xref: /freebsd/sys/dev/sfxge/common/mcdi_mon.c (revision 4e1bc9a039df516be13abb902ab76677fef81b1d)
1 /*-
2  * Copyright (c) 2009-2015 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are
27  * those of the authors and should not be interpreted as representing official
28  * policies, either expressed or implied, of the FreeBSD Project.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "efsys.h"
35 #include "efx.h"
36 #include "efx_impl.h"
37 
38 #if EFSYS_OPT_MON_MCDI
39 
40 #if EFSYS_OPT_MON_STATS
41 
42 #define	MCDI_MON_NEXT_PAGE  (uint16_t)0xfffe
43 #define	MCDI_MON_INVALID_SENSOR (uint16_t)0xfffd
44 #define	MCDI_MON_PAGE_SIZE 0x20
45 
46 /* Bitmasks of valid port(s) for each sensor */
47 #define	MCDI_MON_PORT_NONE	(0x00)
48 #define	MCDI_MON_PORT_P1	(0x01)
49 #define	MCDI_MON_PORT_P2	(0x02)
50 #define	MCDI_MON_PORT_P3	(0x04)
51 #define	MCDI_MON_PORT_P4	(0x08)
52 #define	MCDI_MON_PORT_Px	(0xFFFF)
53 
54 /* Entry for MCDI sensor in sensor map */
55 #define	STAT(portmask, stat)	\
56 	{ (MCDI_MON_PORT_##portmask), (EFX_MON_STAT_##stat) }
57 
58 /* Entry for sensor next page flag in sensor map */
59 #define	STAT_NEXT_PAGE()	\
60 	{ MCDI_MON_PORT_NONE, MCDI_MON_NEXT_PAGE }
61 
62 /* Placeholder for gaps in the array */
63 #define	STAT_NO_SENSOR()	\
64 	{ MCDI_MON_PORT_NONE, MCDI_MON_INVALID_SENSOR }
65 
66 /* Map from MC sensors to monitor statistics */
67 static const struct mcdi_sensor_map_s {
68 	uint16_t	msm_port_mask;
69 	uint16_t	msm_stat;
70 } mcdi_sensor_map[] = {
71 	/* Sensor page 0		MC_CMD_SENSOR_xxx */
72 	STAT(Px, INT_TEMP),		/* 0x00 CONTROLLER_TEMP */
73 	STAT(Px, EXT_TEMP),		/* 0x01 PHY_COMMON_TEMP */
74 	STAT(Px, INT_COOLING),		/* 0x02 CONTROLLER_COOLING */
75 	STAT(P1, EXT_TEMP),		/* 0x03 PHY0_TEMP */
76 	STAT(P1, EXT_COOLING),		/* 0x04 PHY0_COOLING */
77 	STAT(P2, EXT_TEMP),		/* 0x05 PHY1_TEMP */
78 	STAT(P2, EXT_COOLING),		/* 0x06 PHY1_COOLING */
79 	STAT(Px, 1V),			/* 0x07 IN_1V0 */
80 	STAT(Px, 1_2V),			/* 0x08 IN_1V2 */
81 	STAT(Px, 1_8V),			/* 0x09 IN_1V8 */
82 	STAT(Px, 2_5V),			/* 0x0a IN_2V5 */
83 	STAT(Px, 3_3V),			/* 0x0b IN_3V3 */
84 	STAT(Px, 12V),			/* 0x0c IN_12V0 */
85 	STAT(Px, 1_2VA),		/* 0x0d IN_1V2A */
86 	STAT(Px, VREF),			/* 0x0e IN_VREF */
87 	STAT(Px, VAOE),			/* 0x0f OUT_VAOE */
88 	STAT(Px, AOE_TEMP),		/* 0x10 AOE_TEMP */
89 	STAT(Px, PSU_AOE_TEMP),		/* 0x11 PSU_AOE_TEMP */
90 	STAT(Px, PSU_TEMP),		/* 0x12 PSU_TEMP */
91 	STAT(Px, FAN0),			/* 0x13 FAN_0 */
