xref: /freebsd/sys/dev/sfxge/sfxge_tx.c (revision 788ca347b816afd83b2885e0c79aeeb88649b2ab)
1 /*-
2  * Copyright (c) 2010-2011 Solarflare Communications, Inc.
3  * All rights reserved.
4  *
5  * This software was developed in part by Philip Paeps under contract for
6  * Solarflare Communications, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Theory of operation:
31  *
32  * Tx queues allocation and mapping
33  *
34  * One Tx queue with enabled checksum offload is allocated per Rx channel
35  * (event queue).  Also 2 Tx queues (one without checksum offload and one
36  * with IP checksum offload only) are allocated and bound to event queue 0.
37  * sfxge_txq_type is used as Tx queue label.
38  *
39  * So, event queue plus label mapping to Tx queue index is:
40  *	if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES)
41  *	else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1
42  * See sfxge_get_txq_by_label() sfxge_ev.c
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/types.h>
49 #include <sys/mbuf.h>
50 #include <sys/smp.h>
51 #include <sys/socket.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet/tcp.h>
64 
65 #include "common/efx.h"
66 
67 #include "sfxge.h"
68 #include "sfxge_tx.h"
69 
70 /*
71  * Estimate maximum number of Tx descriptors required for TSO packet.
72  * With minimum MSS and maximum mbuf length we might need more (even
73  * than a ring-ful of descriptors), but this should not happen in
74  * practice except due to deliberate attack.  In that case we will
75  * truncate the output at a packet boundary.
76  */
77 #define	SFXGE_TSO_MAX_DESC						\
78 	(SFXGE_TSO_MAX_SEGS * 2 + SFXGE_TX_MAPPING_MAX_SEG - 1)
79 
80 /*
81  * Set the block level to ensure there is space to generate a
82  * large number of descriptors for TSO.
83  */
84 #define	SFXGE_TXQ_BLOCK_LEVEL(_entries)					\
85 	(EFX_TXQ_LIMIT(_entries) - SFXGE_TSO_MAX_DESC)
86 
87 
88 #define	SFXGE_PARAM_TX_DPL_GET_MAX	SFXGE_PARAM(tx_dpl_get_max)
89 static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT;
90 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max);
91 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN,
92 	   &sfxge_tx_dpl_get_max, 0,
93 	   "Maximum number of any packets in deferred packet get-list");
94 
95 #define	SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \
96 	SFXGE_PARAM(tx_dpl_get_non_tcp_max)
97 static int sfxge_tx_dpl_get_non_tcp_max =
98 	SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT;
99 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max);
100 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN,
101 	   &sfxge_tx_dpl_get_non_tcp_max, 0,
102 	   "Maximum number of non-TCP packets in deferred packet get-list");
103 
104 #define	SFXGE_PARAM_TX_DPL_PUT_MAX	SFXGE_PARAM(tx_dpl_put_max)
105 static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT;
106 TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max);
107 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN,
108 	   &sfxge_tx_dpl_put_max, 0,
109 	   "Maximum number of any packets in deferred packet put-list");
110 
111 
112 static const struct {
113 	const char *name;
114 	size_t offset;
115 } sfxge_tx_stats[] = {
116 #define	SFXGE_TX_STAT(name, member) \
117 	{ #name, offsetof(struct sfxge_txq, member) }
118 	SFXGE_TX_STAT(tso_bursts, tso_bursts),
119 	SFXGE_TX_STAT(tso_packets, tso_packets),
120 	SFXGE_TX_STAT(tso_long_headers, tso_long_headers),
121 	SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many),
122 	SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc),
123 	SFXGE_TX_STAT(tx_collapses, collapses),
124 	SFXGE_TX_STAT(tx_drops, drops),
125 	SFXGE_TX_STAT(tx_get_overflow, get_overflow),
126 	SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow),
127 	SFXGE_TX_STAT(tx_put_overflow, put_overflow),
128 	SFXGE_TX_STAT(tx_netdown_drops, netdown_drops),
129 };
130 
131 
132 /* Forward declarations. */
133 static void sfxge_tx_qdpl_service(struct sfxge_txq *txq);
134 static void sfxge_tx_qlist_post(struct sfxge_txq *txq);
135 static void sfxge_tx_qunblock(struct sfxge_txq *txq);
136 static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
137 			      const bus_dma_segment_t *dma_seg, int n_dma_seg);
138 
139 void
140 sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq)
141 {
142 	unsigned int completed;
143 
144 	SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
145 
146 	completed = txq->completed;
147 	while (completed != txq->pending) {
148 		struct sfxge_tx_mapping *stmp;
149 		unsigned int id;
150 
151 		id = completed++ & txq->ptr_mask;
152 
153 		stmp = &txq->stmp[id];
154 		if (stmp->flags & TX_BUF_UNMAP) {
155 			bus_dmamap_unload(txq->packet_dma_tag, stmp->map);
156 			if (stmp->flags & TX_BUF_MBUF) {
157 				struct mbuf *m = stmp->u.mbuf;
158 				do
159 					m = m_free(m);
160 				while (m != NULL);
161 			} else {
162 				free(stmp->u.heap_buf, M_SFXGE);
163 			}
164 			stmp->flags = 0;
165 		}
166 	}
167 	txq->completed = completed;
168 
169 	/* Check whether we need to unblock the queue. */
170 	mb();
171 	if (txq->blocked) {
172 		unsigned int level;
173 
174 		level = txq->added - txq->completed;
175 		if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries))
176 			sfxge_tx_qunblock(txq);
177 	}
178 }
179 
180 static unsigned int
181 sfxge_is_mbuf_non_tcp(struct mbuf *mbuf)
182 {
183 	/* Absense of TCP checksum flags does not mean that it is non-TCP
184 	 * but it should be true if user wants to achieve high throughput.
185 	 */
186 	return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)));
187 }
188 
189 /*
190  * Reorder the put list and append it to the get list.
