xref: /freebsd/sys/dev/sfxge/sfxge_tx.c (revision 26a222dc0c048fc071b548eadad7b80405a1b126)
1 /*-
2  * Copyright (c) 2010-2011 Solarflare Communications, Inc.
3  * All rights reserved.
4  *
5  * This software was developed in part by Philip Paeps under contract for
6  * Solarflare Communications, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Theory of operation:
31  *
32  * Tx queues allocation and mapping
33  *
34  * One Tx queue with enabled checksum offload is allocated per Rx channel
35  * (event queue).  Also 2 Tx queues (one without checksum offload and one
36  * with IP checksum offload only) are allocated and bound to event queue 0.
37  * sfxge_txq_type is used as Tx queue label.
38  *
39  * So, event queue plus label mapping to Tx queue index is:
40  *	if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES)
41  *	else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1
42  * See sfxge_get_txq_by_label() sfxge_ev.c
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/types.h>
49 #include <sys/mbuf.h>
50 #include <sys/smp.h>
51 #include <sys/socket.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet/tcp.h>
64 
65 #include "common/efx.h"
66 
67 #include "sfxge.h"
68 #include "sfxge_tx.h"
69 
70 /*
71  * Estimate maximum number of Tx descriptors required for TSO packet.
72  * With minimum MSS and maximum mbuf length we might need more (even
73  * than a ring-ful of descriptors), but this should not happen in
74  * practice except due to deliberate attack.  In that case we will
75  * truncate the output at a packet boundary.
76  */
77 #define	SFXGE_TSO_MAX_DESC						\
78 	(SFXGE_TSO_MAX_SEGS * 2 + SFXGE_TX_MAPPING_MAX_SEG - 1)
79 
80 /*
81  * Set the block level to ensure there is space to generate a
82  * large number of descriptors for TSO.
83  */
84 #define	SFXGE_TXQ_BLOCK_LEVEL(_entries)					\
85 	(EFX_TXQ_LIMIT(_entries) - SFXGE_TSO_MAX_DESC)
86 
87 #ifdef SFXGE_HAVE_MQ
88 
89 #define	SFXGE_PARAM_TX_DPL_GET_MAX	SFXGE_PARAM(tx_dpl_get_max)
90 static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT;
91 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max);
92 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN,
93 	   &sfxge_tx_dpl_get_max, 0,
94 	   "Maximum number of any packets in deferred packet get-list");
95 
96 #define	SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \
97 	SFXGE_PARAM(tx_dpl_get_non_tcp_max)
98 static int sfxge_tx_dpl_get_non_tcp_max =
99 	SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT;
100 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max);
101 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN,
102 	   &sfxge_tx_dpl_get_non_tcp_max, 0,
103 	   "Maximum number of non-TCP packets in deferred packet get-list");
104 
105 #define	SFXGE_PARAM_TX_DPL_PUT_MAX	SFXGE_PARAM(tx_dpl_put_max)
106 static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT;
107 TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max);
108 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN,
109 	   &sfxge_tx_dpl_put_max, 0,
110 	   "Maximum number of any packets in deferred packet put-list");
111 
112 #endif
113 
114 
115 /* Forward declarations. */
116 static void sfxge_tx_qdpl_service(struct sfxge_txq *txq);
117 static void sfxge_tx_qlist_post(struct sfxge_txq *txq);
118 static void sfxge_tx_qunblock(struct sfxge_txq *txq);
119 static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
120 			      const bus_dma_segment_t *dma_seg, int n_dma_seg);
121 
122 void
123 sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq)
124 {
125 	unsigned int completed;
126 
127 	SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
128 
129 	completed = txq->completed;
130 	while (completed != txq->pending) {
131 		struct sfxge_tx_mapping *stmp;
132 		unsigned int id;
133 
134 		id = completed++ & txq->ptr_mask;
135 
136 		stmp = &txq->stmp[id];
137 		if (stmp->flags & TX_BUF_UNMAP) {
138 			bus_dmamap_unload(txq->packet_dma_tag, stmp->map);
139 			if (stmp->flags & TX_BUF_MBUF) {
140 				struct mbuf *m = stmp->u.mbuf;
141 				do
142 					m = m_free(m);
143 				while (m != NULL);
144 			} else {
145 				free(stmp->u.heap_buf, M_SFXGE);
146 			}
147 			stmp->flags = 0;
148 		}
149 	}
150 	txq->completed = completed;
151 
152 	/* Check whether we need to unblock the queue. */
153 	mb();
154 	if (txq->blocked) {
155 		unsigned int level;
156 
157 		level = txq->added - txq->completed;
158 		if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries))
159 			sfxge_tx_qunblock(txq);
160 	}
161 }
162 
163 #ifdef SFXGE_HAVE_MQ
164 
165 static unsigned int
166 sfxge_is_mbuf_non_tcp(struct mbuf *mbuf)
167 {
168 	/* Absense of TCP checksum flags does not mean that it is non-TCP
169 	 * but it should be true if user wants to achieve high throughput.
170 	 */
171 	return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)));
172 }
173 
174 /*
175  * Reorder the put list and append it to the get list.
176  */
177 static void
178 sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq)
179 {
180 	struct sfxge_tx_dpl *stdp;
181 	struct mbuf *mbuf, *get_next, **get_tailp;
182 	volatile uintptr_t *putp;
183 	uintptr_t put;
184 	unsigned int count;
185 	unsigned int non_tcp_count;
186 
187 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
188 
189 	stdp = &txq->dpl;
190 
191 	/* Acquire the put list. */
192 	putp = &stdp->std_put;
193 	put = atomic_readandclear_ptr(putp);
194 	mbuf = (void *)put;
195 
196 	if (mbuf == NULL)
197 		return;
198 
199 	/* Reverse the put list. */
200 	get_tailp = &mbuf->m_nextpkt;
201 	get_next = NULL;
202 
203 	count = 0;
204 	non_tcp_count = 0;
205 	do {
206 		struct mbuf *put_next;
207 
208 		non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf);
209 		put_next = mbuf->m_nextpkt;
210 		mbuf->m_nextpkt = get_next;
211 		get_next = mbuf;
212 		mbuf = put_next;
213 
214 		count++;
215 	} while (mbuf != NULL);
216 
217 	if (count > stdp->std_put_hiwat)
218 		stdp->std_put_hiwat = count;
219 
220 	/* Append the reversed put list to the get list. */
221 	KASSERT(*get_tailp == NULL, ("*get_tailp != NULL"));
222 	*stdp->std_getp = get_next;
223 	stdp->std_getp = get_tailp;
224 	stdp->std_get_count += count;
225 	stdp->std_get_non_tcp_count += non_tcp_count;
226 }
227 
228 #endif /* SFXGE_HAVE_MQ */
229 
230 static void
231 sfxge_tx_qreap(struct sfxge_txq *txq)
232 {
233 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
234 
235 	txq->reaped = txq->completed;
236 }
237 
238 static void
239 sfxge_tx_qlist_post(struct sfxge_txq *txq)
240 {
241 	unsigned int old_added;
242 	unsigned int level;
243 	int rc;
244 
245 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
246 
247 	KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0"));
248 	KASSERT(txq->n_pend_desc <= SFXGE_TSO_MAX_DESC,
249 		("txq->n_pend_desc too large"));
250 	KASSERT(!txq->blocked, ("txq->blocked"));
251 
252 	old_added = txq->added;
253 
254 	/* Post the fragment list. */
255 	rc = efx_tx_qpost(txq->common, txq->pend_desc, txq->n_pend_desc,
256 			  txq->reaped, &txq->added);
257 	KASSERT(rc == 0, ("efx_tx_qpost() failed"));
258 
259 	/* If efx_tx_qpost() had to refragment, our information about
260 	 * buffers to free may be associated with the wrong
261 	 * descriptors.
