1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2010-2016 Solarflare Communications Inc. 5 * All rights reserved. 6 * 7 * This software was developed in part by Philip Paeps under contract for 8 * Solarflare Communications, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright notice, 14 * this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * The views and conclusions contained in the software and documentation are 32 * those of the authors and should not be interpreted as representing official 33 * policies, either expressed or implied, of the FreeBSD Project. 34 */ 35 36 /* Theory of operation: 37 * 38 * Tx queues allocation and mapping 39 * 40 * One Tx queue with enabled checksum offload is allocated per Rx channel 41 * (event queue). Also 2 Tx queues (one without checksum offload and one 42 * with IP checksum offload only) are allocated and bound to event queue 0. 43 * sfxge_txq_type is used as Tx queue label. 44 * 45 * So, event queue plus label mapping to Tx queue index is: 46 * if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES) 47 * else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1 48 * See sfxge_get_txq_by_label() sfxge_ev.c 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 #include "opt_rss.h" 55 56 #include <sys/param.h> 57 #include <sys/malloc.h> 58 #include <sys/mbuf.h> 59 #include <sys/smp.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/syslog.h> 63 #include <sys/limits.h> 64 65 #include <net/bpf.h> 66 #include <net/ethernet.h> 67 #include <net/if.h> 68 #include <net/if_vlan_var.h> 69 70 #include <netinet/in.h> 71 #include <netinet/ip.h> 72 #include <netinet/ip6.h> 73 #include <netinet/tcp.h> 74 75 #ifdef RSS 76 #include <net/rss_config.h> 77 #endif 78 79 #include "common/efx.h" 80 81 #include "sfxge.h" 82 #include "sfxge_tx.h" 83 84 85 #define SFXGE_PARAM_TX_DPL_GET_MAX SFXGE_PARAM(tx_dpl_get_max) 86 static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT; 87 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max); 88 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN, 89 &sfxge_tx_dpl_get_max, 0, 90 "Maximum number of any packets in deferred packet get-list"); 91 92 #define SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \ 93 SFXGE_PARAM(tx_dpl_get_non_tcp_max) 94 static int sfxge_tx_dpl_get_non_tcp_max = 95 SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT; 96 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max); 97 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN, 98 &sfxge_tx_dpl_get_non_tcp_max, 0, 99 "Maximum number of non-TCP packets in deferred packet get-list"); 100 101 #define SFXGE_PARAM_TX_DPL_PUT_MAX SFXGE_PARAM(tx_dpl_put_max) 102 static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT; 103 TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max); 104 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN, 105 &sfxge_tx_dpl_put_max, 0, 106 "Maximum number of any packets in deferred packet put-list"); 107 108 #define SFXGE_PARAM_TSO_FW_ASSISTED SFXGE_PARAM(tso_fw_assisted) 109 static int sfxge_tso_fw_assisted = (SFXGE_FATSOV1 | SFXGE_FATSOV2); 110 TUNABLE_INT(SFXGE_PARAM_TSO_FW_ASSISTED, &sfxge_tso_fw_assisted); 111 SYSCTL_INT(_hw_sfxge, OID_AUTO, tso_fw_assisted, CTLFLAG_RDTUN, 112 &sfxge_tso_fw_assisted, 0, 113 "Bitmask of FW-assisted TSO allowed to use if supported by NIC firmware"); 114 115 116 static const struct { 117 const char *name; 118 size_t offset; 119 } sfxge_tx_stats[] = { 120 #define SFXGE_TX_STAT(name, member) \ 121 { #name, offsetof(struct sfxge_txq, member) } 122 SFXGE_TX_STAT(tso_bursts, tso_bursts), 123 SFXGE_TX_STAT(tso_packets, tso_packets), 124 SFXGE_TX_STAT(tso_long_headers, tso_long_headers), 125 SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many), 126 SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc), 127 SFXGE_TX_STAT(tx_collapses, collapses), 128 SFXGE_TX_STAT(tx_drops, drops), 129 SFXGE_TX_STAT(tx_get_overflow, get_overflow), 130 SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow), 131 SFXGE_TX_STAT(tx_put_overflow, put_overflow), 132 SFXGE_TX_STAT(tx_netdown_drops, netdown_drops), 133 }; 134 135 136 /* Forward declarations. */ 137 static void sfxge_tx_qdpl_service(struct sfxge_txq *txq); 138 static void sfxge_tx_qlist_post(struct sfxge_txq *txq); 139 static void sfxge_tx_qunblock(struct sfxge_txq *txq); 140 static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, 141 const bus_dma_segment_t *dma_seg, int n_dma_seg, 142 int vlan_tagged); 143 144 static int 145 sfxge_tx_maybe_insert_tag(struct sfxge_txq *txq, struct mbuf *mbuf) 146 { 147 uint16_t this_tag = ((mbuf->m_flags & M_VLANTAG) ? 148 mbuf->m_pkthdr.ether_vtag : 149 0); 150 151 if (this_tag == txq->hw_vlan_tci) 152 return (0); 153 154 efx_tx_qdesc_vlantci_create(txq->common, 155 bswap16(this_tag), 156 &txq->pend_desc[0]); 157 txq->n_pend_desc = 1; 158 txq->hw_vlan_tci = this_tag; 159 return (1); 160 } 161 162 static inline void 163 sfxge_next_stmp(struct sfxge_txq *txq, struct sfxge_tx_mapping **pstmp) 164 { 165 KASSERT((*pstmp)->flags == 0, ("stmp flags are not 0")); 166 if (__predict_false(*pstmp == 167 &txq->stmp[txq->ptr_mask])) 168 *pstmp = &txq->stmp[0]; 169 else 170 (*pstmp)++; 171 } 172 173 174 void 175 sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq) 176 { 177 unsigned int completed; 178 179 SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); 180 181 completed = txq->completed; 182 while (completed != txq->pending) { 183 struct sfxge_tx_mapping *stmp; 184 unsigned int id; 185 186 id = completed++ & txq->ptr_mask; 187 188 stmp = &txq->stmp[id]; 189 if (stmp->flags & TX_BUF_UNMAP) { 190 bus_dmamap_unload(txq->packet_dma_tag, stmp->map); 191 if (stmp->flags & TX_BUF_MBUF) { 192 struct mbuf *m = stmp->u.mbuf; 193 do 194 m = m_free(m); 195 while (m != NULL); 196 } else { 197 free(stmp->u.heap_buf, M_SFXGE); 198 } 199 stmp->flags = 0; 200 } 201 } 202 txq->completed = completed; 203 204 /* Check whether we need to unblock the queue. */ 205 mb(); 206 if (txq->blocked) { 207 unsigned int level; 208 209 level = txq->added - txq->completed; 210 if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) 211 sfxge_tx_qunblock(txq); 212 } 213 } 214 215 static unsigned int 216 sfxge_is_mbuf_non_tcp(struct mbuf *mbuf) 217 { 218 /* Absence of TCP checksum flags does not mean that it is non-TCP 219 * but it should be true if user wants to achieve high throughput. 