703 mbuf->m_pkthdr.csum_data = put_count + 1; 704 mbuf->m_nextpkt = (void *)old; 705 } while (atomic_cmpset_ptr(putp, old, new) == 0); 706 707 return (0); 708 } 709 710 /* 711 * Called from if_transmit - will try to grab the txq lock and enqueue to the 712 * put list if it succeeds, otherwise try to push onto the defer list if space. 713 */ 714 static int 715 sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m) 716 { 717 int rc; 718 719 if (!SFXGE_LINK_UP(txq->sc)) { 720 atomic_add_long(&txq->netdown_drops, 1); 721 return (ENETDOWN); 722 } 723 724 /* 725 * Try to grab the txq lock. If we are able to get the lock, 726 * the packet will be appended to the "get list" of the deferred 727 * packet list. Otherwise, it will be pushed on the "put list". 728 */ 729 if (SFXGE_TXQ_TRYLOCK(txq)) { 730 /* First swizzle put-list to get-list to keep order */ 731 sfxge_tx_qdpl_swizzle(txq); 732 733 rc = sfxge_tx_qdpl_put_locked(txq, m); 734 735 /* Try to service the list. */ 736 sfxge_tx_qdpl_service(txq); 737 /* Lock has been dropped. */ 738 } else { 739 rc = sfxge_tx_qdpl_put_unlocked(txq, m); 740 741 /* 742 * Try to grab the lock again. 743 * 744 * If we are able to get the lock, we need to process 745 * the deferred packet list. If we are not able to get 746 * the lock, another thread is processing the list. 747 */ 748 if ((rc == 0) && SFXGE_TXQ_TRYLOCK(txq)) { 749 sfxge_tx_qdpl_service(txq); 750 /* Lock has been dropped. */ 751 } 752 } 753 754 SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq); 755 756 return (rc); 757 } 758 759 static void 760 sfxge_tx_qdpl_flush(struct sfxge_txq *txq) 761 { 762 struct sfxge_tx_dpl *stdp = &txq->dpl; 763 struct mbuf *mbuf, *next; 764 765 SFXGE_TXQ_LOCK(txq); 766 767 sfxge_tx_qdpl_swizzle(txq); 768 for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) { 769 next = mbuf->m_nextpkt; 770 m_freem(mbuf); 771 } 772 stdp->std_get = NULL; 773 stdp->std_get_count = 0; 774 stdp->std_get_non_tcp_count = 0; 775 stdp->std_getp = &stdp->std_get; 776 777 SFXGE_TXQ_UNLOCK(txq); 778 } 779 780 void 781 sfxge_if_qflush(if_t ifp) 782 { 783 struct sfxge_softc *sc; 784 unsigned int i; 785 786 sc = if_getsoftc(ifp); 787 788 for (i = 0; i < sc->txq_count; i++) 789 sfxge_tx_qdpl_flush(sc->txq[i]); 790 } 791 792 #if SFXGE_TX_PARSE_EARLY 793 794 /* There is little space for user data in mbuf pkthdr, so we 795 * use l*hlen fields which are not used by the driver otherwise 796 * to store header offsets. 797 * The fields are 8-bit, but it's ok, no header may be longer than 255 bytes. 798 */ 799 800 #define TSO_MBUF_PROTO(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[0]) 801 /* We abuse l5hlen here because PH_loc can hold only 64 bits of data */ 802 #define TSO_MBUF_FLAGS(_mbuf) ((_mbuf)->m_pkthdr.l5hlen) 803 #define TSO_MBUF_PACKETID(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1]) 804 #define TSO_MBUF_SEQNUM(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.thirtytwo[1]) 805 806 static void sfxge_parse_tx_packet(struct mbuf *mbuf) 807 { 808 struct ether_header *eh = mtod(mbuf, struct ether_header *); 809 const struct tcphdr *th; 810 struct tcphdr th_copy; 811 812 /* Find network protocol and header */ 813 TSO_MBUF_PROTO(mbuf) = eh->ether_type; 814 if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_VLAN)) { 815 struct ether_vlan_header *veh = 816 mtod(mbuf, struct ether_vlan_header *); 817 TSO_MBUF_PROTO(mbuf) = veh->evl_proto; 818 mbuf->m_pkthdr.l2hlen = sizeof(*veh); 819 } else { 820 mbuf->m_pkthdr.l2hlen = sizeof(*eh); 821 } 822 823 /* Find TCP header */ 824 if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IP)) { 825 const struct ip *iph = (const struct ip *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen); 826 827 KASSERT(iph->ip_p == IPPROTO_TCP, 828 ("TSO required on non-TCP packet")); 829 mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + 4 * iph->ip_hl; 830 TSO_MBUF_PACKETID(mbuf) = iph->ip_id; 831 } else { 832 KASSERT(TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IPV6), 833 ("TSO required on non-IP packet")); 834 KASSERT(((const struct ip6_hdr *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen))->ip6_nxt == 835 IPPROTO_TCP, 836 ("TSO required on non-TCP packet")); 837 mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + sizeof(struct ip6_hdr); 838 TSO_MBUF_PACKETID(mbuf) = 0; 839 } 840 841 KASSERT(mbuf->m_len >= mbuf->m_pkthdr.l3hlen, 842 ("network header is fragmented in mbuf")); 843 844 /* We need TCP header including flags (window is the next) */ 845 if (mbuf->m_len < mbuf->m_pkthdr.l3hlen + offsetof(struct tcphdr, th_win)) { 846 m_copydata(mbuf, mbuf->m_pkthdr.l3hlen, sizeof(th_copy), 847 (caddr_t)&th_copy); 848 th = &th_copy; 849 } else { 850 th = (const struct tcphdr *)mtodo(mbuf, mbuf->m_pkthdr.l3hlen); 851 } 852 853 mbuf->m_pkthdr.l4hlen = mbuf->m_pkthdr.l3hlen + 4 * th->th_off; 854 TSO_MBUF_SEQNUM(mbuf) = ntohl(th->th_seq); 855 856 /* These flags must not be duplicated */ 857 /* 858 * RST should not be duplicated as well, but FreeBSD kernel 859 * generates TSO packets with RST flag. So, do not assert 860 * its absence. 861 */ 862 KASSERT(!(tcp_get_flags(th) & (TH_URG | TH_SYN)), 863 ("incompatible TCP flag 0x%x on TSO packet", 864 tcp_get_flags(th) & (TH_URG | TH_SYN))); 865 TSO_MBUF_FLAGS(mbuf) = tcp_get_flags(th); 866 } 867 #endif 868 869 /* 870 * TX start -- called by the stack. 