92 	STAT(Px, FAN1),			/* 0x14 FAN_1 */
93 	STAT(Px, FAN2),			/* 0x15 FAN_2 */
94 	STAT(Px, FAN3),			/* 0x16 FAN_3 */
95 	STAT(Px, FAN4),			/* 0x17 FAN_4 */
96 	STAT(Px, VAOE_IN),		/* 0x18 IN_VAOE */
97 	STAT(Px, IAOE),			/* 0x19 OUT_IAOE */
98 	STAT(Px, IAOE_IN),		/* 0x1a IN_IAOE */
99 	STAT(Px, NIC_POWER),		/* 0x1b NIC_POWER */
100 	STAT(Px, 0_9V),			/* 0x1c IN_0V9 */
101 	STAT(Px, I0_9V),		/* 0x1d IN_I0V9 */
102 	STAT(Px, I1_2V),		/* 0x1e IN_I1V2 */
103 	STAT_NEXT_PAGE(),		/* 0x1f Next page flag (not a sensor) */
104 
105 	/* Sensor page 1		MC_CMD_SENSOR_xxx */
106 	STAT(Px, 0_9V_ADC),		/* 0x20 IN_0V9_ADC */
107 	STAT(Px, INT_TEMP2),		/* 0x21 CONTROLLER_2_TEMP */
108 	STAT(Px, VREG_TEMP),		/* 0x22 VREG_INTERNAL_TEMP */
109 	STAT(Px, VREG_0_9V_TEMP),	/* 0x23 VREG_0V9_TEMP */
110 	STAT(Px, VREG_1_2V_TEMP),	/* 0x24 VREG_1V2_TEMP */
111 	STAT(Px, INT_VPTAT),		/* 0x25 CTRLR. VPTAT */
112 	STAT(Px, INT_ADC_TEMP),		/* 0x26 CTRLR. INTERNAL_TEMP */
113 	STAT(Px, EXT_VPTAT),		/* 0x27 CTRLR. VPTAT_EXTADC */
114 	STAT(Px, EXT_ADC_TEMP),		/* 0x28 CTRLR. INTERNAL_TEMP_EXTADC */
115 	STAT(Px, AMBIENT_TEMP),		/* 0x29 AMBIENT_TEMP */
116 	STAT(Px, AIRFLOW),		/* 0x2a AIRFLOW */
117 	STAT(Px, VDD08D_VSS08D_CSR),	/* 0x2b VDD08D_VSS08D_CSR */
118 	STAT(Px, VDD08D_VSS08D_CSR_EXTADC), /* 0x2c VDD08D_VSS08D_CSR_EXTADC */
119 	STAT(Px, HOTPOINT_TEMP),	/* 0x2d HOTPOINT_TEMP */
120 	STAT(P1, PHY_POWER_SWITCH_PORT0),   /* 0x2e PHY_POWER_SWITCH_PORT0 */
121 	STAT(P2, PHY_POWER_SWITCH_PORT1),   /* 0x2f PHY_POWER_SWITCH_PORT1 */
122 	STAT(Px, MUM_VCC),		/* 0x30 MUM_VCC */
123 	STAT(Px, 0V9_A),		/* 0x31 0V9_A */
124 	STAT(Px, I0V9_A),		/* 0x32 I0V9_A */
125 	STAT(Px, 0V9_A_TEMP),		/* 0x33 0V9_A_TEMP */
126 	STAT(Px, 0V9_B),		/* 0x34 0V9_B */
127 	STAT(Px, I0V9_B),		/* 0x35 I0V9_B */
128 	STAT(Px, 0V9_B_TEMP),		/* 0x36 0V9_B_TEMP */
129 	STAT(Px, CCOM_AVREG_1V2_SUPPLY),  /* 0x37 CCOM_AVREG_1V2_SUPPLY */
130 	STAT(Px, CCOM_AVREG_1V2_SUPPLY_EXT_ADC),
131 					/* 0x38 CCOM_AVREG_1V2_SUPPLY_EXT_ADC */
132 	STAT(Px, CCOM_AVREG_1V8_SUPPLY),  /* 0x39 CCOM_AVREG_1V8_SUPPLY */
133 	STAT(Px, CCOM_AVREG_1V8_SUPPLY_EXT_ADC),
134 					/* 0x3a CCOM_AVREG_1V8_SUPPLY_EXT_ADC */
135 	STAT_NO_SENSOR(),		/* 0x3b (no sensor) */
136 	STAT_NO_SENSOR(),		/* 0x3c (no sensor) */
137 	STAT_NO_SENSOR(),		/* 0x3d (no sensor) */
138 	STAT_NO_SENSOR(),		/* 0x3e (no sensor) */
139 	STAT_NEXT_PAGE(),		/* 0x3f Next page flag (not a sensor) */
140 
141 	/* Sensor page 2		MC_CMD_SENSOR_xxx */
