xref: /freebsd/sys/dev/sfxge/sfxge_tx.c (revision 7447ca0eb235974642312b9555caec00b57d8fc1)
1 /*-
2  * Copyright (c) 2010-2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * This software was developed in part by Philip Paeps under contract for
6  * Solarflare Communications, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright notice,
12  *    this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright notice,
14  *    this list of conditions and the following disclaimer in the documentation
15  *    and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
27  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * The views and conclusions contained in the software and documentation are
30  * those of the authors and should not be interpreted as representing official
31  * policies, either expressed or implied, of the FreeBSD Project.
32  */
33 
34 /* Theory of operation:
35  *
36  * Tx queues allocation and mapping
37  *
38  * One Tx queue with enabled checksum offload is allocated per Rx channel
39  * (event queue).  Also 2 Tx queues (one without checksum offload and one
40  * with IP checksum offload only) are allocated and bound to event queue 0.
41  * sfxge_txq_type is used as Tx queue label.
42  *
43  * So, event queue plus label mapping to Tx queue index is:
44  *	if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES)
45  *	else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1
46  * See sfxge_get_txq_by_label() sfxge_ev.c
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_rss.h"
53 
54 #include <sys/param.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/smp.h>
58 #include <sys/socket.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/limits.h>
62 
63 #include <net/bpf.h>
64 #include <net/ethernet.h>
65 #include <net/if.h>
66 #include <net/if_vlan_var.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip6.h>
71 #include <netinet/tcp.h>
72 
73 #ifdef RSS
74 #include <net/rss_config.h>
75 #endif
76 
77 #include "common/efx.h"
78 
79 #include "sfxge.h"
80 #include "sfxge_tx.h"
81 
82 
83 #define	SFXGE_PARAM_TX_DPL_GET_MAX	SFXGE_PARAM(tx_dpl_get_max)
84 static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT;
85 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max);
86 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN,
87 	   &sfxge_tx_dpl_get_max, 0,
88 	   "Maximum number of any packets in deferred packet get-list");
89 
90 #define	SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \
91 	SFXGE_PARAM(tx_dpl_get_non_tcp_max)
92 static int sfxge_tx_dpl_get_non_tcp_max =
93 	SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT;
94 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max);
95 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN,
96 	   &sfxge_tx_dpl_get_non_tcp_max, 0,
97 	   "Maximum number of non-TCP packets in deferred packet get-list");
98 
99 #define	SFXGE_PARAM_TX_DPL_PUT_MAX	SFXGE_PARAM(tx_dpl_put_max)
100 static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT;
101 TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max);
102 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN,
103 	   &sfxge_tx_dpl_put_max, 0,
104 	   "Maximum number of any packets in deferred packet put-list");
105 
106 #define	SFXGE_PARAM_TSO_FW_ASSISTED	SFXGE_PARAM(tso_fw_assisted)
107 static int sfxge_tso_fw_assisted = (SFXGE_FATSOV1 | SFXGE_FATSOV2);
108 TUNABLE_INT(SFXGE_PARAM_TSO_FW_ASSISTED, &sfxge_tso_fw_assisted);
109 SYSCTL_INT(_hw_sfxge, OID_AUTO, tso_fw_assisted, CTLFLAG_RDTUN,
110 	   &sfxge_tso_fw_assisted, 0,
111 	   "Bitmask of FW-assisted TSO allowed to use if supported by NIC firmware");
112 
113 
114 static const struct {
115 	const char *name;
116 	size_t offset;
117 } sfxge_tx_stats[] = {
118 #define	SFXGE_TX_STAT(name, member) \
119 	{ #name, offsetof(struct sfxge_txq, member) }
120 	SFXGE_TX_STAT(tso_bursts, tso_bursts),
121 	SFXGE_TX_STAT(tso_packets, tso_packets),
122 	SFXGE_TX_STAT(tso_long_headers, tso_long_headers),
123 	SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many),
124 	SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc),
125 	SFXGE_TX_STAT(tx_collapses, collapses),
126 	SFXGE_TX_STAT(tx_drops, drops),
127 	SFXGE_TX_STAT(tx_get_overflow, get_overflow),
128 	SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow),
129 	SFXGE_TX_STAT(tx_put_overflow, put_overflow),
130 	SFXGE_TX_STAT(tx_netdown_drops, netdown_drops),
131 };
132 
133 
134 /* Forward declarations. */
135 static void sfxge_tx_qdpl_service(struct sfxge_txq *txq);
136 static void sfxge_tx_qlist_post(struct sfxge_txq *txq);
137 static void sfxge_tx_qunblock(struct sfxge_txq *txq);
138 static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
139 			      const bus_dma_segment_t *dma_seg, int n_dma_seg,
140 			      int vlan_tagged);
141 
142 static int
143 sfxge_tx_maybe_insert_tag(struct sfxge_txq *txq, struct mbuf *mbuf)
144 {
145 	uint16_t this_tag = ((mbuf->m_flags & M_VLANTAG) ?
146 			     mbuf->m_pkthdr.ether_vtag :
147 			     0);
148 
149 	if (this_tag == txq->hw_vlan_tci)
150 		return (0);
151 
152 	efx_tx_qdesc_vlantci_create(txq->common,
153 				    bswap16(this_tag),
154 				    &txq->pend_desc[0]);
155 	txq->n_pend_desc = 1;
156 	txq->hw_vlan_tci = this_tag;
157 	return (1);
158 }
159 
160 static inline void
161 sfxge_next_stmp(struct sfxge_txq *txq, struct sfxge_tx_mapping **pstmp)
162 {
163 	KASSERT((*pstmp)->flags == 0, ("stmp flags are not 0"));
164 	if (__predict_false(*pstmp ==
165 			    &txq->stmp[txq->ptr_mask]))
166 		*pstmp = &txq->stmp[0];
167 	else
168 		(*pstmp)++;
169 }
170 
171 
172 void
173 sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq)
174 {
175 	unsigned int completed;
176 
177 	SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
178 
179 	completed = txq->completed;
180 	while (completed != txq->pending) {
181 		struct sfxge_tx_mapping *stmp;
182 		unsigned int id;
183 
184 		id = completed++ & txq->ptr_mask;
185 
186 		stmp = &txq->stmp[id];
187 		if (stmp->flags & TX_BUF_UNMAP) {
188 			bus_dmamap_unload(txq->packet_dma_tag, stmp->map);
189 			if (stmp->flags & TX_BUF_MBUF) {
190 				struct mbuf *m = stmp->u.mbuf;
191 				do
192 					m = m_free(m);
193 				while (m != NULL);
194 			} else {
195 				free(stmp->u.heap_buf, M_SFXGE);
196 			}
197 			stmp->flags = 0;
198 		}
199 	}
200 	txq->completed = completed;
201 
202 	/* Check whether we need to unblock the queue. */
203 	mb();
204 	if (txq->blocked) {
205 		unsigned int level;
206 
207 		level = txq->added - txq->completed;
208 		if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries))
209 			sfxge_tx_qunblock(txq);
210 	}
211 }
212 
213 static unsigned int
214 sfxge_is_mbuf_non_tcp(struct mbuf *mbuf)
215 {
216 	/* Absence of TCP checksum flags does not mean that it is non-TCP
217 	 * but it should be true if user wants to achieve high throughput.
218 	 */
219 	return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)));
220 }
221 
222 /*
223  * Reorder the put list and append it to the get list.
224  */
225 static void
226 sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq)
227 {
228 	struct sfxge_tx_dpl *stdp;
229 	struct mbuf *mbuf, *get_next, **get_tailp;
230 	volatile uintptr_t *putp;
231 	uintptr_t put;
232 	unsigned int count;
233 	unsigned int non_tcp_count;
234 
235 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
236 
237 	stdp = &txq->dpl;
238 
239 	/* Acquire the put list. */
240 	putp = &stdp->std_put;
241 	put = atomic_readandclear_ptr(putp);
242 	mbuf = (void *)put;
243 
244 	if (mbuf == NULL)
245 		return;
246 
247 	/* Reverse the put list. */
248 	get_tailp = &mbuf->m_nextpkt;
249 	get_next = NULL;
250 
251 	count = 0;
252 	non_tcp_count = 0;
253 	do {
254 		struct mbuf *put_next;
255 
256 		non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf);
257 		put_next = mbuf->m_nextpkt;
258 		mbuf->m_nextpkt = get_next;
259 		get_next = mbuf;
260 		mbuf = put_next;
261 
262 		count++;
263 	} while (mbuf != NULL);
264 
265 	if (count > stdp->std_put_hiwat)
266 		stdp->std_put_hiwat = count;
267 
268 	/* Append the reversed put list to the get list. */
269 	KASSERT(*get_tailp == NULL, ("*get_tailp != NULL"));
270 	*stdp->std_getp = get_next;
271 	stdp->std_getp = get_tailp;
272 	stdp->std_get_count += count;
273 	stdp->std_get_non_tcp_count += non_tcp_count;
274 }
275 
276 static void
277 sfxge_tx_qreap(struct sfxge_txq *txq)
278 {
279 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
280 
281 	txq->reaped = txq->completed;
282 }
283 
284 static void
285 sfxge_tx_qlist_post(struct sfxge_txq *txq)
286 {
287 	unsigned int old_added;
288 	unsigned int block_level;
289 	unsigned int level;
290 	int rc;
291 
292 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
293 
294 	KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0"));
295 	KASSERT(txq->n_pend_desc <= txq->max_pkt_desc,
296 		("txq->n_pend_desc too large"));
297 	KASSERT(!txq->blocked, ("txq->blocked"));
298 
299 	old_added = txq->added;
300 
301 	/* Post the fragment list. */
302 	rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, txq->n_pend_desc,
303 			  txq->reaped, &txq->added);
304 	KASSERT(rc == 0, ("efx_tx_qdesc_post() failed"));
305 
306 	/* If efx_tx_qdesc_post() had to refragment, our information about
307 	 * buffers to free may be associated with the wrong
308 	 * descriptors.