871 */ 872 int 873 sfxge_if_transmit(if_t ifp, struct mbuf *m) 874 { 875 struct sfxge_softc *sc; 876 struct sfxge_txq *txq; 877 int rc; 878 879 sc = (struct sfxge_softc *)if_getsoftc(ifp); 880 881 /* 882 * Transmit may be called when interface is up from the kernel 883 * point of view, but not yet up (in progress) from the driver 884 * point of view. I.e. link aggregation bring up. 885 * Transmit may be called when interface is up from the driver 886 * point of view, but already down from the kernel point of 887 * view. I.e. Rx when interface shutdown is in progress. 888 */ 889 KASSERT((if_getflags(ifp) & IFF_UP) || (sc->if_flags & IFF_UP), 890 ("interface not up")); 891 892 /* Pick the desired transmit queue. */ 893 if (sc->txq_dynamic_cksum_toggle_supported | 894 (m->m_pkthdr.csum_flags & 895 (CSUM_DELAY_DATA | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_TSO))) { 896 int index = 0; 897 898 #ifdef RSS 899 uint32_t bucket_id; 900 901 /* 902 * Select a TX queue which matches the corresponding 903 * RX queue for the hash in order to assign both 904 * TX and RX parts of the flow to the same CPU 905 */ 906 if (rss_m2bucket(m, &bucket_id) == 0) 907 index = bucket_id % (sc->txq_count - (SFXGE_TXQ_NTYPES - 1)); 908 #else 909 /* check if flowid is set */ 910 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 911 uint32_t hash = m->m_pkthdr.flowid; 912 uint32_t idx = hash % nitems(sc->rx_indir_table); 913 914 index = sc->rx_indir_table[idx]; 915 } 916 #endif 917 #if SFXGE_TX_PARSE_EARLY 918 if (m->m_pkthdr.csum_flags & CSUM_TSO) 919 sfxge_parse_tx_packet(m); 920 #endif 921 index += (sc->txq_dynamic_cksum_toggle_supported == B_FALSE) ? 922 SFXGE_TXQ_IP_TCP_UDP_CKSUM : 0; 923 txq = sc->txq[index]; 924 } else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) { 925 txq = sc->txq[SFXGE_TXQ_IP_CKSUM]; 926 } else { 927 txq = sc->txq[SFXGE_TXQ_NON_CKSUM]; 928 } 929 930 rc = sfxge_tx_packet_add(txq, m); 931 if (rc != 0) 932 m_freem(m); 933 934 return (rc); 935 } 936 937 /* 938 * Software "TSO". Not quite as good as doing it in hardware, but 939 * still faster than segmenting in the stack. 940 */ 941 942 struct sfxge_tso_state { 943 /* Output position */ 944 unsigned out_len; /* Remaining length in current segment */ 945 unsigned seqnum; /* Current sequence number */ 946 unsigned packet_space; /* Remaining space in current packet */ 947 unsigned segs_space; /* Remaining number of DMA segments 948 for the packet (FATSOv2 only) */ 949 950 /* Input position */ 951 uint64_t dma_addr; /* DMA address of current position */ 952 unsigned in_len; /* Remaining length in current mbuf */ 953 954 const struct mbuf *mbuf; /* Input mbuf (head of chain) */ 955 u_short protocol; /* Network protocol (after VLAN decap) */ 956 ssize_t nh_off; /* Offset of network header */ 957 ssize_t tcph_off; /* Offset of TCP header */ 958 unsigned header_len; /* Number of bytes of header */ 959 unsigned seg_size; /* TCP segment size */ 960 int fw_assisted; /* Use FW-assisted TSO */ 961 u_short packet_id; /* IPv4 packet ID from the original packet */ 962 uint8_t tcp_flags; /* TCP flags */ 963 efx_desc_t header_desc; /* Precomputed header descriptor for 964 * FW-assisted TSO */ 965 }; 966 967 #if !SFXGE_TX_PARSE_EARLY 968 static const struct ip *tso_iph(const struct sfxge_tso_state *tso) 969 { 970 KASSERT(tso->protocol == htons(ETHERTYPE_IP), 971 ("tso_iph() in non-IPv4 state")); 972 return (const struct ip *)(tso->mbuf->m_data + tso->nh_off); 973 } 974 975 static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso) 976 { 977 KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), 978 ("tso_ip6h() in non-IPv6 state")); 979 return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off); 980 } 981 982 static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso) 983 { 984 return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off); 985 } 986 #endif 987 988 /* Size of preallocated TSO header buffers. Larger blocks must be 989 * allocated from the heap. 990 */ 991 #define TSOH_STD_SIZE 128 992 993 /* At most half the descriptors in the queue at any time will refer to 994 * a TSO header buffer, since they must always be followed by a 995 * payload descriptor referring to an mbuf. 996 */ 997 #define TSOH_COUNT(_txq_entries) ((_txq_entries) / 2u) 998 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE) 999 #define TSOH_PAGE_COUNT(_txq_entries) \ 1000 howmany(TSOH_COUNT(_txq_entries), TSOH_PER_PAGE) 1001 1002 static int tso_init(struct sfxge_txq *txq) 1003 { 1004 struct sfxge_softc *sc = txq->sc; 1005 unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries); 1006 int i, rc; 1007 1008 /* Allocate TSO header buffers */ 1009 txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]), 1010 M_SFXGE, M_WAITOK); 1011 1012 for (i = 0; i < tsoh_page_count; i++) { 1013 rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]); 1014 if (rc != 0) 1015 goto fail; 1016 } 1017 1018 return (0); 1019 1020 fail: 1021 while (i-- > 0) 1022 sfxge_dma_free(&txq->tsoh_buffer[i]); 1023 free(txq->tsoh_buffer, M_SFXGE); 1024 txq->tsoh_buffer = NULL; 1025 return (rc); 1026 } 1027 1028 static void tso_fini(struct sfxge_txq *txq) 1029 { 1030 int i; 1031 1032 if (txq->tsoh_buffer != NULL) { 1033 for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++) 1034 sfxge_dma_free(&txq->tsoh_buffer[i]); 1035 free(txq->tsoh_buffer, M_SFXGE); 1036 } 1037 } 1038 1039 static void tso_start(struct sfxge_txq *txq, struct sfxge_tso_state *tso, 1040 const bus_dma_segment_t *hdr_dma_seg, 1041 struct mbuf *mbuf) 1042 { 1043 const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->sc->enp); 1044 #if !SFXGE_TX_PARSE_EARLY 1045 struct ether_header *eh = mtod(mbuf, struct ether_header *); 1046 const struct tcphdr *th; 1047 struct tcphdr th_copy; 1048 #endif 1049 1050 tso->fw_assisted = txq->tso_fw_assisted; 1051 tso->mbuf = mbuf; 1052 1053 /* Find network protocol and header */ 1054 #if !SFXGE_TX_PARSE_EARLY 1055 tso->protocol = eh->ether_type; 1056 if (tso->protocol == htons(ETHERTYPE_VLAN)) { 1057 struct ether_vlan_header *veh = 1058 mtod(mbuf, struct ether_vlan_header *); 1059 tso->protocol = veh->evl_proto; 1060 tso->nh_off = sizeof(*veh); 1061 } else { 1062 tso->nh_off = sizeof(*eh); 1063 } 1064 #else 1065 tso->protocol = TSO_MBUF_PROTO(mbuf); 1066 tso->nh_off = mbuf->m_pkthdr.l2hlen; 1067 tso->tcph_off = mbuf->m_pkthdr.l3hlen; 1068 tso->packet_id = ntohs(TSO_MBUF_PACKETID(mbuf)); 1069 #endif 1070 1071 #if !SFXGE_TX_PARSE_EARLY 1072 /* Find TCP header */ 1073 if (tso->protocol == htons(ETHERTYPE_IP)) { 1074 KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP, 1075 ("TSO required on non-TCP packet")); 1076 tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl; 1077 tso->packet_id = ntohs(tso_iph(tso)->ip_id); 1078 } else { 1079 KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), 1080 ("TSO required on non-IP packet")); 1081 KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP, 1082 ("TSO required on non-TCP packet")); 1083 tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr); 1084 tso->packet_id = 0; 1085 } 1086 #endif 1087 1088 if (tso->fw_assisted && 1089 __predict_false(tso->tcph_off > 1090 encp->enc_tx_tso_tcp_header_offset_limit)) { 1091 tso->fw_assisted = 0; 1092 } 1093 1094 #if !SFXGE_TX_PARSE_EARLY 1095 KASSERT(mbuf->m_len >= tso->tcph_off, 1096 ("network header is fragmented in mbuf")); 1097 /* We need TCP header including flags (window is the next) */ 1098 if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) { 1099 m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy), 1100 (caddr_t)&th_copy); 1101 th = &th_copy; 1102 } else { 1103 th = tso_tcph(tso); 1104 } 1105 tso->header_len = tso->tcph_off + 4 * th->th_off; 1106 #else 1107 tso->header_len = mbuf->m_pkthdr.l4hlen; 1108 #endif 1109 tso->seg_size = mbuf->m_pkthdr.tso_segsz; 1110 1111 #if !SFXGE_TX_PARSE_EARLY 1112 tso->seqnum = ntohl(th->th_seq); 1113 1114 /* These flags must not be duplicated */ 1115 /* 1116 * RST should not be duplicated as well, but FreeBSD kernel 1117 * generates TSO packets with RST flag. So, do not assert 1118 * its absence. 1119 */ 1120 KASSERT(!(tcp_get_flags(th) & (TH_URG | TH_SYN)), 1121 ("incompatible TCP flag 0x%x on TSO packet", 1122 tcp_get_flags(th) & (TH_URG | TH_SYN))); 1123 tso->tcp_flags = tcp_get_flags(th); 1124 #else 1125 tso->seqnum = TSO_MBUF_SEQNUM(mbuf); 1126 tso->tcp_flags = TSO_MBUF_FLAGS(mbuf); 1127 #endif 1128 1129 tso->out_len = mbuf->m_pkthdr.len - tso->header_len; 1130 1131 if (tso->fw_assisted) { 1132 if (hdr_dma_seg->ds_len >= tso->header_len) 1133 efx_tx_qdesc_dma_create(txq->common, 1134 hdr_dma_seg->ds_addr, 1135 tso->header_len, 1136 B_FALSE, 1137 &tso->header_desc); 1138 else 1139 tso->fw_assisted = 0; 1140 } 1141 } 1142 1143 /* 1144 * tso_fill_packet_with_fragment - form descriptors for the current fragment 1145 * 1146 * Form descriptors for the current fragment, until we reach the end 1147 * of fragment or end-of-packet. Return 0 on success, 1 if not enough 1148 * space. 1149 */ 1150 static void tso_fill_packet_with_fragment(struct sfxge_txq *txq, 1151 struct sfxge_tso_state *tso) 1152 { 1153 efx_desc_t *desc; 1154 int n; 1155 uint64_t dma_addr = tso->dma_addr; 1156 boolean_t eop; 1157 1158 if (tso->in_len == 0 || tso->packet_space == 0) 1159 return; 1160 1161 KASSERT(tso->in_len > 0, ("TSO input length went negative")); 1162 KASSERT(tso->packet_space > 0, ("TSO packet space went negative")); 1163 1164 if (tso->fw_assisted & SFXGE_FATSOV2) { 1165 n = tso->in_len; 1166 tso->out_len -= n; 1167 tso->seqnum += n; 1168 tso->in_len = 0; 1169 if (n < tso->packet_space) { 1170 tso->packet_space -= n; 1171 tso->segs_space--; 1172 } else { 1173 tso->packet_space = tso->seg_size - 1174 (n - tso->packet_space) % tso->seg_size; 1175 tso->segs_space = 1176 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1 - 1177 (tso->packet_space != tso->seg_size); 1178 } 1179 } else { 1180 n = min(tso->in_len, tso->packet_space); 1181 tso->packet_space -= n; 1182 tso->out_len -= n; 1183 tso->dma_addr += n; 1184 tso->in_len -= n; 1185 } 1186 1187 /* 1188 * It is OK to use binary OR below to avoid extra branching 1189 * since all conditions may always be checked. 1190 */ 1191 eop = (tso->out_len == 0) | (tso->packet_space == 0) | 1192 (tso->segs_space == 0); 1193 1194 desc = &txq->pend_desc[txq->n_pend_desc++]; 1195 efx_tx_qdesc_dma_create(txq->common, dma_addr, n, eop, desc); 1196 } 1197 1198 /* Callback from bus_dmamap_load() for long TSO headers. */ 1199 static void tso_map_long_header(void *dma_addr_ret, 1200 bus_dma_segment_t *segs, int nseg, 1201 int error) 1202 { 1203 *(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) && 1204 __predict_true(nseg == 1)) ? 