262 	 */
263 	KASSERT(txq->added - old_added == txq->n_pend_desc,
264 		("efx_tx_qpost() refragmented descriptors"));
265 
266 	level = txq->added - txq->reaped;
267 	KASSERT(level <= txq->entries, ("overfilled TX queue"));
268 
269 	/* Clear the fragment list. */
270 	txq->n_pend_desc = 0;
271 
272 	/* Have we reached the block level? */
273 	if (level < SFXGE_TXQ_BLOCK_LEVEL(txq->entries))
274 		return;
275 
276 	/* Reap, and check again */
277 	sfxge_tx_qreap(txq);
278 	level = txq->added - txq->reaped;
279 	if (level < SFXGE_TXQ_BLOCK_LEVEL(txq->entries))
280 		return;
281 
282 	txq->blocked = 1;
283 
284 	/*
285 	 * Avoid a race with completion interrupt handling that could leave
286 	 * the queue blocked.
287 	 */
288 	mb();
289 	sfxge_tx_qreap(txq);
290 	level = txq->added - txq->reaped;
291 	if (level < SFXGE_TXQ_BLOCK_LEVEL(txq->entries)) {
292 		mb();
293 		txq->blocked = 0;
294 	}
295 }
296 
297 static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf)
298 {
299 	bus_dmamap_t *used_map;
300 	bus_dmamap_t map;
301 	bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG];
302 	unsigned int id;
303 	struct sfxge_tx_mapping *stmp;
304 	efx_buffer_t *desc;
305 	int n_dma_seg;
306 	int rc;
307 	int i;
308 
309 	KASSERT(!txq->blocked, ("txq->blocked"));
310 
311 	if (mbuf->m_pkthdr.csum_flags & CSUM_TSO)
312 		prefetch_read_many(mbuf->m_data);
313 
314 	if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) {
315 		rc = EINTR;
316 		goto reject;
317 	}
318 
319 	/* Load the packet for DMA. */
320 	id = txq->added & txq->ptr_mask;
321 	stmp = &txq->stmp[id];
322 	rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map,
323 				     mbuf, dma_seg, &n_dma_seg, 0);
324 	if (rc == EFBIG) {
325 		/* Try again. */
326 		struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT,
327 						   SFXGE_TX_MAPPING_MAX_SEG);
328 		if (new_mbuf == NULL)
329 			goto reject;
330 		++txq->collapses;
331 		mbuf = new_mbuf;
332 		rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag,
333 					     stmp->map, mbuf,
334 					     dma_seg, &n_dma_seg, 0);
335 	}
336 	if (rc != 0)
337 		goto reject;
338 
339 	/* Make the packet visible to the hardware. */
340 	bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE);
341 
342 	used_map = &stmp->map;
343 
344 	if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
345 		rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg);
346 		if (rc < 0)
347 			goto reject_mapped;
348 		stmp = &txq->stmp[rc];
349 	} else {
350 		/* Add the mapping to the fragment list, and set flags
351 		 * for the buffer.
352 		 */
353 		i = 0;
354 		for (;;) {
355 			desc = &txq->pend_desc[i];
356 			desc->eb_addr = dma_seg[i].ds_addr;
357 			desc->eb_size = dma_seg[i].ds_len;
358 			if (i == n_dma_seg - 1) {
359 				desc->eb_eop = 1;
360 				break;
361 			}
362 			desc->eb_eop = 0;
363 			i++;
364 
365 			stmp->flags = 0;
366 			if (__predict_false(stmp ==
367 					    &txq->stmp[txq->ptr_mask]))
368 				stmp = &txq->stmp[0];
369 			else
370 				stmp++;
371 		}
372 		txq->n_pend_desc = n_dma_seg;
373 	}
374 
375 	/*
376 	 * If the mapping required more than one descriptor
377 	 * then we need to associate the DMA map with the last
378 	 * descriptor, not the first.
379 	 */
380 	if (used_map != &stmp->map) {
381 		map = stmp->map;
382 		stmp->map = *used_map;
383 		*used_map = map;
384 	}
385 
386 	stmp->u.mbuf = mbuf;
387 	stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF;
388 
389 	/* Post the fragment list. */
390 	sfxge_tx_qlist_post(txq);
391 
392 	return (0);
393 
394 reject_mapped:
395 	bus_dmamap_unload(txq->packet_dma_tag, *used_map);
396 reject:
397 	/* Drop the packet on the floor. */
398 	m_freem(mbuf);
399 	++txq->drops;
400 
401 	return (rc);
402 }
403 
404 #ifdef SFXGE_HAVE_MQ
405 
406 /*
407  * Drain the deferred packet list into the transmit queue.
408  */
409 static void
410 sfxge_tx_qdpl_drain(struct sfxge_txq *txq)
411 {
412 	struct sfxge_softc *sc;
413 	struct sfxge_tx_dpl *stdp;
414 	struct mbuf *mbuf, *next;
415 	unsigned int count;
416 	unsigned int non_tcp_count;
417 	unsigned int pushed;
418 	int rc;
419 
420 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
421 
422 	sc = txq->sc;
423 	stdp = &txq->dpl;
424 	pushed = txq->added;
425 
426 	prefetch_read_many(sc->enp);
427 	prefetch_read_many(txq->common);
428 
429 	mbuf = stdp->std_get;
430 	count = stdp->std_get_count;
431 	non_tcp_count = stdp->std_get_non_tcp_count;
432 
433 	if (count > stdp->std_get_hiwat)
434 		stdp->std_get_hiwat = count;
435 
436 	while (count != 0) {
437 		KASSERT(mbuf != NULL, ("mbuf == NULL"));
438 
439 		next = mbuf->m_nextpkt;
440 		mbuf->m_nextpkt = NULL;
441 
442 		ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */
443 
444 		if (next != NULL)
445 			prefetch_read_many(next);
446 
447 		rc = sfxge_tx_queue_mbuf(txq, mbuf);
448 		--count;
449 		non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf);
450 		mbuf = next;
451 		if (rc != 0)
452 			continue;
453 
454 		if (txq->blocked)
455 			break;
456 
457 		/* Push the fragments to the hardware in batches. */
458 		if (txq->added - pushed >= SFXGE_TX_BATCH) {
459 			efx_tx_qpush(txq->common, txq->added);
460 			pushed = txq->added;
461 		}
462 	}
463 
464 	if (count == 0) {
465 		KASSERT(mbuf == NULL, ("mbuf != NULL"));
466 		KASSERT(non_tcp_count == 0,
467 			("inconsistent TCP/non-TCP detection"));
468 		stdp->std_get = NULL;
469 		stdp->std_get_count = 0;
470 		stdp->std_get_non_tcp_count = 0;
471 		stdp->std_getp = &stdp->std_get;
472 	} else {
473 		stdp->std_get = mbuf;
474 		stdp->std_get_count = count;
475 		stdp->std_get_non_tcp_count = non_tcp_count;
476 	}
477 
478 	if (txq->added != pushed)
479 		efx_tx_qpush(txq->common, txq->added);
480 
481 	KASSERT(txq->blocked || stdp->std_get_count == 0,
482 		("queue unblocked but count is non-zero"));
483 }
484 
485 #define	SFXGE_TX_QDPL_PENDING(_txq)					\
486 	((_txq)->dpl.std_put != 0)
487 
488 /*
489  * Service the deferred packet list.
