1 /*- 2 * Copyright (c) 2009-2016 Solarflare Communications Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright notice, 11 * this list of conditions and the following disclaimer in the documentation 12 * and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 16 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 21 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 22 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 23 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 24 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * The views and conclusions contained in the software and documentation are 27 * those of the authors and should not be interpreted as representing official 28 * policies, either expressed or implied, of the FreeBSD Project. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "efx.h" 35 #include "efx_impl.h" 36 37 #if EFSYS_OPT_MON_MCDI 38 39 #if EFSYS_OPT_MON_STATS 40 41 #define MCDI_MON_NEXT_PAGE (uint16_t)0xfffe 42 #define MCDI_MON_INVALID_SENSOR (uint16_t)0xfffd 43 #define MCDI_MON_PAGE_SIZE 0x20 44 45 /* Bitmasks of valid port(s) for each sensor */ 46 #define MCDI_MON_PORT_NONE (0x00) 47 #define MCDI_MON_PORT_P1 (0x01) 48 #define MCDI_MON_PORT_P2 (0x02) 49 #define MCDI_MON_PORT_P3 (0x04) 50 #define MCDI_MON_PORT_P4 (0x08) 51 #define MCDI_MON_PORT_Px (0xFFFF) 52 53 /* Entry for MCDI sensor in sensor map */ 54 #define STAT(portmask, stat) \ 55 { (MCDI_MON_PORT_##portmask), (EFX_MON_STAT_##stat) } 56 57 /* Entry for sensor next page flag in sensor map */ 58 #define STAT_NEXT_PAGE() \ 59 { MCDI_MON_PORT_NONE, MCDI_MON_NEXT_PAGE } 60 61 /* Placeholder for gaps in the array */ 62 #define STAT_NO_SENSOR() \ 63 { MCDI_MON_PORT_NONE, MCDI_MON_INVALID_SENSOR } 64 65 /* Map from MC sensors to monitor statistics */ 66 static const struct mcdi_sensor_map_s { 67 uint16_t msm_port_mask; 68 uint16_t msm_stat; 69 } mcdi_sensor_map[] = { 70 /* Sensor page 0 MC_CMD_SENSOR_xxx */ 71 STAT(Px, INT_TEMP), /* 0x00 CONTROLLER_TEMP */ 72 STAT(Px, EXT_TEMP), /* 0x01 PHY_COMMON_TEMP */ 73 STAT(Px, INT_COOLING), /* 0x02 CONTROLLER_COOLING */ 74 STAT(P1, EXT_TEMP), /* 0x03 PHY0_TEMP */ 75 STAT(P1, EXT_COOLING), /* 0x04 PHY0_COOLING */ 76 STAT(P2, EXT_TEMP), /* 0x05 PHY1_TEMP */ 77 STAT(P2, EXT_COOLING), /* 0x06 PHY1_COOLING */ 78 STAT(Px, 1V), /* 0x07 IN_1V0 */ 79 STAT(Px, 1_2V), /* 0x08 IN_1V2 */ 80 STAT(Px, 1_8V), /* 0x09 IN_1V8 */ 81 STAT(Px, 2_5V), /* 0x0a IN_2V5 */ 82 STAT(Px, 3_3V), /* 0x0b IN_3V3 */ 83 STAT(Px, 12V), /* 0x0c IN_12V0 */ 84 STAT(Px, 1_2VA), /* 0x0d IN_1V2A */ 85 STAT(Px, VREF), /* 0x0e IN_VREF */ 86 STAT(Px, VAOE), /* 0x0f OUT_VAOE */ 87 STAT(Px, AOE_TEMP), /* 0x10 AOE_TEMP */ 88 STAT(Px, PSU_AOE_TEMP), /* 0x11 PSU_AOE_TEMP */ 89 STAT(Px, PSU_TEMP), /* 0x12 PSU_TEMP */ 90 STAT(Px, FAN0), /* 0x13 FAN_0 */ 91 STAT(Px, FAN1), /* 0x14 FAN_1 */ 92 STAT(Px, FAN2), /* 0x15 FAN_2 */ 93 STAT(Px, FAN3), /* 0x16 