142 	STAT(Px, CONTROLLER_MASTER_VPTAT),	   /* 0x40 MASTER_VPTAT */
143 	STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP), /* 0x41 MASTER_INT_TEMP */
144 	STAT(Px, CONTROLLER_MASTER_VPTAT_EXT_ADC), /* 0x42 MAST_VPTAT_EXT_ADC */
145 	STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP_EXT_ADC),
146 					/* 0x43 MASTER_INTERNAL_TEMP_EXT_ADC */
147 	STAT(Px, CONTROLLER_SLAVE_VPTAT),	  /* 0x44 SLAVE_VPTAT */
148 	STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP), /* 0x45 SLAVE_INTERNAL_TEMP */
149 	STAT(Px, CONTROLLER_SLAVE_VPTAT_EXT_ADC), /* 0x46 SLAVE_VPTAT_EXT_ADC */
150 	STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP_EXT_ADC),
151 					/* 0x47 SLAVE_INTERNAL_TEMP_EXT_ADC */
152 };
153 
154 #define	MCDI_STATIC_SENSOR_ASSERT(_field)				\
155 	EFX_STATIC_ASSERT(MC_CMD_SENSOR_STATE_ ## _field		\
156 			    == EFX_MON_STAT_STATE_ ## _field)
157 
158 static						void
159 mcdi_mon_decode_stats(
160 	__in					efx_nic_t *enp,
161 	__in_ecount(sensor_mask_size)		uint32_t *sensor_mask,
162 	__in					size_t sensor_mask_size,
163 	__in_opt				efsys_mem_t *esmp,
164 	__out_ecount_opt(sensor_mask_size)	uint32_t *stat_maskp,
165 	__out_ecount_opt(EFX_MON_NSTATS)	efx_mon_stat_value_t *stat)
166 {
167 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
168 	uint16_t port_mask;
169 	uint16_t sensor;
170 	size_t sensor_max;
171 	uint32_t stat_mask[(EFX_ARRAY_SIZE(mcdi_sensor_map) + 31) / 32];
172 	uint32_t idx = 0;
173 	uint32_t page = 0;
174 
175 	/* Assert the MC_CMD_SENSOR and EFX_MON_STATE namespaces agree */
176 	MCDI_STATIC_SENSOR_ASSERT(OK);
177 	MCDI_STATIC_SENSOR_ASSERT(WARNING);
178 	MCDI_STATIC_SENSOR_ASSERT(FATAL);
179 	MCDI_STATIC_SENSOR_ASSERT(BROKEN);
180 	MCDI_STATIC_SENSOR_ASSERT(NO_READING);
181 
182 	EFX_STATIC_ASSERT(sizeof (stat_mask[0]) * 8 ==
183 	    EFX_MON_MASK_ELEMENT_SIZE);
184 	sensor_max =
185 	    MIN((8 * sensor_mask_size), EFX_ARRAY_SIZE(mcdi_sensor_map));
186 
187 	port_mask = 1U << emip->emi_port;
188 
189 	memset(stat_mask, 0, sizeof (stat_mask));
190 
191 	/*
192 	 * The MCDI sensor readings in the DMA buffer are a packed array of
193 	 * MC_CMD_SENSOR_VALUE_ENTRY structures, which only includes entries for
194 	 * supported sensors (bit set in sensor_mask). The sensor_mask and
195 	 * sensor readings do not include entries for the per-page NEXT_PAGE
196 	 * flag.
197 	 *
198 	 * sensor_mask may legitimately contain MCDI sensors that the driver
199 	 * does not understand.
