1 /*- 2 * Copyright (c) 2010-2015 Solarflare Communications Inc. 3 * All rights reserved. 4 * 5 * This software was developed in part by Philip Paeps under contract for 6 * Solarflare Communications, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright notice, 14 * this list of conditions and the following disclaimer in the documentation 15 * and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 19 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 26 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 27 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * The views and conclusions contained in the software and documentation are 30 * those of the authors and should not be interpreted as representing official 31 * policies, either expressed or implied, of the FreeBSD Project. 32 */ 33 34 /* Theory of operation: 35 * 36 * Tx queues allocation and mapping 37 * 38 * One Tx queue with enabled checksum offload is allocated per Rx channel 39 * (event queue). Also 2 Tx queues (one without checksum offload and one 40 * with IP checksum offload only) are allocated and bound to event queue 0. 41 * sfxge_txq_type is used as Tx queue label. 42 * 43 * So, event queue plus label mapping to Tx queue index is: 44 * if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES) 45 * else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1 46 * See sfxge_get_txq_by_label() sfxge_ev.c 47 */ 48 49 #include <sys/cdefs.h> 50 __FBSDID("$FreeBSD$"); 51 52 #include <sys/types.h> 53 #include <sys/mbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 #include <sys/limits.h> 59 60 #include <net/bpf.h> 61 #include <net/ethernet.h> 62 #include <net/if.h> 63 #include <net/if_vlan_var.h> 64 65 #include <netinet/in.h> 66 #include <netinet/ip.h> 67 #include <netinet/ip6.h> 68 #include <netinet/tcp.h> 69 70 #include "common/efx.h" 71 72 #include "sfxge.h" 73 #include "sfxge_tx.h" 74 75 76 #define SFXGE_PARAM_TX_DPL_GET_MAX SFXGE_PARAM(tx_dpl_get_max) 77 static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT; 78 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max); 79 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN, 80 &sfxge_tx_dpl_get_max, 0, 81 "Maximum number of any packets in deferred packet get-list"); 82 83 #define SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \ 84 SFXGE_PARAM(tx_dpl_get_non_tcp_max) 85 static int sfxge_tx_dpl_get_non_tcp_max = 86 SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT; 87 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max); 88 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN, 89 &sfxge_tx_dpl_get_non_tcp_max, 0, 90 "Maximum number of non-TCP packets in deferred packet get-list"); 91 92 #define SFXGE_PARAM_TX_DPL_PUT_MAX SFXGE_PARAM(tx_dpl_put_max) 93 static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT; 94 TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max); 95 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN, 96 &sfxge_tx_dpl_put_max, 0, 97 "Maximum number of any packets in deferred packet put-list"); 98 99 #define SFXGE_PARAM_TSO_FW_ASSISTED SFXGE_PARAM(tso_fw_assisted) 100 static int sfxge_tso_fw_assisted = (SFXGE_FATSOV1 | SFXGE_FATSOV2); 101 TUNABLE_INT(SFXGE_PARAM_TSO_FW_ASSISTED, &sfxge_tso_fw_assisted); 102 SYSCTL_INT(_hw_sfxge, OID_AUTO, tso_fw_assisted, CTLFLAG_RDTUN, 103 &sfxge_tso_fw_assisted, 0, 104 "Bitmask of FW-assisted TSO allowed to use if supported by NIC firmware"); 105 106 107 static const struct { 108 const char *name; 109 size_t offset; 110 } sfxge_tx_stats[] = { 111 #define SFXGE_TX_STAT(name, member) \ 112 { #name, offsetof(struct sfxge_txq, member) } 113 SFXGE_TX_STAT(tso_bursts, tso_bursts), 114 SFXGE_TX_STAT(tso_packets, tso_packets), 115 SFXGE_TX_STAT(tso_long_headers, tso_long_headers), 116 SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many), 117 SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc), 118 SFXGE_TX_STAT(tx_collapses, collapses), 119 SFXGE_TX_STAT(tx_drops, drops), 120 SFXGE_TX_STAT(tx_get_overflow, get_overflow), 121 SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow), 122 SFXGE_TX_STAT(tx_put_overflow, put_overflow), 123 SFXGE_TX_STAT(tx_netdown_drops, netdown_drops), 124 }; 125 126 127 /* Forward declarations. */ 128 static void sfxge_tx_qdpl_service(struct sfxge_txq *txq); 129 static void sfxge_tx_qlist_post(struct sfxge_txq *txq); 130 static void sfxge_tx_qunblock(struct sfxge_txq *txq); 131 static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, 132 const bus_dma_segment_t *dma_seg, int n_dma_seg, 133 int vlan_tagged); 134 135 static int 136 sfxge_tx_maybe_insert_tag(struct sfxge_txq *txq, struct mbuf *mbuf) 137 { 138 uint16_t this_tag = ((mbuf->m_flags & M_VLANTAG) ? 139 mbuf->m_pkthdr.ether_vtag : 140 0); 141 142 if (this_tag == txq->hw_vlan_tci) 143 return (0); 144 145 efx_tx_qdesc_vlantci_create(txq->common, 146 bswap16(this_tag), 147 &txq->pend_desc[0]); 148 txq->n_pend_desc = 1; 149 txq->hw_vlan_tci = this_tag; 150 return (1); 151 } 152 153 static inline void 154 sfxge_next_stmp(struct sfxge_txq *txq, struct sfxge_tx_mapping **pstmp) 155 { 156 KASSERT((*pstmp)->flags == 0, ("stmp flags are not 0")); 157 if (__predict_false(*pstmp == 158 &txq->stmp[txq->ptr_mask])) 159 *pstmp = &txq->stmp[0]; 160 else 161 (*pstmp)++; 162 } 163 164 165 void 166 sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq) 167 { 168 unsigned int completed; 169 170 SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); 171 172 completed = txq->completed; 173 while (completed != txq->pending) { 174 struct sfxge_tx_mapping *stmp; 175 unsigned int id; 176 177 id = completed++ & txq->ptr_mask; 178 179 stmp = &txq->stmp[id]; 180 if (stmp->flags & TX_BUF_UNMAP) { 181 bus_dmamap_unload(txq->packet_dma_tag, stmp->map); 182 if (stmp->flags & TX_BUF_MBUF) { 183 struct mbuf *m = stmp->u.mbuf; 184 do 185 m = m_free(m); 186 while (m != NULL); 187 } else { 188 free(stmp->u.heap_buf, M_SFXGE); 189 } 190 stmp->flags = 0; 191 } 192 } 193 txq->completed = completed; 194 195 /* Check whether we need to unblock the queue. */ 196 mb(); 197 if (txq->blocked) { 198 unsigned int level; 199 200 level = txq->added - txq->completed; 201 if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) 202 sfxge_tx_qunblock(txq); 203 } 204 } 205 206 static unsigned int 207 sfxge_is_mbuf_non_tcp(struct mbuf *mbuf) 208 { 209 /* Absense of TCP checksum flags does not mean that it is non-TCP 210 * but it should be true if user wants to achieve high throughput. 