xref: /freebsd/sys/dev/sfxge/common/efx_nic.c (revision 5dae51da3da0cc94d17bd67b308fad304ebec7e0)
1 /*-
2  * Copyright (c) 2007-2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are
27  * those of the authors and should not be interpreted as representing official
28  * policies, either expressed or implied, of the FreeBSD Project.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "efx.h"
35 #include "efx_impl.h"
36 
37 	__checkReturn	efx_rc_t
38 efx_family(
39 	__in		uint16_t venid,
40 	__in		uint16_t devid,
41 	__out		efx_family_t *efp)
42 {
43 	if (venid == EFX_PCI_VENID_SFC) {
44 		switch (devid) {
45 #if EFSYS_OPT_SIENA
46 		case EFX_PCI_DEVID_SIENA_F1_UNINIT:
47 			/*
48 			 * Hardware default for PF0 of uninitialised Siena.
49 			 * manftest must be able to cope with this device id.
50 			 */
51 			*efp = EFX_FAMILY_SIENA;
52 			return (0);
53 
54 		case EFX_PCI_DEVID_BETHPAGE:
55 		case EFX_PCI_DEVID_SIENA:
56 			*efp = EFX_FAMILY_SIENA;
57 			return (0);
58 #endif /* EFSYS_OPT_SIENA */
59 
60 #if EFSYS_OPT_HUNTINGTON
61 		case EFX_PCI_DEVID_HUNTINGTON_PF_UNINIT:
62 			/*
63 			 * Hardware default for PF0 of uninitialised Huntington.
64 			 * manftest must be able to cope with this device id.
65 			 */
66 			*efp = EFX_FAMILY_HUNTINGTON;
67 			return (0);
68 
69 		case EFX_PCI_DEVID_FARMINGDALE:
70 		case EFX_PCI_DEVID_GREENPORT:
71 			*efp = EFX_FAMILY_HUNTINGTON;
72 			return (0);
73 
74 		case EFX_PCI_DEVID_FARMINGDALE_VF:
75 		case EFX_PCI_DEVID_GREENPORT_VF:
76 			*efp = EFX_FAMILY_HUNTINGTON;
77 			return (0);
78 #endif /* EFSYS_OPT_HUNTINGTON */
79 
80 #if EFSYS_OPT_MEDFORD
81 		case EFX_PCI_DEVID_MEDFORD_PF_UNINIT:
82 			/*
83 			 * Hardware default for PF0 of uninitialised Medford.
84 			 * manftest must be able to cope with this device id.
85 			 */
86 			*efp = EFX_FAMILY_MEDFORD;
87 			return (0);
88 
89 		case EFX_PCI_DEVID_MEDFORD:
90 			*efp = EFX_FAMILY_MEDFORD;
91 			return (0);
92 
93 		case EFX_PCI_DEVID_MEDFORD_VF:
94 			*efp = EFX_FAMILY_MEDFORD;
95 			return (0);
96 #endif /* EFSYS_OPT_MEDFORD */
97 
98 		case EFX_PCI_DEVID_FALCON:	/* Obsolete, not supported */
99 		default:
100 			break;
101 		}
102 	}
103 
104 	*efp = EFX_FAMILY_INVALID;
105 	return (ENOTSUP);
106 }
107 
108 
109 #define	EFX_BIU_MAGIC0	0x01234567
110 #define	EFX_BIU_MAGIC1	0xfedcba98
111 
112 	__checkReturn	efx_rc_t
113 efx_nic_biu_test(
114 	__in		efx_nic_t *enp)
115 {
116 	efx_oword_t oword;
117 	efx_rc_t rc;
118 
119 	/*
120 	 * Write magic values to scratch registers 0 and 1, then
121 	 * verify that the values were written correctly.  Interleave
122 	 * the accesses to ensure that the BIU is not just reading
123 	 * back the cached value that was last written.
124 	 */
125 	EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC0);
126 	EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 0, &oword, B_TRUE);
127 
128 	EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC1);
129 	EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 1, &oword, B_TRUE);
130 
131 	EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 0, &oword, B_TRUE);
132 	if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC0) {
133 		rc = EIO;
134 		goto fail1;
135 	}
136 
137 	EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 1, &oword, B_TRUE);
138 	if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC1) {
139 		rc = EIO;
140 		goto fail2;
141 	}
142 
143 	/*
144 	 * Perform the same test, with the values swapped.  This
145 	 * ensures that subsequent tests don't start with the correct
146 	 * values already written into the scratch registers.