200 	 */
201 	for (sensor = 0; sensor < sensor_max; ++sensor) {
202 		efx_mon_stat_t id = mcdi_sensor_map[sensor].msm_stat;
203 
204 		if ((sensor % MCDI_MON_PAGE_SIZE) == MC_CMD_SENSOR_PAGE0_NEXT) {
205 			EFSYS_ASSERT3U(id, ==, MCDI_MON_NEXT_PAGE);
206 			page++;
207 			continue;
208 		}
209 		if (~(sensor_mask[page]) & (1U << sensor))
210 			continue;
211 		idx++;
212 
213 		if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0)
214 			continue;
215 		EFSYS_ASSERT(id < EFX_MON_NSTATS);
216 
217 		/*
218 		 * stat_mask is a bitmask indexed by EFX_MON_* monitor statistic
219 		 * identifiers from efx_mon_stat_t (without NEXT_PAGE bits).
220 		 *
221 		 * If there is an entry in the MCDI sensor to monitor statistic
222 		 * map then the sensor reading is used for the value of the
223 		 * monitor statistic.
224 		 */
225 		stat_mask[id / EFX_MON_MASK_ELEMENT_SIZE] |=
226 		    (1U << (id % EFX_MON_MASK_ELEMENT_SIZE));
227 
228 		if (stat != NULL && esmp != NULL && !EFSYS_MEM_IS_NULL(esmp)) {
229 			efx_dword_t dword;
230 
231 			/* Get MCDI sensor reading from DMA buffer */
232 			EFSYS_MEM_READD(esmp, 4 * (idx - 1), &dword);
233 
234 			/* Update EFX monitor stat from MCDI sensor reading */
235 			stat[id].emsv_value = (uint16_t)EFX_DWORD_FIELD(dword,
236 			    MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE);
237 
238 			stat[id].emsv_state = (uint16_t)EFX_DWORD_FIELD(dword,
239 			    MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE);
240 		}
241 	}
242 
243 	if (stat_maskp != NULL) {
244 		memcpy(stat_maskp, stat_mask, sizeof (stat_mask));
245 	}
246 }
247 
248 	__checkReturn			int
249 mcdi_mon_ev(
250 	__in				efx_nic_t *enp,
251 	__in				efx_qword_t *eqp,
252 	__out				efx_mon_stat_t *idp,
253 	__out				efx_mon_stat_value_t *valuep)
254 {
255 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
256 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
257 	uint16_t port_mask;
258 	uint16_t sensor;
259 	uint16_t state;
260 	uint16_t value;
261 	efx_mon_stat_t id;
262 	int rc;
263 
264 	port_mask = (emip->emi_port == 1)
265 	    ? MCDI_MON_PORT_P1
266 	    : MCDI_MON_PORT_P2;
267 
268 	sensor = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_MONITOR);
269 	state = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_STATE);
270 	value = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_VALUE);
271 
272 	/* Hardware must support this MCDI sensor */
273 	EFSYS_ASSERT3U(sensor, <, (8 * encp->enc_mcdi_sensor_mask_size));
274 	EFSYS_ASSERT((sensor % MCDI_MON_PAGE_SIZE) != MC_CMD_SENSOR_PAGE0_NEXT);
275 	EFSYS_ASSERT(encp->enc_mcdi_sensor_maskp != NULL);
276 	EFSYS_ASSERT((encp->enc_mcdi_sensor_maskp[sensor / MCDI_MON_PAGE_SIZE] &
277 		(1U << (sensor % MCDI_MON_PAGE_SIZE))) != 0);
278 
279 	/* But we don't have to understand it */
280 	if (sensor >= EFX_ARRAY_SIZE(mcdi_sensor_map)) {
281 		rc = ENOTSUP;
282 		goto fail1;
283 	}
284 	id = mcdi_sensor_map[sensor].msm_stat;
285 	if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0)
286 		return (ENODEV);
287 	EFSYS_ASSERT(id < EFX_MON_NSTATS);
288 
289 	*idp = id;
290 	valuep->emsv_value = value;
291 	valuep->emsv_state = state;
292 
293 	return (0);
294 
295 fail1:
296 	EFSYS_PROBE1(fail1, int, rc);
297 