490  *
491  * NOTE: drops the txq mutex!
492  */
493 static void
494 sfxge_tx_qdpl_service(struct sfxge_txq *txq)
495 {
496 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
497 
498 	do {
499 		if (SFXGE_TX_QDPL_PENDING(txq))
500 			sfxge_tx_qdpl_swizzle(txq);
501 
502 		if (!txq->blocked)
503 			sfxge_tx_qdpl_drain(txq);
504 
505 		SFXGE_TXQ_UNLOCK(txq);
506 	} while (SFXGE_TX_QDPL_PENDING(txq) &&
507 		 SFXGE_TXQ_TRYLOCK(txq));
508 }
509 
510 /*
511  * Put a packet on the deferred packet list.
512  *
513  * If we are called with the txq lock held, we put the packet on the "get
514  * list", otherwise we atomically push it on the "put list".  The swizzle
515  * function takes care of ordering.
516  *
517  * The length of the put list is bounded by SFXGE_TX_MAX_DEFERRED.  We
518  * overload the csum_data field in the mbuf to keep track of this length
519  * because there is no cheap alternative to avoid races.
520  */
521 static int
522 sfxge_tx_qdpl_put(struct sfxge_txq *txq, struct mbuf *mbuf, int locked)
523 {
524 	struct sfxge_tx_dpl *stdp;
525 
526 	stdp = &txq->dpl;
527 
528 	KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
529 
530 	if (locked) {
531 		SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
532 
533 		sfxge_tx_qdpl_swizzle(txq);
534 
535 		if (stdp->std_get_count >= stdp->std_get_max) {
536 			txq->get_overflow++;
537 			return (ENOBUFS);
538 		}
539 		if (sfxge_is_mbuf_non_tcp(mbuf)) {
540 			if (stdp->std_get_non_tcp_count >=
541 			    stdp->std_get_non_tcp_max) {
542 				txq->get_non_tcp_overflow++;
543 				return (ENOBUFS);
544 			}
545 			stdp->std_get_non_tcp_count++;
546 		}
547 
548 		*(stdp->std_getp) = mbuf;
549 		stdp->std_getp = &mbuf->m_nextpkt;
550 		stdp->std_get_count++;
551 	} else {
552 		volatile uintptr_t *putp;
553 		uintptr_t old;
554 		uintptr_t new;
555 		unsigned old_len;
556 
557 		putp = &stdp->std_put;
558 		new = (uintptr_t)mbuf;
559 
560 		do {
561 			old = *putp;
562 			if (old != 0) {
563 				struct mbuf *mp = (struct mbuf *)old;
564 				old_len = mp->m_pkthdr.csum_data;
565 			} else
566 				old_len = 0;
567 			if (old_len >= stdp->std_put_max) {
568 				atomic_add_long(&txq->put_overflow, 1);
569 				return (ENOBUFS);
570 			}
571 			mbuf->m_pkthdr.csum_data = old_len + 1;
572 			mbuf->m_nextpkt = (void *)old;
573 		} while (atomic_cmpset_ptr(putp, old, new) == 0);
574 	}
575 
576 	return (0);
577 }
578 
579 /*
580  * Called from if_transmit - will try to grab the txq lock and enqueue to the
581  * put list if it succeeds, otherwise try to push onto the defer list if space.
582  */
583 int
584 sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m)
585 {
586 	int locked;
587 	int rc;
588 
589 	if (!SFXGE_LINK_UP(txq->sc)) {
590 		rc = ENETDOWN;
591 		atomic_add_long(&txq->netdown_drops, 1);
592 		goto fail;
593 	}
594 
595 	/*
596 	 * Try to grab the txq lock.  If we are able to get the lock,
597 	 * the packet will be appended to the "get list" of the deferred
598 	 * packet list.  Otherwise, it will be pushed on the "put list".
599 	 */
600 	locked = SFXGE_TXQ_TRYLOCK(txq);
601 
602 	if (sfxge_tx_qdpl_put(txq, m, locked) != 0) {
603 		if (locked)
604 			SFXGE_TXQ_UNLOCK(txq);
605 		rc = ENOBUFS;
606 		goto fail;
607 	}
608 
609 	/*
610 	 * Try to grab the lock again.
611 	 *
612 	 * If we are able to get the lock, we need to process the deferred
613 	 * packet list.  If we are not able to get the lock, another thread
614 	 * is processing the list.
615 	 */
616 	if (!locked)
617 		locked = SFXGE_TXQ_TRYLOCK(txq);
618 
619 	if (locked) {
620 		/* Try to service the list. */
621 		sfxge_tx_qdpl_service(txq);
622 		/* Lock has been dropped. */
623 	}
624 
625 	return (0);
626 
627 fail:
628 	m_freem(m);
629 	return (rc);
630 }
631 
632 static void
633 sfxge_tx_qdpl_flush(struct sfxge_txq *txq)
634 {
635 	struct sfxge_tx_dpl *stdp = &txq->dpl;
636 	struct mbuf *mbuf, *next;
637 
638 	SFXGE_TXQ_LOCK(txq);
639 
640 	sfxge_tx_qdpl_swizzle(txq);
641 	for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) {
642 		next = mbuf->m_nextpkt;
643 		m_freem(mbuf);
644 	}
645 	stdp->std_get = NULL;
646 	stdp->std_get_count = 0;
647 	stdp->std_get_non_tcp_count = 0;
648 	stdp->std_getp = &stdp->std_get;
649 
650 	SFXGE_TXQ_UNLOCK(txq);
651 }
652 
653 void
654 sfxge_if_qflush(struct ifnet *ifp)
655 {
656 	struct sfxge_softc *sc;
657 	int i;
658 
659 	sc = ifp->if_softc;
660 
661 	for (i = 0; i < sc->txq_count; i++)
662 		sfxge_tx_qdpl_flush(sc->txq[i]);
663 }
664 
665 /*
666  * TX start -- called by the stack.