147 	 */
148 	EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC1);
149 	EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 0, &oword, B_TRUE);
150 
151 	EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC0);
152 	EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 1, &oword, B_TRUE);
153 
154 	EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 0, &oword, B_TRUE);
155 	if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC1) {
156 		rc = EIO;
157 		goto fail3;
158 	}
159 
160 	EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 1, &oword, B_TRUE);
161 	if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC0) {
162 		rc = EIO;
163 		goto fail4;
164 	}
165 
166 	return (0);
167 
168 fail4:
169 	EFSYS_PROBE(fail4);
170 fail3:
171 	EFSYS_PROBE(fail3);
172 fail2:
173 	EFSYS_PROBE(fail2);
174 fail1:
175 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
176 
177 	return (rc);
178 }
179 
180 #if EFSYS_OPT_SIENA
181 
182 static const efx_nic_ops_t	__efx_nic_siena_ops = {
183 	siena_nic_probe,		/* eno_probe */
184 	NULL,				/* eno_board_cfg */
185 	NULL,				/* eno_set_drv_limits */
186 	siena_nic_reset,		/* eno_reset */
187 	siena_nic_init,			/* eno_init */
188 	NULL,				/* eno_get_vi_pool */
189 	NULL,				/* eno_get_bar_region */
190 #if EFSYS_OPT_DIAG
191 	siena_nic_register_test,	/* eno_register_test */
192 #endif	/* EFSYS_OPT_DIAG */
193 	siena_nic_fini,			/* eno_fini */
194 	siena_nic_unprobe,		/* eno_unprobe */
195 };
196 
197 #endif	/* EFSYS_OPT_SIENA */
198 
199 #if EFSYS_OPT_HUNTINGTON
200 
201 static const efx_nic_ops_t	__efx_nic_hunt_ops = {
202 	ef10_nic_probe,			/* eno_probe */
203 	hunt_board_cfg,			/* eno_board_cfg */
204 	ef10_nic_set_drv_limits,	/* eno_set_drv_limits */
205 	ef10_nic_reset,			/* eno_reset */
206 	ef10_nic_init,			/* eno_init */
207 	ef10_nic_get_vi_pool,		/* eno_get_vi_pool */
208 	ef10_nic_get_bar_region,	/* eno_get_bar_region */
209 #if EFSYS_OPT_DIAG
210 	ef10_nic_register_test,		/* eno_register_test */
211 #endif	/* EFSYS_OPT_DIAG */
212 	ef10_nic_fini,			/* eno_fini */
213 	ef10_nic_unprobe,		/* eno_unprobe */
214 };
215 
216 #endif	/* EFSYS_OPT_HUNTINGTON */
217 
218 #if EFSYS_OPT_MEDFORD
219 
220 static const efx_nic_ops_t	__efx_nic_medford_ops = {
221 	ef10_nic_probe,			/* eno_probe */
222 	medford_board_cfg,		/* eno_board_cfg */
223 	ef10_nic_set_drv_limits,	/* eno_set_drv_limits */
224 	ef10_nic_reset,			/* eno_reset */
225 	ef10_nic_init,			/* eno_init */
226 	ef10_nic_get_vi_pool,		/* eno_get_vi_pool */
227 	ef10_nic_get_bar_region,	/* eno_get_bar_region */
228 #if EFSYS_OPT_DIAG
229 	ef10_nic_register_test,		/* eno_register_test */
230 #endif	/* EFSYS_OPT_DIAG */
231 	ef10_nic_fini,			/* eno_fini */
232 	ef10_nic_unprobe,		/* eno_unprobe */
233 };
234 
235 #endif	/* EFSYS_OPT_MEDFORD */
236 
237 
238 	__checkReturn	efx_rc_t
239 efx_nic_create(
240 	__in		efx_family_t family,
241 	__in		efsys_identifier_t *esip,
242 	__in		efsys_bar_t *esbp,
243 	__in		efsys_lock_t *eslp,
244 	__deref_out	efx_nic_t **enpp)
245 {
246 	efx_nic_t *enp;
247 	efx_rc_t rc;
248 
249 	EFSYS_ASSERT3U(family, >, EFX_FAMILY_INVALID);
250 	EFSYS_ASSERT3U(family, <, EFX_FAMILY_NTYPES);
251 
252 	/* Allocate a NIC object */
253 	EFSYS_KMEM_ALLOC(esip, sizeof (efx_nic_t), enp);
254 
255 	if (enp == NULL) {
256 		rc = ENOMEM;
257 		goto fail1;
258 	}
259 
260 	enp->en_magic = EFX_NIC_MAGIC;
261 
262 	switch (family) {
263 #if EFSYS_OPT_SIENA
264 	case EFX_FAMILY_SIENA:
265 		enp->en_enop = &__efx_nic_siena_ops;
266 		enp->en_features =
267 		    EFX_FEATURE_IPV6 |
268 		    EFX_FEATURE_LFSR_HASH_INSERT |
269 		    EFX_FEATURE_LINK_EVENTS |
270 		    EFX_FEATURE_PERIODIC_MAC_STATS |
271 		    EFX_FEATURE_WOL |
272 		    EFX_FEATURE_MCDI |
273 		    EFX_FEATURE_LOOKAHEAD_SPLIT |
274 		    EFX_FEATURE_MAC_HEADER_FILTERS |
275 		    EFX_FEATURE_TX_SRC_FILTERS;
276 		break;
277 #endif	/* EFSYS_OPT_SIENA */
278 
279 #if EFSYS_OPT_HUNTINGTON