298 	return (rc);
299 }
300 
301 
302 static	__checkReturn	int
303 efx_mcdi_read_sensors(
304 	__in		efx_nic_t *enp,
305 	__in		efsys_mem_t *esmp,
306 	__in		uint32_t size)
307 {
308 	efx_mcdi_req_t req;
309 	uint8_t payload[MAX(MC_CMD_READ_SENSORS_EXT_IN_LEN,
310 			    MC_CMD_READ_SENSORS_EXT_OUT_LEN)];
311 	uint32_t addr_lo, addr_hi;
312 
313 	req.emr_cmd = MC_CMD_READ_SENSORS;
314 	req.emr_in_buf = payload;
315 	req.emr_in_length = MC_CMD_READ_SENSORS_EXT_IN_LEN;
316 	req.emr_out_buf = payload;
317 	req.emr_out_length = MC_CMD_READ_SENSORS_EXT_OUT_LEN;
318 
319 	addr_lo = (uint32_t)(EFSYS_MEM_ADDR(esmp) & 0xffffffff);
320 	addr_hi = (uint32_t)(EFSYS_MEM_ADDR(esmp) >> 32);
321 
322 	MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_LO, addr_lo);
323 	MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_HI, addr_hi);
324 	MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_LENGTH, size);
325 
326 	efx_mcdi_execute(enp, &req);
327 
328 	return (req.emr_rc);
329 }
330 
331 static	__checkReturn	int
332 efx_mcdi_sensor_info_npages(
333 	__in		efx_nic_t *enp,
334 	__out		uint32_t *npagesp)
335 {
336 	efx_mcdi_req_t req;
337 	uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN,
338 			    MC_CMD_SENSOR_INFO_OUT_LENMAX)];
339 	int page;
340 	int rc;
341 
342 	EFSYS_ASSERT(npagesp != NULL);
343 
344 	page = 0;
345 	do {
346 		(void) memset(payload, 0, sizeof (payload));
347 		req.emr_cmd = MC_CMD_SENSOR_INFO;
348 		req.emr_in_buf = payload;
349 		req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
350 		req.emr_out_buf = payload;
351 		req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
352 
353 		MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page++);
354 
355 		efx_mcdi_execute_quiet(enp, &req);
356 
357 		if (req.emr_rc != 0) {
358 			rc = req.emr_rc;
359 			goto fail1;
360 		}
361 	} while (MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK) &
362 	    (1 << MC_CMD_SENSOR_PAGE0_NEXT));
363 
364 	*npagesp = page;
365 
366 	return (0);
367 
368 fail1:
369 	EFSYS_PROBE1(fail1, int, rc);
370 
371 	return (rc);
372 }
373 
374 static	__checkReturn		int
375 efx_mcdi_sensor_info(
376 	__in			efx_nic_t *enp,
377 	__out_ecount(npages)	uint32_t *sensor_maskp,
378 	__in			size_t npages)
379 {
380 	efx_mcdi_req_t req;
381 	uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN,
382 			    MC_CMD_SENSOR_INFO_OUT_LENMAX)];
383 	uint32_t page;
384 	int rc;
385 
386 	EFSYS_ASSERT(sensor_maskp != NULL);
387 
388 	for (page = 0; page < npages; page++) {
389 		uint32_t mask;
390 
391 		(void) memset(payload, 0, sizeof (payload));
392 		req.emr_cmd = MC_CMD_SENSOR_INFO;
393 		req.emr_in_buf = payload;
394 		req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
395 		req.emr_out_buf = payload;
396 		req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
397 
398 		MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page);
399 
400 		efx_mcdi_execute(enp, &req);
401 
402 		if (req.emr_rc != 0) {
403 			rc = req.emr_rc;
404 			goto fail1;
405 		}
406 
407 		mask = MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK);
408 
409 		if ((page != (npages - 1)) &&
410 		    ((mask & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) == 0)) {
411 			rc = EINVAL;