667  */
668 int
669 sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m)
670 {
671 	struct sfxge_softc *sc;
672 	struct sfxge_txq *txq;
673 	int rc;
674 
675 	sc = (struct sfxge_softc *)ifp->if_softc;
676 
677 	KASSERT(ifp->if_flags & IFF_UP, ("interface not up"));
678 
679 	/* Pick the desired transmit queue. */
680 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO)) {
681 		int index = 0;
682 
683 		/* check if flowid is set */
684 		if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
685 			uint32_t hash = m->m_pkthdr.flowid;
686 
687 			index = sc->rx_indir_table[hash % SFXGE_RX_SCALE_MAX];
688 		}
689 		txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index];
690 	} else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
691 		txq = sc->txq[SFXGE_TXQ_IP_CKSUM];
692 	} else {
693 		txq = sc->txq[SFXGE_TXQ_NON_CKSUM];
694 	}
695 
696 	rc = sfxge_tx_packet_add(txq, m);
697 
698 	return (rc);
699 }
700 
701 #else /* !SFXGE_HAVE_MQ */
702 
703 static void sfxge_if_start_locked(struct ifnet *ifp)
704 {
705 	struct sfxge_softc *sc = ifp->if_softc;
706 	struct sfxge_txq *txq;
707 	struct mbuf *mbuf;
708 	unsigned int pushed[SFXGE_TXQ_NTYPES];
709 	unsigned int q_index;
710 
711 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
712 	    IFF_DRV_RUNNING)
713 		return;
714 
715 	if (!sc->port.link_up)
716 		return;
717 
718 	for (q_index = 0; q_index < SFXGE_TXQ_NTYPES; q_index++) {
719 		txq = sc->txq[q_index];
720 		pushed[q_index] = txq->added;
721 	}
722 
723 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
724 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mbuf);
725 		if (mbuf == NULL)
726 			break;
727 
728 		ETHER_BPF_MTAP(ifp, mbuf); /* packet capture */
729 
730 		/* Pick the desired transmit queue. */
731 		if (mbuf->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO))
732 			q_index = SFXGE_TXQ_IP_TCP_UDP_CKSUM;
733 		else if (mbuf->m_pkthdr.csum_flags & CSUM_DELAY_IP)
734 			q_index = SFXGE_TXQ_IP_CKSUM;
735 		else
736 			q_index = SFXGE_TXQ_NON_CKSUM;
737 		txq = sc->txq[q_index];
738 
739 		if (sfxge_tx_queue_mbuf(txq, mbuf) != 0)
740 			continue;
741 
742 		if (txq->blocked) {
743 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
744 			break;
745 		}
746 
747 		/* Push the fragments to the hardware in batches. */
748 		if (txq->added - pushed[q_index] >= SFXGE_TX_BATCH) {
749 			efx_tx_qpush(txq->common, txq->added);
750 			pushed[q_index] = txq->added;
751 		}
752 	}
753 
754 	for (q_index = 0; q_index < SFXGE_TXQ_NTYPES; q_index++) {
755 		txq = sc->txq[q_index];
756 		if (txq->added != pushed[q_index])
757 			efx_tx_qpush(txq->common, txq->added);
758 	}
759 }
760 
761 void sfxge_if_start(struct ifnet *ifp)
762 {
763 	struct sfxge_softc *sc = ifp->if_softc;
764 
765 	SFXGE_TXQ_LOCK(sc->txq[0]);
766 	sfxge_if_start_locked(ifp);
767 	SFXGE_TXQ_UNLOCK(sc->txq[0]);
768 }
769 
770 static void
771 sfxge_tx_qdpl_service(struct sfxge_txq *txq)
772 {
773 	struct ifnet *ifp = txq->sc->ifnet;
774 
775 	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
776 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
777 	sfxge_if_start_locked(ifp);
778 	SFXGE_TXQ_UNLOCK(txq);
779 }
780 
781 #endif /* SFXGE_HAVE_MQ */
782 
783 /*
784  * Software "TSO".  Not quite as good as doing it in hardware, but
785  * still faster than segmenting in the stack.
786  */
787 
788 struct sfxge_tso_state {
789 	/* Output position */
790 	unsigned out_len;	/* Remaining length in current segment */
791 	unsigned seqnum;	/* Current sequence number */
792 	unsigned packet_space;	/* Remaining space in current packet */
793 
794 	/* Input position */
795 	uint64_t dma_addr;	/* DMA address of current position */
796 	unsigned in_len;	/* Remaining length in current mbuf */
797 
798 	const struct mbuf *mbuf; /* Input mbuf (head of chain) */
799 	u_short protocol;	/* Network protocol (after VLAN decap) */
800 	ssize_t nh_off;		/* Offset of network header */
801 	ssize_t tcph_off;	/* Offset of TCP header */
802 	unsigned header_len;	/* Number of bytes of header */
803 	unsigned seg_size;	/* TCP segment size */
804 };
805 
806 static const struct ip *tso_iph(const struct sfxge_tso_state *tso)
807 {
808 	KASSERT(tso->protocol == htons(ETHERTYPE_IP),
809 		("tso_iph() in non-IPv4 state"));
810 	return (const struct ip *)(tso->mbuf->m_data + tso->nh_off);
811 }
812 static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso)
813 {
814 	KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
815 		("tso_ip6h() in non-IPv6 state"));
816 	return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off);
817 }
818 static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso)
819 {
820 	return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off);
821 }
822 
823 /* Size of preallocated TSO header buffers.  Larger blocks must be
824  * allocated from the heap.
825  */
826 #define	TSOH_STD_SIZE	128
827 
828 /* At most half the descriptors in the queue at any time will refer to
829  * a TSO header buffer, since they must always be followed by a
830  * payload descriptor referring to an mbuf.
831  */
832 #define	TSOH_COUNT(_txq_entries)	((_txq_entries) / 2u)
833 #define	TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
834 #define	TSOH_PAGE_COUNT(_txq_entries)	\
835 	((TSOH_COUNT(_txq_entries) + TSOH_PER_PAGE - 1) / TSOH_PER_PAGE)
836 
837 static int tso_init(struct sfxge_txq *txq)
838 {
839 	struct sfxge_softc *sc = txq->sc;
840 	unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries);
841 	int i, rc;
842 
843 	/* Allocate TSO header buffers */
844 	txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]),
845 				  M_SFXGE, M_WAITOK);
846 
847 	for (i = 0; i < tsoh_page_count; i++) {
848 		rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]);
849 		if (rc != 0)
850 			goto fail;
851 	}
852 
853 	return (0);
854 
855 fail:
856 	while (i-- > 0)
857 		sfxge_dma_free(&txq->tsoh_buffer[i]);
858 	free(txq->tsoh_buffer, M_SFXGE);
859 	txq->tsoh_buffer = NULL;
860 	return (rc);
861 }
862 
863 static void tso_fini(struct sfxge_txq *txq)
864 {
865 	int i;
866 
867 	if (txq->tsoh_buffer != NULL) {
868 		for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++)
869 			sfxge_dma_free(&txq->tsoh_buffer[i]);
870 		free(txq->tsoh_buffer, M_SFXGE);
871 	}
872 }
873 
874 static void tso_start(struct sfxge_tso_state *tso, struct mbuf *mbuf)
875 {
876 	struct ether_header *eh = mtod(mbuf, struct ether_header *);
877 	const struct tcphdr *th;
878 	struct tcphdr th_copy;
879 
880 	tso->mbuf = mbuf;
881 
882 	/* Find network protocol and header */
883 	tso->protocol = eh->ether_type;
884 	if (tso->protocol == htons(ETHERTYPE_VLAN)) {
885 		struct ether_vlan_header *veh =
886 			mtod(mbuf, struct ether_vlan_header *);
887 		tso->protocol = veh->evl_proto;
888 		tso->nh_off = sizeof(*veh);
889 	} else {
890 		tso->nh_off = sizeof(*eh);
891 	}
892 
893 	/* Find TCP header */
894 	if (tso->protocol == htons(ETHERTYPE_IP)) {
895 		KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP,
896 			("TSO required on non-TCP packet"));
897 		tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl;
898 	} else {
899 		KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
900 			("TSO required on non-IP packet"));
901 		KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP,
902 			("TSO required on non-TCP packet"));
903 		tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr);
904 	}
905 
906 	KASSERT(mbuf->m_len >= tso->tcph_off,
907 		("network header is fragmented in mbuf"));
908 	/* We need TCP header including flags (window is the next) */
909 	if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) {
910 		m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy),
911 			   (caddr_t)&th_copy);
912 		th = &th_copy;
913 	} else {
914 		th = tso_tcph(tso);
915 	}
916 
917 	tso->header_len = tso->tcph_off + 4 * th->th_off;
918 	tso->seg_size = mbuf->m_pkthdr.tso_segsz;
919 
920 	tso->seqnum = ntohl(th->th_seq);
921 
922 	/* These flags must not be duplicated */
923 	KASSERT(!(th->th_flags & (TH_URG | TH_SYN | TH_RST)),
924 		("incompatible TCP flag on TSO packet"));
925 
926 	tso->out_len = mbuf->m_pkthdr.len - tso->header_len;
927 }
928 
929 /*
930  * tso_fill_packet_with_fragment - form descriptors for the current fragment
931  *
932  * Form descriptors for the current fragment, until we reach the end
933  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
934  * space.
