xref: /freebsd/sys/dev/sfxge/common/efx_mcdi.c (revision 8ef24a0d4b28fe230e20637f56869cc4148cd2ca)
1 /*-
2  * Copyright (c) 2008-2015 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are
27  * those of the authors and should not be interpreted as representing official
28  * policies, either expressed or implied, of the FreeBSD Project.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "efx.h"
35 #include "efx_impl.h"
36 
37 #if EFSYS_OPT_MCDI
38 
39 /*
40  * There are three versions of the MCDI interface:
41  *  - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers.
42  *  - MCDIv1: Siena firmware and Huntington BootROM.
43  *  - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM.
44  *            Transport uses MCDIv2 headers.
45  *
46  * MCDIv2 Header NOT_EPOCH flag
47  * ----------------------------
48  * A new epoch begins at initial startup or after an MC reboot, and defines when
49  * the MC should reject stale MCDI requests.
50  *
51  * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all
52  * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1.
53  *
54  * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a
55  * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0.
56  */
57 
58 
59 
60 #if EFSYS_OPT_SIENA
61 
62 static const efx_mcdi_ops_t	__efx_mcdi_siena_ops = {
63 	siena_mcdi_init,		/* emco_init */
64 	siena_mcdi_send_request,	/* emco_send_request */
65 	siena_mcdi_poll_reboot,		/* emco_poll_reboot */
66 	siena_mcdi_poll_response,	/* emco_poll_response */
67 	siena_mcdi_read_response,	/* emco_read_response */
68 	siena_mcdi_fini,		/* emco_fini */
69 	siena_mcdi_feature_supported,	/* emco_feature_supported */
70 };
71 
72 #endif	/* EFSYS_OPT_SIENA */
73 
74 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
75 
76 static const efx_mcdi_ops_t	__efx_mcdi_ef10_ops = {
77 	ef10_mcdi_init,			/* emco_init */
78 	ef10_mcdi_send_request,		/* emco_send_request */
79 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
80 	ef10_mcdi_poll_response,	/* emco_poll_response */
81 	ef10_mcdi_read_response,	/* emco_read_response */
82 	ef10_mcdi_fini,			/* emco_fini */
83 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
84 };
85 
86 #endif	/* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
87 
88 
89 
90 	__checkReturn	efx_rc_t
91 efx_mcdi_init(
92 	__in		efx_nic_t *enp,
93 	__in		const efx_mcdi_transport_t *emtp)
94 {
95 	const efx_mcdi_ops_t *emcop;
96 	efx_rc_t rc;
97 
98 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
99 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
100 
101 	switch (enp->en_family) {
102 #if EFSYS_OPT_SIENA
103 	case EFX_FAMILY_SIENA:
104 		emcop = &__efx_mcdi_siena_ops;
105 		break;
106 #endif	/* EFSYS_OPT_SIENA */
107 
108 #if EFSYS_OPT_HUNTINGTON
109 	case EFX_FAMILY_HUNTINGTON:
110 		emcop = &__efx_mcdi_ef10_ops;
111 		break;
112 #endif	/* EFSYS_OPT_HUNTINGTON */
113 
114 #if EFSYS_OPT_MEDFORD
115 	case EFX_FAMILY_MEDFORD:
116 		emcop = &__efx_mcdi_ef10_ops;
117 		break;
118 #endif	/* EFSYS_OPT_MEDFORD */
119 
120 	default:
121 		EFSYS_ASSERT(0);
122 		rc = ENOTSUP;
123 		goto fail1;
124 	}
125 
126 	if (enp->en_features & EFX_FEATURE_MCDI_DMA) {
127 		/* MCDI requires a DMA buffer in host memory */
128 		if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) {
129 			rc = EINVAL;
130 			goto fail2;
131 		}
132 	}
133 	enp->en_mcdi.em_emtp = emtp;
134 
135 	if (emcop != NULL && emcop->emco_init != NULL) {
136 		if ((rc = emcop->emco_init(enp, emtp)) != 0)
137 			goto fail3;
138 	}
139 
140 	enp->en_mcdi.em_emcop = emcop;
141 	enp->en_mod_flags |= EFX_MOD_MCDI;
142 
143 	return (0);
144 
145 fail3:
146 	EFSYS_PROBE(fail3);
147 fail2:
148 	EFSYS_PROBE(fail2);
149 fail1:
150 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
151 
152 	enp->en_mcdi.em_emcop = NULL;
153 	enp->en_mcdi.em_emtp = NULL;
154 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
155 
156 	return (rc);
157 }
158 
159 			void
160 efx_mcdi_fini(
161 	__in		efx_nic_t *enp)
162 {
163 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
164 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
165 
166 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
167 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI);
168 
169 	if (emcop != NULL && emcop->emco_fini != NULL)
170 		emcop->emco_fini(enp);
171 
172 	emip->emi_port = 0;
173 	emip->emi_aborted = 0;
174 
175 	enp->en_mcdi.em_emcop = NULL;
176 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