309 	 */
310 	KASSERT(txq->added - old_added == txq->n_pend_desc,
311 		("efx_tx_qdesc_post() refragmented descriptors"));
312 
313 	level = txq->added - txq->reaped;
314 	KASSERT(level <= txq->entries, ("overfilled TX queue"));
315 
316 	/* Clear the fragment list. */
317 	txq->n_pend_desc = 0;
318 
319 	/*
320 	 * Set the block level to ensure there is space to generate a
321 	 * large number of descriptors for TSO.
322 	 */
323 	block_level = EFX_TXQ_LIMIT(txq->entries) - txq->max_pkt_desc;
324 
325 	/* Have we reached the block level? */
326 	if (level < block_level)
327 		return;
328 
329 	/* Reap, and check again */
330 	sfxge_tx_qreap(txq);
331 	level = txq->added - txq->reaped;
332 	if (level < block_level)
333 		return;
334 
335 	txq->blocked = 1;
336 
337 	/*
338 	 * Avoid a race with completion interrupt handling that could leave
339 	 * the queue blocked.
340 	 */
341 	mb();
342 	sfxge_tx_qreap(txq);
343 	level = txq->added - txq->reaped;
344 	if (level < block_level) {
345 		mb();
346 		txq->blocked = 0;
347 	}
348 }
349 
350 static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf)
351 {
352 	bus_dmamap_t *used_map;
353 	bus_dmamap_t map;
354 	bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG];
355 	unsigned int id;
356 	struct sfxge_tx_mapping *stmp;
357 	efx_desc_t *desc;
358 	int n_dma_seg;
359 	int rc;
360 	int i;
361 	int eop;
362 	int vlan_tagged;
363 
364 	KASSERT(!txq->blocked, ("txq->blocked"));
365 
366 	if (mbuf->m_pkthdr.csum_flags & CSUM_TSO)
367 		prefetch_read_many(mbuf->m_data);
368 
369 	if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) {
370 		rc = EINTR;
371 		goto reject;
372 	}
373 
374 	/* Load the packet for DMA. */
375 	id = txq->added & txq->ptr_mask;
376 	stmp = &txq->stmp[id];
377 	rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map,
378 				     mbuf, dma_seg, &n_dma_seg, 0);
379 	if (rc == EFBIG) {
380 		/* Try again. */
381 		struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT,
382 						   SFXGE_TX_MAPPING_MAX_SEG);
383 		if (new_mbuf == NULL)
384 			goto reject;
385 		++txq->collapses;
386 		mbuf = new_mbuf;
387 		rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag,
388 					     stmp->map, mbuf,
389 					     dma_seg, &n_dma_seg, 0);
390 	}
391 	if (rc != 0)
392 		goto reject;
393 
394 	/* Make the packet visible to the hardware. */
395 	bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE);
396 
397 	used_map = &stmp->map;
398 
399 	vlan_tagged = sfxge_tx_maybe_insert_tag(txq, mbuf);
400 	if (vlan_tagged) {
401 		sfxge_next_stmp(txq, &stmp);
402 	}
403 	if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
404 		rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg, vlan_tagged);
405 		if (rc < 0)
406 			goto reject_mapped;
407 		stmp = &txq->stmp[(rc - 1) & txq->ptr_mask];
408 	} else {
409 		/* Add the mapping to the fragment list, and set flags
410 		 * for the buffer.
411 		 */
412 
413 		i = 0;
414 		for (;;) {
415 			desc = &txq->pend_desc[i + vlan_tagged];
416 			eop = (i == n_dma_seg - 1);
417 			efx_tx_qdesc_dma_create(txq->common,
418 						dma_seg[i].ds_addr,
419 						dma_seg[i].ds_len,
420 						eop,
421 						desc);
422 			if (eop)
423 				break;
424 			i++;
425 			sfxge_next_stmp(txq, &stmp);
426 		}
427 		txq->n_pend_desc = n_dma_seg + vlan_tagged;
428 	}
429 
430 	/*
431 	 * If the mapping required more than one descriptor
432 	 * then we need to associate the DMA map with the last
433 	 * descriptor, not the first.
434 	 */
435 	if (used_map != &stmp->map) {
436 		map = stmp->map;
437 		stmp->map = *used_map;
438 		*used_map = map;
439 	}
440 
441 	stmp->u.mbuf = mbuf;
442 	stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF;
443 
444 	/* Post the fragment list. */
445 	sfxge_tx_qlist_post(txq);
446 
447 	return (0);
448 
449 reject_mapped:
450 	bus_dmamap_unload(txq->packet_dma_tag, *used_map);
451 reject:
452 	/* Drop the packet on the floor. */
453 	m_freem(mbuf);
454 	++txq->drops;
455 
456 	return (rc);
457 }
458 
459 /*
460  * Drain the deferred packet list into the transmit queue.
461  */
462 static void
463 sfxge_tx_qdpl_drain(struct sfxge_txq *txq)
464 {
465 	struct sfxge_softc *sc;
466 	struct sfxge_tx_dpl *stdp;
467 	struct mbuf *mbuf, *next;
468 	unsigned int count;
469 	unsigned int non_tcp_count;
470 	unsigned int pushed;
471 	int rc;
472 
473 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
474 
475 	sc = txq->sc;
476 	stdp = &txq->dpl;
477 	pushed = txq->added;
478 
479 	if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) {
480 		prefetch_read_many(sc->enp);
481 		prefetch_read_many(txq->common);
482 	}
483 
484 	mbuf = stdp->std_get;
485 	count = stdp->std_get_count;
486 	non_tcp_count = stdp->std_get_non_tcp_count;
487 
488 	if (count > stdp->std_get_hiwat)
489 		stdp->std_get_hiwat = count;
490 
491 	while (count != 0) {
492 		KASSERT(mbuf != NULL, ("mbuf == NULL"));
493 
494 		next = mbuf->m_nextpkt;
495 		mbuf->m_nextpkt = NULL;
496 
497 		ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */
498 
499 		if (next != NULL)
500 			prefetch_read_many(next);
501 
502 		rc = sfxge_tx_queue_mbuf(txq, mbuf);
503 		--count;
504 		non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf);
505 		mbuf = next;
506 		if (rc != 0)
507 			continue;
508 
509 		if (txq->blocked)
510 			break;
511 
512 		/* Push the fragments to the hardware in batches. */
513 		if (txq->added - pushed >= SFXGE_TX_BATCH) {
514 			efx_tx_qpush(txq->common, txq->added, pushed);
515 			pushed = txq->added;
516 		}
517 	}
518 
519 	if (count == 0) {
520 		KASSERT(mbuf == NULL, ("mbuf != NULL"));
521 		KASSERT(non_tcp_count == 0,
522 			("inconsistent TCP/non-TCP detection"));
523 		stdp->std_get = NULL;
524 		stdp->std_get_count = 0;
525 		stdp->std_get_non_tcp_count = 0;
526 		stdp->std_getp = &stdp->std_get;
527 	} else {
528 		stdp->std_get = mbuf;
529 		stdp->std_get_count = count;
530 		stdp->std_get_non_tcp_count = non_tcp_count;
531 	}
532 
533 	if (txq->added != pushed)
534 		efx_tx_qpush(txq->common, txq->added, pushed);
535 
536 	KASSERT(txq->blocked || stdp->std_get_count == 0,
537 		("queue unblocked but count is non-zero"));
538 }
539 
540 #define	SFXGE_TX_QDPL_PENDING(_txq)	((_txq)->dpl.std_put != 0)
541 
542 /*
543  * Service the deferred packet list.
544  *
545  * NOTE: drops the txq mutex!
546  */
547 static void
548 sfxge_tx_qdpl_service(struct sfxge_txq *txq)
549 {
550 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
551 
552 	do {
553 		if (SFXGE_TX_QDPL_PENDING(txq))
554 			sfxge_tx_qdpl_swizzle(txq);
555 
556 		if (!txq->blocked)
557 			sfxge_tx_qdpl_drain(txq);
558 
559 		SFXGE_TXQ_UNLOCK(txq);
560 	} while (SFXGE_TX_QDPL_PENDING(txq) &&
561 		 SFXGE_TXQ_TRYLOCK(txq));
562 }
563 
564 /*
565  * Put a packet on the deferred packet get-list.