280 	case EFX_FAMILY_HUNTINGTON:
281 		enp->en_enop = &__efx_nic_hunt_ops;
282 		/* FIXME: Add WOL support */
283 		enp->en_features =
284 		    EFX_FEATURE_IPV6 |
285 		    EFX_FEATURE_LINK_EVENTS |
286 		    EFX_FEATURE_PERIODIC_MAC_STATS |
287 		    EFX_FEATURE_MCDI |
288 		    EFX_FEATURE_MAC_HEADER_FILTERS |
289 		    EFX_FEATURE_MCDI_DMA |
290 		    EFX_FEATURE_PIO_BUFFERS |
291 		    EFX_FEATURE_FW_ASSISTED_TSO |
292 		    EFX_FEATURE_FW_ASSISTED_TSO_V2;
293 		break;
294 #endif	/* EFSYS_OPT_HUNTINGTON */
295 
296 #if EFSYS_OPT_MEDFORD
297 	case EFX_FAMILY_MEDFORD:
298 		enp->en_enop = &__efx_nic_medford_ops;
299 		/*
300 		 * FW_ASSISTED_TSO omitted as Medford only supports firmware
301 		 * assisted TSO version 2, not the v1 scheme used on Huntington.
302 		 */
303 		enp->en_features =
304 		    EFX_FEATURE_IPV6 |
305 		    EFX_FEATURE_LINK_EVENTS |
306 		    EFX_FEATURE_PERIODIC_MAC_STATS |
307 		    EFX_FEATURE_MCDI |
308 		    EFX_FEATURE_MAC_HEADER_FILTERS |
309 		    EFX_FEATURE_MCDI_DMA |
310 		    EFX_FEATURE_PIO_BUFFERS |
311 		    EFX_FEATURE_FW_ASSISTED_TSO_V2;
312 		break;
313 #endif	/* EFSYS_OPT_MEDFORD */
314 
315 	default:
316 		rc = ENOTSUP;
317 		goto fail2;
318 	}
319 
320 	enp->en_family = family;
321 	enp->en_esip = esip;
322 	enp->en_esbp = esbp;
323 	enp->en_eslp = eslp;
324 
325 	*enpp = enp;
326 
327 	return (0);
328 
329 fail2:
330 	EFSYS_PROBE(fail2);
331 
332 	enp->en_magic = 0;
333 
334 	/* Free the NIC object */
335 	EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp);
336 
337 fail1:
338 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
339 
340 	return (rc);
341 }
342 
343 	__checkReturn	efx_rc_t
344 efx_nic_probe(
345 	__in		efx_nic_t *enp)
346 {
347 	const efx_nic_ops_t *enop;
348 	efx_rc_t rc;
349 
350 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
351 #if EFSYS_OPT_MCDI
352 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
353 #endif	/* EFSYS_OPT_MCDI */
354 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_PROBE));
355 
356 	enop = enp->en_enop;
357 	if ((rc = enop->eno_probe(enp)) != 0)
358 		goto fail1;
359 
360 	if ((rc = efx_phy_probe(enp)) != 0)
361 		goto fail2;
362 
363 	enp->en_mod_flags |= EFX_MOD_PROBE;
364 
365 	return (0);
366 
367 fail2:
368 	EFSYS_PROBE(fail2);
369 
370 	enop->eno_unprobe(enp);
371 
372 fail1:
373 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
374 
375 	return (rc);
376 }
377 
378 	__checkReturn	efx_rc_t
379 efx_nic_set_drv_limits(
380 	__inout		efx_nic_t *enp,
381 	__in		efx_drv_limits_t *edlp)
382 {
383 	const efx_nic_ops_t *enop = enp->en_enop;
384 	efx_rc_t rc;
385 
386 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
387 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
388 
389 	if (enop->eno_set_drv_limits != NULL) {
390 		if ((rc = enop->eno_set_drv_limits(enp, edlp)) != 0)
391 			goto fail1;
392 	}
393 
394 	return (0);
395 
396 fail1:
397 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
398 
399 	return (rc);
400 }
401 
402 	__checkReturn	efx_rc_t
403 efx_nic_get_bar_region(
404 	__in		efx_nic_t *enp,
405 	__in		efx_nic_region_t region,
406 	__out		uint32_t *offsetp,
407 	__out		size_t *sizep)
408 {
409 	const efx_nic_ops_t *enop = enp->en_enop;
410 	efx_rc_t rc;
411 
412 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
413 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
414 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC);
415 
416 	if (enop->eno_get_bar_region == NULL) {
417 		rc = ENOTSUP;
418 		goto fail1;
419 	}
420 	if ((rc = (enop->eno_get_bar_region)(enp,
421 		    region, offsetp, sizep)) != 0) {
422 		goto fail2;
423 	}
424 
425 	return (0);
426 
427 fail2:
428 	EFSYS_PROBE(fail2);
429 
430 fail1:
431 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
432 
433 	return (rc);
434 }
435 
436 
437 	__checkReturn	efx_rc_t
438 efx_nic_get_vi_pool(
439 	__in		efx_nic_t *enp,
440 	__out		uint32_t *evq_countp,
441 	__out		uint32_t *rxq_countp,