220 */ 221 return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP))); 222 } 223 224 /* 225 * Reorder the put list and append it to the get list. 226 */ 227 static void 228 sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq) 229 { 230 struct sfxge_tx_dpl *stdp; 231 struct mbuf *mbuf, *get_next, **get_tailp; 232 volatile uintptr_t *putp; 233 uintptr_t put; 234 unsigned int count; 235 unsigned int non_tcp_count; 236 237 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 238 239 stdp = &txq->dpl; 240 241 /* Acquire the put list. */ 242 putp = &stdp->std_put; 243 put = atomic_readandclear_ptr(putp); 244 mbuf = (void *)put; 245 246 if (mbuf == NULL) 247 return; 248 249 /* Reverse the put list. */ 250 get_tailp = &mbuf->m_nextpkt; 251 get_next = NULL; 252 253 count = 0; 254 non_tcp_count = 0; 255 do { 256 struct mbuf *put_next; 257 258 non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf); 259 put_next = mbuf->m_nextpkt; 260 mbuf->m_nextpkt = get_next; 261 get_next = mbuf; 262 mbuf = put_next; 263 264 count++; 265 } while (mbuf != NULL); 266 267 if (count > stdp->std_put_hiwat) 268 stdp->std_put_hiwat = count; 269 270 /* Append the reversed put list to the get list. */ 271 KASSERT(*get_tailp == NULL, ("*get_tailp != NULL")); 272 *stdp->std_getp = get_next; 273 stdp->std_getp = get_tailp; 274 stdp->std_get_count += count; 275 stdp->std_get_non_tcp_count += non_tcp_count; 276 } 277 278 static void 279 sfxge_tx_qreap(struct sfxge_txq *txq) 280 { 281 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 282 283 txq->reaped = txq->completed; 284 } 285 286 static void 287 sfxge_tx_qlist_post(struct sfxge_txq *txq) 288 { 289 unsigned int old_added; 290 unsigned int block_level; 291 unsigned int level; 292 int rc; 293 294 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 295 296 KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0")); 297 KASSERT(txq->n_pend_desc <= txq->max_pkt_desc, 298 ("txq->n_pend_desc too large")); 299 KASSERT(!txq->blocked, ("txq->blocked")); 300 301 old_added = txq->added; 302 303 /* Post the fragment list. */ 304 rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, txq->n_pend_desc, 305 txq->reaped, &txq->added); 306 KASSERT(rc == 0, ("efx_tx_qdesc_post() failed")); 307 308 /* If efx_tx_qdesc_post() had to refragment, our information about 309 * buffers to free may be associated with the wrong 310 * descriptors. 311 */ 312 KASSERT(txq->added - old_added == txq->n_pend_desc, 313 ("efx_tx_qdesc_post() refragmented descriptors")); 314 315 level = txq->added - txq->reaped; 316 KASSERT(level <= txq->entries, ("overfilled TX queue")); 317 318 /* Clear the fragment list. */ 319 txq->n_pend_desc = 0; 320 321 /* 322 * Set the block level to ensure there is space to generate a 323 * large number of descriptors for TSO. 324 */ 325 block_level = EFX_TXQ_LIMIT(txq->entries) - txq->max_pkt_desc; 326 327 /* Have we reached the block level? */ 328 if (level < block_level) 329 return; 330 331 /* Reap, and check again */ 332 sfxge_tx_qreap(txq); 333 level = txq->added - txq->reaped; 334 if (level < block_level) 335 return; 336 337 txq->blocked = 1; 338 339 /* 340 * Avoid a race with completion interrupt handling that could leave 341 * the queue blocked. 342 */ 343 mb(); 344 sfxge_tx_qreap(txq); 345 level = txq->added - txq->reaped; 346 if (level < block_level) { 347 mb(); 348 txq->blocked = 0; 349 } 350 } 351 352 static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf) 353 { 354 bus_dmamap_t *used_map; 355 bus_dmamap_t map; 356 bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG]; 357 unsigned int id; 358 struct sfxge_tx_mapping *stmp; 359 efx_desc_t *desc; 360 int n_dma_seg; 361 int rc; 362 int i; 363 int eop; 364 uint16_t hw_vlan_tci_prev; 365 int vlan_tagged; 366 367 KASSERT(!txq->blocked, ("txq->blocked")); 368 369 #if SFXGE_TX_PARSE_EARLY 370 /* 371 * If software TSO is used, we still need to copy packet header, 372 * even if we have already parsed it early before enqueue. 373 */ 374 if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) && 375 (txq->tso_fw_assisted == 0)) 376 prefetch_read_many(mbuf->m_data); 377 #else 378 /* 379 * Prefetch packet header since we need to parse it and extract 380 * IP ID, TCP sequence number and flags. 381 */ 382 if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) 383 prefetch_read_many(mbuf->m_data); 384 #endif 385 386 if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) { 387 rc = EINTR; 388 goto reject; 389 } 390 391 /* Load the packet for DMA. */ 392 id = txq->added & txq->ptr_mask; 393 stmp = &txq->stmp[id]; 394 rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map, 395 mbuf, dma_seg, &n_dma_seg, 0); 396 if (rc == EFBIG) { 397 /* Try again. */ 398 struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT, 399 SFXGE_TX_MAPPING_MAX_SEG); 400 if (new_mbuf == NULL) 401 goto reject; 402 ++txq->collapses; 403 mbuf = new_mbuf; 404 rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, 405 stmp->map, mbuf, 406 dma_seg, &n_dma_seg, 0); 407 } 408 if (rc != 0) 409 goto reject; 410 411 /* Make the packet visible to the hardware. */ 412 bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE); 413 414 used_map = &stmp->map; 415 416 hw_vlan_tci_prev = txq->hw_vlan_tci; 417 418 vlan_tagged = sfxge_tx_maybe_insert_tag(txq, mbuf); 419 if (vlan_tagged) { 420 sfxge_next_stmp(txq, &stmp); 421 } 422 if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) { 423 rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg, vlan_tagged); 424 if (rc < 0) 425 goto reject_mapped; 426 stmp = &txq->stmp[(rc - 1) & txq->ptr_mask]; 427 } else { 428 /* Add the mapping to the fragment list, and set flags 429 * for the buffer. 430 */ 431 432 i = 0; 433 for (;;) { 434 desc = &txq->pend_desc[i + vlan_tagged]; 435 eop = (i == n_dma_seg - 1); 436 efx_tx_qdesc_dma_create(txq->common, 437 dma_seg[i].ds_addr, 438 dma_seg[i].ds_len, 439 eop, 440 desc); 441 if (eop) 442 break; 443 i++; 444 sfxge_next_stmp(txq, &stmp); 445 } 446 txq->n_pend_desc = n_dma_seg + vlan_tagged; 447 } 448 449 /* 450 * If the mapping required more than one descriptor 451 * then we need to associate the DMA map with the last 452 * descriptor, not the first. 453 */ 454 if (used_map != &stmp->map) { 455 map = stmp->map; 456 stmp->map = *used_map; 457 *used_map = map; 458 } 459 460 stmp->u.mbuf = mbuf; 461 stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF; 462 463 /* Post the fragment list. */ 464 sfxge_tx_qlist_post(txq); 465 466 return (0); 467 468 reject_mapped: 469 txq->hw_vlan_tci = hw_vlan_tci_prev; 470 bus_dmamap_unload(txq->packet_dma_tag, *used_map); 471 reject: 472 /* Drop the packet on the floor. */ 473 m_freem(mbuf); 474 ++txq->drops; 475 476 return (rc); 477 } 478 479 /* 480 * Drain the deferred packet list into the transmit queue. 481 */ 482 static void 483 sfxge_tx_qdpl_drain(struct sfxge_txq *txq) 484 { 485 struct sfxge_softc *sc; 486 struct sfxge_tx_dpl *stdp; 487 struct mbuf *mbuf, *next; 488 unsigned int count; 489 unsigned int non_tcp_count; 490 unsigned int pushed; 491 int rc; 492 493 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 494 495 sc = txq->sc; 496 stdp = &txq->dpl; 497 pushed = txq->added; 498 499 if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) { 500 prefetch_read_many(sc->enp); 501 prefetch_read_many(txq->common); 502 } 503 504 mbuf = stdp->std_get; 505 count = stdp->std_get_count; 506 non_tcp_count = stdp->std_get_non_tcp_count; 507 508 if (count > stdp->std_get_hiwat) 509 stdp->std_get_hiwat = count; 510 511 while (count != 0) { 512 KASSERT(mbuf != NULL, ("mbuf == NULL")); 513 514 next = mbuf->m_nextpkt; 515 mbuf->m_nextpkt = NULL; 516 517 ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */ 518 519 if (next != NULL) 520 prefetch_read_many(next); 521 522 rc = sfxge_tx_queue_mbuf(txq, mbuf); 523 --count; 524 non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf); 525 mbuf = next; 526 if (rc != 0) 527 continue; 528 529 if (txq->blocked) 530 break; 531 532 /* Push the fragments to the hardware in batches. */ 533 if (txq->added - pushed >= SFXGE_TX_BATCH) { 534 efx_tx_qpush(txq->common, txq->added, pushed); 535 pushed = txq->added; 536 } 537 } 538 539 if (count == 0) { 540 KASSERT(mbuf == NULL, ("mbuf != NULL")); 541 KASSERT(non_tcp_count == 0, 542 ("inconsistent TCP/non-TCP detection")); 543 stdp->std_get = NULL; 544 stdp->std_get_count = 0; 545 stdp->std_get_non_tcp_count = 0; 546 stdp->std_getp = &stdp->std_get; 547 } else { 548 stdp->std_get = mbuf; 549 stdp->std_get_count = count; 550 stdp->std_get_non_tcp_count = non_tcp_count; 551 } 552 553 if (txq->added != pushed) 554 efx_tx_qpush(txq->common, txq->added, pushed); 555 556 KASSERT(txq->blocked || stdp->std_get_count == 0, 557 ("queue unblocked but count is non-zero")); 558 } 559 560 #define SFXGE_TX_QDPL_PENDING(_txq) ((_txq)->dpl.std_put != 0) 561 562 /* 563 * Service the deferred packet list. 564 * 565 * NOTE: drops the txq mutex! 