FAN_3 */ 94 STAT(Px, FAN4), /* 0x17 FAN_4 */ 95 STAT(Px, VAOE_IN), /* 0x18 IN_VAOE */ 96 STAT(Px, IAOE), /* 0x19 OUT_IAOE */ 97 STAT(Px, IAOE_IN), /* 0x1a IN_IAOE */ 98 STAT(Px, NIC_POWER), /* 0x1b NIC_POWER */ 99 STAT(Px, 0_9V), /* 0x1c IN_0V9 */ 100 STAT(Px, I0_9V), /* 0x1d IN_I0V9 */ 101 STAT(Px, I1_2V), /* 0x1e IN_I1V2 */ 102 STAT_NEXT_PAGE(), /* 0x1f Next page flag (not a sensor) */ 103 104 /* Sensor page 1 MC_CMD_SENSOR_xxx */ 105 STAT(Px, 0_9V_ADC), /* 0x20 IN_0V9_ADC */ 106 STAT(Px, INT_TEMP2), /* 0x21 CONTROLLER_2_TEMP */ 107 STAT(Px, VREG_TEMP), /* 0x22 VREG_INTERNAL_TEMP */ 108 STAT(Px, VREG_0_9V_TEMP), /* 0x23 VREG_0V9_TEMP */ 109 STAT(Px, VREG_1_2V_TEMP), /* 0x24 VREG_1V2_TEMP */ 110 STAT(Px, INT_VPTAT), /* 0x25 CTRLR. VPTAT */ 111 STAT(Px, INT_ADC_TEMP), /* 0x26 CTRLR. INTERNAL_TEMP */ 112 STAT(Px, EXT_VPTAT), /* 0x27 CTRLR. VPTAT_EXTADC */ 113 STAT(Px, EXT_ADC_TEMP), /* 0x28 CTRLR. INTERNAL_TEMP_EXTADC */ 114 STAT(Px, AMBIENT_TEMP), /* 0x29 AMBIENT_TEMP */ 115 STAT(Px, AIRFLOW), /* 0x2a AIRFLOW */ 116 STAT(Px, VDD08D_VSS08D_CSR), /* 0x2b VDD08D_VSS08D_CSR */ 117 STAT(Px, VDD08D_VSS08D_CSR_EXTADC), /* 0x2c VDD08D_VSS08D_CSR_EXTADC */ 118 STAT(Px, HOTPOINT_TEMP), /* 0x2d HOTPOINT_TEMP */ 119 STAT(P1, PHY_POWER_SWITCH_PORT0), /* 0x2e PHY_POWER_SWITCH_PORT0 */ 120 STAT(P2, PHY_POWER_SWITCH_PORT1), /* 0x2f PHY_POWER_SWITCH_PORT1 */ 121 STAT(Px, MUM_VCC), /* 0x30 MUM_VCC */ 122 STAT(Px, 0V9_A), /* 0x31 0V9_A */ 123 STAT(Px, I0V9_A), /* 0x32 I0V9_A */ 124 STAT(Px, 0V9_A_TEMP), /* 0x33 0V9_A_TEMP */ 125 STAT(Px, 0V9_B), /* 0x34 0V9_B */ 126 STAT(Px, I0V9_B), /* 0x35 I0V9_B */ 127 STAT(Px, 0V9_B_TEMP), /* 0x36 0V9_B_TEMP */ 128 STAT(Px, CCOM_AVREG_1V2_SUPPLY), /* 0x37 CCOM_AVREG_1V2_SUPPLY */ 129 STAT(Px, CCOM_AVREG_1V2_SUPPLY_EXT_ADC), 130 /* 0x38 CCOM_AVREG_1V2_SUPPLY_EXT_ADC */ 131 STAT(Px, CCOM_AVREG_1V8_SUPPLY), /* 0x39 CCOM_AVREG_1V8_SUPPLY */ 132 STAT(Px, CCOM_AVREG_1V8_SUPPLY_EXT_ADC), 133 /* 0x3a CCOM_AVREG_1V8_SUPPLY_EXT_ADC */ 134 STAT_NO_SENSOR(), /* 0x3b (no sensor) */ 135 STAT_NO_SENSOR(), /* 0x3c (no sensor) */ 136 STAT_NO_SENSOR(), /* 0x3d (no sensor) */ 137 STAT_NO_SENSOR(), /* 0x3e (no sensor) */ 138 STAT_NEXT_PAGE(), /* 0x3f Next page flag (not a sensor) */ 139 140 /* Sensor page 2 MC_CMD_SENSOR_xxx */ 141 STAT(Px, CONTROLLER_MASTER_VPTAT), /* 0x40 MASTER_VPTAT */ 142 STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP), /* 0x41 MASTER_INT_TEMP */ 143 STAT(Px, CONTROLLER_MASTER_VPTAT_EXT_ADC), /* 0x42 MAST_VPTAT_EXT_ADC */ 144 STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP_EXT_ADC), 145 /* 0x43 MASTER_INTERNAL_TEMP_EXT_ADC */ 146 STAT(Px, CONTROLLER_SLAVE_VPTAT), /* 0x44 SLAVE_VPTAT */ 147 STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP), /* 0x45 SLAVE_INTERNAL_TEMP */ 148 STAT(Px, CONTROLLER_SLAVE_VPTAT_EXT_ADC), /* 0x46 SLAVE_VPTAT_EXT_ADC */ 149 STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP_EXT_ADC), 