191  */
192 static void
193 sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq)
194 {
195 	struct sfxge_tx_dpl *stdp;
196 	struct mbuf *mbuf, *get_next, **get_tailp;
197 	volatile uintptr_t *putp;
198 	uintptr_t put;
199 	unsigned int count;
200 	unsigned int non_tcp_count;
201 
202 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
203 
204 	stdp = &txq->dpl;
205 
206 	/* Acquire the put list. */
207 	putp = &stdp->std_put;
208 	put = atomic_readandclear_ptr(putp);
209 	mbuf = (void *)put;
210 
211 	if (mbuf == NULL)
212 		return;
213 
214 	/* Reverse the put list. */
215 	get_tailp = &mbuf->m_nextpkt;
216 	get_next = NULL;
217 
218 	count = 0;
219 	non_tcp_count = 0;
220 	do {
221 		struct mbuf *put_next;
222 
223 		non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf);
224 		put_next = mbuf->m_nextpkt;
225 		mbuf->m_nextpkt = get_next;
226 		get_next = mbuf;
227 		mbuf = put_next;
228 
229 		count++;
230 	} while (mbuf != NULL);
231 
232 	if (count > stdp->std_put_hiwat)
233 		stdp->std_put_hiwat = count;
234 
235 	/* Append the reversed put list to the get list. */
236 	KASSERT(*get_tailp == NULL, ("*get_tailp != NULL"));
237 	*stdp->std_getp = get_next;
238 	stdp->std_getp = get_tailp;
239 	stdp->std_get_count += count;
240 	stdp->std_get_non_tcp_count += non_tcp_count;
241 }
242 
243 static void
244 sfxge_tx_qreap(struct sfxge_txq *txq)
245 {
246 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
247 
248 	txq->reaped = txq->completed;
249 }
250 
251 static void
252 sfxge_tx_qlist_post(struct sfxge_txq *txq)
253 {
254 	unsigned int old_added;
255 	unsigned int level;
256 	int rc;
257 
258 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
259 
260 	KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0"));
261 	KASSERT(txq->n_pend_desc <= SFXGE_TSO_MAX_DESC,
262 		("txq->n_pend_desc too large"));
263 	KASSERT(!txq->blocked, ("txq->blocked"));
264 
265 	old_added = txq->added;
266 
267 	/* Post the fragment list. */
268 	rc = efx_tx_qpost(txq->common, txq->pend_desc, txq->n_pend_desc,
269 			  txq->reaped, &txq->added);
270 	KASSERT(rc == 0, ("efx_tx_qpost() failed"));
271 
272 	/* If efx_tx_qpost() had to refragment, our information about
273 	 * buffers to free may be associated with the wrong
274 	 * descriptors.
275 	 */
276 	KASSERT(txq->added - old_added == txq->n_pend_desc,
277 		("efx_tx_qpost() refragmented descriptors"));
278 
279 	level = txq->added - txq->reaped;
280 	KASSERT(level <= txq->entries, ("overfilled TX queue"));
281 
282 	/* Clear the fragment list. */
283 	txq->n_pend_desc = 0;
284 
285 	/* Have we reached the block level? */
286 	if (level < SFXGE_TXQ_BLOCK_LEVEL(txq->entries))
287 		return;
288 
289 	/* Reap, and check again */
290 	sfxge_tx_qreap(txq);
291 	level = txq->added - txq->reaped;
292 	if (level < SFXGE_TXQ_BLOCK_LEVEL(txq->entries))
293 		return;
294 
295 	txq->blocked = 1;
296 
297 	/*
298 	 * Avoid a race with completion interrupt handling that could leave
299 	 * the queue blocked.
300 	 */
301 	mb();
302 	sfxge_tx_qreap(txq);
303 	level = txq->added - txq->reaped;
304 	if (level < SFXGE_TXQ_BLOCK_LEVEL(txq->entries)) {
305 		mb();
306 		txq->blocked = 0;
307 	}
308 }
309 
310 static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf)
311 {
312 	bus_dmamap_t *used_map;
313 	bus_dmamap_t map;
314 	bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG];
315 	unsigned int id;
316 	struct sfxge_tx_mapping *stmp;
317 	efx_buffer_t *desc;
318 	int n_dma_seg;
319 	int rc;
320 	int i;
321 
322 	KASSERT(!txq->blocked, ("txq->blocked"));
323 
324 	if (mbuf->m_pkthdr.csum_flags & CSUM_TSO)
325 		prefetch_read_many(mbuf->m_data);
326 
327 	if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) {
328 		rc = EINTR;
329 		goto reject;
330 	}
331 
332 	/* Load the packet for DMA. */
333 	id = txq->added & txq->ptr_mask;
334 	stmp = &txq->stmp[id];
335 	rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map,
336 				     mbuf, dma_seg, &n_dma_seg, 0);
337 	if (rc == EFBIG) {
338 		/* Try again. */
339 		struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT,
340 						   SFXGE_TX_MAPPING_MAX_SEG);
341 		if (new_mbuf == NULL)
342 			goto reject;
343 		++txq->collapses;
344 		mbuf = new_mbuf;
345 		rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag,
346 					     stmp->map, mbuf,
347 					     dma_seg, &n_dma_seg, 0);
348 	}
349 	if (rc != 0)
350 		goto reject;
351 
352 	/* Make the packet visible to the hardware. */
353 	bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE);
354 
355 	used_map = &stmp->map;
356 
357 	if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
358 		rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg);
359 		if (rc < 0)
360 			goto reject_mapped;
361 		stmp = &txq->stmp[rc];
362 	} else {
363 		/* Add the mapping to the fragment list, and set flags
364 		 * for the buffer.
365 		 */
366 		i = 0;
367 		for (;;) {
368 			desc = &txq->pend_desc[i];
369 			desc->eb_addr = dma_seg[i].ds_addr;
370 			desc->eb_size = dma_seg[i].ds_len;
371 			if (i == n_dma_seg - 1) {
372 				desc->eb_eop = 1;
373 				break;
374 			}
375 			desc->eb_eop = 0;
376 			i++;
377 
378 			stmp->flags = 0;
379 			if (__predict_false(stmp ==
380 					    &txq->stmp[txq->ptr_mask]))
381 				stmp = &txq->stmp[0];
382 			else
383 				stmp++;
384 		}
385 		txq->n_pend_desc = n_dma_seg;
386 	}
387 
388 	/*
389 	 * If the mapping required more than one descriptor
390 	 * then we need to associate the DMA map with the last
391 	 * descriptor, not the first.
392 	 */
393 	if (used_map != &stmp->map) {
394 		map = stmp->map;
395 		stmp->map = *used_map;
396 		*used_map = map;
397 	}
398 
399 	stmp->u.mbuf = mbuf;
400 	stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF;
401 
402 	/* Post the fragment list. */
403 	sfxge_tx_qlist_post(txq);
404 
405 	return (0);
406 
407 reject_mapped:
408 	bus_dmamap_unload(txq->packet_dma_tag, *used_map);
409 reject:
410 	/* Drop the packet on the floor. */
411 	m_freem(mbuf);
412 	++txq->drops;
413 
414 	return (rc);
415 }
416 
417 /*
418  * Drain the deferred packet list into the transmit queue.