566 */ 567 static void 568 sfxge_tx_qdpl_service(struct sfxge_txq *txq) 569 { 570 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 571 572 do { 573 if (SFXGE_TX_QDPL_PENDING(txq)) 574 sfxge_tx_qdpl_swizzle(txq); 575 576 if (!txq->blocked) 577 sfxge_tx_qdpl_drain(txq); 578 579 SFXGE_TXQ_UNLOCK(txq); 580 } while (SFXGE_TX_QDPL_PENDING(txq) && 581 SFXGE_TXQ_TRYLOCK(txq)); 582 } 583 584 /* 585 * Put a packet on the deferred packet get-list. 586 */ 587 static int 588 sfxge_tx_qdpl_put_locked(struct sfxge_txq *txq, struct mbuf *mbuf) 589 { 590 struct sfxge_tx_dpl *stdp; 591 592 stdp = &txq->dpl; 593 594 KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); 595 596 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq); 597 598 if (stdp->std_get_count >= stdp->std_get_max) { 599 txq->get_overflow++; 600 return (ENOBUFS); 601 } 602 if (sfxge_is_mbuf_non_tcp(mbuf)) { 603 if (stdp->std_get_non_tcp_count >= 604 stdp->std_get_non_tcp_max) { 605 txq->get_non_tcp_overflow++; 606 return (ENOBUFS); 607 } 608 stdp->std_get_non_tcp_count++; 609 } 610 611 *(stdp->std_getp) = mbuf; 612 stdp->std_getp = &mbuf->m_nextpkt; 613 stdp->std_get_count++; 614 615 return (0); 616 } 617 618 /* 619 * Put a packet on the deferred packet put-list. 620 * 621 * We overload the csum_data field in the mbuf to keep track of this length 622 * because there is no cheap alternative to avoid races. 623 */ 624 static int 625 sfxge_tx_qdpl_put_unlocked(struct sfxge_txq *txq, struct mbuf *mbuf) 626 { 627 struct sfxge_tx_dpl *stdp; 628 volatile uintptr_t *putp; 629 uintptr_t old; 630 uintptr_t new; 631 unsigned int put_count; 632 633 KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); 634 635 SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq); 636 637 stdp = &txq->dpl; 638 putp = &stdp->std_put; 639 new = (uintptr_t)mbuf; 640 641 do { 642 old = *putp; 643 if (old != 0) { 644 struct mbuf *mp = (struct mbuf *)old; 645 put_count = mp->m_pkthdr.csum_data; 646 } else 647 put_count = 0; 648 if (put_count >= stdp->std_put_max) { 649 atomic_add_long(&txq->put_overflow, 1); 650 return (ENOBUFS); 651 } 652 mbuf->m_pkthdr.csum_data = put_count + 1; 653 mbuf->m_nextpkt = (void *)old; 654 } while (atomic_cmpset_ptr(putp, old, new) == 0); 655 656 return (0); 657 } 658 659 /* 660 * Called from if_transmit - will try to grab the txq lock and enqueue to the 661 * put list if it succeeds, otherwise try to push onto the defer list if space. 662 */ 663 static int 664 sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m) 665 { 666 int rc; 667 668 if (!SFXGE_LINK_UP(txq->sc)) { 669 atomic_add_long(&txq->netdown_drops, 1); 670 return (ENETDOWN); 671 } 672 673 /* 674 * Try to grab the txq lock. If we are able to get the lock, 675 * the packet will be appended to the "get list" of the deferred 676 * packet list. Otherwise, it will be pushed on the "put list". 677 */ 678 if (SFXGE_TXQ_TRYLOCK(txq)) { 679 /* First swizzle put-list to get-list to keep order */ 680 sfxge_tx_qdpl_swizzle(txq); 681 682 rc = sfxge_tx_qdpl_put_locked(txq, m); 683 684 /* Try to service the list. */ 685 sfxge_tx_qdpl_service(txq); 686 /* Lock has been dropped. */ 687 } else { 688 rc = sfxge_tx_qdpl_put_unlocked(txq, m); 689 690 /* 691 * Try to grab the lock again. 692 * 693 * If we are able to get the lock, we need to process 694 * the deferred packet list. If we are not able to get 695 * the lock, another thread is processing the list. 696 */ 697 if ((rc == 0) && SFXGE_TXQ_TRYLOCK(txq)) { 698 sfxge_tx_qdpl_service(txq); 699 /* Lock has been dropped. */ 700 } 701 } 702 703 SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq); 704 705 return (rc); 706 } 707 708 static void 709 sfxge_tx_qdpl_flush(struct sfxge_txq *txq) 710 { 711 struct sfxge_tx_dpl *stdp = &txq->dpl; 712 struct mbuf *mbuf, *next; 713 714 SFXGE_TXQ_LOCK(txq); 715 716 sfxge_tx_qdpl_swizzle(txq); 717 for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) { 718 next = mbuf->m_nextpkt; 719 m_freem(mbuf); 720 } 721 stdp->std_get = NULL; 722 stdp->std_get_count = 0; 723 stdp->std_get_non_tcp_count = 0; 724 stdp->std_getp = &stdp->std_get; 725 726 SFXGE_TXQ_UNLOCK(txq); 727 } 728 729 void 730 sfxge_if_qflush(struct ifnet *ifp) 731 { 732 struct sfxge_softc *sc; 733 unsigned int i; 734 735 sc = ifp->if_softc; 736 737 for (i = 0; i < sc->txq_count; i++) 738 sfxge_tx_qdpl_flush(sc->txq[i]); 739 } 740 741 #if SFXGE_TX_PARSE_EARLY 742 743 /* There is little space for user data in mbuf pkthdr, so we 744 * use l*hlen fields which are not used by the driver otherwise 745 * to store header offsets. 746 * The fields are 8-bit, but it's ok, no header may be longer than 255 bytes. 747 */ 748 749 750 #define TSO_MBUF_PROTO(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[0]) 751 /* We abuse l5hlen here because PH_loc can hold only 64 bits of data */ 752 #define TSO_MBUF_FLAGS(_mbuf) ((_mbuf)->m_pkthdr.l5hlen) 753 #define TSO_MBUF_PACKETID(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1]) 754 #define TSO_MBUF_SEQNUM(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.thirtytwo[1]) 755 756 static void sfxge_parse_tx_packet(struct mbuf *mbuf) 757 { 758 struct ether_header *eh = mtod(mbuf, struct ether_header *); 759 const struct tcphdr *th; 760 struct tcphdr th_copy; 761 762 /* Find network protocol and header */ 763 TSO_MBUF_PROTO(mbuf) = eh->ether_type; 764 if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_VLAN)) { 765 struct ether_vlan_header *veh = 766 mtod(mbuf, struct ether_vlan_header *); 767 TSO_MBUF_PROTO(mbuf) = veh->evl_proto; 768 mbuf->m_pkthdr.l2hlen = sizeof(*veh); 769 } else { 770 mbuf->m_pkthdr.l2hlen = sizeof(*eh); 771 } 772 773 /* Find TCP header */ 774 if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IP)) { 775 const struct ip *iph = (const struct ip *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen); 776 777 KASSERT(iph->ip_p == IPPROTO_TCP, 778 ("TSO required on non-TCP packet")); 779 mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + 4 * iph->ip_hl; 780 TSO_MBUF_PACKETID(mbuf) = iph->ip_id; 781 } else { 782 KASSERT(TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IPV6), 783 ("TSO required on non-IP packet")); 784 KASSERT(((const struct ip6_hdr *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen))->ip6_nxt == 785 IPPROTO_TCP, 786 ("TSO required on non-TCP packet")); 787 mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + sizeof(struct ip6_hdr); 788 TSO_MBUF_PACKETID(mbuf) = 0; 789 } 790 791 KASSERT(mbuf->m_len >= mbuf->m_pkthdr.l3hlen, 792 ("network header is fragmented in mbuf")); 793 794 /* We need TCP header including flags (window is the next) */ 795 if (mbuf->m_len < mbuf->m_pkthdr.l3hlen + offsetof(struct tcphdr, th_win)) { 796 m_copydata(mbuf, mbuf->m_pkthdr.l3hlen, sizeof(th_copy), 797 (caddr_t)&th_copy); 798 th = &th_copy; 799 } else { 800 th = (const struct tcphdr *)mtodo(mbuf, mbuf->m_pkthdr.l3hlen); 801 } 802 803 mbuf->m_pkthdr.l4hlen = mbuf->m_pkthdr.l3hlen + 4 * th->th_off; 804 TSO_MBUF_SEQNUM(mbuf) = ntohl(th->th_seq); 805 806 /* These flags must not be duplicated */ 807 /* 808 * RST should not be duplicated as well, but FreeBSD kernel 809 * generates TSO packets with RST flag. So, do not assert 810 * its absence. 