150 /* 0x47 SLAVE_INTERNAL_TEMP_EXT_ADC */ 151 STAT_NO_SENSOR(), /* 0x48 (no sensor) */ 152 STAT(Px, SODIMM_VOUT), /* 0x49 SODIMM_VOUT */ 153 STAT(Px, SODIMM_0_TEMP), /* 0x4a SODIMM_0_TEMP */ 154 STAT(Px, SODIMM_1_TEMP), /* 0x4b SODIMM_1_TEMP */ 155 STAT(Px, PHY0_VCC), /* 0x4c PHY0_VCC */ 156 STAT(Px, PHY1_VCC), /* 0x4d PHY1_VCC */ 157 STAT(Px, CONTROLLER_TDIODE_TEMP), /* 0x4e CONTROLLER_TDIODE_TEMP */ 158 STAT(Px, BOARD_FRONT_TEMP), /* 0x4f BOARD_FRONT_TEMP */ 159 STAT(Px, BOARD_BACK_TEMP), /* 0x50 BOARD_BACK_TEMP */ 160 }; 161 162 #define MCDI_STATIC_SENSOR_ASSERT(_field) \ 163 EFX_STATIC_ASSERT(MC_CMD_SENSOR_STATE_ ## _field \ 164 == EFX_MON_STAT_STATE_ ## _field) 165 166 static void 167 mcdi_mon_decode_stats( 168 __in efx_nic_t *enp, 169 __in_ecount(sensor_mask_size) uint32_t *sensor_mask, 170 __in size_t sensor_mask_size, 171 __in_opt efsys_mem_t *esmp, 172 __out_ecount_opt(sensor_mask_size) uint32_t *stat_maskp, 173 __inout_ecount_opt(EFX_MON_NSTATS) efx_mon_stat_value_t *stat) 174 { 175 efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); 176 uint16_t port_mask; 177 uint16_t sensor; 178 size_t sensor_max; 179 uint32_t stat_mask[(EFX_ARRAY_SIZE(mcdi_sensor_map) + 31) / 32]; 180 uint32_t idx = 0; 181 uint32_t page = 0; 182 183 /* Assert the MC_CMD_SENSOR and EFX_MON_STATE namespaces agree */ 184 MCDI_STATIC_SENSOR_ASSERT(OK); 185 MCDI_STATIC_SENSOR_ASSERT(WARNING); 186 MCDI_STATIC_SENSOR_ASSERT(FATAL); 187 MCDI_STATIC_SENSOR_ASSERT(BROKEN); 188 MCDI_STATIC_SENSOR_ASSERT(NO_READING); 189 190 EFX_STATIC_ASSERT(sizeof (stat_mask[0]) * 8 == 191 EFX_MON_MASK_ELEMENT_SIZE); 192 sensor_max = 193 MIN((8 * sensor_mask_size), EFX_ARRAY_SIZE(mcdi_sensor_map)); 194 195 port_mask = 1U << emip->emi_port; 196 197 memset(stat_mask, 0, sizeof (stat_mask)); 198 199 /* 200 * The MCDI sensor readings in the DMA buffer are a packed array of 201 * MC_CMD_SENSOR_VALUE_ENTRY structures, which only includes entries for 202 * supported sensors (bit set in sensor_mask). The sensor_mask and 203 * sensor readings do not include entries for the per-page NEXT_PAGE 204 * flag. 205 * 206 * sensor_mask may legitimately contain MCDI sensors that the driver 207 * does not understand. 208 */ 209 for (sensor = 0; sensor < sensor_max; ++sensor) { 210 efx_mon_stat_t id = mcdi_sensor_map[sensor].msm_stat; 211 212 if ((sensor % MCDI_MON_PAGE_SIZE) == MC_CMD_SENSOR_PAGE0_NEXT) { 213 EFSYS_ASSERT3U(id, ==, MCDI_MON_NEXT_PAGE); 214 page++; 215 continue; 216 } 217 if (~(sensor_mask[page]) & (1U << sensor)) 218 continue; 219 idx++; 220 221 if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0) 222 continue; 223 EFSYS_ASSERT(id < EFX_MON_NSTATS); 224 225 /* 226 * stat_mask is a bitmask indexed by EFX_MON_* monitor statistic 227 * identifiers from efx_mon_stat_t (without NEXT_PAGE bits). 