xref: /freebsd/sys/dev/sfxge/common/efx_mcdi.c (revision d96700a6da2afa88607fbd7405ade439424d10d9)
1 /*-
2  * Copyright (c) 2008-2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are
27  * those of the authors and should not be interpreted as representing official
28  * policies, either expressed or implied, of the FreeBSD Project.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "efx.h"
35 #include "efx_impl.h"
36 
37 #if EFSYS_OPT_MCDI
38 
39 /*
40  * There are three versions of the MCDI interface:
41  *  - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers.
42  *  - MCDIv1: Siena firmware and Huntington BootROM.
43  *  - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM.
44  *            Transport uses MCDIv2 headers.
45  *
46  * MCDIv2 Header NOT_EPOCH flag
47  * ----------------------------
48  * A new epoch begins at initial startup or after an MC reboot, and defines when
49  * the MC should reject stale MCDI requests.
50  *
51  * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all
52  * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1.
53  *
54  * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a
55  * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0.
56  */
57 
58 
59 
60 #if EFSYS_OPT_SIENA
61 
62 static const efx_mcdi_ops_t	__efx_mcdi_siena_ops = {
63 	siena_mcdi_init,		/* emco_init */
64 	siena_mcdi_send_request,	/* emco_send_request */
65 	siena_mcdi_poll_reboot,		/* emco_poll_reboot */
66 	siena_mcdi_poll_response,	/* emco_poll_response */
67 	siena_mcdi_read_response,	/* emco_read_response */
68 	siena_mcdi_fini,		/* emco_fini */
69 	siena_mcdi_feature_supported,	/* emco_feature_supported */
70 };
71 
72 #endif	/* EFSYS_OPT_SIENA */
73 
74 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
75 
76 static const efx_mcdi_ops_t	__efx_mcdi_ef10_ops = {
77 	ef10_mcdi_init,			/* emco_init */
78 	ef10_mcdi_send_request,		/* emco_send_request */
79 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
80 	ef10_mcdi_poll_response,	/* emco_poll_response */
81 	ef10_mcdi_read_response,	/* emco_read_response */
82 	ef10_mcdi_fini,			/* emco_fini */
83 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
84 };
85 
86 #endif	/* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
87 
88 
89 
90 	__checkReturn	efx_rc_t
91 efx_mcdi_init(
92 	__in		efx_nic_t *enp,
93 	__in		const efx_mcdi_transport_t *emtp)
94 {
95 	const efx_mcdi_ops_t *emcop;
96 	efx_rc_t rc;
97 
98 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
99 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
100 
101 	switch (enp->en_family) {
102 #if EFSYS_OPT_SIENA
103 	case EFX_FAMILY_SIENA:
104 		emcop = &__efx_mcdi_siena_ops;
105 		break;
106 #endif	/* EFSYS_OPT_SIENA */
107 
108 #if EFSYS_OPT_HUNTINGTON
109 	case EFX_FAMILY_HUNTINGTON:
110 		emcop = &__efx_mcdi_ef10_ops;
111 		break;
112 #endif	/* EFSYS_OPT_HUNTINGTON */
113 
114 #if EFSYS_OPT_MEDFORD
115 	case EFX_FAMILY_MEDFORD:
116 		emcop = &__efx_mcdi_ef10_ops;
117 		break;
118 #endif	/* EFSYS_OPT_MEDFORD */
119 
120 	default:
121 		EFSYS_ASSERT(0);
122 		rc = ENOTSUP;
123 		goto fail1;
124 	}
125 
126 	if (enp->en_features & EFX_FEATURE_MCDI_DMA) {
127 		/* MCDI requires a DMA buffer in host memory */
128 		if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) {
129 			rc = EINVAL;
130 			goto fail2;
131 		}
132 	}
133 	enp->en_mcdi.em_emtp = emtp;
134 
135 	if (emcop != NULL && emcop->emco_init != NULL) {
136 		if ((rc = emcop->emco_init(enp, emtp)) != 0)
137 			goto fail3;
138 	}
139 
140 	enp->en_mcdi.em_emcop = emcop;
141 	enp->en_mod_flags |= EFX_MOD_MCDI;
142 
143 	return (0);
144 
145 fail3:
146 	EFSYS_PROBE(fail3);
147 fail2:
148 	EFSYS_PROBE(fail2);
149 fail1:
150 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
151 
152 	enp->en_mcdi.em_emcop = NULL;
153 	enp->en_mcdi.em_emtp = NULL;
154 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
155 
156 	return (rc);
157 }
158 
159 			void
160 efx_mcdi_fini(
161 	__in		efx_nic_t *enp)
162 {
163 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
164 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
165 
166 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
167 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI);
168 
169 	if (emcop != NULL && emcop->emco_fini != NULL)
170 		emcop->emco_fini(enp);
171 
172 	emip->emi_port = 0;
173 	emip->emi_aborted = 0;
174 
175 	enp->en_mcdi.em_emcop = NULL;
176 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
177 }
178 
179 			void
180 efx_mcdi_new_epoch(
181 	__in		efx_nic_t *enp)
182 {
183 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
184 	int state;
185 
186 	/* Start a new epoch (allow fresh MCDI requests to succeed) */
187 	EFSYS_LOCK(enp->en_eslp, state);
188 	emip->emi_new_epoch = B_TRUE;
189 	EFSYS_UNLOCK(enp->en_eslp, state);
190 }
191 
192 static			void
193 efx_mcdi_send_request(
194 	__in		efx_nic_t *enp,
195 	__in		void *hdrp,
196 	__in		size_t hdr_len,
197 	__in		void *sdup,
198 	__in		size_t sdu_len)
199 {
200 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
201 
202 	emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len);
203 }
204 
205 static			efx_rc_t
206 efx_mcdi_poll_reboot(
207 	__in		efx_nic_t *enp)
208 {
209 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
210 	efx_rc_t rc;
211 
212 	rc = emcop->emco_poll_reboot(enp);
213 	return (rc);
214 }
215 
216 static			boolean_t
217 efx_mcdi_poll_response(
218 	__in		efx_nic_t *enp)
219 {
220 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
221 	boolean_t available;
222 
223 	available = emcop->emco_poll_response(enp);
224 	return (available);
225 }
226 
227 static			void
228 efx_mcdi_read_response(
229 	__in		efx_nic_t *enp,
230 	__out		void *bufferp,
231 	__in		size_t offset,
232 	__in		size_t length)
233 {
234 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
235 
236 	emcop->emco_read_response(enp, bufferp, offset, length);
237 }
238 
239 			void
240 efx_mcdi_request_start(
241 	__in		efx_nic_t *enp,
242 	__in		efx_mcdi_req_t *emrp,
243 	__in		boolean_t ev_cpl)
244 {
245 #if EFSYS_OPT_MCDI_LOGGING
246 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
247 #endif
248 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
249 	efx_dword_t hdr[2];
250 	size_t hdr_len;
251 	unsigned int max_version;
252 	unsigned int seq;
253 	unsigned int xflags;
254 	boolean_t new_epoch;
255 	int state;
256 
257 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
258 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
259 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
260 
261 	/*
262 	 * efx_mcdi_request_start() is naturally serialised against both
263 	 * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(),
264 	 * by virtue of there only being one outstanding MCDI request.
265 	 * Unfortunately, upper layers may also call efx_mcdi_request_abort()
266 	 * at any time, to timeout a pending mcdi request, That request may
267 	 * then subsequently complete, meaning efx_mcdi_ev_cpl() or
268 	 * efx_mcdi_ev_death() may end up running in parallel with
269 	 * efx_mcdi_request_start(). This race is handled by ensuring that
270 	 * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the
271 	 * en_eslp lock.
272 	 */
273 	EFSYS_LOCK(enp->en_eslp, state);
274 	EFSYS_ASSERT(emip->emi_pending_req == NULL);
275 	emip->emi_pending_req = emrp;
276 	emip->emi_ev_cpl = ev_cpl;
277 	emip->emi_poll_cnt = 0;
278 	seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ);
279 	new_epoch = emip->emi_new_epoch;
280 	max_version = emip->emi_max_version;
281 	EFSYS_UNLOCK(enp->en_eslp, state);
282 
283 	xflags = 0;
284 	if (ev_cpl)
285 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
286 
287 	/*
288 	 * Huntington firmware supports MCDIv2, but the Huntington BootROM only
289 	 * supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where
290 	 * possible to support this.