935  */
936 static void tso_fill_packet_with_fragment(struct sfxge_txq *txq,
937 					  struct sfxge_tso_state *tso)
938 {
939 	efx_buffer_t *desc;
940 	int n;
941 
942 	if (tso->in_len == 0 || tso->packet_space == 0)
943 		return;
944 
945 	KASSERT(tso->in_len > 0, ("TSO input length went negative"));
946 	KASSERT(tso->packet_space > 0, ("TSO packet space went negative"));
947 
948 	n = min(tso->in_len, tso->packet_space);
949 
950 	tso->packet_space -= n;
951 	tso->out_len -= n;
952 	tso->in_len -= n;
953 
954 	desc = &txq->pend_desc[txq->n_pend_desc++];
955 	desc->eb_addr = tso->dma_addr;
956 	desc->eb_size = n;
957 	desc->eb_eop = tso->out_len == 0 || tso->packet_space == 0;
958 
959 	tso->dma_addr += n;
960 }
961 
962 /* Callback from bus_dmamap_load() for long TSO headers. */
963 static void tso_map_long_header(void *dma_addr_ret,
964 				bus_dma_segment_t *segs, int nseg,
965 				int error)
966 {
967 	*(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) &&
968 				      __predict_true(nseg == 1)) ?
969 				     segs->ds_addr : 0);
970 }
971 
972 /*
973  * tso_start_new_packet - generate a new header and prepare for the new packet
974  *
975  * Generate a new header and prepare for the new packet.  Return 0 on
976  * success, or an error code if failed to alloc header.
977  */
978 static int tso_start_new_packet(struct sfxge_txq *txq,
979 				struct sfxge_tso_state *tso,
980 				unsigned int id)
981 {
982 	struct sfxge_tx_mapping *stmp = &txq->stmp[id];
983 	struct tcphdr *tsoh_th;
984 	unsigned ip_length;
985 	caddr_t header;
986 	uint64_t dma_addr;
987 	bus_dmamap_t map;
988 	efx_buffer_t *desc;
989 	int rc;
990 
991 	/* Allocate a DMA-mapped header buffer. */
992 	if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) {
993 		unsigned int page_index = (id / 2) / TSOH_PER_PAGE;
994 		unsigned int buf_index = (id / 2) % TSOH_PER_PAGE;
995 
996 		header = (txq->tsoh_buffer[page_index].esm_base +
997 			  buf_index * TSOH_STD_SIZE);
998 		dma_addr = (txq->tsoh_buffer[page_index].esm_addr +
999 			    buf_index * TSOH_STD_SIZE);
1000 		map = txq->tsoh_buffer[page_index].esm_map;
1001 
1002 		stmp->flags = 0;
1003 	} else {
1004 		/* We cannot use bus_dmamem_alloc() as that may sleep */
1005 		header = malloc(tso->header_len, M_SFXGE, M_NOWAIT);
1006 		if (__predict_false(!header))
1007 			return (ENOMEM);
1008 		rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map,
1009 				     header, tso->header_len,
1010 				     tso_map_long_header, &dma_addr,
1011 				     BUS_DMA_NOWAIT);
1012 		if (__predict_false(dma_addr == 0)) {
1013 			if (rc == 0) {
1014 				/* Succeeded but got >1 segment */
1015 				bus_dmamap_unload(txq->packet_dma_tag,
1016 						  stmp->map);
1017 				rc = EINVAL;
1018 			}
1019 			free(header, M_SFXGE);
1020 			return (rc);
1021 		}
1022 		map = stmp->map;
1023 
1024 		txq->tso_long_headers++;
1025 		stmp->u.heap_buf = header;
1026 		stmp->flags = TX_BUF_UNMAP;
1027 	}
1028 
1029 	tsoh_th = (struct tcphdr *)(header + tso->tcph_off);
1030 
1031 	/* Copy and update the headers. */
1032 	m_copydata(tso->mbuf, 0, tso->header_len, header);
1033 
1034 	tsoh_th->th_seq = htonl(tso->seqnum);
1035 	tso->seqnum += tso->seg_size;
1036 	if (tso->out_len > tso->seg_size) {
1037 		/* This packet will not finish the TSO burst. */
1038 		ip_length = tso->header_len - tso->nh_off + tso->seg_size;
1039 		tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH);
1040 	} else {
1041 		/* This packet will be the last in the TSO burst. */
1042 		ip_length = tso->header_len - tso->nh_off + tso->out_len;
1043 	}
1044 
1045 	if (tso->protocol == htons(ETHERTYPE_IP)) {
1046 		struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off);
1047 		tsoh_iph->ip_len = htons(ip_length);
1048 		/* XXX We should increment ip_id, but FreeBSD doesn't
1049 		 * currently allocate extra IDs for multiple segments.