211 */ 212 return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP))); 213 } 214 215 /* 216 * Reorder the put list and append it to the get list. 217 */ 218 static void 219 sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq) 220 { 221 struct sfxge_tx_dpl *stdp; 222 struct mbuf *mbuf, *get_next, **get_tailp; 223 volatile uintptr_t *putp; 224 uintptr_t put; 225 unsigned int count; 226 unsigned int non_tcp_count; 227 228 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 229 230 stdp = &txq->dpl; 231 232 /* Acquire the put list. */ 233 putp = &stdp->std_put; 234 put = atomic_readandclear_ptr(putp); 235 mbuf = (void *)put; 236 237 if (mbuf == NULL) 238 return; 239 240 /* Reverse the put list. */ 241 get_tailp = &mbuf->m_nextpkt; 242 get_next = NULL; 243 244 count = 0; 245 non_tcp_count = 0; 246 do { 247 struct mbuf *put_next; 248 249 non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf); 250 put_next = mbuf->m_nextpkt; 251 mbuf->m_nextpkt = get_next; 252 get_next = mbuf; 253 mbuf = put_next; 254 255 count++; 256 } while (mbuf != NULL); 257 258 if (count > stdp->std_put_hiwat) 259 stdp->std_put_hiwat = count; 260 261 /* Append the reversed put list to the get list. */ 262 KASSERT(*get_tailp == NULL, ("*get_tailp != NULL")); 263 *stdp->std_getp = get_next; 264 stdp->std_getp = get_tailp; 265 stdp->std_get_count += count; 266 stdp->std_get_non_tcp_count += non_tcp_count; 267 } 268 269 static void 270 sfxge_tx_qreap(struct sfxge_txq *txq) 271 { 272 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 273 274 txq->reaped = txq->completed; 275 } 276 277 static void 278 sfxge_tx_qlist_post(struct sfxge_txq *txq) 279 { 280 unsigned int old_added; 281 unsigned int block_level; 282 unsigned int level; 283 int rc; 284 285 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 286 287 KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0")); 288 KASSERT(txq->n_pend_desc <= txq->max_pkt_desc, 289 ("txq->n_pend_desc too large")); 290 KASSERT(!txq->blocked, ("txq->blocked")); 291 292 old_added = txq->added; 293 294 /* Post the fragment list. */ 295 rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, txq->n_pend_desc, 296 txq->reaped, &txq->added); 297 KASSERT(rc == 0, ("efx_tx_qdesc_post() failed")); 298 299 /* If efx_tx_qdesc_post() had to refragment, our information about 300 * buffers to free may be associated with the wrong 301 * descriptors. 302 */ 303 KASSERT(txq->added - old_added == txq->n_pend_desc, 304 ("efx_tx_qdesc_post() refragmented descriptors")); 305 306 level = txq->added - txq->reaped; 307 KASSERT(level <= txq->entries, ("overfilled TX queue")); 308 309 /* Clear the fragment list. */ 310 txq->n_pend_desc = 0; 311 312 /* 313 * Set the block level to ensure there is space to generate a 314 * large number of descriptors for TSO. 315 */ 316 block_level = EFX_TXQ_LIMIT(txq->entries) - txq->max_pkt_desc; 317 318 /* Have we reached the block level? */ 319 if (level < block_level) 320 return; 321 322 /* Reap, and check again */ 323 sfxge_tx_qreap(txq); 324 level = txq->added - txq->reaped; 325 if (level < block_level) 326 return; 327 328 txq->blocked = 1; 329 330 /* 331 * Avoid a race with completion interrupt handling that could leave 332 * the queue blocked. 333 */ 334 mb(); 335 sfxge_tx_qreap(txq); 336 level = txq->added - txq->reaped; 337 if (level < block_level) { 338 mb(); 339 txq->blocked = 0; 340 } 341 } 342 343 static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf) 344 { 345 bus_dmamap_t *used_map; 346 bus_dmamap_t map; 347 bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG]; 348 unsigned int id; 349 struct sfxge_tx_mapping *stmp; 350 efx_desc_t *desc; 351 int n_dma_seg; 352 int rc; 353 int i; 354 int eop; 355 int vlan_tagged; 356 357 KASSERT(!txq->blocked, ("txq->blocked")); 358 359 if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) 360 prefetch_read_many(mbuf->m_data); 361 362 if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) { 363 rc = EINTR; 364 goto reject; 365 } 366 367 /* Load the packet for DMA. */ 368 id = txq->added & txq->ptr_mask; 369 stmp = &txq->stmp[id]; 370 rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map, 371 mbuf, dma_seg, &n_dma_seg, 0); 372 if (rc == EFBIG) { 373 /* Try again. */ 374 struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT, 375 SFXGE_TX_MAPPING_MAX_SEG); 376 if (new_mbuf == NULL) 377 goto reject; 378 ++txq->collapses; 379 mbuf = new_mbuf; 380 rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, 381 stmp->map, mbuf, 382 dma_seg, &n_dma_seg, 0); 383 } 384 if (rc != 0) 385 goto reject; 386 387 /* Make the packet visible to the hardware. */ 388 bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE); 389 390 used_map = &stmp->map; 391 392 vlan_tagged = sfxge_tx_maybe_insert_tag(txq, mbuf); 393 if (vlan_tagged) { 394 sfxge_next_stmp(txq, &stmp); 395 } 396 if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) { 397 rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg, vlan_tagged); 398 if (rc < 0) 399 goto reject_mapped; 400 stmp = &txq->stmp[(rc - 1) & txq->ptr_mask]; 401 } else { 402 /* Add the mapping to the fragment list, and set flags 403 * for the buffer. 404 */ 405 406 i = 0; 407 for (;;) { 408 desc = &txq->pend_desc[i + vlan_tagged]; 409 eop = (i == n_dma_seg - 1); 410 efx_tx_qdesc_dma_create(txq->common, 411 dma_seg[i].ds_addr, 412 dma_seg[i].ds_len, 413 eop, 414 desc); 415 if (eop) 416 break; 417 i++; 418 sfxge_next_stmp(txq, &stmp); 419 } 420 txq->n_pend_desc = n_dma_seg + vlan_tagged; 421 } 422 423 /* 424 * If the mapping required more than one descriptor 425 * then we need to associate the DMA map with the last 426 * descriptor, not the first. 427 */ 428 if (used_map != &stmp->map) { 429 map = stmp->map; 430 stmp->map = *used_map; 431 *used_map = map; 432 } 433 434 stmp->u.mbuf = mbuf; 435 stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF; 436 437 /* Post the fragment list. */ 438 sfxge_tx_qlist_post(txq); 439 440 return (0); 441 442 reject_mapped: 443 bus_dmamap_unload(txq->packet_dma_tag, *used_map); 444 reject: 445 /* Drop the packet on the floor. */ 446 m_freem(mbuf); 447 ++txq->drops; 448 449 return (rc); 450 } 451 452 /* 453 * Drain the deferred packet list into the transmit queue. 454 */ 455 static void 456 sfxge_tx_qdpl_drain(struct sfxge_txq *txq) 457 { 458 struct sfxge_softc *sc; 459 struct sfxge_tx_dpl *stdp; 460 struct mbuf *mbuf, *next; 461 unsigned int count; 462 unsigned int non_tcp_count; 463 unsigned int pushed; 464 int rc; 465 466 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 467 468 sc = txq->sc; 469 stdp = &txq->dpl; 470 pushed = txq->added; 471 472 if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) { 473 prefetch_read_many(sc->enp); 474 prefetch_read_many(txq->common); 475 } 476 477 mbuf = stdp->std_get; 478 count = stdp->std_get_count; 479 non_tcp_count = stdp->std_get_non_tcp_count; 480 481 if (count > stdp->std_get_hiwat) 482 stdp->std_get_hiwat = count; 483 484 while (count != 0) { 485 KASSERT(mbuf != NULL, ("mbuf == NULL")); 486 487 next = mbuf->m_nextpkt; 488 mbuf->m_nextpkt = NULL; 489 490 ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */ 491 492 if (next != NULL) 493 prefetch_read_many(next); 494 495 rc = sfxge_tx_queue_mbuf(txq, mbuf); 496 --count; 497 non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf); 498 mbuf = next; 499 if (rc != 0) 500 continue; 501 502 if (txq->blocked) 503 break; 504 505 /* Push the fragments to the hardware in batches. */ 506 if (txq->added - pushed >= SFXGE_TX_BATCH) { 507 efx_tx_qpush(txq->common, txq->added, pushed); 508 pushed = txq->added; 509 } 510 } 511 512 if (count == 0) { 513 KASSERT(mbuf == NULL, ("mbuf != NULL")); 514 KASSERT(non_tcp_count == 0, 515 ("inconsistent TCP/non-TCP detection")); 516 stdp->std_get = NULL; 517 stdp->std_get_count = 0; 518 stdp->std_get_non_tcp_count = 0; 519 stdp->std_getp = &stdp->std_get; 520 } else { 521 stdp->std_get = mbuf; 522 stdp->std_get_count = count; 523 stdp->std_get_non_tcp_count = non_tcp_count; 524 } 525 526 if (txq->added != pushed) 527 efx_tx_qpush(txq->common, txq->added, pushed); 528 529 KASSERT(txq->blocked || stdp->std_get_count == 0, 530 ("queue unblocked but count is non-zero")); 531 } 532 533 #define SFXGE_TX_QDPL_PENDING(_txq) ((_txq)->dpl.std_put != 0) 534 535 /* 536 * Service the deferred packet list. 537 * 538 * NOTE: drops the txq mutex! 