291 	 */
292 	if ((max_version >= 2) &&
293 	    ((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) ||
294 	    (emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1))) {
295 		/* Construct MCDI v2 header */
296 		hdr_len = sizeof (hdr);
297 		EFX_POPULATE_DWORD_8(hdr[0],
298 		    MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
299 		    MCDI_HEADER_RESYNC, 1,
300 		    MCDI_HEADER_DATALEN, 0,
301 		    MCDI_HEADER_SEQ, seq,
302 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
303 		    MCDI_HEADER_ERROR, 0,
304 		    MCDI_HEADER_RESPONSE, 0,
305 		    MCDI_HEADER_XFLAGS, xflags);
306 
307 		EFX_POPULATE_DWORD_2(hdr[1],
308 		    MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd,
309 		    MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length);
310 	} else {
311 		/* Construct MCDI v1 header */
312 		hdr_len = sizeof (hdr[0]);
313 		EFX_POPULATE_DWORD_8(hdr[0],
314 		    MCDI_HEADER_CODE, emrp->emr_cmd,
315 		    MCDI_HEADER_RESYNC, 1,
316 		    MCDI_HEADER_DATALEN, emrp->emr_in_length,
317 		    MCDI_HEADER_SEQ, seq,
318 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
319 		    MCDI_HEADER_ERROR, 0,
320 		    MCDI_HEADER_RESPONSE, 0,
321 		    MCDI_HEADER_XFLAGS, xflags);
322 	}
323 
324 #if EFSYS_OPT_MCDI_LOGGING
325 	if (emtp->emt_logger != NULL) {
326 		emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST,
327 		    &hdr, hdr_len,
328 		    emrp->emr_in_buf, emrp->emr_in_length);
329 	}
330 #endif /* EFSYS_OPT_MCDI_LOGGING */
331 
332 	efx_mcdi_send_request(enp, &hdr[0], hdr_len,
333 	    emrp->emr_in_buf, emrp->emr_in_length);
334 }
335 
336 
337 static			void
338 efx_mcdi_read_response_header(
339 	__in		efx_nic_t *enp,
340 	__inout		efx_mcdi_req_t *emrp)
341 {
342 #if EFSYS_OPT_MCDI_LOGGING
343 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
344 #endif /* EFSYS_OPT_MCDI_LOGGING */
345 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
346 	efx_dword_t hdr[2];
347 	unsigned int hdr_len;
348 	unsigned int data_len;
349 	unsigned int seq;
350 	unsigned int cmd;
351 	unsigned int error;
352 	efx_rc_t rc;
353 
354 	EFSYS_ASSERT(emrp != NULL);
355 
356 	efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0]));
357 	hdr_len = sizeof (hdr[0]);
358 
359 	cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE);
360 	seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ);
361 	error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR);
362 
363 	if (cmd != MC_CMD_V2_EXTN) {
364 		data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN);
365 	} else {
366 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
367 		hdr_len += sizeof (hdr[1]);
368 
369 		cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
370 		data_len =
371 		    EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
372 	}
373 
374 	if (error && (data_len == 0)) {
375 		/* The MC has rebooted since the request was sent. */
376 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
377 		efx_mcdi_poll_reboot(enp);
378 		rc = EIO;
379 		goto fail1;
380 	}
381 	if ((cmd != emrp->emr_cmd) ||
382 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
383 		/* Response is for a different request */
384 		rc = EIO;
385 		goto fail2;
386 	}
387 	if (error) {
388 		efx_dword_t err[2];
389 		unsigned int err_len = MIN(data_len, sizeof (err));
390 		int err_code = MC_CMD_ERR_EPROTO;
391 		int err_arg = 0;
392 
393 		/* Read error code (and arg num for MCDI v2 commands) */
394 		efx_mcdi_read_response(enp, &err, hdr_len, err_len);
395 
396 		if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t)))
397 			err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0);
398 #ifdef WITH_MCDI_V2
399 		if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t)))
400 			err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0);
401 #endif
402 		emrp->emr_err_code = err_code;
403 		emrp->emr_err_arg = err_arg;
404 
405 #if EFSYS_OPT_MCDI_PROXY_AUTH
406 		if ((err_code == MC_CMD_ERR_PROXY_PENDING) &&
407 		    (err_len == sizeof (err))) {
408 			/*
409 			 * The MCDI request would normally fail with EPERM, but
410 			 * firmware has forwarded it to an authorization agent
411 			 * attached to a privileged PF.
412 			 *
413 			 * Save the authorization request handle. The client
414 			 * must wait for a PROXY_RESPONSE event, or timeout.
415 			 */
416 			emrp->emr_proxy_handle = err_arg;
417 		}
418 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
419 
420 #if EFSYS_OPT_MCDI_LOGGING
421 		if (emtp->emt_logger != NULL) {
422 			emtp->emt_logger(emtp->emt_context,
423 			    EFX_LOG_MCDI_RESPONSE,
424 			    &hdr, hdr_len,
425 			    &err, err_len);
426 		}
427 #endif /* EFSYS_OPT_MCDI_LOGGING */
428 
429 		if (!emrp->emr_quiet) {
430 			EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd,
431 			    int, err_code, int, err_arg);
432 		}
433 
434 		rc = efx_mcdi_request_errcode(err_code);
435 		goto fail3;
436 	}
437 
438 	emrp->emr_rc = 0;
439 	emrp->emr_out_length_used = data_len;
440 #if EFSYS_OPT_MCDI_PROXY_AUTH
441 	emrp->emr_proxy_handle = 0;
442 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
443 	return;
444 
445 fail3:
446 fail2:
447 fail1:
448 	emrp->emr_rc = rc;
449 	emrp->emr_out_length_used = 0;
450 }
451 
452 static			void
453 efx_mcdi_finish_response(
454 	__in		efx_nic_t *enp,
455 	__in		efx_mcdi_req_t *emrp)
456 {
457 #if EFSYS_OPT_MCDI_LOGGING
458 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
459 #endif /* EFSYS_OPT_MCDI_LOGGING */
460 	efx_dword_t hdr[2];
461 	unsigned int hdr_len;
462 	size_t bytes;
463 
464 	if (emrp->emr_out_buf == NULL)
465 		return;
466 
467 	/* Read the command header to detect MCDI response format */
468 	hdr_len = sizeof (hdr[0]);
469 	efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len);
470 	if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) {
471 		/*
472 		 * Read the actual payload length. The length given in the event
473 		 * is only correct for responses with the V1 format.
474 		 */
475 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
476 		hdr_len += sizeof (hdr[1]);
477 
478 		emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1],
479 					    MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
480 	}
481 
482 	/* Copy payload out into caller supplied buffer */
483 	bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length);
484 	efx_mcdi_read_response(enp, emrp->emr_out_buf, hdr_len, bytes);
485 
486 #if EFSYS_OPT_MCDI_LOGGING
487 	if (emtp->emt_logger != NULL) {
488 		emtp->emt_logger(emtp->emt_context,
489 		    EFX_LOG_MCDI_RESPONSE,
490 		    &hdr, hdr_len,
491 		    emrp->emr_out_buf, bytes);
492 	}
493 #endif /* EFSYS_OPT_MCDI_LOGGING */
494 }
495 
496 
497 	__checkReturn	boolean_t
498 efx_mcdi_request_poll(
499 	__in		efx_nic_t *enp)
500 {
501 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
502 	efx_mcdi_req_t *emrp;
503 	int state;
504 	efx_rc_t rc;
505 
506 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
507 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
508 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
509 
510 	/* Serialise against post-watchdog efx_mcdi_ev* */
511 	EFSYS_LOCK(enp->en_eslp, state);
512 
513 	EFSYS_ASSERT(emip->emi_pending_req != NULL);
514 	EFSYS_ASSERT(!emip->emi_ev_cpl);
515 	emrp = emip->emi_pending_req;
516 
517 	/* Check for reboot atomically w.r.t efx_mcdi_request_start */
518 	if (emip->emi_poll_cnt++ == 0) {
519 		if ((rc = efx_mcdi_poll_reboot(enp)) != 0) {
520 			emip->emi_pending_req = NULL;
521 			EFSYS_UNLOCK(enp->en_eslp, state);
522 
523 			/* Reboot/Assertion */
524 			if (rc == EIO || rc == EINTR)
525 				efx_mcdi_raise_exception(enp, emrp, rc);
526 
527 			goto fail1;
528 		}
529 	}
530 
531 	/* Check if a response is available */
532 	if (efx_mcdi_poll_response(enp) == B_FALSE) {
533 		EFSYS_UNLOCK(enp->en_eslp, state);
534 		return (B_FALSE);
535 	}
536 
537 	/* Read the response header */
538 	efx_mcdi_read_response_header(enp, emrp);
539 
540 	/* Request complete */
541 	emip->emi_pending_req = NULL;
542 
543 	/* Ensure stale MCDI requests fail after an MC reboot. */
544 	emip->emi_new_epoch = B_FALSE;
545 
546 	EFSYS_UNLOCK(enp->en_eslp, state);
547 
548 	if ((rc = emrp->emr_rc) != 0)
549 		goto fail2;
550 
551 	efx_mcdi_finish_response(enp, emrp);
552 	return (B_TRUE);
553 
554 fail2:
555 	if (!emrp->emr_quiet)
556 		EFSYS_PROBE(fail2);
557 fail1:
558 	if (!emrp->emr_quiet)
559 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
560 
561 	return (B_TRUE);
562 }
563 
564 	__checkReturn	boolean_t
565 efx_mcdi_request_abort(
566 	__in		efx_nic_t *enp)
567 {
568 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
569 	efx_mcdi_req_t *emrp;
570 	boolean_t aborted;
571 	int state;
572 
573 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
574 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
575 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
576 
577 	/*
578 	 * efx_mcdi_ev_* may have already completed this event, and be
579 	 * spinning/blocked on the upper layer lock. So it *is* legitimate
580 	 * to for emi_pending_req to be NULL. If there is a pending event
581 	 * completed request, then provide a "credit" to allow
582 	 * efx_mcdi_ev_cpl() to accept a single spurious completion.