419  */
420 static void
421 sfxge_tx_qdpl_drain(struct sfxge_txq *txq)
422 {
423 	struct sfxge_softc *sc;
424 	struct sfxge_tx_dpl *stdp;
425 	struct mbuf *mbuf, *next;
426 	unsigned int count;
427 	unsigned int non_tcp_count;
428 	unsigned int pushed;
429 	int rc;
430 
431 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
432 
433 	sc = txq->sc;
434 	stdp = &txq->dpl;
435 	pushed = txq->added;
436 
437 	if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) {
438 		prefetch_read_many(sc->enp);
439 		prefetch_read_many(txq->common);
440 	}
441 
442 	mbuf = stdp->std_get;
443 	count = stdp->std_get_count;
444 	non_tcp_count = stdp->std_get_non_tcp_count;
445 
446 	if (count > stdp->std_get_hiwat)
447 		stdp->std_get_hiwat = count;
448 
449 	while (count != 0) {
450 		KASSERT(mbuf != NULL, ("mbuf == NULL"));
451 
452 		next = mbuf->m_nextpkt;
453 		mbuf->m_nextpkt = NULL;
454 
455 		ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */
456 
457 		if (next != NULL)
458 			prefetch_read_many(next);
459 
460 		rc = sfxge_tx_queue_mbuf(txq, mbuf);
461 		--count;
462 		non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf);
463 		mbuf = next;
464 		if (rc != 0)
465 			continue;
466 
467 		if (txq->blocked)
468 			break;
469 
470 		/* Push the fragments to the hardware in batches. */
471 		if (txq->added - pushed >= SFXGE_TX_BATCH) {
472 			efx_tx_qpush(txq->common, txq->added);
473 			pushed = txq->added;
474 		}
475 	}
476 
477 	if (count == 0) {
478 		KASSERT(mbuf == NULL, ("mbuf != NULL"));
479 		KASSERT(non_tcp_count == 0,
480 			("inconsistent TCP/non-TCP detection"));
481 		stdp->std_get = NULL;
482 		stdp->std_get_count = 0;
483 		stdp->std_get_non_tcp_count = 0;
484 		stdp->std_getp = &stdp->std_get;
485 	} else {
486 		stdp->std_get = mbuf;
487 		stdp->std_get_count = count;
488 		stdp->std_get_non_tcp_count = non_tcp_count;
489 	}
490 
491 	if (txq->added != pushed)
492 		efx_tx_qpush(txq->common, txq->added);
493 
494 	KASSERT(txq->blocked || stdp->std_get_count == 0,
495 		("queue unblocked but count is non-zero"));
496 }
497 
498 #define	SFXGE_TX_QDPL_PENDING(_txq)					\
499 	((_txq)->dpl.std_put != 0)
500 
501 /*
502  * Service the deferred packet list.
503  *
504  * NOTE: drops the txq mutex!
505  */
506 static void
507 sfxge_tx_qdpl_service(struct sfxge_txq *txq)
508 {
509 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
510 
511 	do {
512 		if (SFXGE_TX_QDPL_PENDING(txq))
513 			sfxge_tx_qdpl_swizzle(txq);
514 
515 		if (!txq->blocked)
516 			sfxge_tx_qdpl_drain(txq);
517 
518 		SFXGE_TXQ_UNLOCK(txq);
519 	} while (SFXGE_TX_QDPL_PENDING(txq) &&
520 		 SFXGE_TXQ_TRYLOCK(txq));
521 }
522 
523 /*
524  * Put a packet on the deferred packet list.
525  *
526  * If we are called with the txq lock held, we put the packet on the "get
527  * list", otherwise we atomically push it on the "put list".  The swizzle
528  * function takes care of ordering.
529  *
530  * The length of the put list is bounded by SFXGE_TX_MAX_DEFERRED.  We
531  * overload the csum_data field in the mbuf to keep track of this length
532  * because there is no cheap alternative to avoid races.
533  */
534 static int
535 sfxge_tx_qdpl_put(struct sfxge_txq *txq, struct mbuf *mbuf, int locked)
536 {
537 	struct sfxge_tx_dpl *stdp;
538 
539 	stdp = &txq->dpl;
540 
541 	KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
542 
543 	if (locked) {
544 		SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
545 
546 		sfxge_tx_qdpl_swizzle(txq);
547 
548 		if (stdp->std_get_count >= stdp->std_get_max) {
549 			txq->get_overflow++;
550 			return (ENOBUFS);
551 		}
552 		if (sfxge_is_mbuf_non_tcp(mbuf)) {
553 			if (stdp->std_get_non_tcp_count >=
554 			    stdp->std_get_non_tcp_max) {
555 				txq->get_non_tcp_overflow++;
556 				return (ENOBUFS);
557 			}
558 			stdp->std_get_non_tcp_count++;
559 		}
560 
561 		*(stdp->std_getp) = mbuf;
562 		stdp->std_getp = &mbuf->m_nextpkt;
563 		stdp->std_get_count++;
564 	} else {
565 		volatile uintptr_t *putp;
566 		uintptr_t old;
567 		uintptr_t new;
568 		unsigned old_len;
569 
570 		putp = &stdp->std_put;
571 		new = (uintptr_t)mbuf;
572 
573 		do {
574 			old = *putp;
575 			if (old != 0) {
576 				struct mbuf *mp = (struct mbuf *)old;
577 				old_len = mp->m_pkthdr.csum_data;
578 			} else
579 				old_len = 0;
580 			if (old_len >= stdp->std_put_max) {
581 				atomic_add_long(&txq->put_overflow, 1);
582 				return (ENOBUFS);
583 			}
584 			mbuf->m_pkthdr.csum_data = old_len + 1;
585 			mbuf->m_nextpkt = (void *)old;
586 		} while (atomic_cmpset_ptr(putp, old, new) == 0);
587 	}
588 
589 	return (0);
590 }
591 
592 /*
593  * Called from if_transmit - will try to grab the txq lock and enqueue to the
594  * put list if it succeeds, otherwise try to push onto the defer list if space.
595  */
596 int
597 sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m)
598 {
599 	int locked;
600 	int rc;
601 
602 	if (!SFXGE_LINK_UP(txq->sc)) {
603 		rc = ENETDOWN;
604 		atomic_add_long(&txq->netdown_drops, 1);
605 		goto fail;
606 	}
607 
608 	/*
609 	 * Try to grab the txq lock.  If we are able to get the lock,
610 	 * the packet will be appended to the "get list" of the deferred
611 	 * packet list.  Otherwise, it will be pushed on the "put list".
612 	 */
613 	locked = SFXGE_TXQ_TRYLOCK(txq);
614 
615 	if (sfxge_tx_qdpl_put(txq, m, locked) != 0) {
616 		if (locked)
617 			SFXGE_TXQ_UNLOCK(txq);
618 		rc = ENOBUFS;
619 		goto fail;
620 	}
621 
622 	/*
623 	 * Try to grab the lock again.
624 	 *
625 	 * If we are able to get the lock, we need to process the deferred
626 	 * packet list.  If we are not able to get the lock, another thread
627 	 * is processing the list.