442 	__out		uint32_t *txq_countp)
443 {
444 	const efx_nic_ops_t *enop = enp->en_enop;
445 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
446 	efx_rc_t rc;
447 
448 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
449 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
450 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC);
451 
452 	if (enop->eno_get_vi_pool != NULL) {
453 		uint32_t vi_count = 0;
454 
455 		if ((rc = (enop->eno_get_vi_pool)(enp, &vi_count)) != 0)
456 			goto fail1;
457 
458 		*evq_countp = vi_count;
459 		*rxq_countp = vi_count;
460 		*txq_countp = vi_count;
461 	} else {
462 		/* Use NIC limits as default value */
463 		*evq_countp = encp->enc_evq_limit;
464 		*rxq_countp = encp->enc_rxq_limit;
465 		*txq_countp = encp->enc_txq_limit;
466 	}
467 
468 	return (0);
469 
470 fail1:
471 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
472 
473 	return (rc);
474 }
475 
476 
477 	__checkReturn	efx_rc_t
478 efx_nic_init(
479 	__in		efx_nic_t *enp)
480 {
481 	const efx_nic_ops_t *enop = enp->en_enop;
482 	efx_rc_t rc;
483 
484 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
485 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
486 
487 	if (enp->en_mod_flags & EFX_MOD_NIC) {
488 		rc = EINVAL;
489 		goto fail1;
490 	}
491 
492 	if ((rc = enop->eno_init(enp)) != 0)
493 		goto fail2;
494 
495 	enp->en_mod_flags |= EFX_MOD_NIC;
496 
497 	return (0);
498 
499 fail2:
500 	EFSYS_PROBE(fail2);
501 fail1:
502 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
503 
504 	return (rc);
505 }
506 
507 			void
508 efx_nic_fini(
509 	__in		efx_nic_t *enp)
510 {
511 	const efx_nic_ops_t *enop = enp->en_enop;
512 
513 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
514 	EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE);
515 	EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_NIC);
516 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR));
517 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV));
518 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX));
519 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX));
520 
521 	enop->eno_fini(enp);
522 
523 	enp->en_mod_flags &= ~EFX_MOD_NIC;
524 }
525 
526 			void
527 efx_nic_unprobe(
528 	__in		efx_nic_t *enp)
529 {
530 	const efx_nic_ops_t *enop = enp->en_enop;
531 
532 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
533 #if EFSYS_OPT_MCDI
534 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
535 #endif	/* EFSYS_OPT_MCDI */
536 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
537 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC));
538 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR));
539 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV));
540 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX));
541 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX));
542 
543 	efx_phy_unprobe(enp);
544 
545 	enop->eno_unprobe(enp);
546 
547 	enp->en_mod_flags &= ~EFX_MOD_PROBE;
548 }
549 
550 			void
551 efx_nic_destroy(
552 	__in	efx_nic_t *enp)
553 {
554 	efsys_identifier_t *esip = enp->en_esip;
555 
556 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
557 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
558 
559 	enp->en_family = 0;
560 	enp->en_esip = NULL;
561 	enp->en_esbp = NULL;
562 	enp->en_eslp = NULL;
563 
564 	enp->en_enop = NULL;
565 
566 	enp->en_magic = 0;
567 
568 	/* Free the NIC object */
569 	EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp);
570 }
571 
572 	__checkReturn	efx_rc_t
573 efx_nic_reset(
574 	__in		efx_nic_t *enp)
575 {
576 	const efx_nic_ops_t *enop = enp->en_enop;
577 	unsigned int mod_flags;
578 	efx_rc_t rc;
579 
580 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
581 	EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE);
582 	/*
583 	 * All modules except the MCDI, PROBE, NVRAM, VPD, MON
584 	 * (which we do not reset here) must have been shut down or never
585 	 * initialized.