583 	 */
584 	EFSYS_LOCK(enp->en_eslp, state);
585 	emrp = emip->emi_pending_req;
586 	aborted = (emrp != NULL);
587 	if (aborted) {
588 		emip->emi_pending_req = NULL;
589 
590 		/* Error the request */
591 		emrp->emr_out_length_used = 0;
592 		emrp->emr_rc = ETIMEDOUT;
593 
594 		/* Provide a credit for seqno/emr_pending_req mismatches */
595 		if (emip->emi_ev_cpl)
596 			++emip->emi_aborted;
597 
598 		/*
599 		 * The upper layer has called us, so we don't
600 		 * need to complete the request.
601 		 */
602 	}
603 	EFSYS_UNLOCK(enp->en_eslp, state);
604 
605 	return (aborted);
606 }
607 
608 	__checkReturn	efx_rc_t
609 efx_mcdi_request_errcode(
610 	__in		unsigned int err)
611 {
612 
613 	switch (err) {
614 		/* MCDI v1 */
615 	case MC_CMD_ERR_EPERM:
616 		return (EACCES);
617 	case MC_CMD_ERR_ENOENT:
618 		return (ENOENT);
619 	case MC_CMD_ERR_EINTR:
620 		return (EINTR);
621 	case MC_CMD_ERR_EACCES:
622 		return (EACCES);
623 	case MC_CMD_ERR_EBUSY:
624 		return (EBUSY);
625 	case MC_CMD_ERR_EINVAL:
626 		return (EINVAL);
627 	case MC_CMD_ERR_EDEADLK:
628 		return (EDEADLK);
629 	case MC_CMD_ERR_ENOSYS:
630 		return (ENOTSUP);
631 	case MC_CMD_ERR_ETIME:
632 		return (ETIMEDOUT);
633 	case MC_CMD_ERR_ENOTSUP:
634 		return (ENOTSUP);
635 	case MC_CMD_ERR_EALREADY:
636 		return (EALREADY);
637 
638 		/* MCDI v2 */
639 	case MC_CMD_ERR_EEXIST:
640 		return (EEXIST);
641 #ifdef MC_CMD_ERR_EAGAIN
642 	case MC_CMD_ERR_EAGAIN:
643 		return (EAGAIN);
644 #endif
645 #ifdef MC_CMD_ERR_ENOSPC
646 	case MC_CMD_ERR_ENOSPC:
647 		return (ENOSPC);
648 #endif
649 
650 	case MC_CMD_ERR_ALLOC_FAIL:
651 		return (ENOMEM);
652 	case MC_CMD_ERR_NO_VADAPTOR:
653 		return (ENOENT);
654 	case MC_CMD_ERR_NO_EVB_PORT:
655 		return (ENOENT);
656 	case MC_CMD_ERR_NO_VSWITCH:
657 		return (ENODEV);
658 	case MC_CMD_ERR_VLAN_LIMIT:
659 		return (EINVAL);
660 	case MC_CMD_ERR_BAD_PCI_FUNC:
661 		return (ENODEV);
662 	case MC_CMD_ERR_BAD_VLAN_MODE:
663 		return (EINVAL);
664 	case MC_CMD_ERR_BAD_VSWITCH_TYPE:
665 		return (EINVAL);
666 	case MC_CMD_ERR_BAD_VPORT_TYPE:
667 		return (EINVAL);
668 	case MC_CMD_ERR_MAC_EXIST:
669 		return (EEXIST);
670 
671 	case MC_CMD_ERR_PROXY_PENDING:
672 		return (EAGAIN);
673 
674 	default:
675 		EFSYS_PROBE1(mc_pcol_error, int, err);
676 		return (EIO);
677 	}
678 }
679 
680 			void
681 efx_mcdi_raise_exception(
682 	__in		efx_nic_t *enp,
683 	__in_opt	efx_mcdi_req_t *emrp,
684 	__in		int rc)
685 {
686 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
687 	efx_mcdi_exception_t exception;
688 
689 	/* Reboot or Assertion failure only */
690 	EFSYS_ASSERT(rc == EIO || rc == EINTR);
691 
692 	/*
693 	 * If MC_CMD_REBOOT causes a reboot (dependent on parameters),
694 	 * then the EIO is not worthy of an exception.
695 	 */
696 	if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO)
697 		return;
698 
699 	exception = (rc == EIO)
700 		? EFX_MCDI_EXCEPTION_MC_REBOOT
701 		: EFX_MCDI_EXCEPTION_MC_BADASSERT;
702 
703 	emtp->emt_exception(emtp->emt_context, exception);
704 }
705 
706 			void
707 efx_mcdi_execute(
708 	__in		efx_nic_t *enp,
709 	__inout		efx_mcdi_req_t *emrp)
710 {
711 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
712 
713 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
714 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
715 
716 	emrp->emr_quiet = B_FALSE;
717 	emtp->emt_execute(emtp->emt_context, emrp);
718 }
719 
720 			void
721 efx_mcdi_execute_quiet(
722 	__in		efx_nic_t *enp,
723 	__inout		efx_mcdi_req_t *emrp)
724 {
725 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
726 
727 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
728 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
729 
730 	emrp->emr_quiet = B_TRUE;
731 	emtp->emt_execute(emtp->emt_context, emrp);
732 }
733 
734 			void
735 efx_mcdi_ev_cpl(
736 	__in		efx_nic_t *enp,
737 	__in		unsigned int seq,
738 	__in		unsigned int outlen,
739 	__in		int errcode)
740 {
741 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
742 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
743 	efx_mcdi_req_t *emrp;
744 	int state;
745 
746 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
747 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
748 
749 	/*
750 	 * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start()
751 	 * when we're completing an aborted request.
752 	 */
753 	EFSYS_LOCK(enp->en_eslp, state);
754 	if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl ||
755 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
756 		EFSYS_ASSERT(emip->emi_aborted > 0);
757 		if (emip->emi_aborted > 0)
758 			--emip->emi_aborted;
759 		EFSYS_UNLOCK(enp->en_eslp, state);
760 		return;
761 	}
762 
763 	emrp = emip->emi_pending_req;
764 	emip->emi_pending_req = NULL;
765 	EFSYS_UNLOCK(enp->en_eslp, state);
766 
767 	if (emip->emi_max_version >= 2) {
768 		/* MCDIv2 response details do not fit into an event. */
769 		efx_mcdi_read_response_header(enp, emrp);
770 	} else {
771 		if (errcode != 0) {
772 			if (!emrp->emr_quiet) {
773 				EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd,
774 				    int, errcode);
775 			}
776 			emrp->emr_out_length_used = 0;
777 			emrp->emr_rc = efx_mcdi_request_errcode(errcode);
778 		} else {
779 			emrp->emr_out_length_used = outlen;
780 			emrp->emr_rc = 0;
781 		}
782 	}
783 	if (errcode == 0) {
784 		efx_mcdi_finish_response(enp, emrp);
785 	}
786 
787 	emtp->emt_ev_cpl(emtp->emt_context);
788 }
789 
790 #if EFSYS_OPT_MCDI_PROXY_AUTH
791 
792 	__checkReturn	efx_rc_t
793 efx_mcdi_get_proxy_handle(
794 	__in		efx_nic_t *enp,
795 	__in		efx_mcdi_req_t *emrp,
796 	__out		uint32_t *handlep)
797 {
798 	efx_rc_t rc;
799 
800 	/*
801 	 * Return proxy handle from MCDI request that returned with error
802 	 * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching
803 	 * PROXY_RESPONSE event.
804 	 */
805 	if ((emrp == NULL) || (handlep == NULL)) {
806 		rc = EINVAL;
807 		goto fail1;
808 	}
809 	if ((emrp->emr_rc != 0) &&
810 	    (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) {
811 		*handlep = emrp->emr_proxy_handle;
812 		rc = 0;
813 	} else {
814 		*handlep = 0;
815 		rc = ENOENT;
816 	}
817 	return (rc);
818 
819 fail1:
820 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
821 	return (rc);
822 }
823 
824 			void
825 efx_mcdi_ev_proxy_response(
826 	__in		efx_nic_t *enp,
827 	__in		unsigned int handle,
828 	__in		unsigned int status)
829 {
830 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
831 	efx_rc_t rc;
832 
833 	/*
834 	 * Handle results of an authorization request for a privileged MCDI
835 	 * command. If authorization was granted then we must re-issue the
836 	 * original MCDI request. If authorization failed or timed out,
837 	 * then the original MCDI request should be completed with the
838 	 * result code from this event.
839 	 */
840 	rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status);
841 
842 	emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc);
843 }
844 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
845 
846 			void
847 efx_mcdi_ev_death(
848 	__in		efx_nic_t *enp,
849 	__in		int rc)
850 {
851 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
852 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
853 	efx_mcdi_req_t *emrp = NULL;
854 	boolean_t ev_cpl;
855 	int state;
856 
857 	/*
858 	 * The MCDI request (if there is one) has been terminated, either
859 	 * by a BADASSERT or REBOOT event.
860 	 *
861 	 * If there is an outstanding event-completed MCDI operation, then we
862 	 * will never receive the completion event (because both MCDI
863 	 * completions and BADASSERT events are sent to the same evq). So
864 	 * complete this MCDI op.
865 	 *
866 	 * This function might run in parallel with efx_mcdi_request_poll()
867 	 * for poll completed mcdi requests, and also with
868 	 * efx_mcdi_request_start() for post-watchdog completions.