628 	 */
629 	if (!locked)
630 		locked = SFXGE_TXQ_TRYLOCK(txq);
631 
632 	if (locked) {
633 		/* Try to service the list. */
634 		sfxge_tx_qdpl_service(txq);
635 		/* Lock has been dropped. */
636 	}
637 
638 	return (0);
639 
640 fail:
641 	m_freem(m);
642 	return (rc);
643 }
644 
645 static void
646 sfxge_tx_qdpl_flush(struct sfxge_txq *txq)
647 {
648 	struct sfxge_tx_dpl *stdp = &txq->dpl;
649 	struct mbuf *mbuf, *next;
650 
651 	SFXGE_TXQ_LOCK(txq);
652 
653 	sfxge_tx_qdpl_swizzle(txq);
654 	for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) {
655 		next = mbuf->m_nextpkt;
656 		m_freem(mbuf);
657 	}
658 	stdp->std_get = NULL;
659 	stdp->std_get_count = 0;
660 	stdp->std_get_non_tcp_count = 0;
661 	stdp->std_getp = &stdp->std_get;
662 
663 	SFXGE_TXQ_UNLOCK(txq);
664 }
665 
666 void
667 sfxge_if_qflush(struct ifnet *ifp)
668 {
669 	struct sfxge_softc *sc;
670 	unsigned int i;
671 
672 	sc = ifp->if_softc;
673 
674 	for (i = 0; i < sc->txq_count; i++)
675 		sfxge_tx_qdpl_flush(sc->txq[i]);
676 }
677 
678 /*
679  * TX start -- called by the stack.
680  */
681 int
682 sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m)
683 {
684 	struct sfxge_softc *sc;
685 	struct sfxge_txq *txq;
686 	int rc;
687 
688 	sc = (struct sfxge_softc *)ifp->if_softc;
689 
690 	/*
691 	 * Transmit may be called when interface is up from the kernel
692 	 * point of view, but not yet up (in progress) from the driver
693 	 * point of view. I.e. link aggregation bring up.
694 	 * Transmit may be called when interface is up from the driver
695 	 * point of view, but already down from the kernel point of
696 	 * view. I.e. Rx when interface shutdown is in progress.
697 	 */
698 	KASSERT((ifp->if_flags & IFF_UP) || (sc->if_flags & IFF_UP),
699 		("interface not up"));
700 
701 	/* Pick the desired transmit queue. */
702 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO)) {
703 		int index = 0;
704 
705 		/* check if flowid is set */
706 		if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
707 			uint32_t hash = m->m_pkthdr.flowid;
708 
709 			index = sc->rx_indir_table[hash % SFXGE_RX_SCALE_MAX];
710 		}
711 		txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index];
712 	} else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
713 		txq = sc->txq[SFXGE_TXQ_IP_CKSUM];
714 	} else {
715 		txq = sc->txq[SFXGE_TXQ_NON_CKSUM];
716 	}
717 
718 	rc = sfxge_tx_packet_add(txq, m);
719 
720 	return (rc);
721 }
722 
723 /*
724  * Software "TSO".  Not quite as good as doing it in hardware, but
725  * still faster than segmenting in the stack.
726  */
727 
728 struct sfxge_tso_state {
729 	/* Output position */
730 	unsigned out_len;	/* Remaining length in current segment */
731 	unsigned seqnum;	/* Current sequence number */
732 	unsigned packet_space;	/* Remaining space in current packet */
733 
734 	/* Input position */
735 	uint64_t dma_addr;	/* DMA address of current position */
736 	unsigned in_len;	/* Remaining length in current mbuf */
737 
738 	const struct mbuf *mbuf; /* Input mbuf (head of chain) */
739 	u_short protocol;	/* Network protocol (after VLAN decap) */
740 	ssize_t nh_off;		/* Offset of network header */
741 	ssize_t tcph_off;	/* Offset of TCP header */
742 	unsigned header_len;	/* Number of bytes of header */
743 	unsigned seg_size;	/* TCP segment size */
744 };
745 
746 static const struct ip *tso_iph(const struct sfxge_tso_state *tso)
747 {
748 	KASSERT(tso->protocol == htons(ETHERTYPE_IP),
749 		("tso_iph() in non-IPv4 state"));
750 	return (const struct ip *)(tso->mbuf->m_data + tso->nh_off);
751 }
752 static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso)
753 {
754 	KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
755 		("tso_ip6h() in non-IPv6 state"));
756 	return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off);
757 }
758 static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso)
759 {
760 	return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off);
761 }
762 
763 /* Size of preallocated TSO header buffers.  Larger blocks must be
764  * allocated from the heap.
765  */
766 #define	TSOH_STD_SIZE	128
767 
768 /* At most half the descriptors in the queue at any time will refer to
769  * a TSO header buffer, since they must always be followed by a
770  * payload descriptor referring to an mbuf.
771  */
772 #define	TSOH_COUNT(_txq_entries)	((_txq_entries) / 2u)
773 #define	TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
774 #define	TSOH_PAGE_COUNT(_txq_entries)	\
775 	((TSOH_COUNT(_txq_entries) + TSOH_PER_PAGE - 1) / TSOH_PER_PAGE)
776 
777 static int tso_init(struct sfxge_txq *txq)
778 {
779 	struct sfxge_softc *sc = txq->sc;
780 	unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries);
781 	int i, rc;
782 
783 	/* Allocate TSO header buffers */
784 	txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]),
785 				  M_SFXGE, M_WAITOK);
786 
787 	for (i = 0; i < tsoh_page_count; i++) {
788 		rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]);
789 		if (rc != 0)
790 			goto fail;
791 	}
792 
793 	return (0);
794 
795 fail:
796 	while (i-- > 0)
797 		sfxge_dma_free(&txq->tsoh_buffer[i]);
798 	free(txq->tsoh_buffer, M_SFXGE);
799 	txq->tsoh_buffer = NULL;
800 	return (rc);
801 }
802 
803 static void tso_fini(struct sfxge_txq *txq)
804 {
805 	int i;
806 
807 	if (txq->tsoh_buffer != NULL) {
808 		for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++)
809 			sfxge_dma_free(&txq->tsoh_buffer[i]);
810 		free(txq->tsoh_buffer, M_SFXGE);
811 	}
812 }
813 
814 static void tso_start(struct sfxge_tso_state *tso, struct mbuf *mbuf)
815 {
816 	struct ether_header *eh = mtod(mbuf, struct ether_header *);
817 	const struct tcphdr *th;
818 	struct tcphdr th_copy;
819 
820 	tso->mbuf = mbuf;
821 
822 	/* Find network protocol and header */
823 	tso->protocol = eh->ether_type;
824 	if (tso->protocol == htons(ETHERTYPE_VLAN)) {
825 		struct ether_vlan_header *veh =
826 			mtod(mbuf, struct ether_vlan_header *);
827 		tso->protocol = veh->evl_proto;
828 		tso->nh_off = sizeof(*veh);
829 	} else {
830 		tso->nh_off = sizeof(*eh);
831 	}
832 
833 	/* Find TCP header */
834 	if (tso->protocol == htons(ETHERTYPE_IP)) {
835 		KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP,
836 			("TSO required on non-TCP packet"));
837 		tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl;
838 	} else {
839 		KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
840 			("TSO required on non-IP packet"));
841 		KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP,
842 			("TSO required on non-TCP packet"));
843 		tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr);
844 	}
845 
846 	KASSERT(mbuf->m_len >= tso->tcph_off,
847 		("network header is fragmented in mbuf"));
848 	/* We need TCP header including flags (window is the next) */
849 	if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) {
850 		m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy),
851 			   (caddr_t)&th_copy);
852 		th = &th_copy;
853 	} else {
854 		th = tso_tcph(tso);
855 	}
856 
857 	tso->header_len = tso->tcph_off + 4 * th->th_off;
858 	tso->seg_size = mbuf->m_pkthdr.tso_segsz;
859 
860 	tso->seqnum = ntohl(th->th_seq);
861 
862 	/* These flags must not be duplicated */
863 	KASSERT(!(th->th_flags & (TH_URG | TH_SYN | TH_RST)),
864 		("incompatible TCP flag on TSO packet"));
865 
866 	tso->out_len = mbuf->m_pkthdr.len - tso->header_len;
867 }
868 
869 /*
870  * tso_fill_packet_with_fragment - form descriptors for the current fragment
871  *
872  * Form descriptors for the current fragment, until we reach the end
873  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
874  * space.