1050 		 */
1051 	} else {
1052 		struct ip6_hdr *tsoh_iph =
1053 			(struct ip6_hdr *)(header + tso->nh_off);
1054 		tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph));
1055 	}
1056 
1057 	/* Make the header visible to the hardware. */
1058 	bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE);
1059 
1060 	tso->packet_space = tso->seg_size;
1061 	txq->tso_packets++;
1062 
1063 	/* Form a descriptor for this header. */
1064 	desc = &txq->pend_desc[txq->n_pend_desc++];
1065 	desc->eb_addr = dma_addr;
1066 	desc->eb_size = tso->header_len;
1067 	desc->eb_eop = 0;
1068 
1069 	return (0);
1070 }
1071 
1072 static int
1073 sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
1074 		   const bus_dma_segment_t *dma_seg, int n_dma_seg)
1075 {
1076 	struct sfxge_tso_state tso;
1077 	unsigned int id, next_id;
1078 	unsigned skipped = 0;
1079 
1080 	tso_start(&tso, mbuf);
1081 
1082 	while (dma_seg->ds_len + skipped <= tso.header_len) {
1083 		skipped += dma_seg->ds_len;
1084 		--n_dma_seg;
1085 		KASSERT(n_dma_seg, ("no payload found in TSO packet"));
1086 		++dma_seg;
1087 	}
1088 	tso.in_len = dma_seg->ds_len + (tso.header_len - skipped);
1089 	tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped);
1090 
1091 	id = txq->added & txq->ptr_mask;
1092 	if (__predict_false(tso_start_new_packet(txq, &tso, id)))
1093 		return (-1);
1094 
1095 	while (1) {
1096 		id = (id + 1) & txq->ptr_mask;
1097 		tso_fill_packet_with_fragment(txq, &tso);
1098 
1099 		/* Move onto the next fragment? */
1100 		if (tso.in_len == 0) {
1101 			--n_dma_seg;
1102 			if (n_dma_seg == 0)
1103 				break;
1104 			++dma_seg;
1105 			tso.in_len = dma_seg->ds_len;
1106 			tso.dma_addr = dma_seg->ds_addr;
1107 		}
1108 
1109 		/* End of packet? */
1110 		if (tso.packet_space == 0) {
1111 			/* If the queue is now full due to tiny MSS,
1112 			 * or we can't create another header, discard
1113 			 * the remainder of the input mbuf but do not
1114 			 * roll back the work we have done.
1115 			 */
1116 			if (txq->n_pend_desc + 1 /* header */ + n_dma_seg >
1117 			    SFXGE_TSO_MAX_DESC) {
1118 				txq->tso_pdrop_too_many++;
1119 				break;
1120 			}
1121 			next_id = (id + 1) & txq->ptr_mask;
1122 			if (__predict_false(tso_start_new_packet(txq, &tso,
1123 								 next_id))) {
1124 				txq->tso_pdrop_no_rsrc++;
1125 				break;
1126 			}
1127 			id = next_id;
1128 		}
1129 	}
1130 
1131 	txq->tso_bursts++;
1132 	return (id);
1133 }
1134 
1135 static void
1136 sfxge_tx_qunblock(struct sfxge_txq *txq)
1137 {
1138 	struct sfxge_softc *sc;
1139 	struct sfxge_evq *evq;
1140 
1141 	sc = txq->sc;
1142 	evq = sc->evq[txq->evq_index];
1143 
1144 	SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
1145 
1146 	if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED))
1147 		return;
1148 
1149 	SFXGE_TXQ_LOCK(txq);
1150 
1151 	if (txq->blocked) {
1152 		unsigned int level;
1153 
1154 		level = txq->added - txq->completed;
1155 		if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) {
1156 			/* reaped must be in sync with blocked */
1157 			sfxge_tx_qreap(txq);
1158 			txq->blocked = 0;
1159 		}
1160 	}
1161 
1162 	sfxge_tx_qdpl_service(txq);
1163 	/* note: lock has been dropped */
1164 }
1165 
1166 void
1167 sfxge_tx_qflush_done(struct sfxge_txq *txq)
1168 {
1169 
1170 	txq->flush_state = SFXGE_FLUSH_DONE;
1171 }
1172 
1173 static void
1174 sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index)
1175 {
1176 	struct sfxge_txq *txq;
1177 	struct sfxge_evq *evq;
1178 	unsigned int count;
1179 
1180 	txq = sc->txq[index];
1181 	evq = sc->evq[txq->evq_index];
1182 
1183 	SFXGE_TXQ_LOCK(txq);
1184 
1185 	KASSERT(txq->init_state == SFXGE_TXQ_STARTED,
1186 	    ("txq->init_state != SFXGE_TXQ_STARTED"));
1187 
1188 	txq->init_state = SFXGE_TXQ_INITIALIZED;
1189 	txq->flush_state = SFXGE_FLUSH_PENDING;
1190 
1191 	/* Flush the transmit queue. */
1192 	efx_tx_qflush(txq->common);
1193 
1194 	SFXGE_TXQ_UNLOCK(txq);
1195 
1196 	count = 0;
1197 	do {
1198 		/* Spin for 100ms. */
1199 		DELAY(100000);
1200 
1201 		if (txq->flush_state != SFXGE_FLUSH_PENDING)
1202 			break;
1203 	} while (++count < 20);
1204 
1205 	SFXGE_EVQ_LOCK(evq);
1206 	SFXGE_TXQ_LOCK(txq);
1207 
1208 	KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED,
1209 	    ("txq->flush_state == SFXGE_FLUSH_FAILED"));
1210 
1211 	txq->flush_state = SFXGE_FLUSH_DONE;
1212 
1213 	txq->blocked = 0;
1214 	txq->pending = txq->added;
1215 
1216 	sfxge_tx_qcomplete(txq, evq);
1217 	KASSERT(txq->completed == txq->added,
1218 	    ("txq->completed != txq->added"));
1219 
1220 	sfxge_tx_qreap(txq);
1221 	KASSERT(txq->reaped == txq->completed,
1222 	    ("txq->reaped != txq->completed"));
1223 
1224 	txq->added = 0;
1225 	txq->pending = 0;
1226 	txq->completed = 0;
1227 	txq->reaped = 0;
1228 
1229 	/* Destroy the common code transmit queue. */
1230 	efx_tx_qdestroy(txq->common);
1231 	txq->common = NULL;
1232 
1233 	efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1234 	    EFX_TXQ_NBUFS(sc->txq_entries));
1235 
1236 	SFXGE_EVQ_UNLOCK(evq);
1237 	SFXGE_TXQ_UNLOCK(txq);
1238 }
1239 
1240 static int
1241 sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index)
1242 {
1243 	struct sfxge_txq *txq;
1244 	efsys_mem_t *esmp;
1245 	uint16_t flags;
1246 	struct sfxge_evq *evq;
1247 	int rc;
1248 
1249 	txq = sc->txq[index];
1250 	esmp = &txq->mem;
1251 	evq = sc->evq[txq->evq_index];
1252 
1253 	KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1254 	    ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1255 	KASSERT(evq->init_state == SFXGE_EVQ_STARTED,
1256 	    ("evq->init_state != SFXGE_EVQ_STARTED"));
1257 
1258 	/* Program the buffer table. */
1259 	if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp,
1260 	    EFX_TXQ_NBUFS(sc->txq_entries))) != 0)
1261 		return (rc);
1262 
1263 	/* Determine the kind of queue we are creating. */
1264 	switch (txq->type) {
1265 	case SFXGE_TXQ_NON_CKSUM:
1266 		flags = 0;
1267 		break;
1268 	case SFXGE_TXQ_IP_CKSUM:
1269 		flags = EFX_CKSUM_IPV4;
1270 		break;
1271 	case SFXGE_TXQ_IP_TCP_UDP_CKSUM:
1272 		flags = EFX_CKSUM_IPV4 | EFX_CKSUM_TCPUDP;
1273 		break;
1274 	default:
1275 		KASSERT(0, ("Impossible TX queue"));
1276 		flags = 0;
1277 		break;
1278 	}
1279 
1280 	/* Create the common code transmit queue. */
1281 	if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp,
1282 	    sc->txq_entries, txq->buf_base_id, flags, evq->common,
1283 	    &txq->common)) != 0)
1284 		goto fail;
1285 
1286 	SFXGE_TXQ_LOCK(txq);
1287 
1288 	/* Enable the transmit queue. */
1289 	efx_tx_qenable(txq->common);
1290 
1291 	txq->init_state = SFXGE_TXQ_STARTED;
1292 
1293 	SFXGE_TXQ_UNLOCK(txq);
1294 
1295 	return (0);
1296 
1297 fail:
1298 	efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1299 	    EFX_TXQ_NBUFS(sc->txq_entries));
1300 	return (rc);
1301 }
1302 
1303 void
1304 sfxge_tx_stop(struct sfxge_softc *sc)
1305 {
1306 	int index;
1307 
1308 	index = sc->txq_count;
1309 	while (--index >= 0)
1310 		sfxge_tx_qstop(sc, index);
1311 
1312 	/* Tear down the transmit module */
1313 	efx_tx_fini(sc->enp);
1314 }
1315 
1316 int
1317 sfxge_tx_start(struct sfxge_softc *sc)
1318 {
1319 	int index;
1320 	int rc;
1321 
1322 	/* Initialize the common code transmit module. */
1323 	if ((rc = efx_tx_init(sc->enp)) != 0)
1324 		return (rc);
1325 
1326 	for (index = 0; index < sc->txq_count; index++) {
1327 		if ((rc = sfxge_tx_qstart(sc, index)) != 0)
1328 			goto fail;
1329 	}
1330 
1331 	return (0);
1332 
1333 fail:
1334 	while (--index >= 0)
1335 		sfxge_tx_qstop(sc, index);
1336 
1337 	efx_tx_fini(sc->enp);
1338 
1339 	return (rc);
1340 }
1341 
1342 /**
1343  * Destroy a transmit queue.