869 	 */
870 	EFSYS_LOCK(enp->en_eslp, state);
871 	emrp = emip->emi_pending_req;
872 	ev_cpl = emip->emi_ev_cpl;
873 	if (emrp != NULL && emip->emi_ev_cpl) {
874 		emip->emi_pending_req = NULL;
875 
876 		emrp->emr_out_length_used = 0;
877 		emrp->emr_rc = rc;
878 		++emip->emi_aborted;
879 	}
880 
881 	/*
882 	 * Since we're running in parallel with a request, consume the
883 	 * status word before dropping the lock.
884 	 */
885 	if (rc == EIO || rc == EINTR) {
886 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
887 		(void) efx_mcdi_poll_reboot(enp);
888 		emip->emi_new_epoch = B_TRUE;
889 	}
890 
891 	EFSYS_UNLOCK(enp->en_eslp, state);
892 
893 	efx_mcdi_raise_exception(enp, emrp, rc);
894 
895 	if (emrp != NULL && ev_cpl)
896 		emtp->emt_ev_cpl(emtp->emt_context);
897 }
898 
899 	__checkReturn		efx_rc_t
900 efx_mcdi_version(
901 	__in			efx_nic_t *enp,
902 	__out_ecount_opt(4)	uint16_t versionp[4],
903 	__out_opt		uint32_t *buildp,
904 	__out_opt		efx_mcdi_boot_t *statusp)
905 {
906 	efx_mcdi_req_t req;
907 	uint8_t payload[MAX(MAX(MC_CMD_GET_VERSION_IN_LEN,
908 				MC_CMD_GET_VERSION_OUT_LEN),
909 			    MAX(MC_CMD_GET_BOOT_STATUS_IN_LEN,
910 				MC_CMD_GET_BOOT_STATUS_OUT_LEN))];
911 	efx_word_t *ver_words;
912 	uint16_t version[4];
913 	uint32_t build;
914 	efx_mcdi_boot_t status;
915 	efx_rc_t rc;
916 
917 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
918 
919 	(void) memset(payload, 0, sizeof (payload));
920 	req.emr_cmd = MC_CMD_GET_VERSION;
921 	req.emr_in_buf = payload;
922 	req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN;
923 	req.emr_out_buf = payload;
924 	req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN;
925 
926 	efx_mcdi_execute(enp, &req);
927 
928 	if (req.emr_rc != 0) {
929 		rc = req.emr_rc;
930 		goto fail1;
931 	}
932 
933 	/* bootrom support */
934 	if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) {
935 		version[0] = version[1] = version[2] = version[3] = 0;
936 		build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
937 
938 		goto version;
939 	}
940 
941 	if (req.emr_out_length_used < MC_CMD_GET_VERSION_OUT_LEN) {
942 		rc = EMSGSIZE;
943 		goto fail2;
944 	}
945 
946 	ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION);
947 	version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0);
948 	version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0);
949 	version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0);
950 	version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0);
951 	build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
952 
953 version:
954 	/* The bootrom doesn't understand BOOT_STATUS */
955 	if (MC_FW_VERSION_IS_BOOTLOADER(build)) {
956 		status = EFX_MCDI_BOOT_ROM;
957 		goto out;
958 	}
959 
960 	(void) memset(payload, 0, sizeof (payload));
961 	req.emr_cmd = MC_CMD_GET_BOOT_STATUS;
962 	req.emr_in_buf = payload;
963 	req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN;
964 	req.emr_out_buf = payload;
965 	req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN;
966 
967 	efx_mcdi_execute_quiet(enp, &req);
968 
969 	if (req.emr_rc == EACCES) {
970 		/* Unprivileged functions cannot access BOOT_STATUS */
971 		status = EFX_MCDI_BOOT_PRIMARY;
972 		version[0] = version[1] = version[2] = version[3] = 0;
973 		build = 0;
974 		goto out;
975 	}
976 
977 	if (req.emr_rc != 0) {
978 		rc = req.emr_rc;
979 		goto fail3;
980 	}
981 
982 	if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) {
983 		rc = EMSGSIZE;
984 		goto fail4;
985 	}
986 
987 	if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS,
988 	    GET_BOOT_STATUS_OUT_FLAGS_PRIMARY))
989 		status = EFX_MCDI_BOOT_PRIMARY;
990 	else
991 		status = EFX_MCDI_BOOT_SECONDARY;
992 
993 out:
994 	if (versionp != NULL)
995 		memcpy(versionp, version, sizeof (version));
996 	if (buildp != NULL)
997 		*buildp = build;
998 	if (statusp != NULL)
999 		*statusp = status;
1000 
1001 	return (0);
1002 
1003 fail4:
1004 	EFSYS_PROBE(fail4);
1005 fail3:
1006 	EFSYS_PROBE(fail3);
1007 fail2:
1008 	EFSYS_PROBE(fail2);
1009 fail1:
1010 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1011 
1012 	return (rc);
1013 }
1014 
1015 static	__checkReturn	efx_rc_t
1016 efx_mcdi_do_reboot(
1017 	__in		efx_nic_t *enp,
1018 	__in		boolean_t after_assertion)
1019 {
1020 	uint8_t payload[MAX(MC_CMD_REBOOT_IN_LEN, MC_CMD_REBOOT_OUT_LEN)];
1021 	efx_mcdi_req_t req;
1022 	efx_rc_t rc;
1023 
1024 	/*
1025 	 * We could require the caller to have caused en_mod_flags=0 to
1026 	 * call this function. This doesn't help the other port though,
1027 	 * who's about to get the MC ripped out from underneath them.
1028 	 * Since they have to cope with the subsequent fallout of MCDI
1029 	 * failures, we should as well.
1030 	 */
1031 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
1032 
1033 	(void) memset(payload, 0, sizeof (payload));
1034 	req.emr_cmd = MC_CMD_REBOOT;
1035 	req.emr_in_buf = payload;
1036 	req.emr_in_length = MC_CMD_REBOOT_IN_LEN;
1037 	req.emr_out_buf = payload;
1038 	req.emr_out_length = MC_CMD_REBOOT_OUT_LEN;
1039 
1040 	MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS,
1041 	    (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0));
1042 
1043 	efx_mcdi_execute_quiet(enp, &req);
1044 
1045 	if (req.emr_rc == EACCES) {
1046 		/* Unprivileged functions cannot reboot the MC. */
1047 		goto out;
1048 	}
1049 
1050 	/* A successful reboot request returns EIO. */
1051 	if (req.emr_rc != 0 && req.emr_rc != EIO) {
1052 		rc = req.emr_rc;
1053 		goto fail1;
1054 	}
1055 
1056 out:
1057 	return (0);
1058 
1059 fail1:
1060 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1061 
1062 	return (rc);
1063 }
1064 
1065 	__checkReturn	efx_rc_t
1066 efx_mcdi_reboot(
1067 	__in		efx_nic_t *enp)
1068 {
1069 	return (efx_mcdi_do_reboot(enp, B_FALSE));
1070 }
1071 
1072 	__checkReturn	efx_rc_t
1073 efx_mcdi_exit_assertion_handler(
1074 	__in		efx_nic_t *enp)
1075 {
1076 	return (efx_mcdi_do_reboot(enp, B_TRUE));
1077 }
1078 
1079 	__checkReturn	efx_rc_t
1080 efx_mcdi_read_assertion(
1081 	__in		efx_nic_t *enp)
1082 {
1083 	efx_mcdi_req_t req;
1084 	uint8_t payload[MAX(MC_CMD_GET_ASSERTS_IN_LEN,
1085 			    MC_CMD_GET_ASSERTS_OUT_LEN)];
1086 	const char *reason;
1087 	unsigned int flags;
1088 	unsigned int index;
1089 	unsigned int ofst;
1090 	int retry;
1091 	efx_rc_t rc;
1092 
1093 	/*
1094 	 * Before we attempt to chat to the MC, we should verify that the MC
1095 	 * isn't in it's assertion handler, either due to a previous reboot,
1096 	 * or because we're reinitializing due to an eec_exception().
1097 	 *
1098 	 * Use GET_ASSERTS to read any assertion state that may be present.
1099 	 * Retry this command twice. Once because a boot-time assertion failure
1100 	 * might cause the 1st MCDI request to fail. And once again because
1101 	 * we might race with efx_mcdi_exit_assertion_handler() running on
1102 	 * partner port(s) on the same NIC.
1103 	 */
1104 	retry = 2;
1105 	do {
1106 		(void) memset(payload, 0, sizeof (payload));
1107 		req.emr_cmd = MC_CMD_GET_ASSERTS;
1108 		req.emr_in_buf = payload;
1109 		req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN;
1110 		req.emr_out_buf = payload;
1111 		req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN;
1112 
1113 		MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1);
1114 		efx_mcdi_execute_quiet(enp, &req);
1115 
1116 	} while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0);
1117 
1118 	if (req.emr_rc != 0) {
1119 		if (req.emr_rc == EACCES) {
1120 			/* Unprivileged functions cannot clear assertions. */
1121 			goto out;
1122 		}
1123 		rc = req.emr_rc;
1124 		goto fail1;
1125 	}
1126 
1127 	if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) {
1128 		rc = EMSGSIZE;
1129 		goto fail2;
1130 	}
1131 
1132 	/* Print out any assertion state recorded */
1133 	flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1134 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1135 		return (0);
1136 
1137 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1138 		? "system-level assertion"
1139 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1140 		? "thread-level assertion"
1141 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1142 		? "watchdog reset"
1143 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP)
1144 		? "illegal address trap"
1145 		: "unknown assertion";
1146 	EFSYS_PROBE3(mcpu_assertion,
1147 	    const char *, reason, unsigned int,
1148 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1149 	    unsigned int,
1150 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS));
1151 
1152 	/* Print out the registers (r1 ... r31) */
1153 	ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
1154 	for (index = 1;
1155 		index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1156 		index++) {
1157 		EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int,
1158 			    EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst),
1159 					    EFX_DWORD_0));
1160 		ofst += sizeof (efx_dword_t);
1161 	}
1162 	EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN);
1163 
1164 out:
1165 	return (0);
1166 
1167 fail2:
1168 	EFSYS_PROBE(fail2);
1169 fail1:
1170 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1171 
1172 	return (rc);
1173 }
1174 
1175 
1176 /*
1177  * Internal routines for for specific MCDI requests.