566  */
567 static int
568 sfxge_tx_qdpl_put_locked(struct sfxge_txq *txq, struct mbuf *mbuf)
569 {
570 	struct sfxge_tx_dpl *stdp;
571 
572 	stdp = &txq->dpl;
573 
574 	KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
575 
576 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
577 
578 	if (stdp->std_get_count >= stdp->std_get_max) {
579 		txq->get_overflow++;
580 		return (ENOBUFS);
581 	}
582 	if (sfxge_is_mbuf_non_tcp(mbuf)) {
583 		if (stdp->std_get_non_tcp_count >=
584 		    stdp->std_get_non_tcp_max) {
585 			txq->get_non_tcp_overflow++;
586 			return (ENOBUFS);
587 		}
588 		stdp->std_get_non_tcp_count++;
589 	}
590 
591 	*(stdp->std_getp) = mbuf;
592 	stdp->std_getp = &mbuf->m_nextpkt;
593 	stdp->std_get_count++;
594 
595 	return (0);
596 }
597 
598 /*
599  * Put a packet on the deferred packet put-list.
600  *
601  * We overload the csum_data field in the mbuf to keep track of this length
602  * because there is no cheap alternative to avoid races.
603  */
604 static int
605 sfxge_tx_qdpl_put_unlocked(struct sfxge_txq *txq, struct mbuf *mbuf)
606 {
607 	struct sfxge_tx_dpl *stdp;
608 	volatile uintptr_t *putp;
609 	uintptr_t old;
610 	uintptr_t new;
611 	unsigned old_len;
612 
613 	KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
614 
615 	SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq);
616 
617 	stdp = &txq->dpl;
618 	putp = &stdp->std_put;
619 	new = (uintptr_t)mbuf;
620 
621 	do {
622 		old = *putp;
623 		if (old != 0) {
624 			struct mbuf *mp = (struct mbuf *)old;
625 			old_len = mp->m_pkthdr.csum_data;
626 		} else
627 			old_len = 0;
628 		if (old_len >= stdp->std_put_max) {
629 			atomic_add_long(&txq->put_overflow, 1);
630 			return (ENOBUFS);
631 		}
632 		mbuf->m_pkthdr.csum_data = old_len + 1;
633 		mbuf->m_nextpkt = (void *)old;
634 	} while (atomic_cmpset_ptr(putp, old, new) == 0);
635 
636 	return (0);
637 }
638 
639 /*
640  * Called from if_transmit - will try to grab the txq lock and enqueue to the
641  * put list if it succeeds, otherwise try to push onto the defer list if space.
642  */
643 static int
644 sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m)
645 {
646 	int rc;
647 
648 	if (!SFXGE_LINK_UP(txq->sc)) {
649 		atomic_add_long(&txq->netdown_drops, 1);
650 		return (ENETDOWN);
651 	}
652 
653 	/*
654 	 * Try to grab the txq lock.  If we are able to get the lock,
655 	 * the packet will be appended to the "get list" of the deferred
656 	 * packet list.  Otherwise, it will be pushed on the "put list".
657 	 */
658 	if (SFXGE_TXQ_TRYLOCK(txq)) {
659 		/* First swizzle put-list to get-list to keep order */
660 		sfxge_tx_qdpl_swizzle(txq);
661 
662 		rc = sfxge_tx_qdpl_put_locked(txq, m);
663 
664 		/* Try to service the list. */
665 		sfxge_tx_qdpl_service(txq);
666 		/* Lock has been dropped. */
667 	} else {
668 		rc = sfxge_tx_qdpl_put_unlocked(txq, m);
669 
670 		/*
671 		 * Try to grab the lock again.
672 		 *
673 		 * If we are able to get the lock, we need to process
674 		 * the deferred packet list.  If we are not able to get
675 		 * the lock, another thread is processing the list.
676 		 */
677 		if ((rc == 0) && SFXGE_TXQ_TRYLOCK(txq)) {
678 			sfxge_tx_qdpl_service(txq);
679 			/* Lock has been dropped. */
680 		}
681 	}
682 
683 	SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq);
684 
685 	return (rc);
686 }
687 
688 static void
689 sfxge_tx_qdpl_flush(struct sfxge_txq *txq)
690 {
691 	struct sfxge_tx_dpl *stdp = &txq->dpl;
692 	struct mbuf *mbuf, *next;
693 
694 	SFXGE_TXQ_LOCK(txq);
695 
696 	sfxge_tx_qdpl_swizzle(txq);
697 	for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) {
698 		next = mbuf->m_nextpkt;
699 		m_freem(mbuf);
700 	}
701 	stdp->std_get = NULL;
702 	stdp->std_get_count = 0;
703 	stdp->std_get_non_tcp_count = 0;
704 	stdp->std_getp = &stdp->std_get;
705 
706 	SFXGE_TXQ_UNLOCK(txq);
707 }
708 
709 void
710 sfxge_if_qflush(struct ifnet *ifp)
711 {
712 	struct sfxge_softc *sc;
713 	unsigned int i;
714 
715 	sc = ifp->if_softc;
716 
717 	for (i = 0; i < sc->txq_count; i++)
718 		sfxge_tx_qdpl_flush(sc->txq[i]);
719 }
720 
721 #if SFXGE_TX_PARSE_EARLY
722 
723 /* There is little space for user data in mbuf pkthdr, so we
724  * use l*hlen fields which are not used by the driver otherwise
725  * to store header offsets.
726  * The fields are 8-bit, but it's ok, no header may be longer than 255 bytes.
727  */
728 
729 
730 #define TSO_MBUF_PROTO(_mbuf)    ((_mbuf)->m_pkthdr.PH_loc.sixteen[0])
731 /* We abuse l5hlen here because PH_loc can hold only 64 bits of data */
732 #define TSO_MBUF_FLAGS(_mbuf)    ((_mbuf)->m_pkthdr.l5hlen)
733 #define TSO_MBUF_PACKETID(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1])
734 #define TSO_MBUF_SEQNUM(_mbuf)   ((_mbuf)->m_pkthdr.PH_loc.thirtytwo[1])
735 
736 static void sfxge_parse_tx_packet(struct mbuf *mbuf)
737 {
738 	struct ether_header *eh = mtod(mbuf, struct ether_header *);
739 	const struct tcphdr *th;
740 	struct tcphdr th_copy;
741 
742 	/* Find network protocol and header */
743 	TSO_MBUF_PROTO(mbuf) = eh->ether_type;
744 	if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_VLAN)) {
745 		struct ether_vlan_header *veh =
746 			mtod(mbuf, struct ether_vlan_header *);
747 		TSO_MBUF_PROTO(mbuf) = veh->evl_proto;
748 		mbuf->m_pkthdr.l2hlen = sizeof(*veh);
749 	} else {
750 		mbuf->m_pkthdr.l2hlen = sizeof(*eh);
751 	}
752 
753 	/* Find TCP header */
754 	if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IP)) {
755 		const struct ip *iph = (const struct ip *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen);
756 
757 		KASSERT(iph->ip_p == IPPROTO_TCP,
758 			("TSO required on non-TCP packet"));
759 		mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + 4 * iph->ip_hl;
760 		TSO_MBUF_PACKETID(mbuf) = iph->ip_id;
761 	} else {
762 		KASSERT(TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IPV6),
763 			("TSO required on non-IP packet"));
764 		KASSERT(((const struct ip6_hdr *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen))->ip6_nxt ==
765 			IPPROTO_TCP,
766 			("TSO required on non-TCP packet"));
767 		mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + sizeof(struct ip6_hdr);
768 		TSO_MBUF_PACKETID(mbuf) = 0;
769 	}
770 
771 	KASSERT(mbuf->m_len >= mbuf->m_pkthdr.l3hlen,
772 		("network header is fragmented in mbuf"));
773 
774 	/* We need TCP header including flags (window is the next) */
775 	if (mbuf->m_len < mbuf->m_pkthdr.l3hlen + offsetof(struct tcphdr, th_win)) {
776 		m_copydata(mbuf, mbuf->m_pkthdr.l3hlen, sizeof(th_copy),
777 			   (caddr_t)&th_copy);
778 		th = &th_copy;
779 	} else {
780 		th = (const struct tcphdr *)mtodo(mbuf, mbuf->m_pkthdr.l3hlen);
781 	}
782 
783 	mbuf->m_pkthdr.l4hlen = mbuf->m_pkthdr.l3hlen + 4 * th->th_off;
784 	TSO_MBUF_SEQNUM(mbuf) = ntohl(th->th_seq);
785 
786 	/* These flags must not be duplicated */
787 	/*
788 	 * RST should not be duplicated as well, but FreeBSD kernel
789 	 * generates TSO packets with RST flag. So, do not assert
790 	 * its absence.
791 	 */
792 	KASSERT(!(th->th_flags & (TH_URG | TH_SYN)),
793 		("incompatible TCP flag 0x%x on TSO packet",
794 		 th->th_flags & (TH_URG | TH_SYN)));
795 	TSO_MBUF_FLAGS(mbuf) = th->th_flags;
796 }
797 #endif
798 
799 /*
800  * TX start -- called by the stack.