586 	 *
587 	 * A rule of thumb here is: If the controller or MC reboots, is *any*
588 	 * state lost. If it's lost and needs reapplying, then the module
589 	 * *must* not be initialised during the reset.
590 	 */
591 	mod_flags = enp->en_mod_flags;
592 	mod_flags &= ~(EFX_MOD_MCDI | EFX_MOD_PROBE | EFX_MOD_NVRAM |
593 		    EFX_MOD_VPD | EFX_MOD_MON);
594 	EFSYS_ASSERT3U(mod_flags, ==, 0);
595 	if (mod_flags != 0) {
596 		rc = EINVAL;
597 		goto fail1;
598 	}
599 
600 	if ((rc = enop->eno_reset(enp)) != 0)
601 		goto fail2;
602 
603 	return (0);
604 
605 fail2:
606 	EFSYS_PROBE(fail2);
607 fail1:
608 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
609 
610 	return (rc);
611 }
612 
613 			const efx_nic_cfg_t *
614 efx_nic_cfg_get(
615 	__in		efx_nic_t *enp)
616 {
617 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
618 
619 	return (&(enp->en_nic_cfg));
620 }
621 
622 #if EFSYS_OPT_DIAG
623 
624 	__checkReturn	efx_rc_t
625 efx_nic_register_test(
626 	__in		efx_nic_t *enp)
627 {
628 	const efx_nic_ops_t *enop = enp->en_enop;
629 	efx_rc_t rc;
630 
631 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
632 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
633 	EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC));
634 
635 	if ((rc = enop->eno_register_test(enp)) != 0)
636 		goto fail1;
637 
638 	return (0);
639 
640 fail1:
641 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
642 
643 	return (rc);
644 }
645 
646 	__checkReturn	efx_rc_t
647 efx_nic_test_registers(
648 	__in		efx_nic_t *enp,
649 	__in		efx_register_set_t *rsp,
650 	__in		size_t count)
651 {
652 	unsigned int bit;
653 	efx_oword_t original;
654 	efx_oword_t reg;
655 	efx_oword_t buf;
656 	efx_rc_t rc;
657 
658 	while (count > 0) {
659 		/* This function is only suitable for registers */
660 		EFSYS_ASSERT(rsp->rows == 1);
661 
662 		/* bit sweep on and off */
663 		EFSYS_BAR_READO(enp->en_esbp, rsp->address, &original,
664 			    B_TRUE);
665 		for (bit = 0; bit < 128; bit++) {
666 			/* Is this bit in the mask? */
667 			if (~(rsp->mask.eo_u32[bit >> 5]) & (1 << bit))
668 				continue;
669 
670 			/* Test this bit can be set in isolation */
671 			reg = original;
672 			EFX_AND_OWORD(reg, rsp->mask);
673 			EFX_SET_OWORD_BIT(reg, bit);
674 
675 			EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, &reg,
676 				    B_TRUE);
677 			EFSYS_BAR_READO(enp->en_esbp, rsp->address, &buf,
678 				    B_TRUE);
679 
680 			EFX_AND_OWORD(buf, rsp->mask);
681 			if (memcmp(&reg, &buf, sizeof (reg))) {
682 				rc = EIO;
683 				goto fail1;
684 			}
685 
686 			/* Test this bit can be cleared in isolation */
687 			EFX_OR_OWORD(reg, rsp->mask);
688 			EFX_CLEAR_OWORD_BIT(reg, bit);
689 
690 			EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, &reg,
691 				    B_TRUE);
692 			EFSYS_BAR_READO(enp->en_esbp, rsp->address, &buf,
693 				    B_TRUE);
694 
695 			EFX_AND_OWORD(buf, rsp->mask);
696 			if (memcmp(&reg, &buf, sizeof (reg))) {
697 				rc = EIO;
698 				goto fail2;
699 			}
700 		}
701 
702 		/* Restore the old value */
703 		EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, &original,
704 			    B_TRUE);
705 
706 		--count;
707 		++rsp;
708 	}
709 
710 	return (0);
711 
712 fail2:
713 	EFSYS_PROBE(fail2);
714 fail1:
715 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
716 
717 	/* Restore the old value */
718 	EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, &original, B_TRUE);
719 
720 	return (rc);
721 }
722 
723 	__checkReturn	efx_rc_t
724 efx_nic_test_tables(
725 	__in		efx_nic_t *enp,
726 	__in		efx_register_set_t *rsp,
727 	__in		efx_pattern_type_t pattern,
728 	__in		size_t count)
729 {
730 	efx_sram_pattern_fn_t func;
731 	unsigned int index;
732 	unsigned int address;
733 	efx_oword_t reg;
734 	efx_oword_t buf;
735 	efx_rc_t rc;
736 
737 	EFSYS_ASSERT(pattern < EFX_PATTERN_NTYPES);
738 	func = __efx_sram_pattern_fns[pattern];
739 
740 	while (count > 0) {
741 		/* Write */
742 		address = rsp->address;
743 		for (index = 0; index < rsp->rows; ++index) {
744 			func(2 * index + 0, B_FALSE, &reg.eo_qword[0]);
745 			func(2 * index + 1, B_FALSE, &reg.eo_qword[1]);
746 			EFX_AND_OWORD(reg, rsp->mask);
747 			EFSYS_BAR_WRITEO(enp->en_esbp, address, &reg, B_TRUE);
748 
749 			address += rsp->step;
750 		}
751 
752 		/* Read */
753 		address = rsp->address;
754 		for (index = 0; index < rsp->rows; ++index) {
755 			func(2 * index + 0, B_FALSE, &reg.eo_qword[0]);
756 			func(2 * index + 1, B_FALSE, &reg.eo_qword[1]);
757 			EFX_AND_OWORD(reg, rsp->mask);