1178  */
1179 
1180 	__checkReturn	efx_rc_t
1181 efx_mcdi_drv_attach(
1182 	__in		efx_nic_t *enp,
1183 	__in		boolean_t attach)
1184 {
1185 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1186 	efx_mcdi_req_t req;
1187 	uint8_t payload[MAX(MC_CMD_DRV_ATTACH_IN_LEN,
1188 			    MC_CMD_DRV_ATTACH_EXT_OUT_LEN)];
1189 	uint32_t flags;
1190 	efx_rc_t rc;
1191 
1192 	(void) memset(payload, 0, sizeof (payload));
1193 	req.emr_cmd = MC_CMD_DRV_ATTACH;
1194 	req.emr_in_buf = payload;
1195 	req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN;
1196 	req.emr_out_buf = payload;
1197 	req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN;
1198 
1199 	/*
1200 	 * Use DONT_CARE for the datapath firmware type to ensure that the
1201 	 * driver can attach to an unprivileged function. The datapath firmware
1202 	 * type to use is controlled by the 'sfboot' utility.
1203 	 */
1204 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_NEW_STATE, attach ? 1 : 0);
1205 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1);
1206 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_DONT_CARE);
1207 
1208 	efx_mcdi_execute(enp, &req);
1209 
1210 	if (req.emr_rc != 0) {
1211 		rc = req.emr_rc;
1212 		goto fail1;
1213 	}
1214 
1215 	if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) {
1216 		rc = EMSGSIZE;
1217 		goto fail2;
1218 	}
1219 
1220 	if (attach == B_FALSE) {
1221 		flags = 0;
1222 	} else if (enp->en_family == EFX_FAMILY_SIENA) {
1223 		efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1224 
1225 		/* Create synthetic privileges for Siena functions */
1226 		flags = EFX_NIC_FUNC_LINKCTRL | EFX_NIC_FUNC_TRUSTED;
1227 		if (emip->emi_port == 1)
1228 			flags |= EFX_NIC_FUNC_PRIMARY;
1229 	} else {
1230 		EFX_STATIC_ASSERT(EFX_NIC_FUNC_PRIMARY ==
1231 		    (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY));
1232 		EFX_STATIC_ASSERT(EFX_NIC_FUNC_LINKCTRL ==
1233 		    (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL));
1234 		EFX_STATIC_ASSERT(EFX_NIC_FUNC_TRUSTED ==
1235 		    (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED));
1236 
1237 		/* Save function privilege flags (EF10 and later) */
1238 		if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1239 			rc = EMSGSIZE;
1240 			goto fail3;
1241 		}
1242 		flags = MCDI_OUT_DWORD(req, DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1243 	}
1244 	encp->enc_func_flags = flags;
1245 
1246 	return (0);
1247 
1248 fail3:
1249 	EFSYS_PROBE(fail3);
1250 fail2:
1251 	EFSYS_PROBE(fail2);
1252 fail1:
1253 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1254 
1255 	return (rc);
1256 }
1257 
1258 	__checkReturn		efx_rc_t
1259 efx_mcdi_get_board_cfg(
1260 	__in			efx_nic_t *enp,
1261 	__out_opt		uint32_t *board_typep,
1262 	__out_opt		efx_dword_t *capabilitiesp,
1263 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
1264 {
1265 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1266 	efx_mcdi_req_t req;
1267 	uint8_t payload[MAX(MC_CMD_GET_BOARD_CFG_IN_LEN,
1268 			    MC_CMD_GET_BOARD_CFG_OUT_LENMIN)];
1269 	efx_rc_t rc;
1270 
1271 	(void) memset(payload, 0, sizeof (payload));
1272 	req.emr_cmd = MC_CMD_GET_BOARD_CFG;
1273 	req.emr_in_buf = payload;
1274 	req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN;
1275 	req.emr_out_buf = payload;
1276 	req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN;
1277 
1278 	efx_mcdi_execute(enp, &req);
1279 
1280 	if (req.emr_rc != 0) {
1281 		rc = req.emr_rc;
1282 		goto fail1;
1283 	}
1284 
1285 	if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1286 		rc = EMSGSIZE;
1287 		goto fail2;
1288 	}
1289 
1290 	if (mac_addrp != NULL) {
1291 		uint8_t *addrp;
1292 
1293 		if (emip->emi_port == 1) {
1294 			addrp = MCDI_OUT2(req, uint8_t,
1295 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0);
1296 		} else if (emip->emi_port == 2) {
1297 			addrp = MCDI_OUT2(req, uint8_t,
1298 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1);
1299 		} else {
1300 			rc = EINVAL;
1301 			goto fail3;
1302 		}
1303 
1304 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
1305 	}
1306 
1307 	if (capabilitiesp != NULL) {
1308 		if (emip->emi_port == 1) {
1309 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1310 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1311 		} else if (emip->emi_port == 2) {
1312 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1313 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1314 		} else {
1315 			rc = EINVAL;
1316 			goto fail4;
1317 		}
1318 	}
1319 
1320 	if (board_typep != NULL) {
1321 		*board_typep = MCDI_OUT_DWORD(req,
1322 		    GET_BOARD_CFG_OUT_BOARD_TYPE);
1323 	}
1324 
1325 	return (0);
1326 
1327 fail4:
1328 	EFSYS_PROBE(fail4);
1329 fail3:
1330 	EFSYS_PROBE(fail3);
1331 fail2:
1332 	EFSYS_PROBE(fail2);
1333 fail1:
1334 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1335 
1336 	return (rc);
1337 }
1338 
1339 	__checkReturn	efx_rc_t
1340 efx_mcdi_get_resource_limits(
1341 	__in		efx_nic_t *enp,
1342 	__out_opt	uint32_t *nevqp,
1343 	__out_opt	uint32_t *nrxqp,
1344 	__out_opt	uint32_t *ntxqp)
1345 {
1346 	efx_mcdi_req_t req;
1347 	uint8_t payload[MAX(MC_CMD_GET_RESOURCE_LIMITS_IN_LEN,
1348 			    MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN)];
1349 	efx_rc_t rc;
1350 
1351 	(void) memset(payload, 0, sizeof (payload));
1352 	req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS;
1353 	req.emr_in_buf = payload;
1354 	req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN;
1355 	req.emr_out_buf = payload;
1356 	req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN;
1357 
1358 	efx_mcdi_execute(enp, &req);
1359 
1360 	if (req.emr_rc != 0) {
1361 		rc = req.emr_rc;
1362 		goto fail1;
1363 	}
1364 
1365 	if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) {
1366 		rc = EMSGSIZE;
1367 		goto fail2;
1368 	}
1369 
1370 	if (nevqp != NULL)
1371 		*nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ);
1372 	if (nrxqp != NULL)
1373 		*nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ);
1374 	if (ntxqp != NULL)
1375 		*ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ);
1376 
1377 	return (0);
1378 
1379 fail2:
1380 	EFSYS_PROBE(fail2);
1381 fail1:
1382 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1383 
1384 	return (rc);
1385 }
1386 
1387 	__checkReturn	efx_rc_t
1388 efx_mcdi_get_phy_cfg(
1389 	__in		efx_nic_t *enp)
1390 {
1391 	efx_port_t *epp = &(enp->en_port);
1392 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1393 	efx_mcdi_req_t req;
1394 	uint8_t payload[MAX(MC_CMD_GET_PHY_CFG_IN_LEN,
1395 			    MC_CMD_GET_PHY_CFG_OUT_LEN)];
1396 	efx_rc_t rc;
1397 
1398 	(void) memset(payload, 0, sizeof (payload));
1399 	req.emr_cmd = MC_CMD_GET_PHY_CFG;
1400 	req.emr_in_buf = payload;
1401 	req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN;
1402 	req.emr_out_buf = payload;
1403 	req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN;
1404 
1405 	efx_mcdi_execute(enp, &req);
1406 
1407 	if (req.emr_rc != 0) {
1408 		rc = req.emr_rc;
1409 		goto fail1;
1410 	}
1411 
1412 	if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) {
1413 		rc = EMSGSIZE;
1414 		goto fail2;
1415 	}
1416 
1417 	encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE);
1418 #if EFSYS_OPT_NAMES
1419 	(void) strncpy(encp->enc_phy_name,
1420 		MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME),
1421 		MIN(sizeof (encp->enc_phy_name) - 1,
1422 		    MC_CMD_GET_PHY_CFG_OUT_NAME_LEN));
1423 #endif	/* EFSYS_OPT_NAMES */
1424 	(void) memset(encp->enc_phy_revision, 0,
1425 	    sizeof (encp->enc_phy_revision));
1426 	memcpy(encp->enc_phy_revision,
1427 		MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION),
1428 		MIN(sizeof (encp->enc_phy_revision) - 1,
1429 		    MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN));
1430 #if EFSYS_OPT_PHY_LED_CONTROL
1431 	encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) |
1432 			    (1 << EFX_PHY_LED_OFF) |
1433 			    (1 << EFX_PHY_LED_ON));
1434 #endif	/* EFSYS_OPT_PHY_LED_CONTROL */
1435 
1436 	/* Get the media type of the fixed port, if recognised. */
1437 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI);
1438 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4);
1439 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4);
1440 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP);
1441 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS);
1442 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T);
1443 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS);
1444 	epp->ep_fixed_port_type =
1445 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE);
1446 	if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES)
1447 		epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID;
1448 
1449 	epp->ep_phy_cap_mask =
1450 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP);
1451 #if EFSYS_OPT_PHY_FLAGS