801  */
802 int
803 sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m)
804 {
805 	struct sfxge_softc *sc;
806 	struct sfxge_txq *txq;
807 	int rc;
808 
809 	sc = (struct sfxge_softc *)ifp->if_softc;
810 
811 	/*
812 	 * Transmit may be called when interface is up from the kernel
813 	 * point of view, but not yet up (in progress) from the driver
814 	 * point of view. I.e. link aggregation bring up.
815 	 * Transmit may be called when interface is up from the driver
816 	 * point of view, but already down from the kernel point of
817 	 * view. I.e. Rx when interface shutdown is in progress.
818 	 */
819 	KASSERT((ifp->if_flags & IFF_UP) || (sc->if_flags & IFF_UP),
820 		("interface not up"));
821 
822 	/* Pick the desired transmit queue. */
823 	if (m->m_pkthdr.csum_flags &
824 	    (CSUM_DELAY_DATA | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_TSO)) {
825 		int index = 0;
826 
827 #ifdef RSS
828 		uint32_t bucket_id;
829 
830 		/*
831 		 * Select a TX queue which matches the corresponding
832 		 * RX queue for the hash in order to assign both
833 		 * TX and RX parts of the flow to the same CPU
834 		 */
835 		if (rss_m2bucket(m, &bucket_id) == 0)
836 			index = bucket_id % (sc->txq_count - (SFXGE_TXQ_NTYPES - 1));
837 #else
838 		/* check if flowid is set */
839 		if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
840 			uint32_t hash = m->m_pkthdr.flowid;
841 
842 			index = sc->rx_indir_table[hash % SFXGE_RX_SCALE_MAX];
843 		}
844 #endif
845 #if SFXGE_TX_PARSE_EARLY
846 		if (m->m_pkthdr.csum_flags & CSUM_TSO)
847 			sfxge_parse_tx_packet(m);
848 #endif
849 		txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index];
850 	} else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
851 		txq = sc->txq[SFXGE_TXQ_IP_CKSUM];
852 	} else {
853 		txq = sc->txq[SFXGE_TXQ_NON_CKSUM];
854 	}
855 
856 	rc = sfxge_tx_packet_add(txq, m);
857 	if (rc != 0)
858 		m_freem(m);
859 
860 	return (rc);
861 }
862 
863 /*
864  * Software "TSO".  Not quite as good as doing it in hardware, but
865  * still faster than segmenting in the stack.
866  */
867 
868 struct sfxge_tso_state {
869 	/* Output position */
870 	unsigned out_len;	/* Remaining length in current segment */
871 	unsigned seqnum;	/* Current sequence number */
872 	unsigned packet_space;	/* Remaining space in current packet */
873 	unsigned segs_space;	/* Remaining number of DMA segments
874 				   for the packet (FATSOv2 only) */
875 
876 	/* Input position */
877 	uint64_t dma_addr;	/* DMA address of current position */
878 	unsigned in_len;	/* Remaining length in current mbuf */
879 
880 	const struct mbuf *mbuf; /* Input mbuf (head of chain) */
881 	u_short protocol;	/* Network protocol (after VLAN decap) */
882 	ssize_t nh_off;		/* Offset of network header */
883 	ssize_t tcph_off;	/* Offset of TCP header */
884 	unsigned header_len;	/* Number of bytes of header */
885 	unsigned seg_size;	/* TCP segment size */
886 	int fw_assisted;	/* Use FW-assisted TSO */
887 	u_short packet_id;	/* IPv4 packet ID from the original packet */
888 	uint8_t tcp_flags;	/* TCP flags */
889 	efx_desc_t header_desc; /* Precomputed header descriptor for
890 				 * FW-assisted TSO */
891 };
892 
893 #if !SFXGE_TX_PARSE_EARLY
894 static const struct ip *tso_iph(const struct sfxge_tso_state *tso)
895 {
896 	KASSERT(tso->protocol == htons(ETHERTYPE_IP),
897 		("tso_iph() in non-IPv4 state"));
898 	return (const struct ip *)(tso->mbuf->m_data + tso->nh_off);
899 }
900 
901 static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso)
902 {
903 	KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
904 		("tso_ip6h() in non-IPv6 state"));
905 	return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off);
906 }
907 
908 static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso)
909 {
910 	return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off);
911 }
912 #endif
913 
914 
915 /* Size of preallocated TSO header buffers.  Larger blocks must be
916  * allocated from the heap.
917  */
918 #define	TSOH_STD_SIZE	128
919 
920 /* At most half the descriptors in the queue at any time will refer to
921  * a TSO header buffer, since they must always be followed by a
922  * payload descriptor referring to an mbuf.
923  */
924 #define	TSOH_COUNT(_txq_entries)	((_txq_entries) / 2u)
925 #define	TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
926 #define	TSOH_PAGE_COUNT(_txq_entries)	\
927 	howmany(TSOH_COUNT(_txq_entries), TSOH_PER_PAGE)
928 
929 static int tso_init(struct sfxge_txq *txq)
930 {
931 	struct sfxge_softc *sc = txq->sc;
932 	unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries);
933 	int i, rc;
934 
935 	/* Allocate TSO header buffers */
936 	txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]),
937 				  M_SFXGE, M_WAITOK);
938 
939 	for (i = 0; i < tsoh_page_count; i++) {
940 		rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]);
941 		if (rc != 0)
942 			goto fail;
943 	}
944 
945 	return (0);
946 
947 fail:
948 	while (i-- > 0)
949 		sfxge_dma_free(&txq->tsoh_buffer[i]);
950 	free(txq->tsoh_buffer, M_SFXGE);
951 	txq->tsoh_buffer = NULL;
952 	return (rc);
953 }
954 
955 static void tso_fini(struct sfxge_txq *txq)
956 {
957 	int i;
958 
959 	if (txq->tsoh_buffer != NULL) {
960 		for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++)
961 			sfxge_dma_free(&txq->tsoh_buffer[i]);
962 		free(txq->tsoh_buffer, M_SFXGE);
963 	}
964 }
965 
966 static void tso_start(struct sfxge_txq *txq, struct sfxge_tso_state *tso,
967 		      const bus_dma_segment_t *hdr_dma_seg,
968 		      struct mbuf *mbuf)
969 {
970 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->sc->enp);
971 #if !SFXGE_TX_PARSE_EARLY
972 	struct ether_header *eh = mtod(mbuf, struct ether_header *);
973 	const struct tcphdr *th;
974 	struct tcphdr th_copy;
975 #endif
976 
977 	tso->fw_assisted = txq->tso_fw_assisted;
978 	tso->mbuf = mbuf;
979 
980 	/* Find network protocol and header */
981 #if !SFXGE_TX_PARSE_EARLY
982 	tso->protocol = eh->ether_type;
983 	if (tso->protocol == htons(ETHERTYPE_VLAN)) {
984 		struct ether_vlan_header *veh =
985 			mtod(mbuf, struct ether_vlan_header *);
986 		tso->protocol = veh->evl_proto;
987 		tso->nh_off = sizeof(*veh);
988 	} else {
989 		tso->nh_off = sizeof(*eh);
990 	}
991 #else
992 	tso->protocol = TSO_MBUF_PROTO(mbuf);
993 	tso->nh_off = mbuf->m_pkthdr.l2hlen;
994 	tso->tcph_off = mbuf->m_pkthdr.l3hlen;
995 	tso->packet_id = ntohs(TSO_MBUF_PACKETID(mbuf));
996 #endif
997 
998 #if !SFXGE_TX_PARSE_EARLY
999 	/* Find TCP header */
1000 	if (tso->protocol == htons(ETHERTYPE_IP)) {
1001 		KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP,
1002 			("TSO required on non-TCP packet"));
1003 		tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl;
1004 		tso->packet_id = ntohs(tso_iph(tso)->ip_id);
1005 	} else {
1006 		KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
1007 			("TSO required on non-IP packet"));
1008 		KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP,
1009 			("TSO required on non-TCP packet"));
1010 		tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr);
1011 		tso->packet_id = 0;
1012 	}
1013 #endif
1014 
1015 
1016 	if (tso->fw_assisted &&
1017 	    __predict_false(tso->tcph_off >
1018 			    encp->enc_tx_tso_tcp_header_offset_limit)) {
1019 		tso->fw_assisted = 0;
1020 	}
1021 
1022 
1023 #if !SFXGE_TX_PARSE_EARLY
1024 	KASSERT(mbuf->m_len >= tso->tcph_off,
1025 		("network header is fragmented in mbuf"));
1026 	/* We need TCP header including flags (window is the next) */
1027 	if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) {
1028 		m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy),
1029 			   (caddr_t)&th_copy);
1030 		th = &th_copy;
1031 	} else {
1032 		th = tso_tcph(tso);
1033 	}
1034 	tso->header_len = tso->tcph_off + 4 * th->th_off;
1035 #else
1036 	tso->header_len = mbuf->m_pkthdr.l4hlen;
1037 #endif
1038 	tso->seg_size = mbuf->m_pkthdr.tso_segsz;
1039 
1040 #if !SFXGE_TX_PARSE_EARLY
1041 	tso->seqnum = ntohl(th->th_seq);
1042 
1043 	/* These flags must not be duplicated */
1044 	/*
1045 	 * RST should not be duplicated as well, but FreeBSD kernel
1046 	 * generates TSO packets with RST flag. So, do not assert
1047 	 * its absence.