1344  */
1345 static void
1346 sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index)
1347 {
1348 	struct sfxge_txq *txq;
1349 	unsigned int nmaps;
1350 
1351 	txq = sc->txq[index];
1352 
1353 	KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1354 	    ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1355 
1356 	if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM)
1357 		tso_fini(txq);
1358 
1359 	/* Free the context arrays. */
1360 	free(txq->pend_desc, M_SFXGE);
1361 	nmaps = sc->txq_entries;
1362 	while (nmaps-- != 0)
1363 		bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1364 	free(txq->stmp, M_SFXGE);
1365 
1366 	/* Release DMA memory mapping. */
1367 	sfxge_dma_free(&txq->mem);
1368 
1369 	sc->txq[index] = NULL;
1370 
1371 #ifdef SFXGE_HAVE_MQ
1372 	SFXGE_TXQ_LOCK_DESTROY(txq);
1373 #endif
1374 
1375 	free(txq, M_SFXGE);
1376 }
1377 
1378 static int
1379 sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index,
1380     enum sfxge_txq_type type, unsigned int evq_index)
1381 {
1382 	char name[16];
1383 	struct sysctl_oid *txq_node;
1384 	struct sfxge_txq *txq;
1385 	struct sfxge_evq *evq;
1386 #ifdef SFXGE_HAVE_MQ
1387 	struct sfxge_tx_dpl *stdp;
1388 #endif
1389 	efsys_mem_t *esmp;
1390 	unsigned int nmaps;
1391 	int rc;
1392 
1393 	txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK);
1394 	txq->sc = sc;
1395 	txq->entries = sc->txq_entries;
1396 	txq->ptr_mask = txq->entries - 1;
1397 
1398 	sc->txq[txq_index] = txq;
1399 	esmp = &txq->mem;
1400 
1401 	evq = sc->evq[evq_index];
1402 
1403 	/* Allocate and zero DMA space for the descriptor ring. */
1404 	if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0)
1405 		return (rc);
1406 
1407 	/* Allocate buffer table entries. */
1408 	sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries),
1409 				 &txq->buf_base_id);
1410 
1411 	/* Create a DMA tag for packet mappings. */
1412 	if (bus_dma_tag_create(sc->parent_dma_tag, 1, 0x1000,
1413 	    MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL,
1414 	    NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 0x1000, 0, NULL, NULL,
1415 	    &txq->packet_dma_tag) != 0) {
1416 		device_printf(sc->dev, "Couldn't allocate txq DMA tag\n");
1417 		rc = ENOMEM;
1418 		goto fail;
1419 	}
1420 
1421 	/* Allocate pending descriptor array for batching writes. */
1422 	txq->pend_desc = malloc(sizeof(efx_buffer_t) * sc->txq_entries,
1423 				M_SFXGE, M_ZERO | M_WAITOK);
1424 
1425 	/* Allocate and initialise mbuf DMA mapping array. */
1426 	txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries,
1427 	    M_SFXGE, M_ZERO | M_WAITOK);
1428 	for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) {
1429 		rc = bus_dmamap_create(txq->packet_dma_tag, 0,
1430 				       &txq->stmp[nmaps].map);
1431 		if (rc != 0)
1432 			goto fail2;
1433 	}
1434 
1435 	snprintf(name, sizeof(name), "%u", txq_index);
1436 	txq_node = SYSCTL_ADD_NODE(
1437 		device_get_sysctl_ctx(sc->dev),
1438 		SYSCTL_CHILDREN(sc->txqs_node),
1439 		OID_AUTO, name, CTLFLAG_RD, NULL, "");
1440 	if (txq_node == NULL) {
1441 		rc = ENOMEM;
1442 		goto fail_txq_node;
1443 	}
1444 
1445 	if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM &&
1446 	    (rc = tso_init(txq)) != 0)
1447 		goto fail3;
1448 
1449 #ifdef SFXGE_HAVE_MQ
1450 	if (sfxge_tx_dpl_get_max <= 0) {
1451 		log(LOG_ERR, "%s=%d must be greater than 0",
1452 		    SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max);
1453 		rc = EINVAL;
1454 		goto fail_tx_dpl_get_max;
1455 	}
1456 	if (sfxge_tx_dpl_get_non_tcp_max <= 0) {
1457 		log(LOG_ERR, "%s=%d must be greater than 0",
1458 		    SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX,
1459 		    sfxge_tx_dpl_get_non_tcp_max);
1460 		rc = EINVAL;
1461 		goto fail_tx_dpl_get_max;
1462 	}
1463 	if (sfxge_tx_dpl_put_max < 0) {
1464 		log(LOG_ERR, "%s=%d must be greater or equal to 0",
1465 		    SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max);
1466 		rc = EINVAL;
1467 		goto fail_tx_dpl_put_max;
1468 	}
1469 
1470 	/* Initialize the deferred packet list. */
1471 	stdp = &txq->dpl;
1472 	stdp->std_put_max = sfxge_tx_dpl_put_max;
1473 	stdp->std_get_max = sfxge_tx_dpl_get_max;
1474 	stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max;
1475 	stdp->std_getp = &stdp->std_get;
1476 
1477 	SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index);
1478 
1479 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
1480 			SYSCTL_CHILDREN(txq_node), OID_AUTO,
1481 			"dpl_get_count", CTLFLAG_RD | CTLFLAG_STATS,
1482 			&stdp->std_get_count, 0, "");
1483 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
1484 			SYSCTL_CHILDREN(txq_node), OID_AUTO,
1485 			"dpl_get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS,
1486 			&stdp->std_get_non_tcp_count, 0, "");
1487 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
1488 			SYSCTL_CHILDREN(txq_node), OID_AUTO,
1489 			"dpl_get_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1490 			&stdp->std_get_hiwat, 0, "");
1491 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
1492 			SYSCTL_CHILDREN(txq_node), OID_AUTO,