811 */ 812 KASSERT(!(th->th_flags & (TH_URG | TH_SYN)), 813 ("incompatible TCP flag 0x%x on TSO packet", 814 th->th_flags & (TH_URG | TH_SYN))); 815 TSO_MBUF_FLAGS(mbuf) = th->th_flags; 816 } 817 #endif 818 819 /* 820 * TX start -- called by the stack. 821 */ 822 int 823 sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m) 824 { 825 struct sfxge_softc *sc; 826 struct sfxge_txq *txq; 827 int rc; 828 829 sc = (struct sfxge_softc *)ifp->if_softc; 830 831 /* 832 * Transmit may be called when interface is up from the kernel 833 * point of view, but not yet up (in progress) from the driver 834 * point of view. I.e. link aggregation bring up. 835 * Transmit may be called when interface is up from the driver 836 * point of view, but already down from the kernel point of 837 * view. I.e. Rx when interface shutdown is in progress. 838 */ 839 KASSERT((ifp->if_flags & IFF_UP) || (sc->if_flags & IFF_UP), 840 ("interface not up")); 841 842 /* Pick the desired transmit queue. */ 843 if (m->m_pkthdr.csum_flags & 844 (CSUM_DELAY_DATA | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_TSO)) { 845 int index = 0; 846 847 #ifdef RSS 848 uint32_t bucket_id; 849 850 /* 851 * Select a TX queue which matches the corresponding 852 * RX queue for the hash in order to assign both 853 * TX and RX parts of the flow to the same CPU 854 */ 855 if (rss_m2bucket(m, &bucket_id) == 0) 856 index = bucket_id % (sc->txq_count - (SFXGE_TXQ_NTYPES - 1)); 857 #else 858 /* check if flowid is set */ 859 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 860 uint32_t hash = m->m_pkthdr.flowid; 861 uint32_t idx = hash % nitems(sc->rx_indir_table); 862 863 index = sc->rx_indir_table[idx]; 864 } 865 #endif 866 #if SFXGE_TX_PARSE_EARLY 867 if (m->m_pkthdr.csum_flags & CSUM_TSO) 868 sfxge_parse_tx_packet(m); 869 #endif 870 txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index]; 871 } else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) { 872 txq = sc->txq[SFXGE_TXQ_IP_CKSUM]; 873 } else { 874 txq = sc->txq[SFXGE_TXQ_NON_CKSUM]; 875 } 876 877 rc = sfxge_tx_packet_add(txq, m); 878 if (rc != 0) 879 m_freem(m); 880 881 return (rc); 882 } 883 884 /* 885 * Software "TSO". Not quite as good as doing it in hardware, but 886 * still faster than segmenting in the stack. 887 */ 888 889 struct sfxge_tso_state { 890 /* Output position */ 891 unsigned out_len; /* Remaining length in current segment */ 892 unsigned seqnum; /* Current sequence number */ 893 unsigned packet_space; /* Remaining space in current packet */ 894 unsigned segs_space; /* Remaining number of DMA segments 895 for the packet (FATSOv2 only) */ 896 897 /* Input position */ 898 uint64_t dma_addr; /* DMA address of current position */ 899 unsigned in_len; /* Remaining length in current mbuf */ 900 901 const struct mbuf *mbuf; /* Input mbuf (head of chain) */ 902 u_short protocol; /* Network protocol (after VLAN decap) */ 903 ssize_t nh_off; /* Offset of network header */ 904 ssize_t tcph_off; /* Offset of TCP header */ 905 unsigned header_len; /* Number of bytes of header */ 906 unsigned seg_size; /* TCP segment size */ 907 int fw_assisted; /* Use FW-assisted TSO */ 908 u_short packet_id; /* IPv4 packet ID from the original packet */ 909 uint8_t tcp_flags; /* TCP flags */ 910 efx_desc_t header_desc; /* Precomputed header descriptor for 911 * FW-assisted TSO */ 912 }; 913 914 #if !SFXGE_TX_PARSE_EARLY 915 static const struct ip *tso_iph(const struct sfxge_tso_state *tso) 916 { 917 KASSERT(tso->protocol == htons(ETHERTYPE_IP), 918 ("tso_iph() in non-IPv4 state")); 919 return (const struct ip *)(tso->mbuf->m_data + tso->nh_off); 920 } 921 922 static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso) 923 { 924 KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), 925 ("tso_ip6h() in non-IPv6 state")); 926 return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off); 927 } 928 929 static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso) 930 { 931 return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off); 932 } 933 #endif 934 935 936 /* Size of preallocated TSO header buffers. Larger blocks must be 937 * allocated from the heap. 938 */ 939 #define TSOH_STD_SIZE 128 940 941 /* At most half the descriptors in the queue at any time will refer to 942 * a TSO header buffer, since they must always be followed by a 943 * payload descriptor referring to an mbuf. 944 */ 945 #define TSOH_COUNT(_txq_entries) ((_txq_entries) / 2u) 946 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE) 947 #define TSOH_PAGE_COUNT(_txq_entries) \ 948 howmany(TSOH_COUNT(_txq_entries), TSOH_PER_PAGE) 949 950 static int tso_init(struct sfxge_txq *txq) 951 { 952 struct sfxge_softc *sc = txq->sc; 953 unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries); 954 int i, rc; 955 956 /* Allocate TSO header buffers */ 957 txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]), 958 M_SFXGE, M_WAITOK); 959 960 for (i = 0; i < tsoh_page_count; i++) { 961 rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]); 962 if (rc != 0) 963 goto fail; 964 } 965 966 return (0); 967 968 fail: 969 while (i-- > 0) 970 sfxge_dma_free(&txq->tsoh_buffer[i]); 971 free(txq->tsoh_buffer, M_SFXGE); 972 txq->tsoh_buffer = NULL; 973 return (rc); 974 } 975 976 static void tso_fini(struct sfxge_txq *txq) 977 { 978 int i; 979 980 if (txq->tsoh_buffer != NULL) { 981 for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++) 982 sfxge_dma_free(&txq->tsoh_buffer[i]); 983 free(txq->tsoh_buffer, M_SFXGE); 984 } 985 } 986 987 static void tso_start(struct sfxge_txq *txq, struct sfxge_tso_state *tso, 988 const bus_dma_segment_t *hdr_dma_seg, 989 struct mbuf *mbuf) 990 { 991 const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->sc->enp); 992 #if !SFXGE_TX_PARSE_EARLY 993 struct ether_header *eh = mtod(mbuf, struct ether_header *); 994 const struct tcphdr *th; 995 struct tcphdr th_copy; 996 #endif 997 998 tso->fw_assisted = txq->tso_fw_assisted; 999 tso->mbuf = mbuf; 1000 1001 /* Find network protocol and header */ 1002 #if !SFXGE_TX_PARSE_EARLY 1003 tso->protocol = eh->ether_type; 1004 if (tso->protocol == htons(ETHERTYPE_VLAN)) { 1005 struct ether_vlan_header *veh = 1006 mtod(mbuf, struct ether_vlan_header *); 1007 tso->protocol = veh->evl_proto; 1008 tso->nh_off = sizeof(*veh); 1009 } else { 1010 tso->nh_off = sizeof(*eh); 1011 } 1012 #else 1013 tso->protocol = TSO_MBUF_PROTO(mbuf); 1014 tso->nh_off = mbuf->m_pkthdr.l2hlen; 1015 tso->tcph_off = mbuf->m_pkthdr.l3hlen; 1016 tso->packet_id = ntohs(TSO_MBUF_PACKETID(mbuf)); 1017 #endif 1018 1019 #if !SFXGE_TX_PARSE_EARLY 1020 /* Find TCP header */ 1021 if (tso->protocol == htons(ETHERTYPE_IP)) { 1022 KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP, 1023 ("TSO required on non-TCP packet")); 1024 tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl; 1025 tso->packet_id = ntohs(tso_iph(tso)->ip_id); 1026 } else { 1027 KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), 1028 ("TSO