1048 	 */
1049 	KASSERT(!(th->th_flags & (TH_URG | TH_SYN)),
1050 		("incompatible TCP flag 0x%x on TSO packet",
1051 		 th->th_flags & (TH_URG | TH_SYN)));
1052 	tso->tcp_flags = th->th_flags;
1053 #else
1054 	tso->seqnum = TSO_MBUF_SEQNUM(mbuf);
1055 	tso->tcp_flags = TSO_MBUF_FLAGS(mbuf);
1056 #endif
1057 
1058 	tso->out_len = mbuf->m_pkthdr.len - tso->header_len;
1059 
1060 	if (tso->fw_assisted) {
1061 		if (hdr_dma_seg->ds_len >= tso->header_len)
1062 			efx_tx_qdesc_dma_create(txq->common,
1063 						hdr_dma_seg->ds_addr,
1064 						tso->header_len,
1065 						B_FALSE,
1066 						&tso->header_desc);
1067 		else
1068 			tso->fw_assisted = 0;
1069 	}
1070 }
1071 
1072 /*
1073  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1074  *
1075  * Form descriptors for the current fragment, until we reach the end
1076  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
1077  * space.
1078  */
1079 static void tso_fill_packet_with_fragment(struct sfxge_txq *txq,
1080 					  struct sfxge_tso_state *tso)
1081 {
1082 	efx_desc_t *desc;
1083 	int n;
1084 	uint64_t dma_addr = tso->dma_addr;
1085 	boolean_t eop;
1086 
1087 	if (tso->in_len == 0 || tso->packet_space == 0)
1088 		return;
1089 
1090 	KASSERT(tso->in_len > 0, ("TSO input length went negative"));
1091 	KASSERT(tso->packet_space > 0, ("TSO packet space went negative"));
1092 
1093 	if (tso->fw_assisted & SFXGE_FATSOV2) {
1094 		n = tso->in_len;
1095 		tso->out_len -= n;
1096 		tso->seqnum += n;
1097 		tso->in_len = 0;
1098 		if (n < tso->packet_space) {
1099 			tso->packet_space -= n;
1100 			tso->segs_space--;
1101 		} else {
1102 			tso->packet_space = tso->seg_size -
1103 			    (n - tso->packet_space) % tso->seg_size;
1104 			tso->segs_space =
1105 			    EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1 -
1106 			    (tso->packet_space != tso->seg_size);
1107 		}
1108 	} else {
1109 		n = min(tso->in_len, tso->packet_space);
1110 		tso->packet_space -= n;
1111 		tso->out_len -= n;
1112 		tso->dma_addr += n;
1113 		tso->in_len -= n;
1114 	}
1115 
1116 	/*
1117 	 * It is OK to use binary OR below to avoid extra branching
1118 	 * since all conditions may always be checked.
1119 	 */
1120 	eop = (tso->out_len == 0) | (tso->packet_space == 0) |
1121 	    (tso->segs_space == 0);
1122 
1123 	desc = &txq->pend_desc[txq->n_pend_desc++];
1124 	efx_tx_qdesc_dma_create(txq->common, dma_addr, n, eop, desc);
1125 }
1126 
1127 /* Callback from bus_dmamap_load() for long TSO headers. */
1128 static void tso_map_long_header(void *dma_addr_ret,
1129 				bus_dma_segment_t *segs, int nseg,
1130 				int error)
1131 {
1132 	*(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) &&
1133 				      __predict_true(nseg == 1)) ?
1134 				     segs->ds_addr : 0);
1135 }
1136 
1137 /*
1138  * tso_start_new_packet - generate a new header and prepare for the new packet
1139  *
1140  * Generate a new header and prepare for the new packet.  Return 0 on
1141  * success, or an error code if failed to alloc header.
1142  */
1143 static int tso_start_new_packet(struct sfxge_txq *txq,
1144 				struct sfxge_tso_state *tso,
1145 				unsigned int *idp)
1146 {
1147 	unsigned int id = *idp;
1148 	struct tcphdr *tsoh_th;
1149 	unsigned ip_length;
1150 	caddr_t header;
1151 	uint64_t dma_addr;
1152 	bus_dmamap_t map;
1153 	efx_desc_t *desc;
1154 	int rc;
1155 
1156 	if (tso->fw_assisted) {
1157 		if (tso->fw_assisted & SFXGE_FATSOV2) {
1158 			/* Add 2 FATSOv2 option descriptors */
1159 			desc = &txq->pend_desc[txq->n_pend_desc];
1160 			efx_tx_qdesc_tso2_create(txq->common,
1161 						 tso->packet_id,
1162 						 tso->seqnum,
1163 						 tso->seg_size,
1164 						 desc,
1165 						 EFX_TX_FATSOV2_OPT_NDESCS);
1166 			desc += EFX_TX_FATSOV2_OPT_NDESCS;
1167 			txq->n_pend_desc += EFX_TX_FATSOV2_OPT_NDESCS;
1168 			KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1169 			id = (id + EFX_TX_FATSOV2_OPT_NDESCS) & txq->ptr_mask;
1170 
1171 			tso->segs_space =
1172 			    EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1;
1173 		} else {
1174 			uint8_t tcp_flags = tso->tcp_flags;
1175 
1176 			if (tso->out_len > tso->seg_size)
1177 				tcp_flags &= ~(TH_FIN | TH_PUSH);
1178 
1179 			/* Add FATSOv1 option descriptor */
1180 			desc = &txq->pend_desc[txq->n_pend_desc++];
1181 			efx_tx_qdesc_tso_create(txq->common,
1182 						tso->packet_id,
1183 						tso->seqnum,
1184 						tcp_flags,
1185 						desc++);
1186 			KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1187 			id = (id + 1) & txq->ptr_mask;
1188 
1189 			tso->seqnum += tso->seg_size;
1190 			tso->segs_space = UINT_MAX;
1191 		}
1192 
1193 		/* Header DMA descriptor */
1194 		*desc = tso->header_desc;
1195 		txq->n_pend_desc++;
1196 		KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1197 		id = (id + 1) & txq->ptr_mask;
1198 	} else {
1199 		/* Allocate a DMA-mapped header buffer. */
1200 		if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) {
1201 			unsigned int page_index = (id / 2) / TSOH_PER_PAGE;
1202 			unsigned int buf_index = (id / 2) % TSOH_PER_PAGE;
1203 
1204 			header = (txq->tsoh_buffer[page_index].esm_base +
1205 				  buf_index * TSOH_STD_SIZE);
1206 			dma_addr = (txq->tsoh_buffer[page_index].esm_addr +
1207 				    buf_index * TSOH_STD_SIZE);
1208 			map = txq->tsoh_buffer[page_index].esm_map;
1209 
1210 			KASSERT(txq->stmp[id].flags == 0,
1211 				("stmp flags are not 0"));
1212 		} else {
1213 			struct sfxge_tx_mapping *stmp = &txq->stmp[id];
1214 
1215 			/* We cannot use bus_dmamem_alloc() as that may sleep */
1216 			header = malloc(tso->header_len, M_SFXGE, M_NOWAIT);
1217 			if (__predict_false(!header))
1218 				return (ENOMEM);
1219 			rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map,
1220 					     header, tso->header_len,
1221 					     tso_map_long_header, &dma_addr,
1222 					     BUS_DMA_NOWAIT);
1223 			if (__predict_false(dma_addr == 0)) {
1224 				if (rc == 0) {
1225 					/* Succeeded but got >1 segment */
1226 					bus_dmamap_unload(txq->packet_dma_tag,
1227 							  stmp->map);
1228 					rc = EINVAL;
1229 				}
1230 				free(header, M_SFXGE);
1231 				return (rc);
1232 			}
1233 			map = stmp->map;
1234 
1235 			txq->tso_long_headers++;
1236 			stmp->u.heap_buf = header;
1237 			stmp->flags = TX_BUF_UNMAP;
1238 		}
1239 
1240 		tsoh_th = (struct tcphdr *)(header + tso->tcph_off);
1241 
1242 		/* Copy and update the headers. */
1243 		m_copydata(tso->mbuf, 0, tso->header_len, header);
1244 
1245 		tsoh_th->th_seq = htonl(tso->seqnum);
1246 		tso->seqnum += tso->seg_size;
1247 		if (tso->out_len > tso->seg_size) {
1248 			/* This packet will not finish the TSO burst. */
1249 			ip_length = tso->header_len - tso->nh_off + tso->seg_size;
1250 			tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH);
1251 		} else {
1252 			/* This packet will be the last in the TSO burst. */
1253 			ip_length = tso->header_len - tso->nh_off + tso->out_len;
1254 		}
1255 
1256 		if (tso->protocol == htons(ETHERTYPE_IP)) {
1257 			struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off);
1258 			tsoh_iph->ip_len = htons(ip_length);
1259 			/* XXX We should increment ip_id, but FreeBSD doesn't
1260 			 * currently allocate extra IDs for multiple segments.