228 * 229 * If there is an entry in the MCDI sensor to monitor statistic 230 * map then the sensor reading is used for the value of the 231 * monitor statistic. 232 */ 233 stat_mask[id / EFX_MON_MASK_ELEMENT_SIZE] |= 234 (1U << (id % EFX_MON_MASK_ELEMENT_SIZE)); 235 236 if (stat != NULL && esmp != NULL && !EFSYS_MEM_IS_NULL(esmp)) { 237 efx_dword_t dword; 238 239 /* Get MCDI sensor reading from DMA buffer */ 240 EFSYS_MEM_READD(esmp, 4 * (idx - 1), &dword); 241 242 /* Update EFX monitor stat from MCDI sensor reading */ 243 stat[id].emsv_value = (uint16_t)EFX_DWORD_FIELD(dword, 244 MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE); 245 246 stat[id].emsv_state = (uint16_t)EFX_DWORD_FIELD(dword, 247 MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE); 248 } 249 } 250 251 if (stat_maskp != NULL) { 252 memcpy(stat_maskp, stat_mask, sizeof (stat_mask)); 253 } 254 } 255 256 __checkReturn efx_rc_t 257 mcdi_mon_ev( 258 __in efx_nic_t *enp, 259 __in efx_qword_t *eqp, 260 __out efx_mon_stat_t *idp, 261 __out efx_mon_stat_value_t *valuep) 262 { 263 efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); 264 efx_nic_cfg_t *encp = &(enp->en_nic_cfg); 265 uint16_t port_mask; 266 uint16_t sensor; 267 uint16_t state; 268 uint16_t value; 269 efx_mon_stat_t id; 270 efx_rc_t rc; 271 272 port_mask = (emip->emi_port == 1) 273 ? MCDI_MON_PORT_P1 274 : MCDI_MON_PORT_P2; 275 276 sensor = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_MONITOR); 277 state = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_STATE); 278 value = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_VALUE); 279 280 /* Hardware must support this MCDI sensor */ 281 EFSYS_ASSERT3U(sensor, <, (8 * encp->enc_mcdi_sensor_mask_size)); 282 EFSYS_ASSERT((sensor % MCDI_MON_PAGE_SIZE) != MC_CMD_SENSOR_PAGE0_NEXT); 283 EFSYS_ASSERT(encp->enc_mcdi_sensor_maskp != NULL); 284 EFSYS_ASSERT((encp->enc_mcdi_sensor_maskp[sensor / MCDI_MON_PAGE_SIZE] & 285 (1U << (sensor % MCDI_MON_PAGE_SIZE))) != 0); 286 287 /* But we don't have to understand it */ 288 if (sensor >= EFX_ARRAY_SIZE(mcdi_sensor_map)) { 289 rc = ENOTSUP; 290 goto fail1; 291 } 292 id = mcdi_sensor_map[sensor].msm_stat; 293 if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0) 294 return (ENODEV); 295 EFSYS_ASSERT(id < EFX_MON_NSTATS); 296 297 *idp = id; 298 valuep->emsv_value = value; 299 valuep->emsv_state = state; 300 301 return (0); 302 303 fail1: 304 EFSYS_PROBE1(fail1, efx_rc_t, rc); 305 306 return (rc); 307 } 308 309 310 static __checkReturn efx_rc_t 311 efx_mcdi_read_sensors( 312 __in efx_nic_t *enp, 313 __in efsys_mem_t *esmp, 314 __in uint32_t size) 315 { 316 efx_mcdi_req_t req; 317 uint8_t payload[MAX(MC_CMD_READ_SENSORS_EXT_IN_LEN, 318 MC_CMD_READ_SENSORS_EXT_OUT_LEN)]; 319 uint32_t addr_lo, addr_hi; 320 321 req.emr_cmd = MC_CMD_READ_SENSORS; 322 req.emr_in_buf = payload; 323 req.emr_in_length = MC_CMD_READ_SENSORS_EXT_IN_LEN; 324 req.emr_out_buf = payload; 325 