required on non-IP packet")); 1029 KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP, 1030 ("TSO required on non-TCP packet")); 1031 tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr); 1032 tso->packet_id = 0; 1033 } 1034 #endif 1035 1036 1037 if (tso->fw_assisted && 1038 __predict_false(tso->tcph_off > 1039 encp->enc_tx_tso_tcp_header_offset_limit)) { 1040 tso->fw_assisted = 0; 1041 } 1042 1043 1044 #if !SFXGE_TX_PARSE_EARLY 1045 KASSERT(mbuf->m_len >= tso->tcph_off, 1046 ("network header is fragmented in mbuf")); 1047 /* We need TCP header including flags (window is the next) */ 1048 if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) { 1049 m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy), 1050 (caddr_t)&th_copy); 1051 th = &th_copy; 1052 } else { 1053 th = tso_tcph(tso); 1054 } 1055 tso->header_len = tso->tcph_off + 4 * th->th_off; 1056 #else 1057 tso->header_len = mbuf->m_pkthdr.l4hlen; 1058 #endif 1059 tso->seg_size = mbuf->m_pkthdr.tso_segsz; 1060 1061 #if !SFXGE_TX_PARSE_EARLY 1062 tso->seqnum = ntohl(th->th_seq); 1063 1064 /* These flags must not be duplicated */ 1065 /* 1066 * RST should not be duplicated as well, but FreeBSD kernel 1067 * generates TSO packets with RST flag. So, do not assert 1068 * its absence. 1069 */ 1070 KASSERT(!(th->th_flags & (TH_URG | TH_SYN)), 1071 ("incompatible TCP flag 0x%x on TSO packet", 1072 th->th_flags & (TH_URG | TH_SYN))); 1073 tso->tcp_flags = th->th_flags; 1074 #else 1075 tso->seqnum = TSO_MBUF_SEQNUM(mbuf); 1076 tso->tcp_flags = TSO_MBUF_FLAGS(mbuf); 1077 #endif 1078 1079 tso->out_len = mbuf->m_pkthdr.len - tso->header_len; 1080 1081 if (tso->fw_assisted) { 1082 if (hdr_dma_seg->ds_len >= tso->header_len) 1083 efx_tx_qdesc_dma_create(txq->common, 1084 hdr_dma_seg->ds_addr, 1085 tso->header_len, 1086 B_FALSE, 1087 &tso->header_desc); 1088 else 1089 tso->fw_assisted = 0; 1090 } 1091 } 1092 1093 /* 1094 * tso_fill_packet_with_fragment - form descriptors for the current fragment 1095 * 1096 * Form descriptors for the current fragment, until we reach the end 1097 * of fragment or end-of-packet. Return 0 on success, 1 if not enough 1098 * space. 1099 */ 1100 static void tso_fill_packet_with_fragment(struct sfxge_txq *txq, 1101 struct sfxge_tso_state *tso) 1102 { 1103 efx_desc_t *desc; 1104 int n; 1105 uint64_t dma_addr = tso->dma_addr; 1106 boolean_t eop; 1107 1108 if (tso->in_len == 0 || tso->packet_space == 0) 1109 return; 1110 1111 KASSERT(tso->in_len > 0, ("TSO input length went negative")); 1112 KASSERT(tso->packet_space > 0, ("TSO packet space went negative")); 1113 1114 if (tso->fw_assisted & SFXGE_FATSOV2) { 1115 n = tso->in_len; 1116 tso->out_len -= n; 1117 tso->seqnum += n; 1118 tso->in_len = 0; 1119 if (n < tso->packet_space) { 1120 tso->packet_space -= n; 1121 tso->segs_space--; 1122 } else { 1123 tso->packet_space = tso->seg_size - 1124 (n - tso->packet_space) % tso->seg_size; 1125 tso->segs_space = 1126 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1 - 1127 (tso->packet_space != tso->seg_size); 1128 } 1129 } else { 1130 n = min(tso->in_len, tso->packet_space); 1131 tso->packet_space -= n; 1132 tso->out_len -= n; 1133 tso->dma_addr += n; 1134 tso->in_len -= n; 1135 } 1136 1137 /* 1138 * It is OK to use binary OR below to avoid extra branching 1139 * since all conditions may always be checked. 1140 */ 1141 eop = (tso->out_len == 0) | (tso->packet_space == 0) | 1142 (tso->segs_space == 0); 1143 1144 desc = &txq->pend_desc[txq->n_pend_desc++]; 1145 efx_tx_qdesc_dma_create(txq->common, dma_addr, n, eop, desc); 1146 } 1147 1148 /* Callback from bus_dmamap_load() for long TSO headers. */ 1149 static void tso_map_long_header(void *dma_addr_ret, 1150 bus_dma_segment_t *segs, int nseg, 1151 int error) 1152 { 1153 *(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) && 1154 __predict_true(nseg == 1)) ? 1155 segs->ds_addr : 0); 1156 } 1157 1158 /* 1159 * tso_start_new_packet - generate a new header and prepare for the new packet 1160 * 1161 * Generate a new header and prepare for the new packet. Return 0 on 1162 * success, or an error code if failed to alloc header. 1163 */ 1164 static int tso_start_new_packet(struct sfxge_txq *txq, 1165 struct sfxge_tso_state *tso, 1166 unsigned int *idp) 1167 { 1168 unsigned int id = *idp; 1169 struct tcphdr *tsoh_th; 1170 unsigned ip_length; 1171 caddr_t header; 1172 uint64_t dma_addr; 1173 bus_dmamap_t map; 1174 efx_desc_t *desc; 1175 int rc; 1176 1177 if (tso->fw_assisted) { 1178 if (tso->fw_assisted & SFXGE_FATSOV2) { 1179 /* Add 2 FATSOv2 option descriptors */ 1180 desc = &txq->pend_desc[txq->n_pend_desc]; 1181 efx_tx_qdesc_tso2_create(txq->common, 1182 tso->packet_id, 1183 0, 1184 tso->seqnum, 1185 tso->seg_size, 1186 desc, 1187 EFX_TX_FATSOV2_OPT_NDESCS); 1188 desc += EFX_TX_FATSOV2_OPT_NDESCS; 1189 txq->n_pend_desc += EFX_TX_FATSOV2_OPT_NDESCS; 1190 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1191 id = (id + EFX_TX_FATSOV2_OPT_NDESCS) & txq->ptr_mask; 1192 1193 tso->segs_space = 1194 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1; 1195 } else { 1196 uint8_t tcp_flags = tso->tcp_flags; 1197 1198 if (tso->out_len > tso->seg_size) 1199 tcp_flags &= ~(TH_FIN | TH_PUSH); 1200 1201 /* Add FATSOv1 option descriptor */ 1202 desc = &txq->pend_desc[txq->n_pend_desc++]; 1203 efx_tx_qdesc_tso_create(txq->common, 1204 tso->packet_id, 1205 tso->seqnum, 1206 tcp_flags, 1207 desc++); 1208 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1209 id = (id + 1) & txq->ptr_mask; 1210 1211 tso->seqnum += tso->seg_size; 1212 tso->segs_space = UINT_MAX; 1213 } 1214 1215 /* Header DMA descriptor */ 1216 *desc = tso->header_desc; 1217 txq->n_pend_desc++; 1218 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1219 id = (id + 1) & txq->ptr_mask; 1220 } else { 1221 /* Allocate a DMA-mapped header buffer. */ 1222 if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) { 1223 unsigned int page_index = (id / 2) / TSOH_PER_PAGE; 1224 unsigned int buf_index = (id / 2) % TSOH_PER_PAGE; 1225 1226 header = (txq->tsoh_buffer[page_index].esm_base + 1227 buf_index * TSOH_STD_SIZE); 1228 dma_addr = (txq->tsoh_buffer[page_index].esm_addr + 1229 buf_index * TSOH_STD_SIZE); 1230 map = txq->tsoh_buffer[page_index].esm_map; 1231 1232 KASSERT(txq->stmp[id].flags == 0, 1233 ("stmp flags are not 0")); 1234 } else { 1235 struct sfxge_tx_mapping *stmp = &txq->stmp[id]; 1236 1237 /* We cannot use bus_dmamem_alloc() as that may sleep */ 1238 header = malloc(tso->header_len, M_SFXGE, M_NOWAIT); 1239 if (__predict_false(!header)) 1240 return (ENOMEM); 1241 rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map, 1242 header, tso->header_len, 1243 tso_map_long_header, &dma_addr, 1244 BUS_DMA_NOWAIT); 1245 if (__predict_false(dma_addr == 0)) { 1246 if (rc == 0) { 1247 /* Succeeded but got >1 segment */ 1248 bus_dmamap_unload(txq->packet_dma_tag, 1249 stmp->map); 1250 rc = EINVAL; 1251 } 1252 free(header, M_SFXGE); 1253 return (rc); 1254 } 1255 map = stmp->map; 1256 1257 txq->tso_long_headers++; 1258 stmp->u.heap_buf = header; 1259 stmp->flags = TX_BUF_UNMAP; 1260 } 1261 1262 tsoh_th = (struct tcphdr *)(header + tso->tcph_off); 1263 1264 /* Copy and update the headers. */ 1265 m_copydata(tso->mbuf, 0, tso->header_len, header); 1266 1267 tsoh_th->th_seq = htonl(tso->seqnum); 1268 tso->seqnum += tso->seg_size; 1269 if (tso->out_len > tso->seg_size) { 1270 /* This packet will not finish the TSO burst. */ 1271 ip_length = tso->header_len - tso->nh_off + tso->seg_size; 1272 tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH); 1273 } else { 1274 /* This packet will be the last in the TSO burst. */ 1275 ip_length = tso->header_len - tso->nh_off + tso->out_len; 1276 } 1277 1278 if (tso->protocol == htons(ETHERTYPE_IP)) { 1279 struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off); 1280 tsoh_iph->ip_len = htons(ip_length); 1281 /* XXX We should increment ip_id, but FreeBSD doesn't 1282 * currently allocate extra IDs for multiple segments. 