539 */ 540 static void 541 sfxge_tx_qdpl_service(struct sfxge_txq *txq) 542 { 543 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 544 545 do { 546 if (SFXGE_TX_QDPL_PENDING(txq)) 547 sfxge_tx_qdpl_swizzle(txq); 548 549 if (!txq->blocked) 550 sfxge_tx_qdpl_drain(txq); 551 552 SFXGE_TXQ_UNLOCK(txq); 553 } while (SFXGE_TX_QDPL_PENDING(txq) && 554 SFXGE_TXQ_TRYLOCK(txq)); 555 } 556 557 /* 558 * Put a packet on the deferred packet get-list. 559 */ 560 static int 561 sfxge_tx_qdpl_put_locked(struct sfxge_txq *txq, struct mbuf *mbuf) 562 { 563 struct sfxge_tx_dpl *stdp; 564 565 stdp = &txq->dpl; 566 567 KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); 568 569 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 570 571 if (stdp->std_get_count >= stdp->std_get_max) { 572 txq->get_overflow++; 573 return (ENOBUFS); 574 } 575 if (sfxge_is_mbuf_non_tcp(mbuf)) { 576 if (stdp->std_get_non_tcp_count >= 577 stdp->std_get_non_tcp_max) { 578 txq->get_non_tcp_overflow++; 579 return (ENOBUFS); 580 } 581 stdp->std_get_non_tcp_count++; 582 } 583 584 *(stdp->std_getp) = mbuf; 585 stdp->std_getp = &mbuf->m_nextpkt; 586 stdp->std_get_count++; 587 588 return (0); 589 } 590 591 /* 592 * Put a packet on the deferred packet put-list. 593 * 594 * We overload the csum_data field in the mbuf to keep track of this length 595 * because there is no cheap alternative to avoid races. 596 */ 597 static int 598 sfxge_tx_qdpl_put_unlocked(struct sfxge_txq *txq, struct mbuf *mbuf) 599 { 600 struct sfxge_tx_dpl *stdp; 601 volatile uintptr_t *putp; 602 uintptr_t old; 603 uintptr_t new; 604 unsigned old_len; 605 606 KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); 607 608 SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq); 609 610 stdp = &txq->dpl; 611 putp = &stdp->std_put; 612 new = (uintptr_t)mbuf; 613 614 do { 615 old = *putp; 616 if (old != 0) { 617 struct mbuf *mp = (struct mbuf *)old; 618 old_len = mp->m_pkthdr.csum_data; 619 } else 620 old_len = 0; 621 if (old_len >= stdp->std_put_max) { 622 atomic_add_long(&txq->put_overflow, 1); 623 return (ENOBUFS); 624 } 625 mbuf->m_pkthdr.csum_data = old_len + 1; 626 mbuf->m_nextpkt = (void *)old; 627 } while (atomic_cmpset_ptr(putp, old, new) == 0); 628 629 return (0); 630 } 631 632 /* 633 * Called from if_transmit - will try to grab the txq lock and enqueue to the 634 * put list if it succeeds, otherwise try to push onto the defer list if space. 635 */ 636 static int 637 sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m) 638 { 639 int rc; 640 641 if (!SFXGE_LINK_UP(txq->sc)) { 642 atomic_add_long(&txq->netdown_drops, 1); 643 return (ENETDOWN); 644 } 645 646 /* 647 * Try to grab the txq lock. If we are able to get the lock, 648 * the packet will be appended to the "get list" of the deferred 649 * packet list. Otherwise, it will be pushed on the "put list". 650 */ 651 if (SFXGE_TXQ_TRYLOCK(txq)) { 652 /* First swizzle put-list to get-list to keep order */ 653 sfxge_tx_qdpl_swizzle(txq); 654 655 rc = sfxge_tx_qdpl_put_locked(txq, m); 656 657 /* Try to service the list. */ 658 sfxge_tx_qdpl_service(txq); 659 /* Lock has been dropped. */ 660 } else { 661 rc = sfxge_tx_qdpl_put_unlocked(txq, m); 662 663 /* 664 * Try to grab the lock again. 665 * 666 * If we are able to get the lock, we need to process 667 * the deferred packet list. If we are not able to get 668 * the lock, another thread is processing the list. 669 */ 670 if ((rc == 0) && SFXGE_TXQ_TRYLOCK(txq)) { 671 sfxge_tx_qdpl_service(txq); 672 /* Lock has been dropped. */ 673 } 674 } 675 676 SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq); 677 678 return (rc); 679 } 680 681 static void 682 sfxge_tx_qdpl_flush(struct sfxge_txq *txq) 683 { 684 struct sfxge_tx_dpl *stdp = &txq->dpl; 685 struct mbuf *mbuf, *next; 686 687 SFXGE_TXQ_LOCK(txq); 688 689 sfxge_tx_qdpl_swizzle(txq); 690 for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) { 691 next = mbuf->m_nextpkt; 692 m_freem(mbuf); 693 } 694 stdp->std_get = NULL; 695 stdp->std_get_count = 0; 696 stdp->std_get_non_tcp_count = 0; 697 stdp->std_getp = &stdp->std_get; 698 699 SFXGE_TXQ_UNLOCK(txq); 700 } 701 702 void 703 sfxge_if_qflush(struct ifnet *ifp) 704 { 705 struct sfxge_softc *sc; 706 unsigned int i; 707 708 sc = ifp->if_softc; 709 710 for (i = 0; i < sc->txq_count; i++) 711 sfxge_tx_qdpl_flush(sc->txq[i]); 712 } 713 714 #if SFXGE_TX_PARSE_EARLY 715 716 /* There is little space for user data in mbuf pkthdr, so we 717 * use l*hlen fields which are not used by the driver otherwise 718 * to store header offsets. 719 * The fields are 8-bit, but it's ok, no header may be longer than 255 bytes. 720 */ 721 722 723 #define TSO_MBUF_PROTO(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[0]) 724 /* We abuse l5hlen here because PH_loc can hold only 64 bits of data */ 725 #define TSO_MBUF_FLAGS(_mbuf) ((_mbuf)->m_pkthdr.l5hlen) 726 #define TSO_MBUF_PACKETID(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1]) 727 #define TSO_MBUF_SEQNUM(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.thirtytwo[1]) 728 729 static void sfxge_parse_tx_packet(struct mbuf *mbuf) 730 { 731 struct ether_header *eh = mtod(mbuf, struct ether_header *); 732 const struct tcphdr *th; 733 struct tcphdr th_copy; 734 735 /* Find network protocol and header */ 736 TSO_MBUF_PROTO(mbuf) = eh->ether_type; 737 if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_VLAN)) { 738 struct ether_vlan_header *veh = 739 mtod(mbuf, struct ether_vlan_header *); 740 TSO_MBUF_PROTO(mbuf) = veh->evl_proto; 741 mbuf->m_pkthdr.l2hlen = sizeof(*veh); 742 } else { 743 mbuf->m_pkthdr.l2hlen = sizeof(*eh); 744 } 745 746 /* Find TCP header */ 747 if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IP)) { 748 const struct ip *iph = (const struct ip *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen); 749 750 KASSERT(iph->ip_p == IPPROTO_TCP, 751 ("TSO required on non-TCP packet")); 752 mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + 4 * iph->ip_hl; 753 TSO_MBUF_PACKETID(mbuf) = iph->ip_id; 754 } else { 755 KASSERT(TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IPV6), 756 ("TSO required on non-IP packet")); 757 KASSERT(((const struct ip6_hdr *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen))->ip6_nxt == 758 IPPROTO_TCP, 759 ("TSO required on non-TCP packet")); 760 mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + sizeof(struct ip6_hdr); 761 TSO_MBUF_PACKETID(mbuf) = 0; 762 } 763 764 KASSERT(mbuf->m_len >= mbuf->m_pkthdr.l3hlen, 765 ("network header is fragmented in mbuf")); 766 767 /* We need TCP header including flags (window is the next) */ 768 if (mbuf->m_len < mbuf->m_pkthdr.l3hlen + offsetof(struct tcphdr, th_win)) { 769 m_copydata(mbuf, mbuf->m_pkthdr.l3hlen, sizeof(th_copy), 770 (caddr_t)&th_copy); 771 th = &th_copy; 772 } else { 773 th = (const struct tcphdr *)mtodo(mbuf, mbuf->m_pkthdr.l3hlen); 774 } 775 776 mbuf->m_pkthdr.l4hlen = mbuf->m_pkthdr.l3hlen + 4 * th->th_off; 777 TSO_MBUF_SEQNUM(mbuf) = ntohl(th->th_seq); 778 779 /* These flags must not be duplicated */ 780 /* 781 * RST should not be duplicated as well, but FreeBSD kernel 782 * generates TSO packets with RST flag. So, do not assert 783 * its absence. 