875  */
876 static void tso_fill_packet_with_fragment(struct sfxge_txq *txq,
877 					  struct sfxge_tso_state *tso)
878 {
879 	efx_buffer_t *desc;
880 	int n;
881 
882 	if (tso->in_len == 0 || tso->packet_space == 0)
883 		return;
884 
885 	KASSERT(tso->in_len > 0, ("TSO input length went negative"));
886 	KASSERT(tso->packet_space > 0, ("TSO packet space went negative"));
887 
888 	n = min(tso->in_len, tso->packet_space);
889 
890 	tso->packet_space -= n;
891 	tso->out_len -= n;
892 	tso->in_len -= n;
893 
894 	desc = &txq->pend_desc[txq->n_pend_desc++];
895 	desc->eb_addr = tso->dma_addr;
896 	desc->eb_size = n;
897 	desc->eb_eop = tso->out_len == 0 || tso->packet_space == 0;
898 
899 	tso->dma_addr += n;
900 }
901 
902 /* Callback from bus_dmamap_load() for long TSO headers. */
903 static void tso_map_long_header(void *dma_addr_ret,
904 				bus_dma_segment_t *segs, int nseg,
905 				int error)
906 {
907 	*(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) &&
908 				      __predict_true(nseg == 1)) ?
909 				     segs->ds_addr : 0);
910 }
911 
912 /*
913  * tso_start_new_packet - generate a new header and prepare for the new packet
914  *
915  * Generate a new header and prepare for the new packet.  Return 0 on
916  * success, or an error code if failed to alloc header.
917  */
918 static int tso_start_new_packet(struct sfxge_txq *txq,
919 				struct sfxge_tso_state *tso,
920 				unsigned int id)
921 {
922 	struct sfxge_tx_mapping *stmp = &txq->stmp[id];
923 	struct tcphdr *tsoh_th;
924 	unsigned ip_length;
925 	caddr_t header;
926 	uint64_t dma_addr;
927 	bus_dmamap_t map;
928 	efx_buffer_t *desc;
929 	int rc;
930 
931 	/* Allocate a DMA-mapped header buffer. */
932 	if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) {
933 		unsigned int page_index = (id / 2) / TSOH_PER_PAGE;
934 		unsigned int buf_index = (id / 2) % TSOH_PER_PAGE;
935 
936 		header = (txq->tsoh_buffer[page_index].esm_base +
937 			  buf_index * TSOH_STD_SIZE);
938 		dma_addr = (txq->tsoh_buffer[page_index].esm_addr +
939 			    buf_index * TSOH_STD_SIZE);
940 		map = txq->tsoh_buffer[page_index].esm_map;
941 
942 		stmp->flags = 0;
943 	} else {
944 		/* We cannot use bus_dmamem_alloc() as that may sleep */
945 		header = malloc(tso->header_len, M_SFXGE, M_NOWAIT);
946 		if (__predict_false(!header))
947 			return (ENOMEM);
948 		rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map,
949 				     header, tso->header_len,
950 				     tso_map_long_header, &dma_addr,
951 				     BUS_DMA_NOWAIT);
952 		if (__predict_false(dma_addr == 0)) {
953 			if (rc == 0) {
954 				/* Succeeded but got >1 segment */
955 				bus_dmamap_unload(txq->packet_dma_tag,
956 						  stmp->map);
957 				rc = EINVAL;
958 			}
959 			free(header, M_SFXGE);
960 			return (rc);
961 		}
962 		map = stmp->map;
963 
964 		txq->tso_long_headers++;
965 		stmp->u.heap_buf = header;
966 		stmp->flags = TX_BUF_UNMAP;
967 	}
968 
969 	tsoh_th = (struct tcphdr *)(header + tso->tcph_off);
970 
971 	/* Copy and update the headers. */
972 	m_copydata(tso->mbuf, 0, tso->header_len, header);
973 
974 	tsoh_th->th_seq = htonl(tso->seqnum);
975 	tso->seqnum += tso->seg_size;
976 	if (tso->out_len > tso->seg_size) {
977 		/* This packet will not finish the TSO burst. */
978 		ip_length = tso->header_len - tso->nh_off + tso->seg_size;
979 		tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH);
980 	} else {
981 		/* This packet will be the last in the TSO burst. */
982 		ip_length = tso->header_len - tso->nh_off + tso->out_len;
983 	}
984 
985 	if (tso->protocol == htons(ETHERTYPE_IP)) {
986 		struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off);
987 		tsoh_iph->ip_len = htons(ip_length);
988 		/* XXX We should increment ip_id, but FreeBSD doesn't
989 		 * currently allocate extra IDs for multiple segments.