758 			EFSYS_BAR_READO(enp->en_esbp, address, &buf, B_TRUE);
759 			if (memcmp(&reg, &buf, sizeof (reg))) {
760 				rc = EIO;
761 				goto fail1;
762 			}
763 
764 			address += rsp->step;
765 		}
766 
767 		++rsp;
768 		--count;
769 	}
770 
771 	return (0);
772 
773 fail1:
774 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
775 
776 	return (rc);
777 }
778 
779 #endif	/* EFSYS_OPT_DIAG */
780 
781 #if EFSYS_OPT_LOOPBACK
782 
783 extern			void
784 efx_loopback_mask(
785 	__in	efx_loopback_kind_t loopback_kind,
786 	__out	efx_qword_t *maskp)
787 {
788 	efx_qword_t mask;
789 
790 	EFSYS_ASSERT3U(loopback_kind, <, EFX_LOOPBACK_NKINDS);
791 	EFSYS_ASSERT(maskp != NULL);
792 
793 	/* Assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespace agree */
794 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_NONE == EFX_LOOPBACK_OFF);
795 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_DATA == EFX_LOOPBACK_DATA);
796 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMAC == EFX_LOOPBACK_GMAC);
797 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGMII == EFX_LOOPBACK_XGMII);
798 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGXS == EFX_LOOPBACK_XGXS);
799 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI == EFX_LOOPBACK_XAUI);
800 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMII == EFX_LOOPBACK_GMII);
801 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SGMII == EFX_LOOPBACK_SGMII);
802 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGBR == EFX_LOOPBACK_XGBR);
803 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI == EFX_LOOPBACK_XFI);
804 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_FAR == EFX_LOOPBACK_XAUI_FAR);
805 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMII_FAR == EFX_LOOPBACK_GMII_FAR);
806 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SGMII_FAR == EFX_LOOPBACK_SGMII_FAR);
807 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI_FAR == EFX_LOOPBACK_XFI_FAR);
808 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GPHY == EFX_LOOPBACK_GPHY);
809 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PHYXS == EFX_LOOPBACK_PHY_XS);
810 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PCS == EFX_LOOPBACK_PCS);
811 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PMAPMD == EFX_LOOPBACK_PMA_PMD);
812 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XPORT == EFX_LOOPBACK_XPORT);
813 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGMII_WS == EFX_LOOPBACK_XGMII_WS);
814 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_WS == EFX_LOOPBACK_XAUI_WS);
815 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_WS_FAR ==
816 	    EFX_LOOPBACK_XAUI_WS_FAR);
817 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_WS_NEAR ==
818 	    EFX_LOOPBACK_XAUI_WS_NEAR);
819 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMII_WS == EFX_LOOPBACK_GMII_WS);
820 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI_WS == EFX_LOOPBACK_XFI_WS);
821 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI_WS_FAR ==
822 	    EFX_LOOPBACK_XFI_WS_FAR);
823 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PHYXS_WS == EFX_LOOPBACK_PHYXS_WS);
824 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PMA_INT == EFX_LOOPBACK_PMA_INT);
825 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_NEAR == EFX_LOOPBACK_SD_NEAR);
826 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FAR == EFX_LOOPBACK_SD_FAR);
827 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PMA_INT_WS ==
828 	    EFX_LOOPBACK_PMA_INT_WS);
829 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FEP2_WS ==
830 	    EFX_LOOPBACK_SD_FEP2_WS);
831 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FEP1_5_WS ==
832 	    EFX_LOOPBACK_SD_FEP1_5_WS);
833 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FEP_WS == EFX_LOOPBACK_SD_FEP_WS);
834 	EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FES_WS == EFX_LOOPBACK_SD_FES_WS);
835 
836 	/* Build bitmask of possible loopback types */
837 	EFX_ZERO_QWORD(mask);
838 
839 	if ((loopback_kind == EFX_LOOPBACK_KIND_OFF) ||
840 	    (loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
841 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_OFF);
842 	}
843 
844 	if ((loopback_kind == EFX_LOOPBACK_KIND_MAC) ||
845 	    (loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
846 		/*
847 		 * The "MAC" grouping has historically been used by drivers to
848 		 * mean loopbacks supported by on-chip hardware. Keep that
849 		 * meaning here, and include on-chip PHY layer loopbacks.