784 */ 785 KASSERT(!(th->th_flags & (TH_URG | TH_SYN)), 786 ("incompatible TCP flag 0x%x on TSO packet", 787 th->th_flags & (TH_URG | TH_SYN))); 788 TSO_MBUF_FLAGS(mbuf) = th->th_flags; 789 } 790 #endif 791 792 /* 793 * TX start -- called by the stack. 794 */ 795 int 796 sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m) 797 { 798 struct sfxge_softc *sc; 799 struct sfxge_txq *txq; 800 int rc; 801 802 sc = (struct sfxge_softc *)ifp->if_softc; 803 804 /* 805 * Transmit may be called when interface is up from the kernel 806 * point of view, but not yet up (in progress) from the driver 807 * point of view. I.e. link aggregation bring up. 808 * Transmit may be called when interface is up from the driver 809 * point of view, but already down from the kernel point of 810 * view. I.e. Rx when interface shutdown is in progress. 811 */ 812 KASSERT((ifp->if_flags & IFF_UP) || (sc->if_flags & IFF_UP), 813 ("interface not up")); 814 815 /* Pick the desired transmit queue. */ 816 if (m->m_pkthdr.csum_flags & 817 (CSUM_DELAY_DATA | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_TSO)) { 818 int index = 0; 819 820 /* check if flowid is set */ 821 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 822 uint32_t hash = m->m_pkthdr.flowid; 823 824 index = sc->rx_indir_table[hash % SFXGE_RX_SCALE_MAX]; 825 } 826 #if SFXGE_TX_PARSE_EARLY 827 if (m->m_pkthdr.csum_flags & CSUM_TSO) 828 sfxge_parse_tx_packet(m); 829 #endif 830 txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index]; 831 } else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) { 832 txq = sc->txq[SFXGE_TXQ_IP_CKSUM]; 833 } else { 834 txq = sc->txq[SFXGE_TXQ_NON_CKSUM]; 835 } 836 837 rc = sfxge_tx_packet_add(txq, m); 838 if (rc != 0) 839 m_freem(m); 840 841 return (rc); 842 } 843 844 /* 845 * Software "TSO". Not quite as good as doing it in hardware, but 846 * still faster than segmenting in the stack. 847 */ 848 849 struct sfxge_tso_state { 850 /* Output position */ 851 unsigned out_len; /* Remaining length in current segment */ 852 unsigned seqnum; /* Current sequence number */ 853 unsigned packet_space; /* Remaining space in current packet */ 854 unsigned segs_space; /* Remaining number of DMA segments 855 for the packet (FATSOv2 only) */ 856 857 /* Input position */ 858 uint64_t dma_addr; /* DMA address of current position */ 859 unsigned in_len; /* Remaining length in current mbuf */ 860 861 const struct mbuf *mbuf; /* Input mbuf (head of chain) */ 862 u_short protocol; /* Network protocol (after VLAN decap) */ 863 ssize_t nh_off; /* Offset of network header */ 864 ssize_t tcph_off; /* Offset of TCP header */ 865 unsigned header_len; /* Number of bytes of header */ 866 unsigned seg_size; /* TCP segment size */ 867 int fw_assisted; /* Use FW-assisted TSO */ 868 u_short packet_id; /* IPv4 packet ID from the original packet */ 869 uint8_t tcp_flags; /* TCP flags */ 870 efx_desc_t header_desc; /* Precomputed header descriptor for 871 * FW-assisted TSO */ 872 }; 873 874 #if !SFXGE_TX_PARSE_EARLY 875 static const struct ip *tso_iph(const struct sfxge_tso_state *tso) 876 { 877 KASSERT(tso->protocol == htons(ETHERTYPE_IP), 878 ("tso_iph() in non-IPv4 state")); 879 return (const struct ip *)(tso->mbuf->m_data + tso->nh_off); 880 } 881 882 static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso) 883 { 884 KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), 885 ("tso_ip6h() in non-IPv6 state")); 886 return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off); 887 } 888 889 static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso) 890 { 891 return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off); 892 } 893 #endif 894 895 896 /* Size of preallocated TSO header buffers. Larger blocks must be 897 * allocated from the heap. 898 */ 899 #define TSOH_STD_SIZE 128 900 901 /* At most half the descriptors in the queue at any time will refer to 902 * a TSO header buffer, since they must always be followed by a 903 * payload descriptor referring to an mbuf. 904 */ 905 #define TSOH_COUNT(_txq_entries) ((_txq_entries) / 2u) 906 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE) 907 #define TSOH_PAGE_COUNT(_txq_entries) \ 908 ((TSOH_COUNT(_txq_entries) + TSOH_PER_PAGE - 1) / TSOH_PER_PAGE) 909 910 static int tso_init(struct sfxge_txq *txq) 911 { 912 struct sfxge_softc *sc = txq->sc; 913 unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries); 914 int i, rc; 915 916 /* Allocate TSO header buffers */ 917 txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]), 918 M_SFXGE, M_WAITOK); 919 920 for (i = 0; i < tsoh_page_count; i++) { 921 rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]); 922 if (rc != 0) 923 goto fail; 924 } 925 926 return (0); 927 928 fail: 929 while (i-- > 0) 930 sfxge_dma_free(&txq->tsoh_buffer[i]); 931 free(txq->tsoh_buffer, M_SFXGE); 932 txq->tsoh_buffer = NULL; 933 return (rc); 934 } 935 936 static void tso_fini(struct sfxge_txq *txq) 937 { 938 int i; 939 940 if (txq->tsoh_buffer != NULL) { 941 for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++) 942 sfxge_dma_free(&txq->tsoh_buffer[i]); 943 free(txq->tsoh_buffer, M_SFXGE); 944 } 945 } 946 947 static void tso_start(struct sfxge_txq *txq, struct sfxge_tso_state *tso, 948 const bus_dma_segment_t *hdr_dma_seg, 949 struct mbuf *mbuf) 950 { 951 const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->sc->enp); 952 #if !SFXGE_TX_PARSE_EARLY 953 struct ether_header *eh = mtod(mbuf, struct ether_header *); 954 const struct tcphdr *th; 955 struct tcphdr th_copy; 956 #endif 957 958 tso->fw_assisted = txq->tso_fw_assisted; 959 tso->mbuf = mbuf; 960 961 /* Find network protocol and header */ 962 #if !SFXGE_TX_PARSE_EARLY 963 tso->protocol = eh->ether_type; 964 if (tso->protocol == htons(ETHERTYPE_VLAN)) { 965 struct ether_vlan_header *veh = 966 mtod(mbuf, struct ether_vlan_header *); 967 tso->protocol = veh->evl_proto; 968 tso->nh_off = sizeof(*veh); 969 } else { 970 tso->nh_off = sizeof(*eh); 971 } 972 #else 973 tso->protocol = TSO_MBUF_PROTO(mbuf); 974 tso->nh_off = mbuf->m_pkthdr.l2hlen; 975 tso->tcph_off = mbuf->m_pkthdr.l3hlen; 976 tso->packet_id = TSO_MBUF_PACKETID(mbuf); 977 #endif 978 979 #if !SFXGE_TX_PARSE_EARLY 980 /* Find TCP header */ 981 if (tso->protocol == htons(ETHERTYPE_IP)) { 982 KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP, 983 ("TSO required on non-TCP packet")); 984 tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl; 985 tso->packet_id = tso_iph(tso)->ip_id; 986 } else { 987 KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), 988 ("TSO required on non-IP packet")); 989 KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP, 990 ("TSO required on non-TCP packet")); 991 tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr); 992 tso->packet_id = 0; 993 } 994 #endif 995 996 997 if (tso->fw_assisted && 998 __predict_false(tso->tcph_off > 999 encp->enc_tx_tso_tcp_header_offset_limit)) { 1000 tso->fw_assisted = 0; 1001 } 1002 1003 1004 #if !SFXGE_TX_PARSE_EARLY 1005 KASSERT(mbuf->m_len >= tso->tcph_off, 1006 ("network header is fragmented in mbuf")); 1007 /* We need TCP header including flags (window is the next) */ 1008 if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) { 1009 m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy), 1010 (caddr_t)&th_copy); 1011 th = &th_copy; 1012 } else { 1013 th = tso_tcph(tso); 1014 } 1015 tso->header_len = tso->tcph_off + 4 * th->th_off; 1016 #else 1017 tso->header_len = mbuf->m_pkthdr.l4hlen; 1018 #endif 1019 tso->seg_size = mbuf->m_pkthdr.tso_segsz; 1020 1021 #if !SFXGE_TX_PARSE_EARLY 1022 tso->seqnum = ntohl(th->th_seq); 1023 1024 /* These flags must not be duplicated */ 1025 /* 1026 * RST should not be duplicated as well, but FreeBSD kernel 1027 * generates TSO packets with RST flag. So, do not assert 1028 * its absence. 