1283 */ 1284 } else { 1285 struct ip6_hdr *tsoh_iph = 1286 (struct ip6_hdr *)(header + tso->nh_off); 1287 tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph)); 1288 } 1289 1290 /* Make the header visible to the hardware. */ 1291 bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE); 1292 1293 /* Form a descriptor for this header. */ 1294 desc = &txq->pend_desc[txq->n_pend_desc++]; 1295 efx_tx_qdesc_dma_create(txq->common, 1296 dma_addr, 1297 tso->header_len, 1298 0, 1299 desc); 1300 id = (id + 1) & txq->ptr_mask; 1301 1302 tso->segs_space = UINT_MAX; 1303 } 1304 tso->packet_space = tso->seg_size; 1305 txq->tso_packets++; 1306 *idp = id; 1307 1308 return (0); 1309 } 1310 1311 static int 1312 sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, 1313 const bus_dma_segment_t *dma_seg, int n_dma_seg, 1314 int vlan_tagged) 1315 { 1316 struct sfxge_tso_state tso; 1317 unsigned int id; 1318 unsigned skipped = 0; 1319 1320 tso_start(txq, &tso, dma_seg, mbuf); 1321 1322 while (dma_seg->ds_len + skipped <= tso.header_len) { 1323 skipped += dma_seg->ds_len; 1324 --n_dma_seg; 1325 KASSERT(n_dma_seg, ("no payload found in TSO packet")); 1326 ++dma_seg; 1327 } 1328 tso.in_len = dma_seg->ds_len - (tso.header_len - skipped); 1329 tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped); 1330 1331 id = (txq->added + vlan_tagged) & txq->ptr_mask; 1332 if (__predict_false(tso_start_new_packet(txq, &tso, &id))) 1333 return (-1); 1334 1335 while (1) { 1336 tso_fill_packet_with_fragment(txq, &tso); 1337 /* Exactly one DMA descriptor is added */ 1338 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0")); 1339 id = (id + 1) & txq->ptr_mask; 1340 1341 /* Move onto the next fragment? */ 1342 if (tso.in_len == 0) { 1343 --n_dma_seg; 1344 if (n_dma_seg == 0) 1345 break; 1346 ++dma_seg; 1347 tso.in_len = dma_seg->ds_len; 1348 tso.dma_addr = dma_seg->ds_addr; 1349 } 1350 1351 /* End of packet? */ 1352 if ((tso.packet_space == 0) | (tso.segs_space == 0)) { 1353 unsigned int n_fatso_opt_desc = 1354 (tso.fw_assisted & SFXGE_FATSOV2) ? 1355 EFX_TX_FATSOV2_OPT_NDESCS : 1356 (tso.fw_assisted & SFXGE_FATSOV1) ? 1 : 0; 1357 1358 /* If the queue is now full due to tiny MSS, 1359 * or we can't create another header, discard 1360 * the remainder of the input mbuf but do not 1361 * roll back the work we have done. 1362 */ 1363 if (txq->n_pend_desc + n_fatso_opt_desc + 1364 1 /* header */ + n_dma_seg > txq->max_pkt_desc) { 1365 txq->tso_pdrop_too_many++; 1366 break; 1367 } 1368 if (__predict_false(tso_start_new_packet(txq, &tso, 1369 &id))) { 1370 txq->tso_pdrop_no_rsrc++; 1371 break; 1372 } 1373 } 1374 } 1375 1376 txq->tso_bursts++; 1377 return (id); 1378 } 1379 1380 static void 1381 sfxge_tx_qunblock(struct sfxge_txq *txq) 1382 { 1383 struct sfxge_softc *sc; 1384 struct sfxge_evq *evq; 1385 1386 sc = txq->sc; 1387 evq = sc->evq[txq->evq_index]; 1388 1389 SFXGE_EVQ_LOCK_ASSERT_OWNED(evq); 1390 1391 if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) 1392 return; 1393 1394 SFXGE_TXQ_LOCK(txq); 1395 1396 if (txq->blocked) { 1397 unsigned int level; 1398 1399 level = txq->added - txq->completed; 1400 if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) { 1401 /* reaped must be in sync with blocked */ 1402 sfxge_tx_qreap(txq); 1403 txq->blocked = 0; 1404 } 1405 } 1406 1407 sfxge_tx_qdpl_service(txq); 1408 /* note: lock has been dropped */ 1409 } 1410 1411 void 1412 sfxge_tx_qflush_done(struct sfxge_txq *txq) 1413 { 1414 1415 txq->flush_state = SFXGE_FLUSH_DONE; 1416 } 1417 1418 static void 1419 sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index) 1420 { 1421 struct sfxge_txq *txq; 1422 struct sfxge_evq *evq; 1423 unsigned int count; 1424 1425 SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); 1426 1427 txq = sc->txq[index]; 1428 evq = sc->evq[txq->evq_index]; 1429 1430 SFXGE_EVQ_LOCK(evq); 1431 SFXGE_TXQ_LOCK(txq); 1432 1433 KASSERT(txq->init_state == SFXGE_TXQ_STARTED, 1434 ("txq->init_state != SFXGE_TXQ_STARTED")); 1435 1436 txq->init_state = SFXGE_TXQ_INITIALIZED; 1437 1438 if (txq->flush_state != SFXGE_FLUSH_DONE) { 1439 txq->flush_state = SFXGE_FLUSH_PENDING; 1440 1441 SFXGE_EVQ_UNLOCK(evq); 1442 SFXGE_TXQ_UNLOCK(txq); 1443 1444 /* Flush the transmit queue. */ 1445 if (efx_tx_qflush(txq->common) != 0) { 1446 log(LOG_ERR, "%s: Flushing Tx queue %u failed\n", 1447 device_get_nameunit(sc->dev), index); 1448 txq->flush_state = SFXGE_FLUSH_DONE; 1449 } else { 1450 count = 0; 1451 do { 1452 /* Spin for 100ms. */ 1453 DELAY(100000); 1454 if (txq->flush_state != SFXGE_FLUSH_PENDING) 1455 break; 1456 } while (++count < 20); 1457 } 1458 SFXGE_EVQ_LOCK(evq); 1459 SFXGE_TXQ_LOCK(txq); 1460 1461 KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED, 1462 ("txq->flush_state == SFXGE_FLUSH_FAILED")); 1463 1464 if (txq->flush_state != SFXGE_FLUSH_DONE) { 1465 /* Flush timeout */ 1466 log(LOG_ERR, "%s: Cannot flush Tx queue %u\n", 1467 device_get_nameunit(sc->dev), index); 1468 txq->flush_state = SFXGE_FLUSH_DONE; 1469 } 1470 } 1471 1472 txq->blocked = 0; 1473 txq->pending = txq->added; 1474 1475 sfxge_tx_qcomplete(txq, evq); 1476 KASSERT(txq->completed == txq->added, 1477 ("txq->completed != txq->added")); 1478 1479 sfxge_tx_qreap(txq); 1480 KASSERT(txq->reaped == txq->completed, 1481 ("txq->reaped != txq->completed")); 1482 1483 txq->added = 0; 1484 txq->pending = 0; 1485 txq->completed = 0; 1486 txq->reaped = 0; 1487 1488 /* Destroy the common code transmit queue. */ 1489 efx_tx_qdestroy(txq->common); 1490 txq->common = NULL; 1491 1492 efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, 1493 EFX_TXQ_NBUFS(sc->txq_entries)); 1494 1495 SFXGE_EVQ_UNLOCK(evq); 1496 SFXGE_TXQ_UNLOCK(txq); 1497 } 1498 1499 /* 1500 * Estimate maximum number of Tx descriptors required for TSO packet. 1501 * With minimum MSS and maximum mbuf length we might need more (even 1502 * than a ring-ful of descriptors), but this should not happen in 1503 * practice except due to deliberate attack. In that case we will 1504 * truncate the output at a packet boundary. 1505 */ 1506 static unsigned int 1507 sfxge_tx_max_pkt_desc(const struct sfxge_softc *sc, enum sfxge_txq_type type, 1508 unsigned int tso_fw_assisted) 1509 { 1510 /* One descriptor for every input fragment */ 1511 unsigned int max_descs = SFXGE_TX_MAPPING_MAX_SEG; 1512 unsigned int sw_tso_max_descs; 1513 unsigned int fa_tso_v1_max_descs = 0; 1514 unsigned int fa_tso_v2_max_descs = 0; 1515 1516 /* VLAN tagging Tx option descriptor may be required */ 1517 if (efx_nic_cfg_get(sc->enp)->enc_hw_tx_insert_vlan_enabled) 1518 max_descs++; 1519 1520 if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) { 1521 /* 1522 * Plus header and payload descriptor for each output segment. 1523 * Minus one since header fragment is already counted. 