1205 segs->ds_addr : 0); 1206 } 1207 1208 /* 1209 * tso_start_new_packet - generate a new header and prepare for the new packet 1210 * 1211 * Generate a new header and prepare for the new packet. Return 0 on 1212 * success, or an error code if failed to alloc header. 1213 */ 1214 static int tso_start_new_packet(struct sfxge_txq *txq, 1215 struct sfxge_tso_state *tso, 1216 unsigned int *idp) 1217 { 1218 unsigned int id = *idp; 1219 struct tcphdr *tsoh_th; 1220 unsigned ip_length; 1221 caddr_t header; 1222 uint64_t dma_addr; 1223 bus_dmamap_t map; 1224 efx_desc_t *desc; 1225 int rc; 1226 1227 if (tso->fw_assisted) { 1228 if (tso->fw_assisted & SFXGE_FATSOV2) { 1229 /* Add 2 FATSOv2 option descriptors */ 1230 desc = &txq->pend_desc[txq->n_pend_desc]; 1231 efx_tx_qdesc_tso2_create(txq->common, 1232 tso->packet_id, 1233 0, 1234 tso->seqnum, 1235 tso->seg_size, 1236 desc, 1237 EFX_TX_FATSOV2_OPT_NDESCS); 1238 desc += EFX_TX_FATSOV2_OPT_NDESCS; 1239 txq->n_pend_desc += EFX_TX_FATSOV2_OPT_NDESCS; 1240 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1241 id = (id + EFX_TX_FATSOV2_OPT_NDESCS) & txq->ptr_mask; 1242 1243 tso->segs_space = 1244 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1; 1245 } else { 1246 uint8_t tcp_flags = tso->tcp_flags; 1247 1248 if (tso->out_len > tso->seg_size) 1249 tcp_flags &= ~(TH_FIN | TH_PUSH); 1250 1251 /* Add FATSOv1 option descriptor */ 1252 desc = &txq->pend_desc[txq->n_pend_desc++]; 1253 efx_tx_qdesc_tso_create(txq->common, 1254 tso->packet_id, 1255 tso->seqnum, 1256 tcp_flags, 1257 desc++); 1258 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1259 id = (id + 1) & txq->ptr_mask; 1260 1261 tso->seqnum += tso->seg_size; 1262 tso->segs_space = UINT_MAX; 1263 } 1264 1265 /* Header DMA descriptor */ 1266 *desc = tso->header_desc; 1267 txq->n_pend_desc++; 1268 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1269 id = (id + 1) & txq->ptr_mask; 1270 } else { 1271 /* Allocate a DMA-mapped header buffer. */ 1272 if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) { 1273 unsigned int page_index = (id / 2) / TSOH_PER_PAGE; 1274 unsigned int buf_index = (id / 2) % TSOH_PER_PAGE; 1275 1276 header = (txq->tsoh_buffer[page_index].esm_base + 1277 buf_index * TSOH_STD_SIZE); 1278 dma_addr = (txq->tsoh_buffer[page_index].esm_addr + 1279 buf_index * TSOH_STD_SIZE); 1280 map = txq->tsoh_buffer[page_index].esm_map; 1281 1282 KASSERT(txq->stmp[id].flags == 0, 1283 ("stmp flags are not 0")); 1284 } else { 1285 struct sfxge_tx_mapping *stmp = &txq->stmp[id]; 1286 1287 /* We cannot use bus_dmamem_alloc() as that may sleep */ 1288 header = malloc(tso->header_len, M_SFXGE, M_NOWAIT); 1289 if (__predict_false(!header)) 1290 return (ENOMEM); 1291 rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map, 1292 header, tso->header_len, 1293 tso_map_long_header, &dma_addr, 1294 BUS_DMA_NOWAIT); 1295 if (__predict_false(dma_addr == 0)) { 1296 if (rc == 0) { 1297 /* Succeeded but got >1 segment */ 1298 bus_dmamap_unload(txq->packet_dma_tag, 1299 stmp->map); 1300 rc = EINVAL; 1301 } 1302 free(header, M_SFXGE); 1303 return (rc); 1304 } 1305 map = stmp->map; 1306 1307 txq->tso_long_headers++; 1308 stmp->u.heap_buf = header; 1309 stmp->flags = TX_BUF_UNMAP; 1310 } 1311 1312 tsoh_th = (struct tcphdr *)(header + tso->tcph_off); 1313 1314 /* Copy and update the headers. */ 1315 m_copydata(tso->mbuf, 0, tso->header_len, header); 1316 1317 tsoh_th->th_seq = htonl(tso->seqnum); 1318 tso->seqnum += tso->seg_size; 1319 if (tso->out_len > tso->seg_size) { 1320 /* This packet will not finish the TSO burst. */ 1321 ip_length = tso->header_len - tso->nh_off + tso->seg_size; 1322 tcp_set_flags(tsoh_th, tcp_get_flags(tsoh_th) & ~(TH_FIN | TH_PUSH)); 1323 } else { 1324 /* This packet will be the last in the TSO burst. */ 1325 ip_length = tso->header_len - tso->nh_off + tso->out_len; 1326 } 1327 1328 if (tso->protocol == htons(ETHERTYPE_IP)) { 1329 struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off); 1330 tsoh_iph->ip_len = htons(ip_length); 1331 /* XXX We should increment ip_id, but FreeBSD doesn't 1332 * currently allocate extra IDs for multiple segments. 1333 */ 1334 } else { 1335 struct ip6_hdr *tsoh_iph = 1336 (struct ip6_hdr *)(header + tso->nh_off); 1337 tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph)); 1338 } 1339 1340 /* Make the header visible to the hardware. */ 1341 bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE); 1342 1343 /* Form a descriptor for this header. */ 1344 desc = &txq->pend_desc[txq->n_pend_desc++]; 1345 efx_tx_qdesc_dma_create(txq->common, 1346 dma_addr, 1347 tso->header_len, 1348 0, 1349 desc); 1350 id = (id + 1) & txq->ptr_mask; 1351 1352 tso->segs_space = UINT_MAX; 1353 } 1354 tso->packet_space = tso->seg_size; 1355 txq->tso_packets++; 1356 *idp = id; 1357 1358 return (0); 1359 } 1360 1361 static int 1362 sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, 1363 const bus_dma_segment_t *dma_seg, int n_dma_seg, 1364 int n_extra_descs) 1365 { 1366 struct sfxge_tso_state tso; 1367 unsigned int id; 1368 