1452 	encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS);
1453 #endif	/* EFSYS_OPT_PHY_FLAGS */
1454 
1455 	encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT);
1456 
1457 	/* Populate internal state */
1458 	encp->enc_mcdi_mdio_channel =
1459 		(uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL);
1460 
1461 #if EFSYS_OPT_PHY_STATS
1462 	encp->enc_mcdi_phy_stat_mask =
1463 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK);
1464 #endif	/* EFSYS_OPT_PHY_STATS */
1465 
1466 #if EFSYS_OPT_BIST
1467 	encp->enc_bist_mask = 0;
1468 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1469 	    GET_PHY_CFG_OUT_BIST_CABLE_SHORT))
1470 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT);
1471 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1472 	    GET_PHY_CFG_OUT_BIST_CABLE_LONG))
1473 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG);
1474 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1475 	    GET_PHY_CFG_OUT_BIST))
1476 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL);
1477 #endif  /* EFSYS_OPT_BIST */
1478 
1479 	return (0);
1480 
1481 fail2:
1482 	EFSYS_PROBE(fail2);
1483 fail1:
1484 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1485 
1486 	return (rc);
1487 }
1488 
1489 	__checkReturn		efx_rc_t
1490 efx_mcdi_firmware_update_supported(
1491 	__in			efx_nic_t *enp,
1492 	__out			boolean_t *supportedp)
1493 {
1494 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1495 	efx_rc_t rc;
1496 
1497 	if (emcop != NULL) {
1498 		if ((rc = emcop->emco_feature_supported(enp,
1499 			    EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0)
1500 			goto fail1;
1501 	} else {
1502 		/* Earlier devices always supported updates */
1503 		*supportedp = B_TRUE;
1504 	}
1505 
1506 	return (0);
1507 
1508 fail1:
1509 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1510 
1511 	return (rc);
1512 }
1513 
1514 	__checkReturn		efx_rc_t
1515 efx_mcdi_macaddr_change_supported(
1516 	__in			efx_nic_t *enp,
1517 	__out			boolean_t *supportedp)
1518 {
1519 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1520 	efx_rc_t rc;
1521 
1522 	if (emcop != NULL) {
1523 		if ((rc = emcop->emco_feature_supported(enp,
1524 			    EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0)
1525 			goto fail1;
1526 	} else {
1527 		/* Earlier devices always supported MAC changes */
1528 		*supportedp = B_TRUE;
1529 	}
1530 
1531 	return (0);
1532 
1533 fail1:
1534 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1535 
1536 	return (rc);
1537 }
1538 
1539 	__checkReturn		efx_rc_t
1540 efx_mcdi_link_control_supported(
1541 	__in			efx_nic_t *enp,
1542 	__out			boolean_t *supportedp)
1543 {
1544 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1545 	efx_rc_t rc;
1546 
1547 	if (emcop != NULL) {
1548 		if ((rc = emcop->emco_feature_supported(enp,
1549 			    EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0)
1550 			goto fail1;
1551 	} else {
1552 		/* Earlier devices always supported link control */
1553 		*supportedp = B_TRUE;
1554 	}
1555 
1556 	return (0);
1557 
1558 fail1:
1559 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1560 
1561 	return (rc);
1562 }
1563 
1564 	__checkReturn		efx_rc_t
1565 efx_mcdi_mac_spoofing_supported(
1566 	__in			efx_nic_t *enp,
1567 	__out			boolean_t *supportedp)
1568 {
1569 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1570 	efx_rc_t rc;
1571 
1572 	if (emcop != NULL) {
1573 		if ((rc = emcop->emco_feature_supported(enp,
1574 			    EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0)
1575 			goto fail1;
1576 	} else {
1577 		/* Earlier devices always supported MAC spoofing */
1578 		*supportedp = B_TRUE;
1579 	}
1580 
1581 	return (0);
1582 
1583 fail1:
1584 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1585 
1586 	return (rc);
1587 }
1588 
1589 #if EFSYS_OPT_BIST
1590 
1591 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
1592 /*
1593  * Enter bist offline mode. This is a fw mode which puts the NIC into a state
1594  * where memory BIST tests can be run and not much else can interfere or happen.
1595  * A reboot is required to exit this mode.
1596  */
1597 	__checkReturn		efx_rc_t
1598 efx_mcdi_bist_enable_offline(
1599 	__in			efx_nic_t *enp)
1600 {
1601 	efx_mcdi_req_t req;
1602 	efx_rc_t rc;
1603 
1604 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0);
1605 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0);
1606 
1607 	req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST;
1608 	req.emr_in_buf = NULL;
1609 	req.emr_in_length = 0;
1610 	req.emr_out_buf = NULL;
1611 	req.emr_out_length = 0;
1612 
1613 	efx_mcdi_execute(enp, &req);
1614 
1615 	if (req.emr_rc != 0) {
1616 		rc = req.emr_rc;
1617 		goto fail1;
1618 	}
1619 
1620 	return (0);
1621 
1622 fail1:
1623 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1624 
1625 	return (rc);
1626 }
1627 #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
1628 
1629 	__checkReturn		efx_rc_t
1630 efx_mcdi_bist_start(
1631 	__in			efx_nic_t *enp,
1632 	__in			efx_bist_type_t type)
1633 {
1634 	efx_mcdi_req_t req;
1635 	uint8_t payload[MAX(MC_CMD_START_BIST_IN_LEN,
1636 			    MC_CMD_START_BIST_OUT_LEN)];
1637 	efx_rc_t rc;
1638 
1639 	(void) memset(payload, 0, sizeof (payload));
1640 	req.emr_cmd = MC_CMD_START_BIST;
1641 	req.emr_in_buf = payload;
1642 	req.emr_in_length = MC_CMD_START_BIST_IN_LEN;
1643 	req.emr_out_buf = payload;
1644 	req.emr_out_length = MC_CMD_START_BIST_OUT_LEN;
1645 
1646 	switch (type) {
1647 	case EFX_BIST_TYPE_PHY_NORMAL:
1648 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST);
1649 		break;
1650 	case EFX_BIST_TYPE_PHY_CABLE_SHORT:
1651 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1652 		    MC_CMD_PHY_BIST_CABLE_SHORT);
1653 		break;
1654 	case EFX_BIST_TYPE_PHY_CABLE_LONG:
1655 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1656 		    MC_CMD_PHY_BIST_CABLE_LONG);
1657 		break;
1658 	case EFX_BIST_TYPE_MC_MEM:
1659 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1660 		    MC_CMD_MC_MEM_BIST);
1661 		break;
1662 	case EFX_BIST_TYPE_SAT_MEM:
1663 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1664 		    MC_CMD_PORT_MEM_BIST);
1665 		break;
1666 	case EFX_BIST_TYPE_REG:
1667 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1668 		    MC_CMD_REG_BIST);
1669 		break;
1670 	default:
1671 		EFSYS_ASSERT(0);
1672 	}
1673 
1674 	efx_mcdi_execute(enp, &req);
1675 
1676 	if (req.emr_rc != 0) {
1677 		rc = req.emr_rc;
1678 		goto fail1;
1679 	}
1680 
1681 	return (0);
1682 
1683 fail1:
1684 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1685 
1686 	return (rc);
1687 }
1688 
1689 #endif /* EFSYS_OPT_BIST */
1690 
1691 
1692 /* Enable logging of some events (e.g. link state changes) */
1693 	__checkReturn	efx_rc_t
1694 efx_mcdi_log_ctrl(
1695 	__in		efx_nic_t *enp)
1696 {
1697 	efx_mcdi_req_t req;
1698 	uint8_t payload[MAX(MC_CMD_LOG_CTRL_IN_LEN,
1699 			    MC_CMD_LOG_CTRL_OUT_LEN)];
1700 	efx_rc_t rc;
1701 
1702 	(void) memset(payload, 0, sizeof (payload));
1703 	req.emr_cmd = MC_CMD_LOG_CTRL;
1704 	req.emr_in_buf = payload;
1705 	req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN;
1706 	req.emr_out_buf = payload;
1707 	req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN;
1708 
1709 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST,
1710 		    MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ);
1711 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0);
1712 
1713 	efx_mcdi_execute(enp, &req);
1714 
1715 	if (req.emr_rc != 0) {
1716 		rc = req.emr_rc;
1717 		goto fail1;
1718 	}
1719 
1720 	return (0);
1721 
1722 fail1:
1723 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1724 
1725 	return (rc);
1726 }
1727 
1728 
1729 #if EFSYS_OPT_MAC_STATS
1730 
1731 typedef enum efx_stats_action_e
1732 {
1733 	EFX_STATS_CLEAR,
1734 	EFX_STATS_UPLOAD,
1735 	EFX_STATS_ENABLE_NOEVENTS,
1736 	EFX_STATS_ENABLE_EVENTS,
1737 	EFX_STATS_DISABLE,
1738 } efx_stats_action_t;
1739 
1740 static	__checkReturn	efx_rc_t
1741 efx_mcdi_mac_stats(
1742 	__in		efx_nic_t *enp,
1743 	__in_opt	efsys_mem_t *esmp,
1744 	__in		efx_stats_action_t action)
1745 {
1746 	efx_mcdi_req_t req;
1747 	uint8_t payload[MAX(MC_CMD_MAC_STATS_IN_LEN,
1748 			    MC_CMD_MAC_STATS_OUT_DMA_LEN)];
1749 	int clear = (action == EFX_STATS_CLEAR);
1750 	int upload = (action == EFX_STATS_UPLOAD);
1751 	int enable = (action == EFX_STATS_ENABLE_NOEVENTS);
1752 	int events = (action == EFX_STATS_ENABLE_EVENTS);
1753 	int disable = (action == EFX_STATS_DISABLE);
1754 	efx_rc_t rc;
1755 
1756 	(void) memset(payload, 0, sizeof (payload));
1757 	req.emr_cmd = MC_CMD_MAC_STATS;
1758 	req.emr_in_buf = payload;
1759 	req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN;
1760 	req.emr_out_buf = payload;
1761 	req.emr_out_length = MC_CMD_MAC_STATS_OUT_DMA_LEN;
1762 
1763 	MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD,