1029 */ 1030 KASSERT(!(th->th_flags & (TH_URG | TH_SYN)), 1031 ("incompatible TCP flag 0x%x on TSO packet", 1032 th->th_flags & (TH_URG | TH_SYN))); 1033 tso->tcp_flags = th->th_flags; 1034 #else 1035 tso->seqnum = TSO_MBUF_SEQNUM(mbuf); 1036 tso->tcp_flags = TSO_MBUF_FLAGS(mbuf); 1037 #endif 1038 1039 tso->out_len = mbuf->m_pkthdr.len - tso->header_len; 1040 1041 if (tso->fw_assisted) { 1042 if (hdr_dma_seg->ds_len >= tso->header_len) 1043 efx_tx_qdesc_dma_create(txq->common, 1044 hdr_dma_seg->ds_addr, 1045 tso->header_len, 1046 B_FALSE, 1047 &tso->header_desc); 1048 else 1049 tso->fw_assisted = 0; 1050 } 1051 } 1052 1053 /* 1054 * tso_fill_packet_with_fragment - form descriptors for the current fragment 1055 * 1056 * Form descriptors for the current fragment, until we reach the end 1057 * of fragment or end-of-packet. Return 0 on success, 1 if not enough 1058 * space. 1059 */ 1060 static void tso_fill_packet_with_fragment(struct sfxge_txq *txq, 1061 struct sfxge_tso_state *tso) 1062 { 1063 efx_desc_t *desc; 1064 int n; 1065 uint64_t dma_addr = tso->dma_addr; 1066 boolean_t eop; 1067 1068 if (tso->in_len == 0 || tso->packet_space == 0) 1069 return; 1070 1071 KASSERT(tso->in_len > 0, ("TSO input length went negative")); 1072 KASSERT(tso->packet_space > 0, ("TSO packet space went negative")); 1073 1074 if (tso->fw_assisted & SFXGE_FATSOV2) { 1075 n = tso->in_len; 1076 tso->out_len -= n; 1077 tso->seqnum += n; 1078 tso->in_len = 0; 1079 if (n < tso->packet_space) { 1080 tso->packet_space -= n; 1081 tso->segs_space--; 1082 } else { 1083 tso->packet_space = tso->seg_size - 1084 (n - tso->packet_space) % tso->seg_size; 1085 tso->segs_space = 1086 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1 - 1087 (tso->packet_space != tso->seg_size); 1088 } 1089 } else { 1090 n = min(tso->in_len, tso->packet_space); 1091 tso->packet_space -= n; 1092 tso->out_len -= n; 1093 tso->dma_addr += n; 1094 tso->in_len -= n; 1095 } 1096 1097 /* 1098 * It is OK to use binary OR below to avoid extra branching 1099 * since all conditions may always be checked. 1100 */ 1101 eop = (tso->out_len == 0) | (tso->packet_space == 0) | 1102 (tso->segs_space == 0); 1103 1104 desc = &txq->pend_desc[txq->n_pend_desc++]; 1105 efx_tx_qdesc_dma_create(txq->common, dma_addr, n, eop, desc); 1106 } 1107 1108 /* Callback from bus_dmamap_load() for long TSO headers. */ 1109 static void tso_map_long_header(void *dma_addr_ret, 1110 bus_dma_segment_t *segs, int nseg, 1111 int error) 1112 { 1113 *(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) && 1114 __predict_true(nseg == 1)) ? 1115 segs->ds_addr : 0); 1116 } 1117 1118 /* 1119 * tso_start_new_packet - generate a new header and prepare for the new packet 1120 * 1121 * Generate a new header and prepare for the new packet. Return 0 on 1122 * success, or an error code if failed to alloc header. 1123 */ 1124 static int tso_start_new_packet(struct sfxge_txq *txq, 1125 struct sfxge_tso_state *tso, 1126 unsigned int *idp) 1127 { 1128 unsigned int id = *idp; 1129 struct tcphdr *tsoh_th; 1130 unsigned ip_length; 1131 caddr_t header; 1132 uint64_t dma_addr; 1133 bus_dmamap_t map; 1134 efx_desc_t *desc; 1135 int rc; 1136 1137 if (tso->fw_assisted) { 1138 if (tso->fw_assisted & SFXGE_FATSOV2) { 1139 /* Add 2 FATSOv2 option descriptors */ 1140 desc = &txq->pend_desc[txq->n_pend_desc]; 1141 efx_tx_qdesc_tso2_create(txq->common, 1142 tso->packet_id, 1143 tso->seqnum, 1144 tso->seg_size, 1145 desc, 1146 EFX_TX_FATSOV2_OPT_NDESCS); 1147 desc += EFX_TX_FATSOV2_OPT_NDESCS; 1148 txq->n_pend_desc += EFX_TX_FATSOV2_OPT_NDESCS; 1149 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1150 id = (id + EFX_TX_FATSOV2_OPT_NDESCS) & txq->ptr_mask; 1151 1152 tso->segs_space = 1153 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1; 1154 } else { 1155 uint8_t tcp_flags = tso->tcp_flags; 1156 1157 if (tso->out_len > tso->seg_size) 1158 tcp_flags &= ~(TH_FIN | TH_PUSH); 1159 1160 /* Add FATSOv1 option descriptor */ 1161 desc = &txq->pend_desc[txq->n_pend_desc++]; 1162 efx_tx_qdesc_tso_create(txq->common, 1163 tso->packet_id, 1164 tso->seqnum, 1165 tcp_flags, 1166 desc++); 1167 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1168 id = (id + 1) & txq->ptr_mask; 1169 1170 tso->seqnum += tso->seg_size; 1171 tso->segs_space = UINT_MAX; 1172 } 1173 1174 /* Header DMA descriptor */ 1175 *desc = tso->header_desc; 1176 txq->n_pend_desc++; 1177 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1178 id = (id + 1) & txq->ptr_mask; 1179 } else { 1180 /* Allocate a DMA-mapped header buffer. */ 1181 if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) { 1182 unsigned int page_index = (id / 2) / TSOH_PER_PAGE; 1183 unsigned int buf_index = (id / 2) % TSOH_PER_PAGE; 1184 1185 header = (txq->tsoh_buffer[page_index].esm_base + 1186 buf_index * TSOH_STD_SIZE); 1187 dma_addr = (txq->tsoh_buffer[page_index].esm_addr + 1188 buf_index * TSOH_STD_SIZE); 1189 map = txq->tsoh_buffer[page_index].esm_map; 1190 1191 KASSERT(txq->stmp[id].flags == 0, 1192 ("stmp flags are not 0")); 1193 } else { 1194 struct sfxge_tx_mapping *stmp = &txq->stmp[id]; 1195 1196 /* We cannot use bus_dmamem_alloc() as that may sleep */ 1197 header = malloc(tso->header_len, M_SFXGE, M_NOWAIT); 1198 if (__predict_false(!header)) 1199 return (ENOMEM); 1200 rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map, 1201 header, tso->header_len, 1202 tso_map_long_header, &dma_addr, 1203 BUS_DMA_NOWAIT); 1204 if (__predict_false(dma_addr == 0)) { 1205 if (rc == 0) { 1206 /* Succeeded but got >1 segment */ 1207 bus_dmamap_unload(txq->packet_dma_tag, 1208 stmp->map); 1209 rc = EINVAL; 1210 } 1211 free(header, M_SFXGE); 1212 return (rc); 1213 } 1214 map = stmp->map; 1215 1216 txq->tso_long_headers++; 1217 stmp->u.heap_buf = header; 1218 stmp->flags = TX_BUF_UNMAP; 1219 } 1220 1221 tsoh_th = (struct tcphdr *)(header + tso->tcph_off); 1222 1223 /* Copy and update the headers. */ 1224 m_copydata(tso->mbuf, 0, tso->header_len, header); 1225 1226 tsoh_th->th_seq = htonl(tso->seqnum); 1227 tso->seqnum += tso->seg_size; 1228 if (tso->out_len > tso->seg_size) { 1229 /* This packet will not finish the TSO burst. */ 1230 ip_length = tso->header_len - tso->nh_off + tso->seg_size; 1231 tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH); 1232 } else { 1233 /* This packet will be the last in the TSO burst. */ 1234 ip_length = tso->header_len - tso->nh_off + tso->out_len; 1235 } 1236 1237 if (tso->protocol == htons(ETHERTYPE_IP)) { 1238 struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off); 1239 tsoh_iph->ip_len = htons(ip_length); 1240 /* XXX We should increment ip_id, but FreeBSD doesn't 1241 * currently allocate extra IDs for multiple segments. 