req.emr_out_length = MC_CMD_READ_SENSORS_EXT_OUT_LEN; 326 327 addr_lo = (uint32_t)(EFSYS_MEM_ADDR(esmp) & 0xffffffff); 328 addr_hi = (uint32_t)(EFSYS_MEM_ADDR(esmp) >> 32); 329 330 MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_LO, addr_lo); 331 MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_HI, addr_hi); 332 MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_LENGTH, size); 333 334 efx_mcdi_execute(enp, &req); 335 336 return (req.emr_rc); 337 } 338 339 static __checkReturn efx_rc_t 340 efx_mcdi_sensor_info_npages( 341 __in efx_nic_t *enp, 342 __out uint32_t *npagesp) 343 { 344 efx_mcdi_req_t req; 345 uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN, 346 MC_CMD_SENSOR_INFO_OUT_LENMAX)]; 347 int page; 348 efx_rc_t rc; 349 350 EFSYS_ASSERT(npagesp != NULL); 351 352 page = 0; 353 do { 354 (void) memset(payload, 0, sizeof (payload)); 355 req.emr_cmd = MC_CMD_SENSOR_INFO; 356 req.emr_in_buf = payload; 357 req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN; 358 req.emr_out_buf = payload; 359 req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX; 360 361 MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page++); 362 363 efx_mcdi_execute_quiet(enp, &req); 364 365 if (req.emr_rc != 0) { 366 rc = req.emr_rc; 367 goto fail1; 368 } 369 } while (MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK) & 370 (1U << MC_CMD_SENSOR_PAGE0_NEXT)); 371 372 *npagesp = page; 373 374 return (0); 375 376 fail1: 377 EFSYS_PROBE1(fail1, efx_rc_t, rc); 378 379 return (rc); 380 } 381 382 static __checkReturn efx_rc_t 383 efx_mcdi_sensor_info( 384 __in efx_nic_t *enp, 385 __out_ecount(npages) uint32_t *sensor_maskp, 386 __in size_t npages) 387 { 388 efx_mcdi_req_t req; 389 uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN, 390 MC_CMD_SENSOR_INFO_OUT_LENMAX)]; 391 uint32_t page; 392 efx_rc_t rc; 393 394 EFSYS_ASSERT(sensor_maskp != NULL); 395 396 for (page = 0; page < npages; page++) { 397 uint32_t mask; 398 399 (void) memset(payload, 0, sizeof (payload)); 400 req.emr_cmd = MC_CMD_SENSOR_INFO; 401 req.emr_in_buf = payload; 402 req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN; 403 req.emr_out_buf = payload; 404 req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX; 405 406 MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page); 407 408 efx_mcdi_execute(enp, &req); 409 410 if (req.emr_rc != 0) { 411 rc = req.emr_rc; 412 goto fail1; 413 } 414 415 mask = MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK); 416 417 if ((page != (npages - 1)) && 418 ((mask & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) == 0)) { 419 rc = EINVAL; 420 goto fail2; 421 } 422 sensor_maskp[page] = mask; 423 } 424 425 if (sensor_maskp[npages - 1] & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) { 426 rc = EINVAL; 427 goto fail3; 428 } 429 430 return (0); 431 432 fail3: 433 EFSYS_PROBE(fail3); 434 fail2: 435 EFSYS_PROBE(fail2); 