unsigned skipped = 0; 1369 1370 tso_start(txq, &tso, dma_seg, mbuf); 1371 1372 while (dma_seg->ds_len + skipped <= tso.header_len) { 1373 skipped += dma_seg->ds_len; 1374 --n_dma_seg; 1375 KASSERT(n_dma_seg, ("no payload found in TSO packet")); 1376 ++dma_seg; 1377 } 1378 tso.in_len = dma_seg->ds_len - (tso.header_len - skipped); 1379 tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped); 1380 1381 id = (txq->added + n_extra_descs) & txq->ptr_mask; 1382 if (__predict_false(tso_start_new_packet(txq, &tso, &id))) 1383 return (-1); 1384 1385 while (1) { 1386 tso_fill_packet_with_fragment(txq, &tso); 1387 /* Exactly one DMA descriptor is added */ 1388 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1389 id = (id + 1) & txq->ptr_mask; 1390 1391 /* Move onto the next fragment? */ 1392 if (tso.in_len == 0) { 1393 --n_dma_seg; 1394 if (n_dma_seg == 0) 1395 break; 1396 ++dma_seg; 1397 tso.in_len = dma_seg->ds_len; 1398 tso.dma_addr = dma_seg->ds_addr; 1399 } 1400 1401 /* End of packet? */ 1402 if ((tso.packet_space == 0) | (tso.segs_space == 0)) { 1403 unsigned int n_fatso_opt_desc = 1404 (tso.fw_assisted & SFXGE_FATSOV2) ? 1405 EFX_TX_FATSOV2_OPT_NDESCS : 1406 (tso.fw_assisted & SFXGE_FATSOV1) ? 1 : 0; 1407 1408 /* If the queue is now full due to tiny MSS, 1409 * or we can't create another header, discard 1410 * the remainder of the input mbuf but do not 1411 * roll back the work we have done. 1412 */ 1413 if (txq->n_pend_desc + n_fatso_opt_desc + 1414 1 /* header */ + n_dma_seg > txq->max_pkt_desc) { 1415 txq->tso_pdrop_too_many++; 1416 break; 1417 } 1418 if (__predict_false(tso_start_new_packet(txq, &tso, 1419 &id))) { 1420 txq->tso_pdrop_no_rsrc++; 1421 break; 1422 } 1423 } 1424 } 1425 1426 txq->tso_bursts++; 1427 return (id); 1428 } 1429 1430 static void 1431 sfxge_tx_qunblock(struct sfxge_txq *txq) 1432 { 1433 struct sfxge_softc *sc; 1434 struct sfxge_evq *evq __diagused; 1435 1436 sc = txq->sc; 1437 evq = sc->evq[txq->evq_index]; 1438 1439 SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); 1440 1441 if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) 1442 return; 1443 1444 SFXGE_TXQ_LOCK(txq); 1445 1446 if (txq->blocked) { 1447 unsigned int level; 1448 1449 level = txq->added - txq->completed; 1450 if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) { 1451 /* reaped must be in sync with blocked */ 1452 sfxge_tx_qreap(txq); 1453 txq->blocked = 0; 1454 } 1455 } 1456 1457 sfxge_tx_qdpl_service(txq); 1458 /* note: lock has been dropped */ 1459 } 1460 1461 void 1462 sfxge_tx_qflush_done(struct sfxge_txq *txq) 1463 { 1464 1465 txq->flush_state = SFXGE_FLUSH_DONE; 1466 } 1467 1468 static void 1469 sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index) 1470 { 1471 struct sfxge_txq *txq; 1472 struct sfxge_evq *evq; 1473 unsigned int count; 1474 1475 SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); 1476 1477 txq = sc->txq[index]; 1478 evq = sc->evq[txq->evq_index]; 1479 1480 SFXGE_EVQ_LOCK(evq); 1481 SFXGE_TXQ_LOCK(txq); 1482 1483 KASSERT(txq->init_state == SFXGE_TXQ_STARTED, 1484 ("txq->init_state != SFXGE_TXQ_STARTED")); 1485 1486 txq->init_state = SFXGE_TXQ_INITIALIZED; 1487 1488 if (txq->flush_state != SFXGE_FLUSH_DONE) { 1489 txq->flush_state = SFXGE_FLUSH_PENDING; 1490 1491 SFXGE_EVQ_UNLOCK(evq); 1492 SFXGE_TXQ_UNLOCK(txq); 1493 1494 /* Flush the transmit queue. */ 1495 if (efx_tx_qflush(txq->common) != 0) { 1496 log(LOG_ERR, "%s: Flushing Tx queue %u failed\n", 1497 device_get_nameunit(sc->dev), index); 1498 txq->flush_state = SFXGE_FLUSH_DONE; 1499 } else { 1500 count = 0; 1501 do { 1502 /* Spin for 100ms. */ 1503 DELAY(100000); 1504 if (txq->flush_state != SFXGE_FLUSH_PENDING) 1505 break; 1506 } while (++count < 20); 1507 } 1508 SFXGE_EVQ_LOCK(evq); 1509 SFXGE_TXQ_LOCK(txq); 1510 1511 KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED, 1512 ("txq->flush_state == SFXGE_FLUSH_FAILED")); 1513 1514 if (txq->flush_state != SFXGE_FLUSH_DONE) { 1515 /* Flush timeout */ 1516 log(LOG_ERR, "%s: Cannot flush Tx queue %u\n", 1517 device_get_nameunit(sc->dev), index); 1518 txq->flush_state = SFXGE_FLUSH_DONE; 1519 } 1520 } 1521 1522 txq->blocked = 0; 1523 txq->pending = txq->added; 1524 1525 sfxge_tx_qcomplete(txq, evq); 1526 KASSERT(txq->completed == txq->added, 1527 ("txq->completed != txq->added")); 1528 1529 sfxge_tx_qreap(txq); 1530 KASSERT(txq->reaped == txq->completed, 1531 ("txq->reaped != txq->completed")); 1532 1533 txq->added = 0; 1534 txq->pending = 0; 1535 txq->completed = 0; 1536 txq->reaped = 0; 1537 1538 /* Destroy the common code transmit queue. */ 1539 efx_tx_qdestroy(txq->common); 1540 txq->common = NULL; 1541 1542 efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, 1543 EFX_TXQ_NBUFS(sc->txq_entries)); 1544 1545 txq->hw_cksum_flags = 0; 1546 1547 SFXGE_EVQ_UNLOCK(evq); 1548 SFXGE_TXQ_UNLOCK(txq); 1549 } 1550 1551 /* 1552 * Estimate maximum number of Tx descriptors required for TSO packet. 1553 * With minimum MSS and maximum mbuf length we might need more (even 1554 * than a ring-ful of descriptors), but this should not happen in 1555 * practice except due to deliberate attack. In that case we will 1556 * truncate the output at a packet boundary. 