1261 			 */
1262 		} else {
1263 			struct ip6_hdr *tsoh_iph =
1264 				(struct ip6_hdr *)(header + tso->nh_off);
1265 			tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph));
1266 		}
1267 
1268 		/* Make the header visible to the hardware. */
1269 		bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE);
1270 
1271 		/* Form a descriptor for this header. */
1272 		desc = &txq->pend_desc[txq->n_pend_desc++];
1273 		efx_tx_qdesc_dma_create(txq->common,
1274 					dma_addr,
1275 					tso->header_len,
1276 					0,
1277 					desc);
1278 		id = (id + 1) & txq->ptr_mask;
1279 
1280 		tso->segs_space = UINT_MAX;
1281 	}
1282 	tso->packet_space = tso->seg_size;
1283 	txq->tso_packets++;
1284 	*idp = id;
1285 
1286 	return (0);
1287 }
1288 
1289 static int
1290 sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
1291 		   const bus_dma_segment_t *dma_seg, int n_dma_seg,
1292 		   int vlan_tagged)
1293 {
1294 	struct sfxge_tso_state tso;
1295 	unsigned int id;
1296 	unsigned skipped = 0;
1297 
1298 	tso_start(txq, &tso, dma_seg, mbuf);
1299 
1300 	while (dma_seg->ds_len + skipped <= tso.header_len) {
1301 		skipped += dma_seg->ds_len;
1302 		--n_dma_seg;
1303 		KASSERT(n_dma_seg, ("no payload found in TSO packet"));
1304 		++dma_seg;
1305 	}
1306 	tso.in_len = dma_seg->ds_len - (tso.header_len - skipped);
1307 	tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped);
1308 
1309 	id = (txq->added + vlan_tagged) & txq->ptr_mask;
1310 	if (__predict_false(tso_start_new_packet(txq, &tso, &id)))
1311 		return (-1);
1312 
1313 	while (1) {
1314 		tso_fill_packet_with_fragment(txq, &tso);
1315 		/* Exactly one DMA descriptor is added */
1316 		KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1317 		id = (id + 1) & txq->ptr_mask;
1318 
1319 		/* Move onto the next fragment? */
1320 		if (tso.in_len == 0) {
1321 			--n_dma_seg;
1322 			if (n_dma_seg == 0)
1323 				break;
1324 			++dma_seg;
1325 			tso.in_len = dma_seg->ds_len;
1326 			tso.dma_addr = dma_seg->ds_addr;
1327 		}
1328 
1329 		/* End of packet? */
1330 		if ((tso.packet_space == 0) | (tso.segs_space == 0)) {
1331 			unsigned int n_fatso_opt_desc =
1332 			    (tso.fw_assisted & SFXGE_FATSOV2) ?
1333 			    EFX_TX_FATSOV2_OPT_NDESCS :
1334 			    (tso.fw_assisted & SFXGE_FATSOV1) ? 1 : 0;
1335 
1336 			/* If the queue is now full due to tiny MSS,
1337 			 * or we can't create another header, discard
1338 			 * the remainder of the input mbuf but do not
1339 			 * roll back the work we have done.
1340 			 */
1341 			if (txq->n_pend_desc + n_fatso_opt_desc +
1342 			    1 /* header */ + n_dma_seg > txq->max_pkt_desc) {
1343 				txq->tso_pdrop_too_many++;
1344 				break;
1345 			}
1346 			if (__predict_false(tso_start_new_packet(txq, &tso,
1347 								 &id))) {
1348 				txq->tso_pdrop_no_rsrc++;
1349 				break;
1350 			}
1351 		}
1352 	}
1353 
1354 	txq->tso_bursts++;
1355 	return (id);
1356 }
1357 
1358 static void
1359 sfxge_tx_qunblock(struct sfxge_txq *txq)
1360 {
1361 	struct sfxge_softc *sc;
1362 	struct sfxge_evq *evq;
1363 
1364 	sc = txq->sc;
1365 	evq = sc->evq[txq->evq_index];
1366 
1367 	SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
1368 
1369 	if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED))
1370 		return;
1371 
1372 	SFXGE_TXQ_LOCK(txq);
1373 
1374 	if (txq->blocked) {
1375 		unsigned int level;
1376 
1377 		level = txq->added - txq->completed;
1378 		if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) {
1379 			/* reaped must be in sync with blocked */
1380 			sfxge_tx_qreap(txq);
1381 			txq->blocked = 0;
1382 		}
1383 	}
1384 
1385 	sfxge_tx_qdpl_service(txq);
1386 	/* note: lock has been dropped */
1387 }
1388 
1389 void
1390 sfxge_tx_qflush_done(struct sfxge_txq *txq)
1391 {
1392 
1393 	txq->flush_state = SFXGE_FLUSH_DONE;
1394 }
1395 
1396 static void
1397 sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index)
1398 {
1399 	struct sfxge_txq *txq;
1400 	struct sfxge_evq *evq;
1401 	unsigned int count;
1402 
1403 	SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
1404 
1405 	txq = sc->txq[index];
1406 	evq = sc->evq[txq->evq_index];
1407 
1408 	SFXGE_EVQ_LOCK(evq);
1409 	SFXGE_TXQ_LOCK(txq);
1410 
1411 	KASSERT(txq->init_state == SFXGE_TXQ_STARTED,
1412 	    ("txq->init_state != SFXGE_TXQ_STARTED"));
1413 
1414 	txq->init_state = SFXGE_TXQ_INITIALIZED;
1415 
1416 	if (txq->flush_state != SFXGE_FLUSH_DONE) {
1417 		txq->flush_state = SFXGE_FLUSH_PENDING;
1418 
1419 		SFXGE_EVQ_UNLOCK(evq);
1420 		SFXGE_TXQ_UNLOCK(txq);
1421 
1422 		/* Flush the transmit queue. */
1423 		if (efx_tx_qflush(txq->common) != 0) {
1424 			log(LOG_ERR, "%s: Flushing Tx queue %u failed\n",
1425 			    device_get_nameunit(sc->dev), index);
1426 			txq->flush_state = SFXGE_FLUSH_DONE;
1427 		} else {
1428 			count = 0;
1429 			do {
1430 				/* Spin for 100ms. */
1431 				DELAY(100000);
1432 				if (txq->flush_state != SFXGE_FLUSH_PENDING)
1433 					break;
1434 			} while (++count < 20);
1435 		}
1436 		SFXGE_EVQ_LOCK(evq);
1437 		SFXGE_TXQ_LOCK(txq);
1438 
1439 		KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED,
1440 		    ("txq->flush_state == SFXGE_FLUSH_FAILED"));
1441 
1442 		if (txq->flush_state != SFXGE_FLUSH_DONE) {
1443 			/* Flush timeout */
1444 			log(LOG_ERR, "%s: Cannot flush Tx queue %u\n",
1445 			    device_get_nameunit(sc->dev), index);
1446 			txq->flush_state = SFXGE_FLUSH_DONE;
1447 		}
1448 	}
1449 
1450 	txq->blocked = 0;
1451 	txq->pending = txq->added;
1452 
1453 	sfxge_tx_qcomplete(txq, evq);
1454 	KASSERT(txq->completed == txq->added,
1455 	    ("txq->completed != txq->added"));
1456 
1457 	sfxge_tx_qreap(txq);
1458 	KASSERT(txq->reaped == txq->completed,
1459 	    ("txq->reaped != txq->completed"));
1460 
1461 	txq->added = 0;
1462 	txq->pending = 0;
1463 	txq->completed = 0;
1464 	txq->reaped = 0;
1465 
1466 	/* Destroy the common code transmit queue. */
1467 	efx_tx_qdestroy(txq->common);
1468 	txq->common = NULL;
1469 
1470 	efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1471 	    EFX_TXQ_NBUFS(sc->txq_entries));
1472 
1473 	SFXGE_EVQ_UNLOCK(evq);
1474 	SFXGE_TXQ_UNLOCK(txq);
1475 }
1476 
1477 /*
1478  * Estimate maximum number of Tx descriptors required for TSO packet.
1479  * With minimum MSS and maximum mbuf length we might need more (even
1480  * than a ring-ful of descriptors), but this should not happen in
1481  * practice except due to deliberate attack.  In that case we will
1482  * truncate the output at a packet boundary.
1483  */
1484 static unsigned int
1485 sfxge_tx_max_pkt_desc(const struct sfxge_softc *sc, enum sfxge_txq_type type,
1486 		      unsigned int tso_fw_assisted)
1487 {
1488 	/* One descriptor for every input fragment */
1489 	unsigned int max_descs = SFXGE_TX_MAPPING_MAX_SEG;
1490 	unsigned int sw_tso_max_descs;
1491 	unsigned int fa_tso_v1_max_descs = 0;
1492 	unsigned int fa_tso_v2_max_descs = 0;
1493 
1494 	/* VLAN tagging Tx option descriptor may be required */
1495 	if (efx_nic_cfg_get(sc->enp)->enc_hw_tx_insert_vlan_enabled)
1496 		max_descs++;
1497 
1498 	if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) {
1499 		/*
1500 		 * Plus header and payload descriptor for each output segment.