412 			goto fail2;
413 		}
414 		sensor_maskp[page] = mask;
415 	}
416 
417 	if (sensor_maskp[npages - 1] & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) {
418 		rc = EINVAL;
419 		goto fail3;
420 	}
421 
422 	return (0);
423 
424 fail3:
425 	EFSYS_PROBE(fail3);
426 fail2:
427 	EFSYS_PROBE(fail2);
428 fail1:
429 	EFSYS_PROBE1(fail1, int, rc);
430 
431 	return (rc);
432 }
433 
434 	__checkReturn			int
435 mcdi_mon_stats_update(
436 	__in				efx_nic_t *enp,
437 	__in				efsys_mem_t *esmp,
438 	__out_ecount(EFX_MON_NSTATS)	efx_mon_stat_value_t *values)
439 {
440 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
441 	uint32_t size = encp->enc_mon_stat_dma_buf_size;
442 	int rc;
443 
444 	if ((rc = efx_mcdi_read_sensors(enp, esmp, size)) != 0)
445 		goto fail1;
446 
447 	EFSYS_DMA_SYNC_FOR_KERNEL(esmp, 0, size);
448 
449 	mcdi_mon_decode_stats(enp,
450 	    encp->enc_mcdi_sensor_maskp,
451 	    encp->enc_mcdi_sensor_mask_size,
452 	    esmp, NULL, values);
453 
454 	return (0);
455 
456 fail1:
457 	EFSYS_PROBE1(fail1, int, rc);
458 
459 	return (rc);
460 }
461 
462 	__checkReturn	int
463 mcdi_mon_cfg_build(
464 	__in		efx_nic_t *enp)
465 {
466 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
467 	uint32_t npages;
468 	int rc;
469 
470 	switch (enp->en_family) {
471 #if EFSYS_OPT_SIENA
472 	case EFX_FAMILY_SIENA:
473 		encp->enc_mon_type = EFX_MON_SFC90X0;
474 		break;
475 #endif
476 #if EFSYS_OPT_HUNTINGTON
477 	case EFX_FAMILY_HUNTINGTON:
478 		encp->enc_mon_type = EFX_MON_SFC91X0;
479 		break;
480 #endif
481 	default:
482 		rc = EINVAL;
483 		goto fail1;
484 	}
485 
486 	/* Get mc sensor mask size */
487 	npages = 0;
488 	if ((rc = efx_mcdi_sensor_info_npages(enp, &npages)) != 0)
489 		goto fail2;
490 
491 	encp->enc_mon_stat_dma_buf_size	= npages * EFX_MON_STATS_PAGE_SIZE;
492 	encp->enc_mcdi_sensor_mask_size = npages * sizeof (uint32_t);
493 
494 	/* Allocate mc sensor mask */
495 	EFSYS_KMEM_ALLOC(enp->en_esip,
496 	    encp->enc_mcdi_sensor_mask_size,
497 	    encp->enc_mcdi_sensor_maskp);
498 
499 	if (encp->enc_mcdi_sensor_maskp == NULL) {
500 		rc = ENOMEM;
501 		goto fail3;
502 	}
503 
504 	/* Read mc sensor mask */
505 	if ((rc = efx_mcdi_sensor_info(enp,
506 		    encp->enc_mcdi_sensor_maskp,
507 		    npages)) != 0)
508 		goto fail4;
509 
510 	/* Build monitor statistics mask */
511 	mcdi_mon_decode_stats(enp,
512 	    encp->enc_mcdi_sensor_maskp,
513 	    encp->enc_mcdi_sensor_mask_size,
514 	    NULL, encp->enc_mon_stat_mask, NULL);
515 
516 	return (0);
517 
518 fail4:
519 	EFSYS_PROBE(fail4);
520 	EFSYS_KMEM_FREE(enp->en_esip,
521 	    encp->enc_mcdi_sensor_mask_size,
522 	    encp->enc_mcdi_sensor_maskp);
523 
524 fail3:
525 	EFSYS_PROBE(fail3);
526 
527 fail2:
528 	EFSYS_PROBE(fail2);
529 
530 fail1:
531 	EFSYS_PROBE1(fail1, int, rc);
532 
533 	return (rc);
534 }
535 
536 			void
537 mcdi_mon_cfg_free(
538 	__in		efx_nic_t *enp)
539 {
540 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
541 
542 	if (encp->enc_mcdi_sensor_maskp != NULL) {
543 		EFSYS_KMEM_FREE(enp->en_esip,
544 		    encp->enc_mcdi_sensor_mask_size,
545 		    encp->enc_mcdi_sensor_maskp);
546 	}
547 }
548 
549 
550 #endif	/* EFSYS_OPT_MON_STATS */
551 
552 #endif	/* EFSYS_OPT_MON_MCDI */
553