1557 */ 1558 static unsigned int 1559 sfxge_tx_max_pkt_desc(const struct sfxge_softc *sc, enum sfxge_txq_type type, 1560 unsigned int tso_fw_assisted) 1561 { 1562 /* One descriptor for every input fragment */ 1563 unsigned int max_descs = SFXGE_TX_MAPPING_MAX_SEG; 1564 unsigned int sw_tso_max_descs; 1565 unsigned int fa_tso_v1_max_descs = 0; 1566 unsigned int fa_tso_v2_max_descs = 0; 1567 1568 /* Checksum offload Tx option descriptor may be required */ 1569 if (sc->txq_dynamic_cksum_toggle_supported) 1570 max_descs++; 1571 1572 /* VLAN tagging Tx option descriptor may be required */ 1573 if (efx_nic_cfg_get(sc->enp)->enc_hw_tx_insert_vlan_enabled) 1574 max_descs++; 1575 1576 if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) { 1577 /* 1578 * Plus header and payload descriptor for each output segment. 1579 * Minus one since header fragment is already counted. 1580 * Even if FATSO is used, we should be ready to fallback 1581 * to do it in the driver. 1582 */ 1583 sw_tso_max_descs = SFXGE_TSO_MAX_SEGS * 2 - 1; 1584 1585 /* FW assisted TSOv1 requires one more descriptor per segment 1586 * in comparison to SW TSO */ 1587 if (tso_fw_assisted & SFXGE_FATSOV1) 1588 fa_tso_v1_max_descs = 1589 sw_tso_max_descs + SFXGE_TSO_MAX_SEGS; 1590 1591 /* FW assisted TSOv2 requires 3 (2 FATSO plus header) extra 1592 * descriptors per superframe limited by number of DMA fetches 1593 * per packet. The first packet header is already counted. 1594 */ 1595 if (tso_fw_assisted & SFXGE_FATSOV2) { 1596 fa_tso_v2_max_descs = 1597 howmany(SFXGE_TX_MAPPING_MAX_SEG, 1598 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1) * 1599 (EFX_TX_FATSOV2_OPT_NDESCS + 1) - 1; 1600 } 1601 1602 max_descs += MAX(sw_tso_max_descs, 1603 MAX(fa_tso_v1_max_descs, fa_tso_v2_max_descs)); 1604 } 1605 1606 return (max_descs); 1607 } 1608 1609 static int 1610 sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index) 1611 { 1612 struct sfxge_txq *txq; 1613 efsys_mem_t *esmp; 1614 uint16_t flags; 1615 unsigned int tso_fw_assisted; 1616 unsigned int label; 1617 struct sfxge_evq *evq; 1618 unsigned int desc_index; 1619 int rc; 1620 1621 SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); 1622 1623 txq = sc->txq[index]; 1624 esmp = &txq->mem; 1625 evq = sc->evq[txq->evq_index]; 1626 1627 KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, 1628 ("txq->init_state != SFXGE_TXQ_INITIALIZED")); 1629 KASSERT(evq->init_state == SFXGE_EVQ_STARTED, 1630 ("evq->init_state != SFXGE_EVQ_STARTED")); 1631 1632 /* Program the buffer table. */ 1633 if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp, 1634 EFX_TXQ_NBUFS(sc->txq_entries))) != 0) 1635 return (rc); 1636 1637 /* Determine the kind of queue we are creating. */ 1638 tso_fw_assisted = 0; 1639 switch (txq->type) { 1640 case SFXGE_TXQ_NON_CKSUM: 1641 flags = 0; 1642 break; 1643 case SFXGE_TXQ_IP_CKSUM: 1644 flags = EFX_TXQ_CKSUM_IPV4; 1645 break; 1646 case SFXGE_TXQ_IP_TCP_UDP_CKSUM: 1647 flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP; 1648 tso_fw_assisted = sc->tso_fw_assisted; 1649 if (tso_fw_assisted & SFXGE_FATSOV2) 1650 flags |= EFX_TXQ_FATSOV2; 1651 break; 1652 default: 1653 KASSERT(0, ("Impossible TX queue")); 1654 flags = 0; 1655 break; 1656 } 1657 1658 label = (sc->txq_dynamic_cksum_toggle_supported) ? 0 : txq->type; 1659 1660 /* Create the common code transmit queue. */ 1661 if ((rc = efx_tx_qcreate(sc->enp, index, label, esmp, 1662 sc->txq_entries, txq->buf_base_id, flags, evq->common, 1663 &txq->common, &desc_index)) != 0) { 1664 /* Retry if no FATSOv2 resources, otherwise fail */ 1665 if ((rc != ENOSPC) || (~flags & EFX_TXQ_FATSOV2)) 1666 goto fail; 1667 1668 /* Looks like all FATSOv2 contexts are used */ 1669 flags &= ~EFX_TXQ_FATSOV2; 1670 tso_fw_assisted &= ~SFXGE_FATSOV2; 1671 if ((rc = efx_tx_qcreate(sc->enp, index, label, esmp, 1672 sc->txq_entries, txq->buf_base_id, flags, evq->common, 1673 &txq->common, &desc_index)) != 0) 1674 goto fail; 1675 } 1676 1677 /* Initialise queue descriptor indexes */ 1678 txq->added = txq->pending = txq->completed = txq->reaped = desc_index; 1679 1680 SFXGE_TXQ_LOCK(txq); 1681 1682 /* Enable the transmit queue. */ 1683 efx_tx_qenable(txq->common); 1684 1685 txq->init_state = SFXGE_TXQ_STARTED; 1686 txq->flush_state = SFXGE_FLUSH_REQUIRED; 1687 txq->tso_fw_assisted = tso_fw_assisted; 1688 1689 txq->max_pkt_desc = sfxge_tx_max_pkt_desc(sc, txq->type, 1690 tso_fw_assisted); 1691 1692 txq->hw_vlan_tci = 0; 1693 1694 txq->hw_cksum_flags = flags & 1695 (EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP); 1696 1697 SFXGE_TXQ_UNLOCK(txq); 1698 1699 return (0); 1700 1701 fail: 1702 efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, 1703 EFX_TXQ_NBUFS(sc->txq_entries)); 1704 return (rc); 1705 } 1706 1707 void 1708 sfxge_tx_stop(struct sfxge_softc *sc) 1709 { 1710 int index; 1711 1712 index = sc->txq_count; 1713 while (--index >= 0) 1714 sfxge_tx_qstop(sc, index); 1715 1716 /* Tear down the transmit module */ 1717 efx_tx_fini(sc->enp); 1718 } 1719 1720 int 1721 sfxge_tx_start(struct sfxge_softc *sc) 1722 { 1723 int index; 1724 int rc; 1725 1726 /* Initialize the common code transmit module. */ 1727 if ((rc = efx_tx_init(sc->enp)) != 0) 1728 return (rc); 1729 1730 for (index = 0; index < sc->txq_count; index++) { 1731 if ((rc = sfxge_tx_qstart(sc, index)) != 0) 1732 goto fail; 1733 } 1734 1735 return (0); 1736 1737 fail: 1738 while (--index >= 0) 1739 sfxge_tx_qstop(sc, index); 1740 1741 efx_tx_fini(sc->enp); 1742 1743 return (rc); 1744 } 1745 1746 static int 1747 sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node) 1748 { 1749 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev); 1750 struct sysctl_oid *stat_node; 1751 unsigned int id; 1752 1753 stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO, 1754 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx queue statistics"); 1755 if (stat_node == NULL) 1756 return (ENOMEM); 1757 1758 for (id = 0; id < nitems(sfxge_tx_stats); id++) { 1759 SYSCTL_ADD_ULONG( 1760 ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO, 1761 sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS, 1762 (unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset), 1763 ""); 1764 } 1765 1766 return (0); 1767 } 1768 1769 /** 1770 * Destroy a transmit queue. 1771 */ 1772 static void 1773 sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index) 1774 { 1775 struct sfxge_txq *txq; 1776 unsigned int nmaps; 1777 1778 txq = sc->txq[index]; 1779 1780 KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, 1781 ("txq->init_state != SFXGE_TXQ_INITIALIZED")); 1782 1783 if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) 1784 tso_fini(txq); 1785 1786 /* Free the context arrays. */ 1787 free(txq->pend_desc, M_SFXGE); 1788 nmaps = sc->txq_entries; 1789 while (nmaps-- != 0) 1790 bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); 1791 free(txq->stmp, M_SFXGE); 1792 1793 /* Release DMA memory mapping. */ 1794 sfxge_dma_free(&txq->mem); 1795 1796 sc->txq[index] = NULL; 1797 1798 SFXGE_TXQ_LOCK_DESTROY(txq); 1799 1800 free(txq, M_SFXGE); 1801 } 1802 1803 static int 1804 sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index, 1805 enum sfxge_txq_type type, unsigned int evq_index) 1806 { 1807 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp); 1808 char name[16]; 1809 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); 1810 struct sysctl_oid *txq_node; 1811 struct sfxge_txq *txq; 1812 struct sfxge_tx_dpl *stdp; 1813 struct sysctl_oid *dpl_node; 1814 efsys_mem_t *esmp; 1815 unsigned int nmaps; 1816 int rc; 1817 1818 txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK); 1819 txq->sc = sc; 1820 txq->entries = sc->txq_entries; 1821 txq->ptr_mask = txq->entries - 1; 1822 1823 sc->txq[txq_index] = txq; 1824 esmp = &txq->mem; 1825 1826 /* Allocate and zero DMA space for the descriptor ring. */ 1827 if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0) 1828 return (rc); 1829 1830 /* Allocate buffer table entries. */ 1831 sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries), 1832 &txq->buf_base_id); 1833 1834 /* Create a DMA tag for packet mappings. */ 1835 if (bus_dma_tag_create(sc->parent_dma_tag, 1, 1836 encp->enc_tx_dma_desc_boundary, 1837 MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL, 1838 NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 1839 encp->enc_tx_dma_desc_size_max, 0, NULL, NULL, 1840 &txq->packet_dma_tag) != 0) { 1841 device_printf(sc->dev, "Couldn't allocate txq DMA tag\n"); 1842 rc = ENOMEM; 1843 goto fail; 1844 } 1845 1846 /* Allocate pending descriptor array for batching writes. */ 1847 txq->pend_desc = malloc(sizeof(efx_desc_t) * sc->txq_entries, 1848 M_SFXGE, M_ZERO | M_WAITOK); 1849 1850 /* Allocate and initialise mbuf DMA mapping array. */ 1851 txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries, 1852 M_SFXGE, M_ZERO | M_WAITOK); 1853 for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) { 1854 rc = bus_dmamap_create(txq->packet_dma_tag, 0, 1855 &txq->stmp[nmaps].map); 1856 if (rc != 0) 1857 goto fail2; 1858 } 1859 1860 snprintf(name, sizeof(name), "%u", txq_index); 1861 txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node), 1862 OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 1863 if (txq_node == NULL) { 1864 rc = ENOMEM; 1865 goto fail_txq_node; 1866 } 1867 1868 if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM && 1869 (rc = tso_init(txq)) != 0) 1870 goto fail3; 1871 1872 /* Initialize the deferred packet list. */ 1873 stdp = &txq->dpl; 1874 stdp->std_put_max = sfxge_tx_dpl_put_max; 1875 stdp->std_get_max = sfxge_tx_dpl_get_max; 1876 stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max; 1877 stdp->std_getp = &stdp->std_get; 1878 1879 SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index); 1880 1881 dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO, 1882 "dpl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 1883 "Deferred packet list statistics"); 1884 if (dpl_node == NULL) { 1885 rc = ENOMEM; 1886 goto fail_dpl_node; 1887 } 1888 1889 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1890 "get_count", CTLFLAG_RD | CTLFLAG_STATS, 1891 &stdp->std_get_count, 0, ""); 1892 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1893 "get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS, 1894 &stdp->std_get_non_tcp_count, 0, ""); 1895 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1896 "get_hiwat", CTLFLAG_RD | CTLFLAG_STATS, 1897 &stdp->std_get_hiwat, 0, ""); 1898 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1899 "put_hiwat", CTLFLAG_RD | CTLFLAG_STATS, 1900 &stdp->std_put_hiwat, 0, ""); 1901 1902 rc = sfxge_txq_stat_init(txq, txq_node); 1903 if (rc != 0) 1904 goto fail_txq_stat_init; 1905 1906 txq->type = type; 1907 txq->evq_index = evq_index; 1908 txq->init_state = SFXGE_TXQ_INITIALIZED; 1909 1910 return (0); 1911 1912 fail_txq_stat_init: 1913 fail_dpl_node: 1914 fail3: 1915 fail_txq_node: 1916 free(txq->pend_desc, M_SFXGE); 1917 fail2: 1918 while (nmaps-- != 0) 1919 bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); 1920 free(txq->stmp, M_SFXGE); 1921 bus_dma_tag_destroy(txq->packet_dma_tag); 1922 1923 fail: 1924 sfxge_dma_free(esmp); 1925 1926 return (rc); 1927 } 1928 1929 static int 1930 sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS) 1931 { 1932 struct sfxge_softc *sc = arg1; 1933 unsigned int id = arg2; 1934 unsigned long sum; 1935 unsigned int index; 1936 1937 /* Sum across all TX queues */ 1938 sum = 0; 1939 for (index = 0; index < sc->txq_count; index++) 1940 sum += *(unsigned long *)((caddr_t)sc->txq[index] + 1941 sfxge_tx_stats[id].offset); 1942 1943 return (SYSCTL_OUT(req, &sum, sizeof(sum))); 1944 } 1945 1946 static void 1947 sfxge_tx_stat_init(struct sfxge_softc *sc) 1948 { 1949 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); 1950 struct sysctl_oid_list *stat_list; 1951 unsigned int id; 1952 1953 stat_list = SYSCTL_CHILDREN(sc->stats_node); 1954 1955 for (id = 0; id < nitems(sfxge_tx_stats); id++) { 1956 SYSCTL_ADD_PROC(ctx, stat_list, OID_AUTO, 1957 sfxge_tx_stats[id].name, 1958 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 1959 sc, id, sfxge_tx_stat_handler, "LU", ""); 1960 } 1961 } 1962 1963 uint64_t 1964 sfxge_tx_get_drops(struct sfxge_softc *sc) 1965 { 1966 unsigned int index; 1967 uint64_t drops = 0; 1968 struct sfxge_txq *txq; 1969 1970 /* Sum across all TX queues */ 1971 for (index = 0; index < sc->txq_count; index++) { 1972 txq = sc->txq[index]; 1973 /* 1974 * In theory, txq->put_overflow and txq->netdown_drops 1975 * should use atomic operation and other should be 1976 * obtained under txq lock, but it is just statistics. 1977 */ 1978 drops += txq->drops + txq->get_overflow + 1979 txq->get_non_tcp_overflow + 1980 txq->put_overflow + txq->netdown_drops + 1981 txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc; 1982 } 1983 return (drops); 1984 } 1985 1986 void 1987 sfxge_tx_fini(struct sfxge_softc *sc) 1988 { 1989 int index; 1990 1991 index = sc->txq_count; 1992 while (--index >= 0) 1993 sfxge_tx_qfini(sc, index); 1994 1995 sc->txq_count = 0; 1996 } 1997 1998 int 1999 sfxge_tx_init(struct sfxge_softc *sc) 2000 { 2001 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp); 2002 struct sfxge_intr *intr __diagused; 2003 int index; 2004 int rc; 2005 2006 intr = &sc->intr; 2007 2008 KASSERT(intr->state == SFXGE_INTR_INITIALIZED, 2009 ("intr->state != SFXGE_INTR_INITIALIZED")); 2010 2011 if (sfxge_tx_dpl_get_max <= 0) { 2012 log(LOG_ERR, "%s=%d must be greater than 0", 2013 SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max); 2014 rc = EINVAL; 2015 goto fail_tx_dpl_get_max; 2016 } 2017 if (sfxge_tx_dpl_get_non_tcp_max <= 0) { 2018 log(LOG_ERR, "%s=%d must be greater than 0", 2019 SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, 2020 sfxge_tx_dpl_get_non_tcp_max); 2021 rc = EINVAL; 2022 goto fail_tx_dpl_get_non_tcp_max; 2023 } 2024 if (sfxge_tx_dpl_put_max < 0) { 2025 log(LOG_ERR, "%s=%d must be greater or equal to 0", 2026 SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max); 2027 rc = EINVAL; 2028 goto fail_tx_dpl_put_max; 2029 } 2030 2031 sc->txq_count = SFXGE_EVQ0_N_TXQ(sc) - 1 + sc->intr.n_alloc; 2032 2033 sc->tso_fw_assisted = sfxge_tso_fw_assisted; 2034 if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO) || 2035 (!encp->enc_fw_assisted_tso_enabled)) 2036 sc->tso_fw_assisted &= ~SFXGE_FATSOV1; 2037 if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO_V2) || 2038 (!encp->enc_fw_assisted_tso_v2_enabled)) 2039 sc->tso_fw_assisted &= ~SFXGE_FATSOV2; 2040 2041 sc->txqs_node = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev), 2042 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, 2043 "txq", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx queues"); 2044 if (sc->txqs_node == NULL) { 2045 rc = ENOMEM; 2046 goto fail_txq_node; 2047 } 2048 2049 /* Initialize the transmit queues */ 2050 if (sc->txq_dynamic_cksum_toggle_supported == B_FALSE) { 2051 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM, 2052 SFXGE_TXQ_NON_CKSUM, 0)) != 0) 2053 goto fail; 2054 2055 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM, 2056 SFXGE_TXQ_IP_CKSUM, 0)) != 0) 2057 goto fail2; 2058 } 2059 2060 for (index = 0; 2061 index < sc->txq_count - SFXGE_EVQ0_N_TXQ(sc) + 1; 2062 index++) { 2063 if ((rc = sfxge_tx_qinit(sc, SFXGE_EVQ0_N_TXQ(sc) - 1 + index, 2064 SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0) 2065 goto fail3; 2066 } 2067 2068 sfxge_tx_stat_init(sc); 2069 2070 return (0); 2071 2072 fail3: 2073 while (--index >= 0) 2074 sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index); 2075 2076 sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM); 2077 2078 fail2: 2079 sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM); 2080 2081 fail: 2082 fail_txq_node: 2083 sc->txq_count = 0; 2084 fail_tx_dpl_put_max: 2085 fail_tx_dpl_get_non_tcp_max: 2086 fail_tx_dpl_get_max: 2087 return (rc); 2088 } 2089