990 		 */
991 	} else {
992 		struct ip6_hdr *tsoh_iph =
993 			(struct ip6_hdr *)(header + tso->nh_off);
994 		tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph));
995 	}
996 
997 	/* Make the header visible to the hardware. */
998 	bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE);
999 
1000 	tso->packet_space = tso->seg_size;
1001 	txq->tso_packets++;
1002 
1003 	/* Form a descriptor for this header. */
1004 	desc = &txq->pend_desc[txq->n_pend_desc++];
1005 	desc->eb_addr = dma_addr;
1006 	desc->eb_size = tso->header_len;
1007 	desc->eb_eop = 0;
1008 
1009 	return (0);
1010 }
1011 
1012 static int
1013 sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
1014 		   const bus_dma_segment_t *dma_seg, int n_dma_seg)
1015 {
1016 	struct sfxge_tso_state tso;
1017 	unsigned int id, next_id;
1018 	unsigned skipped = 0;
1019 
1020 	tso_start(&tso, mbuf);
1021 
1022 	while (dma_seg->ds_len + skipped <= tso.header_len) {
1023 		skipped += dma_seg->ds_len;
1024 		--n_dma_seg;
1025 		KASSERT(n_dma_seg, ("no payload found in TSO packet"));
1026 		++dma_seg;
1027 	}
1028 	tso.in_len = dma_seg->ds_len - (tso.header_len - skipped);
1029 	tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped);
1030 
1031 	id = txq->added & txq->ptr_mask;
1032 	if (__predict_false(tso_start_new_packet(txq, &tso, id)))
1033 		return (-1);
1034 
1035 	while (1) {
1036 		id = (id + 1) & txq->ptr_mask;
1037 		tso_fill_packet_with_fragment(txq, &tso);
1038 
1039 		/* Move onto the next fragment? */
1040 		if (tso.in_len == 0) {
1041 			--n_dma_seg;
1042 			if (n_dma_seg == 0)
1043 				break;
1044 			++dma_seg;
1045 			tso.in_len = dma_seg->ds_len;
1046 			tso.dma_addr = dma_seg->ds_addr;
1047 		}
1048 
1049 		/* End of packet? */
1050 		if (tso.packet_space == 0) {
1051 			/* If the queue is now full due to tiny MSS,
1052 			 * or we can't create another header, discard
1053 			 * the remainder of the input mbuf but do not
1054 			 * roll back the work we have done.
1055 			 */
1056 			if (txq->n_pend_desc + 1 /* header */ + n_dma_seg >
1057 			    SFXGE_TSO_MAX_DESC) {
1058 				txq->tso_pdrop_too_many++;
1059 				break;
1060 			}
1061 			next_id = (id + 1) & txq->ptr_mask;
1062 			if (__predict_false(tso_start_new_packet(txq, &tso,
1063 								 next_id))) {
1064 				txq->tso_pdrop_no_rsrc++;
1065 				break;
1066 			}
1067 			id = next_id;
1068 		}
1069 	}
1070 
1071 	txq->tso_bursts++;
1072 	return (id);
1073 }
1074 
1075 static void
1076 sfxge_tx_qunblock(struct sfxge_txq *txq)
1077 {
1078 	struct sfxge_softc *sc;
1079 	struct sfxge_evq *evq;
1080 
1081 	sc = txq->sc;
1082 	evq = sc->evq[txq->evq_index];
1083 
1084 	SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
1085 
1086 	if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED))
1087 		return;
1088 
1089 	SFXGE_TXQ_LOCK(txq);
1090 
1091 	if (txq->blocked) {
1092 		unsigned int level;
1093 
1094 		level = txq->added - txq->completed;
1095 		if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) {
1096 			/* reaped must be in sync with blocked */
1097 			sfxge_tx_qreap(txq);
1098 			txq->blocked = 0;
1099 		}
1100 	}
1101 
1102 	sfxge_tx_qdpl_service(txq);
1103 	/* note: lock has been dropped */
1104 }
1105 
1106 void
1107 sfxge_tx_qflush_done(struct sfxge_txq *txq)
1108 {
1109 
1110 	txq->flush_state = SFXGE_FLUSH_DONE;
1111 }
1112 
1113 static void
1114 sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index)
1115 {
1116 	struct sfxge_txq *txq;
1117 	struct sfxge_evq *evq;
1118 	unsigned int count;
1119 
1120 	txq = sc->txq[index];
1121 	evq = sc->evq[txq->evq_index];
1122 
1123 	SFXGE_TXQ_LOCK(txq);
1124 
1125 	KASSERT(txq->init_state == SFXGE_TXQ_STARTED,
1126 	    ("txq->init_state != SFXGE_TXQ_STARTED"));
1127 
1128 	txq->init_state = SFXGE_TXQ_INITIALIZED;
1129 	txq->flush_state = SFXGE_FLUSH_PENDING;
1130 
1131 	/* Flush the transmit queue. */
1132 	efx_tx_qflush(txq->common);
1133 
1134 	SFXGE_TXQ_UNLOCK(txq);
1135 
1136 	count = 0;
1137 	do {
1138 		/* Spin for 100ms. */
1139 		DELAY(100000);
1140 
1141 		if (txq->flush_state != SFXGE_FLUSH_PENDING)
1142 			break;
1143 	} while (++count < 20);
1144 
1145 	SFXGE_EVQ_LOCK(evq);
1146 	SFXGE_TXQ_LOCK(txq);
1147 
1148 	KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED,
1149 	    ("txq->flush_state == SFXGE_FLUSH_FAILED"));
1150 
1151 	txq->flush_state = SFXGE_FLUSH_DONE;
1152 
1153 	txq->blocked = 0;
1154 	txq->pending = txq->added;
1155 
1156 	sfxge_tx_qcomplete(txq, evq);
1157 	KASSERT(txq->completed == txq->added,
1158 	    ("txq->completed != txq->added"));
1159 
1160 	sfxge_tx_qreap(txq);
1161 	KASSERT(txq->reaped == txq->completed,
1162 	    ("txq->reaped != txq->completed"));
1163 
1164 	txq->added = 0;
1165 	txq->pending = 0;
1166 	txq->completed = 0;
1167 	txq->reaped = 0;
1168 
1169 	/* Destroy the common code transmit queue. */
1170 	efx_tx_qdestroy(txq->common);
1171 	txq->common = NULL;
1172 
1173 	efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1174 	    EFX_TXQ_NBUFS(sc->txq_entries));
1175 
1176 	SFXGE_EVQ_UNLOCK(evq);
1177 	SFXGE_TXQ_UNLOCK(txq);
1178 }
1179 
1180 static int
1181 sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index)
1182 {
1183 	struct sfxge_txq *txq;
1184 	efsys_mem_t *esmp;
1185 	uint16_t flags;
1186 	struct sfxge_evq *evq;
1187 	int rc;
1188 
1189 	txq = sc->txq[index];
1190 	esmp = &txq->mem;
1191 	evq = sc->evq[txq->evq_index];
1192 
1193 	KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1194 	    ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1195 	KASSERT(evq->init_state == SFXGE_EVQ_STARTED,
1196 	    ("evq->init_state != SFXGE_EVQ_STARTED"));
1197 
1198 	/* Program the buffer table. */
1199 	if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp,
1200 	    EFX_TXQ_NBUFS(sc->txq_entries))) != 0)
1201 		return (rc);
1202 
1203 	/* Determine the kind of queue we are creating. */
1204 	switch (txq->type) {
1205 	case SFXGE_TXQ_NON_CKSUM:
1206 		flags = 0;
1207 		break;
1208 	case SFXGE_TXQ_IP_CKSUM:
1209 		flags = EFX_CKSUM_IPV4;
1210 		break;
1211 	case SFXGE_TXQ_IP_TCP_UDP_CKSUM:
1212 		flags = EFX_CKSUM_IPV4 | EFX_CKSUM_TCPUDP;
1213 		break;
1214 	default:
1215 		KASSERT(0, ("Impossible TX queue"));
1216 		flags = 0;
1217 		break;
1218 	}
1219 
1220 	/* Create the common code transmit queue. */
1221 	if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp,
1222 	    sc->txq_entries, txq->buf_base_id, flags, evq->common,
1223 	    &txq->common)) != 0)
1224 		goto fail;
1225 
1226 	SFXGE_TXQ_LOCK(txq);
1227 
1228 	/* Enable the transmit queue. */
1229 	efx_tx_qenable(txq->common);
1230 
1231 	txq->init_state = SFXGE_TXQ_STARTED;
1232 
1233 	SFXGE_TXQ_UNLOCK(txq);
1234 
1235 	return (0);
1236 
1237 fail:
1238 	efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1239 	    EFX_TXQ_NBUFS(sc->txq_entries));
1240 	return (rc);
1241 }
1242 
1243 void
1244 sfxge_tx_stop(struct sfxge_softc *sc)
1245 {
1246 	int index;
1247 
1248 	index = sc->txq_count;
1249 	while (--index >= 0)
1250 		sfxge_tx_qstop(sc, index);
1251 
1252 	/* Tear down the transmit module */
1253 	efx_tx_fini(sc->enp);
1254 }
1255 
1256 int
1257 sfxge_tx_start(struct sfxge_softc *sc)
1258 {
1259 	int index;
1260 	int rc;
1261 
1262 	/* Initialize the common code transmit module. */
1263 	if ((rc = efx_tx_init(sc->enp)) != 0)
1264 		return (rc);
1265 
1266 	for (index = 0; index < sc->txq_count; index++) {
1267 		if ((rc = sfxge_tx_qstart(sc, index)) != 0)
1268 			goto fail;
1269 	}
1270 
1271 	return (0);
1272 
1273 fail:
1274 	while (--index >= 0)
1275 		sfxge_tx_qstop(sc, index);
1276 
1277 	efx_tx_fini(sc->enp);
1278 
1279 	return (rc);
1280 }
1281 
1282 static int
1283 sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node)
1284 {
1285 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev);
1286 	struct sysctl_oid *stat_node;
1287 	unsigned int id;
1288 
1289 	stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
1290 				    "stats", CTLFLAG_RD, NULL,
1291 				    "Tx queue statistics");
1292 	if (stat_node == NULL)
1293 		return (ENOMEM);
1294 
1295 	for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1296 		SYSCTL_ADD_ULONG(
1297 		    ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO,
1298 		    sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS,
1299 		    (unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset),
1300 		    "");
1301 	}
1302 
1303 	return (0);
1304 }
1305 
1306 /**
1307  * Destroy a transmit queue.
1308  */
1309 static void
1310 sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index)
1311 {
1312 	struct sfxge_txq *txq;
1313 	unsigned int nmaps;
1314 
1315 	txq = sc->txq[index];
1316 
1317 	KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1318 	    ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1319 
1320 	if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM)
1321 		tso_fini(txq);
1322 
1323 	/* Free the context arrays. */
1324 	free(txq->pend_desc, M_SFXGE);
1325 	nmaps = sc->txq_entries;
1326 	while (nmaps-- != 0)
1327 		bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1328 	free(txq->stmp, M_SFXGE);
1329 
1330 	/* Release DMA memory mapping. */
1331 	sfxge_dma_free(&txq->mem);
1332 
1333 	sc->txq[index] = NULL;
1334 
1335 	SFXGE_TXQ_LOCK_DESTROY(txq);
1336 
1337 	free(txq, M_SFXGE);
1338 }
1339 
1340 static int
1341 sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index,
1342     enum sfxge_txq_type type, unsigned int evq_index)
1343 {
1344 	char name[16];
1345 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1346 	struct sysctl_oid *txq_node;
1347 	struct sfxge_txq *txq;
1348 	struct sfxge_evq *evq;
1349 	struct sfxge_tx_dpl *stdp;
1350 	struct sysctl_oid *dpl_node;
1351 	efsys_mem_t *esmp;
1352 	unsigned int nmaps;
1353 	int rc;
1354 
1355 	txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK);
1356 	txq->sc = sc;
1357 	txq->entries = sc->txq_entries;
1358 	txq->ptr_mask = txq->entries - 1;
1359 
1360 	sc->txq[txq_index] = txq;
1361 	esmp = &txq->mem;
1362 
1363 	evq = sc->evq[evq_index];
1364 
1365 	/* Allocate and zero DMA space for the descriptor ring. */
1366 	if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0)
1367 		return (rc);
1368 
1369 	/* Allocate buffer table entries. */
1370 	sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries),
1371 				 &txq->buf_base_id);
1372 
1373 	/* Create a DMA tag for packet mappings. */
1374 	if (bus_dma_tag_create(sc->parent_dma_tag, 1, 0x1000,
1375 	    MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL,
1376 	    NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 0x1000, 0, NULL, NULL,
1377 	    &txq->packet_dma_tag) != 0) {
1378 		device_printf(sc->dev, "Couldn't allocate txq DMA tag\n");
1379 		rc = ENOMEM;
1380 		goto fail;
1381 	}
1382 
1383 	/* Allocate pending descriptor array for batching writes. */
1384 	txq->pend_desc = malloc(sizeof(efx_buffer_t) * sc->txq_entries,
1385 				M_SFXGE, M_ZERO | M_WAITOK);
1386 
1387 	/* Allocate and initialise mbuf DMA mapping array. */
1388 	txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries,
1389 	    M_SFXGE, M_ZERO | M_WAITOK);
1390 	for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) {
1391 		rc = bus_dmamap_create(txq->packet_dma_tag, 0,
1392 				       &txq->stmp[nmaps].map);
1393 		if (rc != 0)
1394 			goto fail2;
1395 	}
1396 
1397 	snprintf(name, sizeof(name), "%u", txq_index);
1398 	txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node),
1399 				   OID_AUTO, name, CTLFLAG_RD, NULL, "");
1400 	if (txq_node == NULL) {
1401 		rc = ENOMEM;
1402 		goto fail_txq_node;
1403 	}
1404 
1405 	if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM &&
1406 	    (rc = tso_init(txq)) != 0)
1407 		goto fail3;
1408 
1409 	if (sfxge_tx_dpl_get_max <= 0) {
1410 		log(LOG_ERR, "%s=%d must be greater than 0",
1411 		    SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max);
1412 		rc = EINVAL;
1413 		goto fail_tx_dpl_get_max;
1414 	}
1415 	if (sfxge_tx_dpl_get_non_tcp_max <= 0) {