436 fail1: 437 EFSYS_PROBE1(fail1, efx_rc_t, rc); 438 439 return (rc); 440 } 441 442 __checkReturn efx_rc_t 443 mcdi_mon_stats_update( 444 __in efx_nic_t *enp, 445 __in efsys_mem_t *esmp, 446 __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values) 447 { 448 efx_nic_cfg_t *encp = &(enp->en_nic_cfg); 449 uint32_t size = encp->enc_mon_stat_dma_buf_size; 450 efx_rc_t rc; 451 452 if ((rc = efx_mcdi_read_sensors(enp, esmp, size)) != 0) 453 goto fail1; 454 455 EFSYS_DMA_SYNC_FOR_KERNEL(esmp, 0, size); 456 457 mcdi_mon_decode_stats(enp, 458 encp->enc_mcdi_sensor_maskp, 459 encp->enc_mcdi_sensor_mask_size, 460 esmp, NULL, values); 461 462 return (0); 463 464 fail1: 465 EFSYS_PROBE1(fail1, efx_rc_t, rc); 466 467 return (rc); 468 } 469 470 __checkReturn efx_rc_t 471 mcdi_mon_cfg_build( 472 __in efx_nic_t *enp) 473 { 474 efx_nic_cfg_t *encp = &(enp->en_nic_cfg); 475 uint32_t npages; 476 efx_rc_t rc; 477 478 switch (enp->en_family) { 479 #if EFSYS_OPT_SIENA 480 case EFX_FAMILY_SIENA: 481 encp->enc_mon_type = EFX_MON_SFC90X0; 482 break; 483 #endif 484 #if EFSYS_OPT_HUNTINGTON 485 case EFX_FAMILY_HUNTINGTON: 486 encp->enc_mon_type = EFX_MON_SFC91X0; 487 break; 488 #endif 489 #if EFSYS_OPT_MEDFORD 490 case EFX_FAMILY_MEDFORD: 491 encp->enc_mon_type = EFX_MON_SFC92X0; 492 break; 493 #endif 494 default: 495 rc = EINVAL; 496 goto fail1; 497 } 498 499 /* Get mc sensor mask size */ 500 npages = 0; 501 if ((rc = efx_mcdi_sensor_info_npages(enp, &npages)) != 0) 502 goto fail2; 503 504 encp->enc_mon_stat_dma_buf_size = npages * EFX_MON_STATS_PAGE_SIZE; 505 encp->enc_mcdi_sensor_mask_size = npages * sizeof (uint32_t); 506 507 /* Allocate mc sensor mask */ 508 EFSYS_KMEM_ALLOC(enp->en_esip, 509 encp->enc_mcdi_sensor_mask_size, 510 encp->enc_mcdi_sensor_maskp); 511 512 if (encp->enc_mcdi_sensor_maskp == NULL) { 513 rc = ENOMEM; 514 goto fail3; 515 } 516 517 /* Read mc sensor mask */ 518 if ((rc = efx_mcdi_sensor_info(enp, 519 encp->enc_mcdi_sensor_maskp, 520 npages)) != 0) 521 goto fail4; 522 523 /* Build monitor statistics mask */ 524 mcdi_mon_decode_stats(enp, 525 encp->enc_mcdi_sensor_maskp, 526 encp->enc_mcdi_sensor_mask_size, 527 NULL, encp->enc_mon_stat_mask, NULL); 528 529 return (0); 530 531 fail4: 532 EFSYS_PROBE(fail4); 533 EFSYS_KMEM_FREE(enp->en_esip, 534 encp->enc_mcdi_sensor_mask_size, 535 encp->enc_mcdi_sensor_maskp); 536 537 fail3: 538 EFSYS_PROBE(fail3); 539 540 fail2: 541 EFSYS_PROBE(fail2); 542 543 fail1: 544 EFSYS_PROBE1(fail1, efx_rc_t, rc); 545 546 return (rc); 547 } 548 549 void 550 mcdi_mon_cfg_free( 551 __in efx_nic_t *enp) 552 { 553 efx_nic_cfg_t *encp = &(enp->en_nic_cfg); 554 555 if (encp->enc_mcdi_sensor_maskp != NULL) { 556 EFSYS_KMEM_FREE(enp->en_esip, 557 encp->enc_mcdi_sensor_mask_size, 558 encp->enc_mcdi_sensor_maskp); 559 } 560 } 561 562 563 #endif /* EFSYS_OPT_MON_STATS */ 564 565 #endif /* EFSYS_OPT_MON_MCDI */ 566