1242 */ 1243 } else { 1244 struct ip6_hdr *tsoh_iph = 1245 (struct ip6_hdr *)(header + tso->nh_off); 1246 tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph)); 1247 } 1248 1249 /* Make the header visible to the hardware. */ 1250 bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE); 1251 1252 /* Form a descriptor for this header. */ 1253 desc = &txq->pend_desc[txq->n_pend_desc++]; 1254 efx_tx_qdesc_dma_create(txq->common, 1255 dma_addr, 1256 tso->header_len, 1257 0, 1258 desc); 1259 id = (id + 1) & txq->ptr_mask; 1260 1261 tso->segs_space = UINT_MAX; 1262 } 1263 tso->packet_space = tso->seg_size; 1264 txq->tso_packets++; 1265 *idp = id; 1266 1267 return (0); 1268 } 1269 1270 static int 1271 sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, 1272 const bus_dma_segment_t *dma_seg, int n_dma_seg, 1273 int vlan_tagged) 1274 { 1275 struct sfxge_tso_state tso; 1276 unsigned int id; 1277 unsigned skipped = 0; 1278 1279 tso_start(txq, &tso, dma_seg, mbuf); 1280 1281 while (dma_seg->ds_len + skipped <= tso.header_len) { 1282 skipped += dma_seg->ds_len; 1283 --n_dma_seg; 1284 KASSERT(n_dma_seg, ("no payload found in TSO packet")); 1285 ++dma_seg; 1286 } 1287 tso.in_len = dma_seg->ds_len - (tso.header_len - skipped); 1288 tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped); 1289 1290 id = (txq->added + vlan_tagged) & txq->ptr_mask; 1291 if (__predict_false(tso_start_new_packet(txq, &tso, &id))) 1292 return (-1); 1293 1294 while (1) { 1295 tso_fill_packet_with_fragment(txq, &tso); 1296 /* Exactly one DMA descriptor is added */ 1297 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1298 id = (id + 1) & txq->ptr_mask; 1299 1300 /* Move onto the next fragment? */ 1301 if (tso.in_len == 0) { 1302 --n_dma_seg; 1303 if (n_dma_seg == 0) 1304 break; 1305 ++dma_seg; 1306 tso.in_len = dma_seg->ds_len; 1307 tso.dma_addr = dma_seg->ds_addr; 1308 } 1309 1310 /* End of packet? */ 1311 if ((tso.packet_space == 0) | (tso.segs_space == 0)) { 1312 unsigned int n_fatso_opt_desc = 1313 (tso.fw_assisted & SFXGE_FATSOV2) ? 1314 EFX_TX_FATSOV2_OPT_NDESCS : 1315 (tso.fw_assisted & SFXGE_FATSOV1) ? 1 : 0; 1316 1317 /* If the queue is now full due to tiny MSS, 1318 * or we can't create another header, discard 1319 * the remainder of the input mbuf but do not 1320 * roll back the work we have done. 1321 */ 1322 if (txq->n_pend_desc + n_fatso_opt_desc + 1323 1 /* header */ + n_dma_seg > txq->max_pkt_desc) { 1324 txq->tso_pdrop_too_many++; 1325 break; 1326 } 1327 if (__predict_false(tso_start_new_packet(txq, &tso, 1328 &id))) { 1329 txq->tso_pdrop_no_rsrc++; 1330 break; 1331 } 1332 } 1333 } 1334 1335 txq->tso_bursts++; 1336 return (id); 1337 } 1338 1339 static void 1340 sfxge_tx_qunblock(struct sfxge_txq *txq) 1341 { 1342 struct sfxge_softc *sc; 1343 struct sfxge_evq *evq; 1344 1345 sc = txq->sc; 1346 evq = sc->evq[txq->evq_index]; 1347 1348 SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); 1349 1350 if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) 1351 return; 1352 1353 SFXGE_TXQ_LOCK(txq); 1354 1355 if (txq->blocked) { 1356 unsigned int level; 1357 1358 level = txq->added - txq->completed; 1359 if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) { 1360 /* reaped must be in sync with blocked */ 1361 sfxge_tx_qreap(txq); 1362 txq->blocked = 0; 1363 } 1364 } 1365 1366 sfxge_tx_qdpl_service(txq); 1367 /* note: lock has been dropped */ 1368 } 1369 1370 void 1371 sfxge_tx_qflush_done(struct sfxge_txq *txq) 1372 { 1373 1374 txq->flush_state = SFXGE_FLUSH_DONE; 1375 } 1376 1377 static void 1378 sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index) 1379 { 1380 struct sfxge_txq *txq; 1381 struct sfxge_evq *evq; 1382 unsigned int count; 1383 1384 SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); 1385 1386 txq = sc->txq[index]; 1387 evq = sc->evq[txq->evq_index]; 1388 1389 SFXGE_EVQ_LOCK(evq); 1390 SFXGE_TXQ_LOCK(txq); 1391 1392 KASSERT(txq->init_state == SFXGE_TXQ_STARTED, 1393 ("txq->init_state != SFXGE_TXQ_STARTED")); 1394 1395 txq->init_state = SFXGE_TXQ_INITIALIZED; 1396 1397 if (txq->flush_state != SFXGE_FLUSH_DONE) { 1398 txq->flush_state = SFXGE_FLUSH_PENDING; 1399 1400 SFXGE_EVQ_UNLOCK(evq); 1401 SFXGE_TXQ_UNLOCK(txq); 1402 1403 /* Flush the transmit queue. */ 1404 if (efx_tx_qflush(txq->common) != 0) { 1405 log(LOG_ERR, "%s: Flushing Tx queue %u failed\n", 1406 device_get_nameunit(sc->dev), index); 1407 txq->flush_state = SFXGE_FLUSH_DONE; 1408 } else { 1409 count = 0; 1410 do { 1411 /* Spin for 100ms. */ 1412 DELAY(100000); 1413 if (txq->flush_state != SFXGE_FLUSH_PENDING) 1414 break; 1415 } while (++count < 20); 1416 } 1417 SFXGE_EVQ_LOCK(evq); 1418 SFXGE_TXQ_LOCK(txq); 1419 1420 KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED, 1421 ("txq->flush_state == SFXGE_FLUSH_FAILED")); 1422 1423 if (txq->flush_state != SFXGE_FLUSH_DONE) { 1424 /* Flush timeout */ 1425 log(LOG_ERR, "%s: Cannot flush Tx queue %u\n", 1426 device_get_nameunit(sc->dev), index); 1427 txq->flush_state = SFXGE_FLUSH_DONE; 1428 } 1429 } 1430 1431 txq->blocked = 0; 1432 txq->pending = txq->added; 1433 1434 sfxge_tx_qcomplete(txq, evq); 1435 KASSERT(txq->completed == txq->added, 1436 ("txq->completed != txq->added")); 1437 1438 sfxge_tx_qreap(txq); 1439 KASSERT(txq->reaped == txq->completed, 1440 ("txq->reaped != txq->completed")); 1441 1442 txq->added = 0; 1443 txq->pending = 0; 1444 txq->completed = 0; 1445 txq->reaped = 0; 1446 1447 /* Destroy the common code transmit queue. */ 1448 efx_tx_qdestroy(txq->common); 1449 txq->common = NULL; 1450 1451 efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, 1452 EFX_TXQ_NBUFS(sc->txq_entries)); 1453 1454 SFXGE_EVQ_UNLOCK(evq); 1455 SFXGE_TXQ_UNLOCK(txq); 1456 } 1457 1458 /* 1459 * Estimate maximum number of Tx descriptors required for TSO packet. 1460 * With minimum MSS and maximum mbuf length we might need more (even 1461 * than a ring-ful of descriptors), but this should not happen in 1462 * practice except due to deliberate attack. In that case we will 1463 * truncate the output at a packet boundary. 1464 */ 1465 static unsigned int 1466 sfxge_tx_max_pkt_desc(const struct sfxge_softc *sc, enum sfxge_txq_type type, 1467 unsigned int tso_fw_assisted) 1468 { 1469 /* One descriptor for every input fragment */ 1470 unsigned int max_descs = SFXGE_TX_MAPPING_MAX_SEG; 1471 unsigned int sw_tso_max_descs; 1472 unsigned int fa_tso_v1_max_descs = 0; 1473 unsigned int fa_tso_v2_max_descs = 0; 1474 1475 /* VLAN tagging Tx option descriptor may be required */ 1476 if (efx_nic_cfg_get(sc->enp)->enc_hw_tx_insert_vlan_enabled) 1477 max_descs++; 1478 1479 if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) { 1480 /* 1481 * Plus header and payload descriptor for each output segment. 1482 * Minus one since header fragment is already counted. 1483 * Even if FATSO is used, we should be ready to fallback 1484 * to do it in the driver. 