1501 		 * Minus one since header fragment is already counted.
1502 		 * Even if FATSO is used, we should be ready to fallback
1503 		 * to do it in the driver.
1504 		 */
1505 		sw_tso_max_descs = SFXGE_TSO_MAX_SEGS * 2 - 1;
1506 
1507 		/* FW assisted TSOv1 requires one more descriptor per segment
1508 		 * in comparison to SW TSO */
1509 		if (tso_fw_assisted & SFXGE_FATSOV1)
1510 			fa_tso_v1_max_descs =
1511 			    sw_tso_max_descs + SFXGE_TSO_MAX_SEGS;
1512 
1513 		/* FW assisted TSOv2 requires 3 (2 FATSO plus header) extra
1514 		 * descriptors per superframe limited by number of DMA fetches
1515 		 * per packet. The first packet header is already counted.
1516 		 */
1517 		if (tso_fw_assisted & SFXGE_FATSOV2) {
1518 			fa_tso_v2_max_descs =
1519 			    howmany(SFXGE_TX_MAPPING_MAX_SEG,
1520 				    EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1) *
1521 			    (EFX_TX_FATSOV2_OPT_NDESCS + 1) - 1;
1522 		}
1523 
1524 		max_descs += MAX(sw_tso_max_descs,
1525 				 MAX(fa_tso_v1_max_descs, fa_tso_v2_max_descs));
1526 	}
1527 
1528 	return (max_descs);
1529 }
1530 
1531 static int
1532 sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index)
1533 {
1534 	struct sfxge_txq *txq;
1535 	efsys_mem_t *esmp;
1536 	uint16_t flags;
1537 	unsigned int tso_fw_assisted;
1538 	struct sfxge_evq *evq;
1539 	unsigned int desc_index;
1540 	int rc;
1541 
1542 	SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
1543 
1544 	txq = sc->txq[index];
1545 	esmp = &txq->mem;
1546 	evq = sc->evq[txq->evq_index];
1547 
1548 	KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1549 	    ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1550 	KASSERT(evq->init_state == SFXGE_EVQ_STARTED,
1551 	    ("evq->init_state != SFXGE_EVQ_STARTED"));
1552 
1553 	/* Program the buffer table. */
1554 	if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp,
1555 	    EFX_TXQ_NBUFS(sc->txq_entries))) != 0)
1556 		return (rc);
1557 
1558 	/* Determine the kind of queue we are creating. */
1559 	tso_fw_assisted = 0;
1560 	switch (txq->type) {
1561 	case SFXGE_TXQ_NON_CKSUM:
1562 		flags = 0;
1563 		break;
1564 	case SFXGE_TXQ_IP_CKSUM:
1565 		flags = EFX_TXQ_CKSUM_IPV4;
1566 		break;
1567 	case SFXGE_TXQ_IP_TCP_UDP_CKSUM:
1568 		flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP;
1569 		tso_fw_assisted = sc->tso_fw_assisted;
1570 		if (tso_fw_assisted & SFXGE_FATSOV2)
1571 			flags |= EFX_TXQ_FATSOV2;
1572 		break;
1573 	default:
1574 		KASSERT(0, ("Impossible TX queue"));
1575 		flags = 0;
1576 		break;
1577 	}
1578 
1579 	/* Create the common code transmit queue. */
1580 	if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp,
1581 	    sc->txq_entries, txq->buf_base_id, flags, evq->common,
1582 	    &txq->common, &desc_index)) != 0) {
1583 		/* Retry if no FATSOv2 resources, otherwise fail */
1584 		if ((rc != ENOSPC) || (~flags & EFX_TXQ_FATSOV2))
1585 			goto fail;
1586 
1587 		/* Looks like all FATSOv2 contexts are used */
1588 		flags &= ~EFX_TXQ_FATSOV2;
1589 		tso_fw_assisted &= ~SFXGE_FATSOV2;
1590 		if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp,
1591 		    sc->txq_entries, txq->buf_base_id, flags, evq->common,
1592 		    &txq->common, &desc_index)) != 0)
1593 			goto fail;
1594 	}
1595 
1596 	/* Initialise queue descriptor indexes */
1597 	txq->added = txq->pending = txq->completed = txq->reaped = desc_index;
1598 
1599 	SFXGE_TXQ_LOCK(txq);
1600 
1601 	/* Enable the transmit queue. */
1602 	efx_tx_qenable(txq->common);
1603 
1604 	txq->init_state = SFXGE_TXQ_STARTED;
1605 	txq->flush_state = SFXGE_FLUSH_REQUIRED;
1606 	txq->tso_fw_assisted = tso_fw_assisted;
1607 
1608 	txq->max_pkt_desc = sfxge_tx_max_pkt_desc(sc, txq->type,
1609 						  tso_fw_assisted);
1610 
1611 	SFXGE_TXQ_UNLOCK(txq);
1612 
1613 	return (0);
1614 
1615 fail:
1616 	efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1617 	    EFX_TXQ_NBUFS(sc->txq_entries));
1618 	return (rc);
1619 }
1620 
1621 void
1622 sfxge_tx_stop(struct sfxge_softc *sc)
1623 {
1624 	int index;
1625 
1626 	index = sc->txq_count;
1627 	while (--index >= 0)
1628 		sfxge_tx_qstop(sc, index);
1629 
1630 	/* Tear down the transmit module */
1631 	efx_tx_fini(sc->enp);
1632 }
1633 
1634 int
1635 sfxge_tx_start(struct sfxge_softc *sc)
1636 {
1637 	int index;
1638 	int rc;
1639 
1640 	/* Initialize the common code transmit module. */
1641 	if ((rc = efx_tx_init(sc->enp)) != 0)
1642 		return (rc);
1643 
1644 	for (index = 0; index < sc->txq_count; index++) {
1645 		if ((rc = sfxge_tx_qstart(sc, index)) != 0)
1646 			goto fail;
1647 	}
1648 
1649 	return (0);
1650 
1651 fail:
1652 	while (--index >= 0)
1653 		sfxge_tx_qstop(sc, index);
1654 
1655 	efx_tx_fini(sc->enp);
1656 
1657 	return (rc);
1658 }
1659 
1660 static int
1661 sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node)
1662 {
1663 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev);
1664 	struct sysctl_oid *stat_node;
1665 	unsigned int id;
1666 
1667 	stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
1668 				    "stats", CTLFLAG_RD, NULL,
1669 				    "Tx queue statistics");
1670 	if (stat_node == NULL)
1671 		return (ENOMEM);
1672 
1673 	for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1674 		SYSCTL_ADD_ULONG(
1675 		    ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO,
1676 		    sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS,
1677 		    (unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset),
1678 		    "");
1679 	}
1680 
1681 	return (0);
1682 }
1683 
1684 /**
1685  * Destroy a transmit queue.