1764 	    MAC_STATS_IN_DMA, upload,
1765 	    MAC_STATS_IN_CLEAR, clear,
1766 	    MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable,
1767 	    MAC_STATS_IN_PERIODIC_ENABLE, enable | events,
1768 	    MAC_STATS_IN_PERIODIC_NOEVENT, !events,
1769 	    MAC_STATS_IN_PERIOD_MS, (enable | events) ? 1000: 0);
1770 
1771 	if (esmp != NULL) {
1772 		int bytes = MC_CMD_MAC_NSTATS * sizeof (uint64_t);
1773 
1774 		EFX_STATIC_ASSERT(MC_CMD_MAC_NSTATS * sizeof (uint64_t) <=
1775 		    EFX_MAC_STATS_SIZE);
1776 
1777 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO,
1778 			    EFSYS_MEM_ADDR(esmp) & 0xffffffff);
1779 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI,
1780 			    EFSYS_MEM_ADDR(esmp) >> 32);
1781 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes);
1782 	} else {
1783 		EFSYS_ASSERT(!upload && !enable && !events);
1784 	}
1785 
1786 	/*
1787 	 * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats,
1788 	 *	 as this may fail (and leave periodic DMA enabled) if the
1789 	 *	 vadapter has already been deleted.
1790 	 */
1791 	MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID,
1792 	    (disable ? EVB_PORT_ID_NULL : enp->en_vport_id));
1793 
1794 	efx_mcdi_execute(enp, &req);
1795 
1796 	if (req.emr_rc != 0) {
1797 		/* EF10: Expect ENOENT if no DMA queues are initialised */
1798 		if ((req.emr_rc != ENOENT) ||
1799 		    (enp->en_rx_qcount + enp->en_tx_qcount != 0)) {
1800 			rc = req.emr_rc;
1801 			goto fail1;
1802 		}
1803 	}
1804 
1805 	return (0);
1806 
1807 fail1:
1808 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1809 
1810 	return (rc);
1811 }
1812 
1813 	__checkReturn	efx_rc_t
1814 efx_mcdi_mac_stats_clear(
1815 	__in		efx_nic_t *enp)
1816 {
1817 	efx_rc_t rc;
1818 
1819 	if ((rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_CLEAR)) != 0)
1820 		goto fail1;
1821 
1822 	return (0);
1823 
1824 fail1:
1825 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1826 
1827 	return (rc);
1828 }
1829 
1830 	__checkReturn	efx_rc_t
1831 efx_mcdi_mac_stats_upload(
1832 	__in		efx_nic_t *enp,
1833 	__in		efsys_mem_t *esmp)
1834 {
1835 	efx_rc_t rc;
1836 
1837 	/*
1838 	 * The MC DMAs aggregate statistics for our convenience, so we can
1839 	 * avoid having to pull the statistics buffer into the cache to
1840 	 * maintain cumulative statistics.
1841 	 */
1842 	if ((rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_UPLOAD)) != 0)
1843 		goto fail1;
1844 
1845 	return (0);
1846 
1847 fail1:
1848 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1849 
1850 	return (rc);
1851 }
1852 
1853 	__checkReturn	efx_rc_t
1854 efx_mcdi_mac_stats_periodic(
1855 	__in		efx_nic_t *enp,
1856 	__in		efsys_mem_t *esmp,
1857 	__in		uint16_t period,
1858 	__in		boolean_t events)
1859 {
1860 	efx_rc_t rc;
1861 
1862 	/*
1863 	 * The MC DMAs aggregate statistics for our convenience, so we can
1864 	 * avoid having to pull the statistics buffer into the cache to
1865 	 * maintain cumulative statistics.
1866 	 * Huntington uses a fixed 1sec period, so use that on Siena too.
1867 	 */
1868 	if (period == 0)
1869 		rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_DISABLE);
1870 	else if (events)
1871 		rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_EVENTS);
1872 	else
1873 		rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_NOEVENTS);
1874 
1875 	if (rc != 0)
1876 		goto fail1;
1877 
1878 	return (0);
1879 
1880 fail1:
1881 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1882 
1883 	return (rc);
1884 }
1885 
1886 #endif	/* EFSYS_OPT_MAC_STATS */
1887 
1888 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
1889 
1890 /*
1891  * This function returns the pf and vf number of a function.  If it is a pf the
1892  * vf number is 0xffff.  The vf number is the index of the vf on that
1893  * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0),
1894  * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff).
1895  */
1896 	__checkReturn		efx_rc_t
1897 efx_mcdi_get_function_info(
1898 	__in			efx_nic_t *enp,
1899 	__out			uint32_t *pfp,
1900 	__out_opt		uint32_t *vfp)
1901 {
1902 	efx_mcdi_req_t req;
1903 	uint8_t payload[MAX(MC_CMD_GET_FUNCTION_INFO_IN_LEN,
1904 			    MC_CMD_GET_FUNCTION_INFO_OUT_LEN)];
1905 	efx_rc_t rc;
1906 
1907 	(void) memset(payload, 0, sizeof (payload));
1908 	req.emr_cmd = MC_CMD_GET_FUNCTION_INFO;
1909 	req.emr_in_buf = payload;
1910 	req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN;
1911 	req.emr_out_buf = payload;
1912 	req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN;
1913 
1914 	efx_mcdi_execute(enp, &req);
1915 
1916 	if (req.emr_rc != 0) {
1917 		rc = req.emr_rc;
1918 		goto fail1;
1919 	}
1920 
1921 	if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) {
1922 		rc = EMSGSIZE;
1923 		goto fail2;
1924 	}
1925 
1926 	*pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF);
1927 	if (vfp != NULL)
1928 		*vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF);
1929 
1930 	return (0);
1931 
1932 fail2:
1933 	EFSYS_PROBE(fail2);
1934 fail1:
1935 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1936 
1937 	return (rc);
1938 }
1939 
1940 	__checkReturn		efx_rc_t
1941 efx_mcdi_privilege_mask(
1942 	__in			efx_nic_t *enp,
1943 	__in			uint32_t pf,
1944 	__in			uint32_t vf,
1945 	__out			uint32_t *maskp)
1946 {
1947 	efx_mcdi_req_t req;
1948 	uint8_t payload[MAX(MC_CMD_PRIVILEGE_MASK_IN_LEN,
1949 			    MC_CMD_PRIVILEGE_MASK_OUT_LEN)];
1950 	efx_rc_t rc;
1951 
1952 	(void) memset(payload, 0, sizeof (payload));
1953 	req.emr_cmd = MC_CMD_PRIVILEGE_MASK;
1954 	req.emr_in_buf = payload;
1955 	req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN;
1956 	req.emr_out_buf = payload;
1957 	req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN;
1958 
1959 	MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION,
1960 	    PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
1961 	    PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
1962 
1963 	efx_mcdi_execute(enp, &req);
1964 
1965 	if (req.emr_rc != 0) {
1966 		rc = req.emr_rc;
1967 		goto fail1;
1968 	}
1969 
1970 	if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) {
1971 		rc = EMSGSIZE;
1972 		goto fail2;
1973 	}
1974 
1975 	*maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK);
1976 
1977 	return (0);
1978 
1979 fail2:
1980 	EFSYS_PROBE(fail2);
1981 fail1:
1982 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1983 
1984 	return (rc);
1985 }
1986 
1987 #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
1988 
1989 	__checkReturn		efx_rc_t
1990 efx_mcdi_set_workaround(
1991 	__in			efx_nic_t *enp,
1992 	__in			uint32_t type,
1993 	__in			boolean_t enabled,
1994 	__out_opt		uint32_t *flagsp)
1995 {
1996 	efx_mcdi_req_t req;
1997 	uint8_t payload[MAX(MC_CMD_WORKAROUND_IN_LEN,
1998 			    MC_CMD_WORKAROUND_EXT_OUT_LEN)];
1999 	efx_rc_t rc;
2000 
2001 	(void) memset(payload, 0, sizeof (payload));
2002 	req.emr_cmd = MC_CMD_WORKAROUND;
2003 	req.emr_in_buf = payload;
2004 	req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN;
2005 	req.emr_out_buf = payload;
2006 	req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN;
2007 
2008 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type);
2009 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0);
2010 
2011 	efx_mcdi_execute_quiet(enp, &req);
2012 
2013 	if (req.emr_rc != 0) {
2014 		rc = req.emr_rc;
2015 		goto fail1;
2016 	}
2017 
2018 	if (flagsp != NULL) {
2019 		if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2020 			*flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS);
2021 		else
2022 			*flagsp = 0;
2023 	}
2024 
2025 	return (0);
2026 
2027 fail1:
2028 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2029 
2030 	return (rc);
2031 }
2032 
2033 
2034 	__checkReturn		efx_rc_t
2035 efx_mcdi_get_workarounds(
2036 	__in			efx_nic_t *enp,
2037 	__out_opt		uint32_t *implementedp,
2038 	__out_opt		uint32_t *enabledp)
2039 {
2040 	efx_mcdi_req_t req;
2041 	uint8_t payload[MC_CMD_GET_WORKAROUNDS_OUT_LEN];
2042 	efx_rc_t rc;
2043 
2044 	(void) memset(payload, 0, sizeof (payload));
2045 	req.emr_cmd = MC_CMD_GET_WORKAROUNDS;
2046 	req.emr_in_buf = NULL;
2047 	req.emr_in_length = 0;
2048 	req.emr_out_buf = payload;
2049 	req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN;
2050 
2051 	efx_mcdi_execute(enp, &req);
2052 
2053 	if (req.emr_rc != 0) {
2054 		rc = req.emr_rc;
2055 		goto fail1;
2056 	}
2057 
2058 	if (implementedp != NULL) {
2059 		*implementedp =
2060 		    MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2061 	}
2062 
2063 	if (enabledp != NULL) {
2064 		*enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED);
2065 	}
2066 
2067 	return (0);
2068 
2069 fail1:
2070 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2071 
2072 	return (rc);
2073 }
2074 
2075 /*
2076  * Size of media information page in accordance with SFF-8472 and SFF-8436.