850 		 */
851 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_DATA);
852 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMAC);
853 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGMII);
854 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGXS);
855 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XAUI);
856 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMII);
857 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SGMII);
858 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGBR);
859 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XFI);
860 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XAUI_FAR);
861 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMII_FAR);
862 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SGMII_FAR);
863 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XFI_FAR);
864 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PMA_INT);
865 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SD_NEAR);
866 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SD_FAR);
867 	}
868 
869 	if ((loopback_kind == EFX_LOOPBACK_KIND_PHY) ||
870 	    (loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
871 		/*
872 		 * The "PHY" grouping has historically been used by drivers to
873 		 * mean loopbacks supported by off-chip hardware. Keep that
874 		 * meaning here.
875 		 */
876 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GPHY);
877 		EFX_SET_QWORD_BIT(mask,	EFX_LOOPBACK_PHY_XS);
878 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PCS);
879 		EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PMA_PMD);
880 	}
881 
882 	*maskp = mask;
883 }
884 
885 	__checkReturn	efx_rc_t
886 efx_mcdi_get_loopback_modes(
887 	__in		efx_nic_t *enp)
888 {
889 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
890 	efx_mcdi_req_t req;
891 	uint8_t payload[MAX(MC_CMD_GET_LOOPBACK_MODES_IN_LEN,
892 			    MC_CMD_GET_LOOPBACK_MODES_OUT_LEN)];
893 	efx_qword_t mask;
894 	efx_qword_t modes;
895 	efx_rc_t rc;
896 
897 	(void) memset(payload, 0, sizeof (payload));
898 	req.emr_cmd = MC_CMD_GET_LOOPBACK_MODES;
899 	req.emr_in_buf = payload;
900 	req.emr_in_length = MC_CMD_GET_LOOPBACK_MODES_IN_LEN;
901 	req.emr_out_buf = payload;
902 	req.emr_out_length = MC_CMD_GET_LOOPBACK_MODES_OUT_LEN;
903 
904 	efx_mcdi_execute(enp, &req);
905 
906 	if (req.emr_rc != 0) {
907 		rc = req.emr_rc;
908 		goto fail1;
909 	}
910 
911 	if (req.emr_out_length_used <
912 	    MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_OFST +
913 	    MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_LEN) {
914 		rc = EMSGSIZE;
915 		goto fail2;
916 	}
917 
918 	/*
919 	 * We assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespaces agree
920 	 * in efx_loopback_mask() and in siena_phy.c:siena_phy_get_link().