1686  */
1687 static void
1688 sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index)
1689 {
1690 	struct sfxge_txq *txq;
1691 	unsigned int nmaps;
1692 
1693 	txq = sc->txq[index];
1694 
1695 	KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1696 	    ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1697 
1698 	if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM)
1699 		tso_fini(txq);
1700 
1701 	/* Free the context arrays. */
1702 	free(txq->pend_desc, M_SFXGE);
1703 	nmaps = sc->txq_entries;
1704 	while (nmaps-- != 0)
1705 		bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1706 	free(txq->stmp, M_SFXGE);
1707 
1708 	/* Release DMA memory mapping. */
1709 	sfxge_dma_free(&txq->mem);
1710 
1711 	sc->txq[index] = NULL;
1712 
1713 	SFXGE_TXQ_LOCK_DESTROY(txq);
1714 
1715 	free(txq, M_SFXGE);
1716 }
1717 
1718 static int
1719 sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index,
1720 	       enum sfxge_txq_type type, unsigned int evq_index)
1721 {
1722 	char name[16];
1723 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1724 	struct sysctl_oid *txq_node;
1725 	struct sfxge_txq *txq;
1726 	struct sfxge_evq *evq;
1727 	struct sfxge_tx_dpl *stdp;
1728 	struct sysctl_oid *dpl_node;
1729 	efsys_mem_t *esmp;
1730 	unsigned int nmaps;
1731 	int rc;
1732 
1733 	txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK);
1734 	txq->sc = sc;
1735 	txq->entries = sc->txq_entries;
1736 	txq->ptr_mask = txq->entries - 1;
1737 
1738 	sc->txq[txq_index] = txq;
1739 	esmp = &txq->mem;
1740 
1741 	evq = sc->evq[evq_index];
1742 
1743 	/* Allocate and zero DMA space for the descriptor ring. */
1744 	if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0)
1745 		return (rc);
1746 
1747 	/* Allocate buffer table entries. */
1748 	sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries),
1749 				 &txq->buf_base_id);
1750 
1751 	/* Create a DMA tag for packet mappings. */
1752 	if (bus_dma_tag_create(sc->parent_dma_tag, 1, 0x1000,
1753 	    MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL,
1754 	    NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 0x1000, 0, NULL, NULL,
1755 	    &txq->packet_dma_tag) != 0) {
1756 		device_printf(sc->dev, "Couldn't allocate txq DMA tag\n");
1757 		rc = ENOMEM;
1758 		goto fail;
1759 	}
1760 
1761 	/* Allocate pending descriptor array for batching writes. */
1762 	txq->pend_desc = malloc(sizeof(efx_desc_t) * sc->txq_entries,
1763 				M_SFXGE, M_ZERO | M_WAITOK);
1764 
1765 	/* Allocate and initialise mbuf DMA mapping array. */
1766 	txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries,
1767 	    M_SFXGE, M_ZERO | M_WAITOK);
1768 	for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) {
1769 		rc = bus_dmamap_create(txq->packet_dma_tag, 0,
1770 				       &txq->stmp[nmaps].map);
1771 		if (rc != 0)
1772 			goto fail2;
1773 	}
1774 
1775 	snprintf(name, sizeof(name), "%u", txq_index);
1776 	txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node),
1777 				   OID_AUTO, name, CTLFLAG_RD, NULL, "");
1778 	if (txq_node == NULL) {
1779 		rc = ENOMEM;
1780 		goto fail_txq_node;
1781 	}
1782 
1783 	if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM &&
1784 	    (rc = tso_init(txq)) != 0)
1785 		goto fail3;
1786 
1787 	if (sfxge_tx_dpl_get_max <= 0) {
1788 		log(LOG_ERR, "%s=%d must be greater than 0",
1789 		    SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max);
1790 		rc = EINVAL;
1791 		goto fail_tx_dpl_get_max;
1792 	}
1793 	if (sfxge_tx_dpl_get_non_tcp_max <= 0) {
1794 		log(LOG_ERR, "%s=%d must be greater than 0",
1795 		    SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX,
1796 		    sfxge_tx_dpl_get_non_tcp_max);
1797 		rc = EINVAL;
1798 		goto fail_tx_dpl_get_max;
1799 	}
1800 	if (sfxge_tx_dpl_put_max < 0) {
1801 		log(LOG_ERR, "%s=%d must be greater or equal to 0",
1802 		    SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max);
1803 		rc = EINVAL;
1804 		goto fail_tx_dpl_put_max;
1805 	}
1806 
1807 	/* Initialize the deferred packet list. */
1808 	stdp = &txq->dpl;
1809 	stdp->std_put_max = sfxge_tx_dpl_put_max;
1810 	stdp->std_get_max = sfxge_tx_dpl_get_max;
1811 	stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max;
1812 	stdp->std_getp = &stdp->std_get;
1813 
1814 	SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index);
1815 
1816 	dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
1817 				   "dpl", CTLFLAG_RD, NULL,
1818 				   "Deferred packet list statistics");
1819 	if (dpl_node == NULL) {
1820 		rc = ENOMEM;
1821 		goto fail_dpl_node;
1822 	}
1823 
1824 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1825 			"get_count", CTLFLAG_RD | CTLFLAG_STATS,
1826 			&stdp->std_get_count, 0, "");
1827 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1828 			"get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS,
1829 			&stdp->std_get_non_tcp_count, 0, "");
1830 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1831 			"get_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1832 			&stdp->std_get_hiwat, 0, "");
1833 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1834 			"put_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1835 			&stdp->std_put_hiwat, 0, "");
1836 
1837 	rc = sfxge_txq_stat_init(txq, txq_node);
1838 	if (rc != 0)
1839 		goto fail_txq_stat_init;
1840 
1841 	txq->type = type;
1842 	txq->evq_index = evq_index;
1843 	txq->txq_index = txq_index;
1844 	txq->init_state = SFXGE_TXQ_INITIALIZED;
1845 	txq->hw_vlan_tci = 0;
1846 
1847 	return (0);
1848 
1849 fail_txq_stat_init:
1850 fail_dpl_node:
1851 fail_tx_dpl_put_max:
1852 fail_tx_dpl_get_max:
1853 fail3:
1854 fail_txq_node:
1855 	free(txq->pend_desc, M_SFXGE);
1856 fail2:
1857 	while (nmaps-- != 0)
1858 		bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1859 	free(txq->stmp, M_SFXGE);
1860 	bus_dma_tag_destroy(txq->packet_dma_tag);
1861 
1862 fail:
1863 	sfxge_dma_free(esmp);
1864 
1865 	return (rc);
1866 }
1867 
1868 static int
1869 sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS)
1870 {
1871 	struct sfxge_softc *sc = arg1;
1872 	unsigned int id = arg2;
1873 	unsigned long sum;
1874 	unsigned int index;
1875 
1876 	/* Sum across all TX queues */
1877 	sum = 0;
1878 	for (index = 0; index < sc->txq_count; index++)
1879 		sum += *(unsigned long *)((caddr_t)sc->txq[index] +
1880 					  sfxge_tx_stats[id].offset);
1881 
1882 	return (SYSCTL_OUT(req, &sum, sizeof(sum)));
1883 }
1884 
1885 static void
1886 sfxge_tx_stat_init(struct sfxge_softc *sc)
1887 {
1888 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1889 	struct sysctl_oid_list *stat_list;
1890 	unsigned int id;
1891 
1892 	stat_list = SYSCTL_CHILDREN(sc->stats_node);
1893 
1894 	for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1895 		SYSCTL_ADD_PROC(
1896 			ctx, stat_list,
1897 			OID_AUTO, sfxge_tx_stats[id].name,
1898 			CTLTYPE_ULONG|CTLFLAG_RD,
1899 			sc, id, sfxge_tx_stat_handler, "LU",
1900 			"");
1901 	}
1902 }
1903 
1904 uint64_t
1905 sfxge_tx_get_drops(struct sfxge_softc *sc)
1906 {
1907 	unsigned int index;
1908 	uint64_t drops = 0;
1909 	struct sfxge_txq *txq;
1910 
1911 	/* Sum across all TX queues */
1912 	for (index = 0; index < sc->txq_count; index++) {
1913 		txq = sc->txq[index];
1914 		/*
1915 		 * In theory, txq->put_overflow and txq->netdown_drops
1916 		 * should use atomic operation and other should be
1917 		 * obtained under txq lock, but it is just statistics.
1918 		 */
1919 		drops += txq->drops + txq->get_overflow +
1920 			 txq->get_non_tcp_overflow +
1921 			 txq->put_overflow + txq->netdown_drops +
1922 			 txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc;
1923 	}
1924 	return (drops);
1925 }
1926 
1927 void
1928 sfxge_tx_fini(struct sfxge_softc *sc)
1929 {
1930 	int index;
1931 
1932 	index = sc->txq_count;
1933 	while (--index >= 0)
1934 		sfxge_tx_qfini(sc, index);
1935 
1936 	sc->txq_count = 0;
1937 }
1938 
1939 
1940 int
1941 sfxge_tx_init(struct sfxge_softc *sc)
1942 {
1943 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp);
1944 	struct sfxge_intr *intr;
1945 	int index;
1946 	int rc;
1947 
1948 	intr = &sc->intr;
1949 
1950 	KASSERT(intr->state == SFXGE_INTR_INITIALIZED,
1951 	    ("intr->state != SFXGE_INTR_INITIALIZED"));
1952 
1953 	sc->txq_count = SFXGE_TXQ_NTYPES - 1 + sc->intr.n_alloc;
1954 
1955 	sc->tso_fw_assisted = sfxge_tso_fw_assisted;
1956 	if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO) ||
1957 	    (!encp->enc_fw_assisted_tso_enabled))
1958 		sc->tso_fw_assisted &= ~SFXGE_FATSOV1;
1959 	if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO_V2) ||
1960 	    (!encp->enc_fw_assisted_tso_v2_enabled))
1961 		sc->tso_fw_assisted &= ~SFXGE_FATSOV2;
1962 
1963 	sc->txqs_node = SYSCTL_ADD_NODE(
1964 		device_get_sysctl_ctx(sc->dev),
1965 		SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
1966 		OID_AUTO, "txq", CTLFLAG_RD, NULL, "Tx queues");
1967 	if (sc->txqs_node == NULL) {
1968 		rc = ENOMEM;
1969 		goto fail_txq_node;
1970 	}
1971 
1972 	/* Initialize the transmit queues */
1973 	if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM,
1974 	    SFXGE_TXQ_NON_CKSUM, 0)) != 0)
1975 		goto fail;
1976 
1977 	if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM,
1978 	    SFXGE_TXQ_IP_CKSUM, 0)) != 0)
1979 		goto fail2;
1980 
1981 	for (index = 0;
1982 	     index < sc->txq_count - SFXGE_TXQ_NTYPES + 1;
1983 	     index++) {
1984 		if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NTYPES - 1 + index,
1985 		    SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0)
1986 			goto fail3;
1987 	}
1988 
1989 	sfxge_tx_stat_init(sc);
1990 
1991 	return (0);
1992 
1993 fail3:
1994 	while (--index >= 0)
1995 		sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
1996 
1997 	sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
1998 
1999 fail2:
2000 	sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
2001 
2002 fail:
2003 fail_txq_node:
2004 	sc->txq_count = 0;
2005 	return (rc);
2006 }
2007