1524 * Even if FATSO is used, we should be ready to fallback 1525 * to do it in the driver. 1526 */ 1527 sw_tso_max_descs = SFXGE_TSO_MAX_SEGS * 2 - 1; 1528 1529 /* FW assisted TSOv1 requires one more descriptor per segment 1530 * in comparison to SW TSO */ 1531 if (tso_fw_assisted & SFXGE_FATSOV1) 1532 fa_tso_v1_max_descs = 1533 sw_tso_max_descs + SFXGE_TSO_MAX_SEGS; 1534 1535 /* FW assisted TSOv2 requires 3 (2 FATSO plus header) extra 1536 * descriptors per superframe limited by number of DMA fetches 1537 * per packet. The first packet header is already counted. 1538 */ 1539 if (tso_fw_assisted & SFXGE_FATSOV2) { 1540 fa_tso_v2_max_descs = 1541 howmany(SFXGE_TX_MAPPING_MAX_SEG, 1542 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1) * 1543 (EFX_TX_FATSOV2_OPT_NDESCS + 1) - 1; 1544 } 1545 1546 max_descs += MAX(sw_tso_max_descs, 1547 MAX(fa_tso_v1_max_descs, fa_tso_v2_max_descs)); 1548 } 1549 1550 return (max_descs); 1551 } 1552 1553 static int 1554 sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index) 1555 { 1556 struct sfxge_txq *txq; 1557 efsys_mem_t *esmp; 1558 uint16_t flags; 1559 unsigned int tso_fw_assisted; 1560 struct sfxge_evq *evq; 1561 unsigned int desc_index; 1562 int rc; 1563 1564 SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc); 1565 1566 txq = sc->txq[index]; 1567 esmp = &txq->mem; 1568 evq = sc->evq[txq->evq_index]; 1569 1570 KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, 1571 ("txq->init_state != SFXGE_TXQ_INITIALIZED")); 1572 KASSERT(evq->init_state == SFXGE_EVQ_STARTED, 1573 ("evq->init_state != SFXGE_EVQ_STARTED")); 1574 1575 /* Program the buffer table. */ 1576 if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp, 1577 EFX_TXQ_NBUFS(sc->txq_entries))) != 0) 1578 return (rc); 1579 1580 /* Determine the kind of queue we are creating. */ 1581 tso_fw_assisted = 0; 1582 switch (txq->type) { 1583 case SFXGE_TXQ_NON_CKSUM: 1584 flags = 0; 1585 break; 1586 case SFXGE_TXQ_IP_CKSUM: 1587 flags = EFX_TXQ_CKSUM_IPV4; 1588 break; 1589 case SFXGE_TXQ_IP_TCP_UDP_CKSUM: 1590 flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP; 1591 tso_fw_assisted = sc->tso_fw_assisted; 1592 if (tso_fw_assisted & SFXGE_FATSOV2) 1593 flags |= EFX_TXQ_FATSOV2; 1594 break; 1595 default: 1596 KASSERT(0, ("Impossible TX queue")); 1597 flags = 0; 1598 break; 1599 } 1600 1601 /* Create the common code transmit queue. */ 1602 if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp, 1603 sc->txq_entries, txq->buf_base_id, flags, evq->common, 1604 &txq->common, &desc_index)) != 0) { 1605 /* Retry if no FATSOv2 resources, otherwise fail */ 1606 if ((rc != ENOSPC) || (~flags & EFX_TXQ_FATSOV2)) 1607 goto fail; 1608 1609 /* Looks like all FATSOv2 contexts are used */ 1610 flags &= ~EFX_TXQ_FATSOV2; 1611 tso_fw_assisted &= ~SFXGE_FATSOV2; 1612 if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp, 1613 sc->txq_entries, txq->buf_base_id, flags, evq->common, 1614 &txq->common, &desc_index)) != 0) 1615 goto fail; 1616 } 1617 1618 /* Initialise queue descriptor indexes */ 1619 txq->added = txq->pending = txq->completed = txq->reaped = desc_index; 1620 1621 SFXGE_TXQ_LOCK(txq); 1622 1623 /* Enable the transmit queue. */ 1624 efx_tx_qenable(txq->common); 1625 1626 txq->init_state = SFXGE_TXQ_STARTED; 1627 txq->flush_state = SFXGE_FLUSH_REQUIRED; 1628 txq->tso_fw_assisted = tso_fw_assisted; 1629 1630 txq->max_pkt_desc = sfxge_tx_max_pkt_desc(sc, txq->type, 1631 tso_fw_assisted); 1632 1633 txq->hw_vlan_tci = 0; 1634 1635 SFXGE_TXQ_UNLOCK(txq); 1636 1637 return (0); 1638 1639 fail: 1640 efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, 1641 EFX_TXQ_NBUFS(sc->txq_entries)); 1642 return (rc); 1643 } 1644 1645 void 1646 sfxge_tx_stop(struct sfxge_softc *sc) 1647 { 1648 int index; 1649 1650 index = sc->txq_count; 1651 while (--index >= 0) 1652 sfxge_tx_qstop(sc, index); 1653 1654 /* Tear down the transmit module */ 1655 efx_tx_fini(sc->enp); 1656 } 1657 1658 int 1659 sfxge_tx_start(struct sfxge_softc *sc) 1660 { 1661 int index; 1662 int rc; 1663 1664 /* Initialize the common code transmit module. */ 1665 if ((rc = efx_tx_init(sc->enp)) != 0) 1666 return (rc); 1667 1668 for (index = 0; index < sc->txq_count; index++) { 1669 if ((rc = sfxge_tx_qstart(sc, index)) != 0) 1670 goto fail; 1671 } 1672 1673 return (0); 1674 1675 fail: 1676 while (--index >= 0) 1677 sfxge_tx_qstop(sc, index); 1678 1679 efx_tx_fini(sc->enp); 1680 1681 return (rc); 1682 } 1683 1684 static int 1685 sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node) 1686 { 1687 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev); 1688 struct sysctl_oid *stat_node; 1689 unsigned int id; 1690 1691 stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO, 1692 "stats", CTLFLAG_RD, NULL, 1693 "Tx queue statistics"); 1694 if (stat_node == NULL) 1695 return (ENOMEM); 1696 1697 for (id = 0; id < nitems(sfxge_tx_stats); id++) { 1698 SYSCTL_ADD_ULONG( 1699 ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO, 1700 sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS, 1701 (unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset), 1702 ""); 1703 } 1704 1705 return (0); 1706 } 1707 1708 /** 1709 * Destroy a transmit queue. 1710 */ 1711 static void 1712 sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index) 1713 { 1714 struct sfxge_txq *txq; 1715 unsigned int nmaps; 1716 1717 txq = sc->txq[index]; 1718 1719 KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, 1720 ("txq->init_state != SFXGE_TXQ_INITIALIZED")); 1721 1722 if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) 1723 tso_fini(txq); 1724 1725 /* Free the context arrays. */ 1726 free(txq->pend_desc, M_SFXGE); 1727 nmaps = sc->txq_entries; 1728 while (nmaps-- != 0) 1729 bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); 1730 free(txq->stmp, M_SFXGE); 1731 1732 /* Release DMA memory mapping. */ 1733 sfxge_dma_free(&txq->mem); 1734 1735 sc->txq[index] = NULL; 1736 1737 SFXGE_TXQ_LOCK_DESTROY(txq); 1738 1739 free(txq, M_SFXGE); 1740 } 1741 1742 static int 1743 sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index, 1744 enum sfxge_txq_type type, unsigned int evq_index) 1745 { 1746 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp); 1747 char name[16]; 1748 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); 1749 struct sysctl_oid *txq_node; 1750 struct sfxge_txq *txq; 1751 struct sfxge_evq *evq; 1752 struct sfxge_tx_dpl *stdp; 1753 struct sysctl_oid *dpl_node; 1754 efsys_mem_t *esmp; 1755 unsigned int nmaps; 1756 int rc; 1757 1758 txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK); 1759 txq->sc = sc; 1760 txq->entries = sc->txq_entries; 1761 txq->ptr_mask = txq->entries - 1; 1762 1763 sc->txq[txq_index] = txq; 1764 esmp = &txq->mem; 1765 1766 evq = sc->evq[evq_index]; 1767 1768 /* Allocate and zero DMA space for the descriptor ring. */ 1769 if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0) 1770 return (rc); 1771 1772 /* Allocate buffer table entries. */ 1773 sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries), 1774 &txq->buf_base_id); 1775 1776 /* Create a DMA tag for packet mappings. */ 1777 if (bus_dma_tag_create(sc->parent_dma_tag, 1, 1778 encp->enc_tx_dma_desc_boundary, 1779 MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL, 1780 NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 1781 encp->enc_tx_dma_desc_size_max, 0, NULL, NULL, 1782 &txq->packet_dma_tag) != 0) { 1783 device_printf(sc->dev, "Couldn't allocate txq DMA tag\n"); 1784 rc = ENOMEM; 1785 goto fail; 1786 } 1787 1788 /* Allocate pending descriptor array for batching writes. */ 1789 txq->pend_desc = malloc(sizeof(efx_desc_t) * sc->txq_entries, 1790 M_SFXGE, M_ZERO | M_WAITOK); 1791 1792 /* Allocate and initialise mbuf DMA mapping array. */ 1793 txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries, 1794 M_SFXGE, M_ZERO | M_WAITOK); 1795 for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) { 1796 rc = bus_dmamap_create(txq->packet_dma_tag, 0, 1797 &txq->stmp[nmaps].map); 1798 if (rc != 0) 1799 goto fail2; 1800 } 1801 1802 snprintf(name, sizeof(name), "%u", txq_index); 1803 txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node), 1804 OID_AUTO, name, CTLFLAG_RD, NULL, ""); 1805 if (txq_node == NULL) { 1806 rc = ENOMEM; 1807 goto fail_txq_node; 1808 } 1809 1810 if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM && 1811 (rc = tso_init(txq)) != 0) 1812 goto fail3; 1813 1814 /* Initialize the deferred packet list. */ 1815 stdp = &txq->dpl; 1816 stdp->std_put_max = sfxge_tx_dpl_put_max; 1817 stdp->std_get_max = sfxge_tx_dpl_get_max; 1818 stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max; 1819 stdp->std_getp = &stdp->std_get; 1820 1821 SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index); 1822 1823 dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO, 1824 "dpl", CTLFLAG_RD, NULL, 1825 "Deferred packet list statistics"); 1826 if (dpl_node == NULL) { 1827 rc = ENOMEM; 1828 goto fail_dpl_node; 1829 } 1830 1831 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1832 "get_count", CTLFLAG_RD | CTLFLAG_STATS, 1833 &stdp->std_get_count, 0, ""); 1834 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1835 "get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS, 1836 &stdp->std_get_non_tcp_count, 0, ""); 1837 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1838 "get_hiwat", CTLFLAG_RD | CTLFLAG_STATS, 1839 &stdp->std_get_hiwat, 0, ""); 1840 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO, 1841 "put_hiwat", CTLFLAG_RD | CTLFLAG_STATS, 1842 &stdp->std_put_hiwat, 0, ""); 1843 1844 rc = sfxge_txq_stat_init(txq, txq_node); 1845 if (rc != 0) 1846 goto fail_txq_stat_init; 1847 1848 txq->type = type; 1849 txq->evq_index = evq_index; 1850 txq->init_state = SFXGE_TXQ_INITIALIZED; 1851 1852 return (0); 1853 1854 fail_txq_stat_init: 1855 fail_dpl_node: 1856 fail3: 1857 fail_txq_node: 1858 free(txq->pend_desc, M_SFXGE); 1859 fail2: 1860 while (nmaps-- != 0) 1861 bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); 1862 free(txq->stmp, M_SFXGE); 1863 bus_dma_tag_destroy(txq->packet_dma_tag); 1864 1865 fail: 1866 sfxge_dma_free(esmp); 1867 1868 return (rc); 1869 } 1870 1871 static int 1872 sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS) 1873 { 1874 struct sfxge_softc *sc = arg1; 1875 unsigned int id = arg2; 1876 unsigned long sum; 1877 unsigned int index; 1878 1879 /* Sum across all TX queues */ 1880 sum = 0; 1881 for (index = 0; index < sc->txq_count; index++) 1882 sum += *(unsigned long *)((caddr_t)sc->txq[index] + 1883 sfxge_tx_stats[id].offset); 1884 1885 return (SYSCTL_OUT(req, &sum, sizeof(sum))); 1886 } 1887 1888 static void 1889 sfxge_tx_stat_init(struct sfxge_softc *sc) 1890 { 1891 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); 1892 struct sysctl_oid_list *stat_list; 1893 unsigned int id; 1894 1895 stat_list = SYSCTL_CHILDREN(sc->stats_node); 1896 1897 for (id = 0; id < nitems(sfxge_tx_stats); id++) { 1898 SYSCTL_ADD_PROC( 1899 ctx, stat_list, 1900 OID_AUTO, sfxge_tx_stats[id].name, 1901 CTLTYPE_ULONG|CTLFLAG_RD, 1902 sc, id, sfxge_tx_stat_handler, "LU", 1903 ""); 1904 } 1905 } 1906 1907 uint64_t 1908 sfxge_tx_get_drops(struct sfxge_softc *sc) 1909 { 1910 unsigned int index; 1911 uint64_t drops = 0; 1912 struct sfxge_txq *txq; 1913 1914 /* Sum across all TX queues */ 1915 for (index = 0; index < sc->txq_count; index++) { 1916 txq = sc->txq[index]; 1917 /* 1918 * In theory, txq->put_overflow and txq->netdown_drops 1919 * should use atomic operation and other should be 1920 * obtained under txq lock, but it is just statistics. 1921 */ 1922 drops += txq->drops + txq->get_overflow + 1923 txq->get_non_tcp_overflow + 1924 txq->put_overflow + txq->netdown_drops + 1925 txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc; 1926 } 1927 return (drops); 1928 } 1929 1930 void 1931 sfxge_tx_fini(struct sfxge_softc *sc) 1932 { 1933 int index; 1934 1935 index = sc->txq_count; 1936 while (--index >= 0) 1937 sfxge_tx_qfini(sc, index); 1938 1939 sc->txq_count = 0; 1940 } 1941 1942 1943 int 1944 sfxge_tx_init(struct sfxge_softc *sc) 1945 { 1946 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp); 1947 struct sfxge_intr *intr; 1948 int index; 1949 int rc; 1950 1951 intr = &sc->intr; 1952 1953 KASSERT(intr->state == SFXGE_INTR_INITIALIZED, 1954 ("intr->state != SFXGE_INTR_INITIALIZED")); 1955 1956 if (sfxge_tx_dpl_get_max <= 0) { 1957 log(LOG_ERR, "%s=%d must be greater than 0", 1958 SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max); 1959 rc = EINVAL; 1960 goto fail_tx_dpl_get_max; 1961 } 1962 if (sfxge_tx_dpl_get_non_tcp_max <= 0) { 1963 log(LOG_ERR, "%s=%d must be greater than 0", 1964 SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, 1965 sfxge_tx_dpl_get_non_tcp_max); 1966 rc = EINVAL; 1967 goto fail_tx_dpl_get_non_tcp_max; 1968 } 1969 if (sfxge_tx_dpl_put_max < 0) { 1970 log(LOG_ERR, "%s=%d must be greater or equal to 0", 1971 SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max); 1972 rc = EINVAL; 1973 goto fail_tx_dpl_put_max; 1974 } 1975 1976 sc->txq_count = SFXGE_TXQ_NTYPES - 1 + sc->intr.n_alloc; 1977 1978 sc->tso_fw_assisted = sfxge_tso_fw_assisted; 1979 if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO) || 1980 (!encp->enc_fw_assisted_tso_enabled)) 1981 sc->tso_fw_assisted &= ~SFXGE_FATSOV1; 1982 if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO_V2) || 1983 (!encp->enc_fw_assisted_tso_v2_enabled)) 1984 sc->tso_fw_assisted &= ~SFXGE_FATSOV2; 1985 1986 sc->txqs_node = SYSCTL_ADD_NODE( 1987 device_get_sysctl_ctx(sc->dev), 1988 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), 1989 OID_AUTO, "txq", CTLFLAG_RD, NULL, "Tx queues"); 1990 if (sc->txqs_node == NULL) { 1991 rc = ENOMEM; 1992 goto fail_txq_node; 1993 } 1994 1995 /* Initialize the transmit queues */ 1996 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM, 1997 SFXGE_TXQ_NON_CKSUM, 0)) != 0) 1998 goto fail; 1999 2000 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM, 2001 SFXGE_TXQ_IP_CKSUM, 0)) != 0) 2002 goto fail2; 2003 2004 for (index = 0; 2005 index < sc->txq_count - SFXGE_TXQ_NTYPES + 1; 2006 index++) { 2007 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NTYPES - 1 + index, 2008 SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0) 2009 goto fail3; 2010 } 2011 2012 sfxge_tx_stat_init(sc); 2013 2014 return (0); 2015 2016 fail3: 2017 while (--index >= 0) 2018 sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index); 2019 2020 sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM); 2021 2022 fail2: 2023 sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM); 2024 2025 fail: 2026 fail_txq_node: 2027 sc->txq_count = 0; 2028 fail_tx_dpl_put_max: 2029 fail_tx_dpl_get_non_tcp_max: 2030 fail_tx_dpl_get_max: 2031 return (rc); 2032 } 2033