1485 */ 1486 sw_tso_max_descs = SFXGE_TSO_MAX_SEGS * 2 - 1; 1487 1488 /* FW assisted TSOv1 requires one more descriptor per segment 1489 * in comparison to SW TSO */ 1490 if (tso_fw_assisted & SFXGE_FATSOV1) 1491 fa_tso_v1_max_descs = 1492 sw_tso_max_descs + SFXGE_TSO_MAX_SEGS; 1493 1494 /* FW assisted TSOv2 requires 3 (2 FATSO plus header) extra 1495 * descriptors per superframe limited by number of DMA fetches 1496 * per packet. The first packet header is already counted. 1497 */ 1498 if (tso_fw_assisted & SFXGE_FATSOV2) { 1499 fa_tso_v2_max_descs = 1500 howmany(SFXGE_TX_MAPPING_MAX_SEG, 1501 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1) * 1502 (EFX_TX_FATSOV2_OPT_NDESCS + 1) - 1; 1503 } 1504 1505 max_descs += MAX(sw_tso_max_descs, 1506 MAX(fa_tso_v1_max_descs, fa_tso_v2_max_descs)); 1507 } 1508 1509 return (max_descs); 1510 } 1511 1512 static int 1513 sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index) 1514 { 1515 struct sfxge_txq *txq; 1516 efsys_mem_t *esmp; 1517 uint16_t flags; 1518 unsigned int tso_fw_assisted; 1519 struct sfxge_evq *evq; 1520 unsigned int desc_index; 1521 int rc; 1522 1523 SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); 1524 1525 txq = sc->txq[index]; 1526 esmp = &txq->mem; 1527 evq = sc->evq[txq->evq_index]; 1528 1529 KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, 1530 ("txq->init_state != SFXGE_TXQ_INITIALIZED")); 1531 KASSERT(evq->init_state == SFXGE_EVQ_STARTED, 1532 ("evq->init_state != SFXGE_EVQ_STARTED")); 1533 1534 /* Program the buffer table. */ 1535 if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp, 1536 EFX_TXQ_NBUFS(sc->txq_entries))) != 0) 1537 return (rc); 1538 1539 /* Determine the kind of queue we are creating. */ 1540 tso_fw_assisted = 0; 1541 switch (txq->type) { 1542 case SFXGE_TXQ_NON_CKSUM: 1543 flags = 0; 1544 break; 1545 case SFXGE_TXQ_IP_CKSUM: 1546 flags = EFX_TXQ_CKSUM_IPV4; 1547 break; 1548 case SFXGE_TXQ_IP_TCP_UDP_CKSUM: 1549 flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP; 1550 tso_fw_assisted = sc->tso_fw_assisted; 1551 if (tso_fw_assisted & SFXGE_FATSOV2) 1552 flags |= EFX_TXQ_FATSOV2; 1553 break; 1554 default: 1555 KASSERT(0, ("Impossible TX queue")); 1556 flags = 0; 1557 break; 1558 } 1559 1560 /* Create the common code transmit queue. */ 1561 if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp, 1562 sc->txq_entries, txq->buf_base_id, flags, evq->common, 1563 &txq->common, &desc_index)) != 0) { 1564 /* Retry if no FATSOv2 resources, otherwise fail */ 1565 if ((rc != ENOSPC) || (~flags & EFX_TXQ_FATSOV2)) 1566 goto fail; 1567 1568 /* Looks like all FATSOv2 contexts are used */ 1569 flags &= ~EFX_TXQ_FATSOV2; 1570 tso_fw_assisted &= ~SFXGE_FATSOV2; 1571 if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp, 1572 sc->txq_entries, txq->buf_base_id, flags, evq->common, 1573 &txq->common, &desc_index)) != 0) 1574 goto fail; 1575 } 1576 1577 /* Initialise queue descriptor indexes */ 1578 txq->added = txq->pending = txq->completed = txq->reaped = desc_index; 1579 1580 SFXGE_TXQ_LOCK(txq); 1581 1582 /* Enable the transmit queue. */ 1583 efx_tx_qenable(txq->common); 1584 1585 txq->init_state = SFXGE_TXQ_STARTED; 1586 txq->flush_state = SFXGE_FLUSH_REQUIRED; 1587 txq->tso_fw_assisted = tso_fw_assisted; 1588 1589 txq->max_pkt_desc = sfxge_tx_max_pkt_desc(sc, txq->type, 1590 tso_fw_assisted); 1591 1592 SFXGE_TXQ_UNLOCK(txq); 1593 1594 return (0); 1595 1596 fail: 1597 efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, 1598 EFX_TXQ_NBUFS(sc->txq_entries)); 1599 return (rc); 1600 } 1601 1602 void 1603 sfxge_tx_stop(struct sfxge_softc *sc) 1604 { 1605 int index; 1606 1607 index = sc->txq_count; 1608 while (--index >= 0) 1609 sfxge_tx_qstop(sc, index); 1610 1611 /* Tear down the transmit module */ 1612 efx_tx_fini(sc->enp); 1613 } 1614 1615 int 1616 sfxge_tx_start(struct sfxge_softc *sc) 1617 { 1618 int index; 1619 int rc; 1620 1621 /* Initialize the common code transmit module. */ 1622 if ((rc = efx_tx_init(sc->enp)) != 0) 1623 return (rc); 1624 1625 for (index = 0; index < sc->txq_count; index++) { 1626 if ((rc = sfxge_tx_qstart(sc, index)) != 0) 1627 goto fail; 1628 } 1629 1630 return (0); 1631 1632 fail: 1633 while (--index >= 0) 1634 sfxge_tx_qstop(sc, index); 1635 1636 efx_tx_fini(sc->enp); 1637 1638 return (rc); 1639 } 1640 1641 static int 1642 sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node) 1643 { 1644 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev); 1645 struct sysctl_oid *stat_node; 1646 unsigned int id; 1647 1648 stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO, 1649 "stats", CTLFLAG_RD, NULL, 1650 "Tx queue statistics"); 1651 if (stat_node == NULL) 1652 return (ENOMEM); 1653 1654 for (id = 0; id < nitems(sfxge_tx_stats); id++) { 1655 SYSCTL_ADD_ULONG( 1656 ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO, 1657 sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS, 1658 (unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset), 1659 ""); 1660 } 1661 1662 return (0); 1663 } 1664 1665 /** 1666 * Destroy a transmit queue. 1667 */ 1668 static void 1669 sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index) 1670 { 1671 struct sfxge_txq *txq; 1672 unsigned int nmaps; 1673 1674 txq = sc->txq[index]; 1675 1676 KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, 1677 ("txq->init_state != SFXGE_TXQ_INITIALIZED")); 1678 1679 if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) 1680 tso_fini(txq); 1681 1682 /* Free the context arrays. */ 1683 free(txq->pend_desc, M_SFXGE); 1684 nmaps = sc->txq_entries; 1685 while (nmaps-- != 0) 1686 bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); 1687 free(txq->stmp, M_SFXGE); 1688 1689 /* Release DMA memory mapping. */ 1690 sfxge_dma_free(&txq->mem); 1691 1692 sc->txq[index] = NULL; 1693 1694 SFXGE_TXQ_LOCK_DESTROY(txq); 1695 1696 free(txq, M_SFXGE); 1697 } 1698 1699 static int 1700 sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index, 1701 enum sfxge_txq_type type, unsigned int evq_index) 1702 { 1703 char name[16]; 1704 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); 1705 struct sysctl_oid *txq_node; 1706 struct sfxge_txq *txq; 1707 struct sfxge_evq *evq; 1708 struct sfxge_tx_dpl *stdp; 1709 struct sysctl_oid *dpl_node; 1710 efsys_mem_t *esmp; 1711 unsigned int nmaps; 1712 int rc; 1713 1714 txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK); 1715 txq->sc = sc; 1716 txq->entries = sc->txq_entries; 1717 txq->ptr_mask = txq->entries - 1; 1718 1719 sc->txq[txq_index] = txq; 1720 esmp = &txq->mem; 1721 1722 evq = sc->evq[evq_index]; 1723 1724 /* Allocate and zero DMA space for the descriptor ring. */ 1725 if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0) 1726 return (rc); 1727 1728 /* Allocate buffer table entries. */ 1729 sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries), 1730 &txq->buf_base_id); 1731 1732 /* Create a DMA tag for packet mappings. */ 1733 if (bus_dma_tag_create(sc->parent_dma_tag, 1, 0x1000, 1734 MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL, 1735 NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 0x1000, 0, NULL, NULL, 1736 &txq->packet_dma_tag) != 0) { 1737 device_printf(sc->dev, "Couldn't allocate txq DMA tag\n"); 1738 rc = ENOMEM; 1739 goto fail; 1740 } 1741 1742 /* Allocate pending descriptor array for batching writes. */ 1743 txq->pend_desc = malloc(sizeof(efx_desc_t) * sc->txq_entries, 1744 M_SFXGE, M_ZERO | M_WAITOK); 1745 1746 /* Allocate and initialise mbuf DMA mapping array. */ 1747 txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries, 1748 M_SFXGE, M_ZERO | M_WAITOK); 1749 for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) { 1750 rc = bus_dmamap_create(txq->packet_dma_tag, 0, 1751 &txq->stmp[nmaps].map); 1752 if (rc != 0) 1753 goto fail2; 1754 } 1755 1756 snprintf(name, sizeof(name), "%u", txq_index); 1757 txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node), 1758 OID_AUTO, name, CTLFLAG_RD, NULL, ""); 1759 if (txq_node == NULL) { 1760 rc = ENOMEM; 1761 goto fail_txq_node; 1762 } 1763 1764 if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM && 1765 (rc = tso_init(txq)) != 0) 1766 goto fail3; 1767 1768 if (sfxge_tx_dpl_get_max <= 0) { 1769 log(LOG_ERR, "%s=%d must be greater than 0", 1770 SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max); 1771 rc = EINVAL; 1772 goto fail_tx_dpl_get_max; 1773 } 1774 if (sfxge_tx_dpl_get_non_tcp_max <= 0) { 1775 log(LOG_ERR, "%s=%d must be greater than 0", 1776 SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, 1777 sfxge_tx_dpl_get_non_tcp_max); 1778 rc = EINVAL; 1779 goto fail_tx_dpl_get_max; 1780 } 1781 if (sfxge_tx_dpl_put_max < 0) { 1782 log(LOG_ERR, "%s=%d must be greater or equal to 0", 1783 SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max); 1784 rc = EINVAL; 1785 goto fail_tx_dpl_put_max; 1786 } 1787 1788 /* Initialize the deferred packet list. */ 1789 stdp = &txq->dpl; 1790 stdp->std_put_max = sfxge_tx_dpl_put_max; 1791 stdp->std_get_max = sfxge_tx_dpl_get_max; 1792 stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max; 1793 stdp->std_getp = &stdp->std_get; 1794 1795 SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index); 1796 1797 dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO, 1798 "dpl", CTLFLAG_RD, NULL, 1799 "Deferred packet list statistics"); 1800 if (dpl_node == NULL) { 1801 rc = ENOMEM; 1802 goto fail_dpl_node; 1803 } 1804 1805 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1806 "get_count", CTLFLAG_RD | CTLFLAG_STATS, 1807 &stdp->std_get_count, 0, ""); 1808 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1809 "get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS, 1810 &stdp->std_get_non_tcp_count, 0, ""); 1811 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1812 "get_hiwat", CTLFLAG_RD | CTLFLAG_STATS, 1813 &stdp->std_get_hiwat, 0, ""); 1814 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1815 "put_hiwat", CTLFLAG_RD | CTLFLAG_STATS, 1816 &stdp->std_put_hiwat, 0, ""); 1817 1818 rc = sfxge_txq_stat_init(txq, txq_node); 1819 if (rc != 0) 1820 goto fail_txq_stat_init; 1821 1822 txq->type = type; 1823 txq->evq_index = evq_index; 1824 txq->txq_index = txq_index; 1825 txq->init_state = SFXGE_TXQ_INITIALIZED; 1826 txq->hw_vlan_tci = 0; 1827 1828 return (0); 1829 1830 fail_txq_stat_init: 1831 fail_dpl_node: 1832 fail_tx_dpl_put_max: 1833 fail_tx_dpl_get_max: 1834 fail3: 1835 fail_txq_node: 1836 free(txq->pend_desc, M_SFXGE); 1837 fail2: 1838 while (nmaps-- != 0) 1839 bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); 1840 free(txq->stmp, M_SFXGE); 1841 bus_dma_tag_destroy(txq->packet_dma_tag); 1842 1843 fail: 1844 sfxge_dma_free(esmp); 1845 1846 return (rc); 1847 } 1848 1849 static int 1850 sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS) 1851 { 1852 struct sfxge_softc *sc = arg1; 1853 unsigned int id = arg2; 1854 unsigned long sum; 1855 unsigned int index; 1856 1857 /* Sum across all TX queues */ 1858 sum = 0; 1859 for (index = 0; index < sc->txq_count; index++) 1860 sum += *(unsigned long *)((caddr_t)sc->txq[index] + 1861 sfxge_tx_stats[id].offset); 1862 1863 return (SYSCTL_OUT(req, &sum, sizeof(sum))); 1864 } 1865 1866 static void 1867 sfxge_tx_stat_init(struct sfxge_softc *sc) 1868 { 1869 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); 1870 struct sysctl_oid_list *stat_list; 1871 unsigned int id; 1872 1873 stat_list = SYSCTL_CHILDREN(sc->stats_node); 1874 1875 for (id = 0; id < nitems(sfxge_tx_stats); id++) { 1876 SYSCTL_ADD_PROC( 1877 ctx, stat_list, 1878 OID_AUTO, sfxge_tx_stats[id].name, 1879 CTLTYPE_ULONG|CTLFLAG_RD, 1880 sc, id, sfxge_tx_stat_handler, "LU", 1881 ""); 1882 } 1883 } 1884 1885 uint64_t 1886 sfxge_tx_get_drops(struct sfxge_softc *sc) 1887 { 1888 unsigned int index; 1889 uint64_t drops = 0; 1890 struct sfxge_txq *txq; 1891 1892 /* Sum across all TX queues */ 1893 for (index = 0; index < sc->txq_count; index++) { 1894 txq = sc->txq[index]; 1895 /* 1896 * In theory, txq->put_overflow and txq->netdown_drops 1897 * should use atomic operation and other should be 1898 * obtained under txq lock, but it is just statistics. 1899 */ 1900 drops += txq->drops + txq->get_overflow + 1901 txq->get_non_tcp_overflow + 1902 txq->put_overflow + txq->netdown_drops + 1903 txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc; 1904 } 1905 return (drops); 1906 } 1907 1908 void 1909 sfxge_tx_fini(struct sfxge_softc *sc) 1910 { 1911 int index; 1912 1913 index = sc->txq_count; 1914 while (--index >= 0) 1915 sfxge_tx_qfini(sc, index); 1916 1917 sc->txq_count = 0; 1918 } 1919 1920 1921 int 1922 sfxge_tx_init(struct sfxge_softc *sc) 1923 { 1924 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp); 1925 struct sfxge_intr *intr; 1926 int index; 1927 int rc; 1928 1929 intr = &sc->intr; 1930 1931 KASSERT(intr->state == SFXGE_INTR_INITIALIZED, 1932 ("intr->state != SFXGE_INTR_INITIALIZED")); 1933 1934 sc->txq_count = SFXGE_TXQ_NTYPES - 1 + sc->intr.n_alloc; 1935 1936 sc->tso_fw_assisted = sfxge_tso_fw_assisted; 1937 if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO) || 1938 (!encp->enc_fw_assisted_tso_enabled)) 1939 sc->tso_fw_assisted &= ~SFXGE_FATSOV1; 1940 if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO_V2) || 1941 (!encp->enc_fw_assisted_tso_v2_enabled)) 1942 sc->tso_fw_assisted &= ~SFXGE_FATSOV2; 1943 1944 sc->txqs_node = SYSCTL_ADD_NODE( 1945 device_get_sysctl_ctx(sc->dev), 1946 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), 1947 OID_AUTO, "txq", CTLFLAG_RD, NULL, "Tx queues"); 1948 if (sc->txqs_node == NULL) { 1949 rc = ENOMEM; 1950 goto fail_txq_node; 1951 } 1952 1953 /* Initialize the transmit queues */ 1954 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM, 1955 SFXGE_TXQ_NON_CKSUM, 0)) != 0) 1956 goto fail; 1957 1958 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM, 1959 SFXGE_TXQ_IP_CKSUM, 0)) != 0) 1960 goto fail2; 1961 1962 for (index = 0; 1963 index < sc->txq_count - SFXGE_TXQ_NTYPES + 1; 1964 index++) { 1965 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NTYPES - 1 + index, 1966 SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0) 1967 goto fail3; 1968 } 1969 1970 sfxge_tx_stat_init(sc); 1971 1972 return (0); 1973 1974 fail3: 1975 while (--index >= 0) 1976 sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index); 1977 1978 sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM); 1979 1980 fail2: 1981 sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM); 1982 1983 fail: 1984 fail_txq_node: 1985 sc->txq_count = 0; 1986 return (rc); 1987 } 1988