1416 		log(LOG_ERR, "%s=%d must be greater than 0",
1417 		    SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX,
1418 		    sfxge_tx_dpl_get_non_tcp_max);
1419 		rc = EINVAL;
1420 		goto fail_tx_dpl_get_max;
1421 	}
1422 	if (sfxge_tx_dpl_put_max < 0) {
1423 		log(LOG_ERR, "%s=%d must be greater or equal to 0",
1424 		    SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max);
1425 		rc = EINVAL;
1426 		goto fail_tx_dpl_put_max;
1427 	}
1428 
1429 	/* Initialize the deferred packet list. */
1430 	stdp = &txq->dpl;
1431 	stdp->std_put_max = sfxge_tx_dpl_put_max;
1432 	stdp->std_get_max = sfxge_tx_dpl_get_max;
1433 	stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max;
1434 	stdp->std_getp = &stdp->std_get;
1435 
1436 	SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index);
1437 
1438 	dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
1439 				   "dpl", CTLFLAG_RD, NULL,
1440 				   "Deferred packet list statistics");
1441 	if (dpl_node == NULL) {
1442 		rc = ENOMEM;
1443 		goto fail_dpl_node;
1444 	}
1445 
1446 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1447 			"get_count", CTLFLAG_RD | CTLFLAG_STATS,
1448 			&stdp->std_get_count, 0, "");
1449 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1450 			"get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS,
1451 			&stdp->std_get_non_tcp_count, 0, "");
1452 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1453 			"get_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1454 			&stdp->std_get_hiwat, 0, "");
1455 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1456 			"put_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1457 			&stdp->std_put_hiwat, 0, "");
1458 
1459 	rc = sfxge_txq_stat_init(txq, txq_node);
1460 	if (rc != 0)
1461 		goto fail_txq_stat_init;
1462 
1463 	txq->type = type;
1464 	txq->evq_index = evq_index;
1465 	txq->txq_index = txq_index;
1466 	txq->init_state = SFXGE_TXQ_INITIALIZED;
1467 
1468 	return (0);
1469 
1470 fail_txq_stat_init:
1471 fail_dpl_node:
1472 fail_tx_dpl_put_max:
1473 fail_tx_dpl_get_max:
1474 fail3:
1475 fail_txq_node:
1476 	free(txq->pend_desc, M_SFXGE);
1477 fail2:
1478 	while (nmaps-- != 0)
1479 		bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1480 	free(txq->stmp, M_SFXGE);
1481 	bus_dma_tag_destroy(txq->packet_dma_tag);
1482 
1483 fail:
1484 	sfxge_dma_free(esmp);
1485 
1486 	return (rc);
1487 }
1488 
1489 static int
1490 sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS)
1491 {
1492 	struct sfxge_softc *sc = arg1;
1493 	unsigned int id = arg2;
1494 	unsigned long sum;
1495 	unsigned int index;
1496 
1497 	/* Sum across all TX queues */
1498 	sum = 0;
1499 	for (index = 0; index < sc->txq_count; index++)
1500 		sum += *(unsigned long *)((caddr_t)sc->txq[index] +
1501 					  sfxge_tx_stats[id].offset);
1502 
1503 	return (SYSCTL_OUT(req, &sum, sizeof(sum)));
1504 }
1505 
1506 static void
1507 sfxge_tx_stat_init(struct sfxge_softc *sc)
1508 {
1509 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1510 	struct sysctl_oid_list *stat_list;
1511 	unsigned int id;
1512 
1513 	stat_list = SYSCTL_CHILDREN(sc->stats_node);
1514 
1515 	for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1516 		SYSCTL_ADD_PROC(
1517 			ctx, stat_list,
1518 			OID_AUTO, sfxge_tx_stats[id].name,
1519 			CTLTYPE_ULONG|CTLFLAG_RD,
1520 			sc, id, sfxge_tx_stat_handler, "LU",
1521 			"");
1522 	}
1523 }
1524 
1525 uint64_t
1526 sfxge_tx_get_drops(struct sfxge_softc *sc)
1527 {
1528 	unsigned int index;
1529 	uint64_t drops = 0;
1530 	struct sfxge_txq *txq;
1531 
1532 	/* Sum across all TX queues */
1533 	for (index = 0; index < sc->txq_count; index++) {
1534 		txq = sc->txq[index];
1535 		/*
1536 		 * In theory, txq->put_overflow and txq->netdown_drops
1537 		 * should use atomic operation and other should be
1538 		 * obtained under txq lock, but it is just statistics.
1539 		 */
1540 		drops += txq->drops + txq->get_overflow +
1541 			 txq->get_non_tcp_overflow +
1542 			 txq->put_overflow + txq->netdown_drops +
1543 			 txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc;
1544 	}
1545 	return (drops);
1546 }
1547 
1548 void
1549 sfxge_tx_fini(struct sfxge_softc *sc)
1550 {
1551 	int index;
1552 
1553 	index = sc->txq_count;
1554 	while (--index >= 0)
1555 		sfxge_tx_qfini(sc, index);
1556 
1557 	sc->txq_count = 0;
1558 }
1559 
1560 
1561 int
1562 sfxge_tx_init(struct sfxge_softc *sc)
1563 {
1564 	struct sfxge_intr *intr;
1565 	int index;
1566 	int rc;
1567 
1568 	intr = &sc->intr;
1569 
1570 	KASSERT(intr->state == SFXGE_INTR_INITIALIZED,
1571 	    ("intr->state != SFXGE_INTR_INITIALIZED"));
1572 
1573 	sc->txq_count = SFXGE_TXQ_NTYPES - 1 + sc->intr.n_alloc;
1574 
1575 	sc->txqs_node = SYSCTL_ADD_NODE(
1576 		device_get_sysctl_ctx(sc->dev),
1577 		SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
1578 		OID_AUTO, "txq", CTLFLAG_RD, NULL, "Tx queues");
1579 	if (sc->txqs_node == NULL) {
1580 		rc = ENOMEM;
1581 		goto fail_txq_node;
1582 	}
1583 
1584 	/* Initialize the transmit queues */
1585 	if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM,
1586 	    SFXGE_TXQ_NON_CKSUM, 0)) != 0)
1587 		goto fail;
1588 
1589 	if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM,
1590 	    SFXGE_TXQ_IP_CKSUM, 0)) != 0)
1591 		goto fail2;
1592 
1593 	for (index = 0;
1594 	     index < sc->txq_count - SFXGE_TXQ_NTYPES + 1;
1595 	     index++) {
1596 		if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NTYPES - 1 + index,
1597 		    SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0)
1598 			goto fail3;
1599 	}
1600 
1601 	sfxge_tx_stat_init(sc);
1602 
1603 	return (0);
1604 
1605 fail3:
1606 	while (--index >= 0)
1607 		sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
1608 
1609 	sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
1610 
1611 fail2:
1612 	sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
1613 
1614 fail:
1615 fail_txq_node:
1616 	sc->txq_count = 0;
1617 	return (rc);
1618 }
1619