1493 			"dpl_put_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1494 			&stdp->std_put_hiwat, 0, "");
1495 #endif
1496 
1497 	txq->type = type;
1498 	txq->evq_index = evq_index;
1499 	txq->txq_index = txq_index;
1500 	txq->init_state = SFXGE_TXQ_INITIALIZED;
1501 
1502 	return (0);
1503 
1504 fail_tx_dpl_put_max:
1505 fail_tx_dpl_get_max:
1506 fail3:
1507 fail_txq_node:
1508 	free(txq->pend_desc, M_SFXGE);
1509 fail2:
1510 	while (nmaps-- != 0)
1511 		bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1512 	free(txq->stmp, M_SFXGE);
1513 	bus_dma_tag_destroy(txq->packet_dma_tag);
1514 
1515 fail:
1516 	sfxge_dma_free(esmp);
1517 
1518 	return (rc);
1519 }
1520 
1521 static const struct {
1522 	const char *name;
1523 	size_t offset;
1524 } sfxge_tx_stats[] = {
1525 #define	SFXGE_TX_STAT(name, member) \
1526 	{ #name, offsetof(struct sfxge_txq, member) }
1527 	SFXGE_TX_STAT(tso_bursts, tso_bursts),
1528 	SFXGE_TX_STAT(tso_packets, tso_packets),
1529 	SFXGE_TX_STAT(tso_long_headers, tso_long_headers),
1530 	SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many),
1531 	SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc),
1532 	SFXGE_TX_STAT(tx_collapses, collapses),
1533 	SFXGE_TX_STAT(tx_drops, drops),
1534 	SFXGE_TX_STAT(tx_get_overflow, get_overflow),
1535 	SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow),
1536 	SFXGE_TX_STAT(tx_put_overflow, put_overflow),
1537 	SFXGE_TX_STAT(tx_netdown_drops, netdown_drops),
1538 };
1539 
1540 static int
1541 sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS)
1542 {
1543 	struct sfxge_softc *sc = arg1;
1544 	unsigned int id = arg2;
1545 	unsigned long sum;
1546 	unsigned int index;
1547 
1548 	/* Sum across all TX queues */
1549 	sum = 0;
1550 	for (index = 0; index < sc->txq_count; index++)
1551 		sum += *(unsigned long *)((caddr_t)sc->txq[index] +
1552 					  sfxge_tx_stats[id].offset);
1553 
1554 	return (SYSCTL_OUT(req, &sum, sizeof(sum)));
1555 }
1556 
1557 static void
1558 sfxge_tx_stat_init(struct sfxge_softc *sc)
1559 {
1560 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1561 	struct sysctl_oid_list *stat_list;
1562 	unsigned int id;
1563 
1564 	stat_list = SYSCTL_CHILDREN(sc->stats_node);
1565 
1566 	for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1567 		SYSCTL_ADD_PROC(
1568 			ctx, stat_list,
1569 			OID_AUTO, sfxge_tx_stats[id].name,
1570 			CTLTYPE_ULONG|CTLFLAG_RD,
1571 			sc, id, sfxge_tx_stat_handler, "LU",
1572 			"");
1573 	}
1574 }
1575 
1576 uint64_t
1577 sfxge_tx_get_drops(struct sfxge_softc *sc)
1578 {
1579 	unsigned int index;
1580 	uint64_t drops = 0;
1581 	struct sfxge_txq *txq;
1582 
1583 	/* Sum across all TX queues */
1584 	for (index = 0; index < sc->txq_count; index++) {
1585 		txq = sc->txq[index];
1586 		/*
1587 		 * In theory, txq->put_overflow and txq->netdown_drops
1588 		 * should use atomic operation and other should be
1589 		 * obtained under txq lock, but it is just statistics.
1590 		 */
1591 		drops += txq->drops + txq->get_overflow +
1592 			 txq->get_non_tcp_overflow +
1593 			 txq->put_overflow + txq->netdown_drops +
1594 			 txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc;
1595 	}
1596 	return (drops);
1597 }
1598 
1599 void
1600 sfxge_tx_fini(struct sfxge_softc *sc)
1601 {
1602 	int index;
1603 
1604 	index = sc->txq_count;
1605 	while (--index >= 0)
1606 		sfxge_tx_qfini(sc, index);
1607 
1608 	sc->txq_count = 0;
1609 }
1610 
1611 
1612 int
1613 sfxge_tx_init(struct sfxge_softc *sc)
1614 {
1615 	struct sfxge_intr *intr;
1616 	int index;
1617 	int rc;
1618 
1619 	intr = &sc->intr;
1620 
1621 	KASSERT(intr->state == SFXGE_INTR_INITIALIZED,
1622 	    ("intr->state != SFXGE_INTR_INITIALIZED"));
1623 
1624 #ifdef SFXGE_HAVE_MQ
1625 	sc->txq_count = SFXGE_TXQ_NTYPES - 1 + sc->intr.n_alloc;
1626 #else
1627 	sc->txq_count = SFXGE_TXQ_NTYPES;
1628 #endif
1629 
1630 	sc->txqs_node = SYSCTL_ADD_NODE(
1631 		device_get_sysctl_ctx(sc->dev),
1632 		SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
1633 		OID_AUTO, "txq", CTLFLAG_RD, NULL, "Tx queues");
1634 	if (sc->txqs_node == NULL) {
1635 		rc = ENOMEM;
1636 		goto fail_txq_node;
1637 	}
1638 
1639 	/* Initialize the transmit queues */
1640 	if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM,
1641 	    SFXGE_TXQ_NON_CKSUM, 0)) != 0)
1642 		goto fail;
1643 
1644 	if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM,
1645 	    SFXGE_TXQ_IP_CKSUM, 0)) != 0)
1646 		goto fail2;
1647 
1648 	for (index = 0;
1649 	     index < sc->txq_count - SFXGE_TXQ_NTYPES + 1;
1650 	     index++) {
1651 		if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NTYPES - 1 + index,
1652 		    SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0)
1653 			goto fail3;
1654 	}
1655 
1656 	sfxge_tx_stat_init(sc);
1657 
1658 	return (0);
1659 
1660 fail3:
1661 	while (--index >= 0)
1662 		sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
1663 
1664 	sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
1665 
1666 fail2:
1667 	sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
1668 
1669 fail:
1670 fail_txq_node:
1671 	sc->txq_count = 0;
1672 	return (rc);
1673 }
1674