2077  * It is used in MCDI interface as well.
2078  */
2079 #define	EFX_PHY_MEDIA_INFO_PAGE_SIZE		0x80
2080 
2081 static	__checkReturn		efx_rc_t
2082 efx_mcdi_get_phy_media_info(
2083 	__in			efx_nic_t *enp,
2084 	__in			uint32_t mcdi_page,
2085 	__in			uint8_t offset,
2086 	__in			uint8_t len,
2087 	__out_bcount(len)	uint8_t *data)
2088 {
2089 	efx_mcdi_req_t req;
2090 	uint8_t payload[MAX(MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN,
2091 			    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(
2092 				EFX_PHY_MEDIA_INFO_PAGE_SIZE))];
2093 	efx_rc_t rc;
2094 
2095 	EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2096 
2097 	(void) memset(payload, 0, sizeof (payload));
2098 	req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO;
2099 	req.emr_in_buf = payload;
2100 	req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN;
2101 	req.emr_out_buf = payload;
2102 	req.emr_out_length =
2103 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2104 
2105 	MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page);
2106 
2107 	efx_mcdi_execute(enp, &req);
2108 
2109 	if (req.emr_rc != 0) {
2110 		rc = req.emr_rc;
2111 		goto fail1;
2112 	}
2113 
2114 	if (req.emr_out_length_used !=
2115 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) {
2116 		rc = EMSGSIZE;
2117 		goto fail2;
2118 	}
2119 
2120 	if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) !=
2121 	    EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2122 		rc = EIO;
2123 		goto fail3;
2124 	}
2125 
2126 	memcpy(data,
2127 	    MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset,
2128 	    len);
2129 
2130 	return (0);
2131 
2132 fail3:
2133 	EFSYS_PROBE(fail3);
2134 fail2:
2135 	EFSYS_PROBE(fail2);
2136 fail1:
2137 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2138 
2139 	return (rc);
2140 }
2141 
2142 /*
2143  * 2-wire device address of the base information in accordance with SFF-8472
2144  * Diagnostic Monitoring Interface for Optical Transceivers section
2145  * 4 Memory Organization.
2146  */
2147 #define	EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE	0xA0
2148 
2149 /*
2150  * 2-wire device address of the digital diagnostics monitoring interface
2151  * in accordance with SFF-8472 Diagnostic Monitoring Interface for Optical
2152  * Transceivers section 4 Memory Organization.
2153  */
2154 #define	EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM	0xA2
2155 
2156 /*
2157  * Hard wired 2-wire device address for QSFP+ in accordance with SFF-8436
2158  * QSFP+ 10 Gbs 4X PLUGGABLE TRANSCEIVER section 7.4 Device Addressing and
2159  * Operation.
2160  */
2161 #define	EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP	0xA0
2162 
2163 	__checkReturn		efx_rc_t
2164 efx_mcdi_phy_module_get_info(
2165 	__in			efx_nic_t *enp,
2166 	__in			uint8_t dev_addr,
2167 	__in			uint8_t offset,
2168 	__in			uint8_t len,
2169 	__out_bcount(len)	uint8_t *data)
2170 {
2171 	efx_port_t *epp = &(enp->en_port);
2172 	efx_rc_t rc;
2173 	uint32_t mcdi_lower_page;
2174 	uint32_t mcdi_upper_page;
2175 
2176 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
2177 
2178 	/*
2179 	 * Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages.
2180 	 * Offset plus length interface allows to access page 0 only.
2181 	 * I.e. non-zero upper pages are not accessible.
2182 	 * See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6
2183 	 * QSFP+ Memory Map for details on how information is structured
2184 	 * and accessible.
2185 	 */
2186 	switch (epp->ep_fixed_port_type) {
2187 	case EFX_PHY_MEDIA_SFP_PLUS:
2188 		/*
2189 		 * In accordance with SFF-8472 Diagnostic Monitoring
2190 		 * Interface for Optical Transceivers section 4 Memory
2191 		 * Organization two 2-wire addresses are defined.
2192 		 */
2193 		switch (dev_addr) {
2194 		/* Base information */
2195 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE:
2196 			/*
2197 			 * MCDI page 0 should be used to access lower
2198 			 * page 0 (0x00 - 0x7f) at the device address 0xA0.
2199 			 */
2200 			mcdi_lower_page = 0;
2201 			/*
2202 			 * MCDI page 1 should be used to access  upper
2203 			 * page 0 (0x80 - 0xff) at the device address 0xA0.
2204 			 */
2205 			mcdi_upper_page = 1;
2206 			break;
2207 		/* Diagnostics */
2208 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM:
2209 			/*
2210 			 * MCDI page 2 should be used to access lower
2211 			 * page 0 (0x00 - 0x7f) at the device address 0xA2.
2212 			 */
2213 			mcdi_lower_page = 2;
2214 			/*
2215 			 * MCDI page 3 should be used to access upper
2216 			 * page 0 (0x80 - 0xff) at the device address 0xA2.
2217 			 */
2218 			mcdi_upper_page = 3;
2219 			break;
2220 		default:
2221 			rc = ENOTSUP;
2222 			goto fail1;
2223 		}
2224 		break;
2225 	case EFX_PHY_MEDIA_QSFP_PLUS:
2226 		switch (dev_addr) {
2227 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP:
2228 			/*
2229 			 * MCDI page -1 should be used to access lower page 0
2230 			 * (0x00 - 0x7f).
2231 			 */
2232 			mcdi_lower_page = (uint32_t)-1;
2233 			/*
2234 			 * MCDI page 0 should be used to access upper page 0
2235 			 * (0x80h - 0xff).
2236 			 */
2237 			mcdi_upper_page = 0;
2238 			break;
2239 		default:
2240 			rc = ENOTSUP;
2241 			goto fail1;
2242 		}
2243 		break;
2244 	default:
2245 		rc = ENOTSUP;
2246 		goto fail1;
2247 	}
2248 
2249 	if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2250 		uint8_t read_len =
2251 		    MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset);
2252 
2253 		rc = efx_mcdi_get_phy_media_info(enp,
2254 		    mcdi_lower_page, offset, read_len, data);
2255 		if (rc != 0)
2256 			goto fail2;
2257 
2258 		data += read_len;
2259 		len -= read_len;
2260 
2261 		offset = 0;
2262 	} else {
2263 		offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE;
2264 	}
2265 
2266 	if (len > 0) {
2267 		EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2268 		EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2269 
2270 		rc = efx_mcdi_get_phy_media_info(enp,
2271 		    mcdi_upper_page, offset, len, data);
2272 		if (rc != 0)
2273 			goto fail3;
2274 	}
2275 
2276 	return (0);
2277 
2278 fail3:
2279 	EFSYS_PROBE(fail3);
2280 fail2:
2281 	EFSYS_PROBE(fail2);
2282 fail1:
2283 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2284 
2285 	return (rc);
2286 }
2287 
2288 #endif	/* EFSYS_OPT_MCDI */
2289