921 	 */
922 	efx_loopback_mask(EFX_LOOPBACK_KIND_ALL, &mask);
923 
924 	EFX_AND_QWORD(mask,
925 	    *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_SUGGESTED));
926 
927 	modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_100M);
928 	EFX_AND_QWORD(modes, mask);
929 	encp->enc_loopback_types[EFX_LINK_100FDX] = modes;
930 
931 	modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_1G);
932 	EFX_AND_QWORD(modes, mask);
933 	encp->enc_loopback_types[EFX_LINK_1000FDX] = modes;
934 
935 	modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_10G);
936 	EFX_AND_QWORD(modes, mask);
937 	encp->enc_loopback_types[EFX_LINK_10000FDX] = modes;
938 
939 	if (req.emr_out_length_used >=
940 	    MC_CMD_GET_LOOPBACK_MODES_OUT_40G_OFST +
941 	    MC_CMD_GET_LOOPBACK_MODES_OUT_40G_LEN) {
942 		/* Response includes 40G loopback modes */
943 		modes =
944 		    *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_40G);
945 		EFX_AND_QWORD(modes, mask);
946 		encp->enc_loopback_types[EFX_LINK_40000FDX] = modes;
947 	}
948 
949 	EFX_ZERO_QWORD(modes);
950 	EFX_SET_QWORD_BIT(modes, EFX_LOOPBACK_OFF);
951 	EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_100FDX]);
952 	EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_1000FDX]);
953 	EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_10000FDX]);
954 	EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_40000FDX]);
955 	encp->enc_loopback_types[EFX_LINK_UNKNOWN] = modes;
956 
957 	return (0);
958 
959 fail2:
960 	EFSYS_PROBE(fail2);
961 fail1:
962 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
963 
964 	return (rc);
965 }
966 
967 #endif /* EFSYS_OPT_LOOPBACK */
968 
969 	__checkReturn	efx_rc_t
970 efx_nic_calculate_pcie_link_bandwidth(
971 	__in		uint32_t pcie_link_width,
972 	__in		uint32_t pcie_link_gen,
973 	__out		uint32_t *bandwidth_mbpsp)
974 {
975 	uint32_t lane_bandwidth;
976 	uint32_t total_bandwidth;
977 	efx_rc_t rc;
978 
979 	if ((pcie_link_width == 0) || (pcie_link_width > 16) ||
980 	    !ISP2(pcie_link_width)) {
981 		rc = EINVAL;
982 		goto fail1;
983 	}
984 
985 	switch (pcie_link_gen) {
986 	case EFX_PCIE_LINK_SPEED_GEN1:
987 		/* 2.5 Gb/s raw bandwidth with 8b/10b encoding */
988 		lane_bandwidth = 2000;
989 		break;
990 	case EFX_PCIE_LINK_SPEED_GEN2:
991 		/* 5.0 Gb/s raw bandwidth with 8b/10b encoding */
992 		lane_bandwidth = 4000;
993 		break;
994 	case EFX_PCIE_LINK_SPEED_GEN3:
995 		/* 8.0 Gb/s raw bandwidth with 128b/130b encoding */
996 		lane_bandwidth = 7877;
997 		break;
998 	default:
999 		rc = EINVAL;
1000 		goto fail2;
1001 	}
1002 
1003 	total_bandwidth = lane_bandwidth * pcie_link_width;
1004 	*bandwidth_mbpsp = total_bandwidth;
1005 
1006 	return (0);
1007 
1008 fail2:
1009 	EFSYS_PROBE(fail2);
1010 fail1:
1011 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1012 
1013 	return (rc);
1014 }
1015 
1016 
1017 	__checkReturn	efx_rc_t
1018 efx_nic_check_pcie_link_speed(
1019 	__in		efx_nic_t *enp,
1020 	__in		uint32_t pcie_link_width,
1021 	__in		uint32_t pcie_link_gen,
1022 	__out		efx_pcie_link_performance_t *resultp)
1023 {
1024 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1025 	uint32_t bandwidth;
1026 	efx_pcie_link_performance_t result;
1027 	efx_rc_t rc;
1028 
1029 	if ((encp->enc_required_pcie_bandwidth_mbps == 0) ||
1030 	    (pcie_link_width == 0) || (pcie_link_width == 32) ||
1031 	    (pcie_link_gen == 0)) {
1032 		/*
1033 		 * No usable info on what is required and/or in use. In virtual
1034 		 * machines, sometimes the PCIe link width is reported as 0 or
1035 		 * 32, or the speed as 0.
1036 		 */
1037 		result = EFX_PCIE_LINK_PERFORMANCE_UNKNOWN_BANDWIDTH;
1038 		goto out;
1039 	}
1040 
1041 	/* Calculate the available bandwidth in megabits per second */
1042 	rc = efx_nic_calculate_pcie_link_bandwidth(pcie_link_width,
1043 					    pcie_link_gen, &bandwidth);
1044 	if (rc != 0)
1045 		goto fail1;
1046 
1047 	if (bandwidth < encp->enc_required_pcie_bandwidth_mbps) {
1048 		result = EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_BANDWIDTH;
1049 	} else if (pcie_link_gen < encp->enc_max_pcie_link_gen) {
1050 		/* The link provides enough bandwidth but not optimal latency */
1051 		result = EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_LATENCY;
1052 	} else {
1053 		result = EFX_PCIE_LINK_PERFORMANCE_OPTIMAL;
1054 	}
1055 
1056 out:
1057 	*resultp = result;
1058 
1059 	return (0);
1060 
1061 fail1:
1062 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1063 
1064 	return (rc);
1065 }
1066