177 }
178 
179 			void
180 efx_mcdi_new_epoch(
181 	__in		efx_nic_t *enp)
182 {
183 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
184 	int state;
185 
186 	/* Start a new epoch (allow fresh MCDI requests to succeed) */
187 	EFSYS_LOCK(enp->en_eslp, state);
188 	emip->emi_new_epoch = B_TRUE;
189 	EFSYS_UNLOCK(enp->en_eslp, state);
190 }
191 
192 static			void
193 efx_mcdi_send_request(
194 	__in		efx_nic_t *enp,
195 	__in		void *hdrp,
196 	__in		size_t hdr_len,
197 	__in		void *sdup,
198 	__in		size_t sdu_len)
199 {
200 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
201 
202 	emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len);
203 }
204 
205 static			efx_rc_t
206 efx_mcdi_poll_reboot(
207 	__in		efx_nic_t *enp)
208 {
209 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
210 	efx_rc_t rc;
211 
212 	rc = emcop->emco_poll_reboot(enp);
213 	return (rc);
214 }
215 
216 static			boolean_t
217 efx_mcdi_poll_response(
218 	__in		efx_nic_t *enp)
219 {
220 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
221 	boolean_t available;
222 
223 	available = emcop->emco_poll_response(enp);
224 	return (available);
225 }
226 
227 static			void
228 efx_mcdi_read_response(
229 	__in		efx_nic_t *enp,
230 	__out		void *bufferp,
231 	__in		size_t offset,
232 	__in		size_t length)
233 {
234 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
235 
236 	emcop->emco_read_response(enp, bufferp, offset, length);
237 }
238 
239 			void
240 efx_mcdi_request_start(
241 	__in		efx_nic_t *enp,
242 	__in		efx_mcdi_req_t *emrp,
243 	__in		boolean_t ev_cpl)
244 {
245 #if EFSYS_OPT_MCDI_LOGGING
246 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
247 #endif
248 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
249 	efx_dword_t hdr[2];
250 	size_t hdr_len;
251 	unsigned int max_version;
252 	unsigned int seq;
253 	unsigned int xflags;
254 	boolean_t new_epoch;
255 	int state;
256 
257 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
258 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
259 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
260 
261 	/*
262 	 * efx_mcdi_request_start() is naturally serialised against both
263 	 * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(),
264 	 * by virtue of there only being one outstanding MCDI request.
265 	 * Unfortunately, upper layers may also call efx_mcdi_request_abort()
266 	 * at any time, to timeout a pending mcdi request, That request may
267 	 * then subsequently complete, meaning efx_mcdi_ev_cpl() or
268 	 * efx_mcdi_ev_death() may end up running in parallel with
269 	 * efx_mcdi_request_start(). This race is handled by ensuring that
270 	 * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the
271 	 * en_eslp lock.
272 	 */
273 	EFSYS_LOCK(enp->en_eslp, state);
274 	EFSYS_ASSERT(emip->emi_pending_req == NULL);
275 	emip->emi_pending_req = emrp;
276 	emip->emi_ev_cpl = ev_cpl;
277 	emip->emi_poll_cnt = 0;
278 	seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ);
279 	new_epoch = emip->emi_new_epoch;
280 	max_version = emip->emi_max_version;
281 	EFSYS_UNLOCK(enp->en_eslp, state);
282 
283 	xflags = 0;
284 	if (ev_cpl)
285 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
286 
287 	/*
288 	 * Huntington firmware supports MCDIv2, but the Huntington BootROM only
289 	 * supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where
290 	 * possible to support this.
291 	 */
292 	if ((max_version >= 2) &&
293 	    ((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) ||
294 	    (emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1))) {
295 		/* Construct MCDI v2 header */
296 		hdr_len = sizeof (hdr);
297 		EFX_POPULATE_DWORD_8(hdr[0],
298 		    MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
299 		    MCDI_HEADER_RESYNC, 1,
300 		    MCDI_HEADER_DATALEN, 0,
301 		    MCDI_HEADER_SEQ, seq,
302 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
303 		    MCDI_HEADER_ERROR, 0,
304 		    MCDI_HEADER_RESPONSE, 0,
305 		    MCDI_HEADER_XFLAGS, xflags);
306 
307 		EFX_POPULATE_DWORD_2(hdr[1],
308 		    MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd,
309 		    MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length);
310 	} else {
311 		/* Construct MCDI v1 header */
312 		hdr_len = sizeof (hdr[0]);
313 		EFX_POPULATE_DWORD_8(hdr[0],
314 		    MCDI_HEADER_CODE, emrp->emr_cmd,
315 		    MCDI_HEADER_RESYNC, 1,
316 		    MCDI_HEADER_DATALEN, emrp->emr_in_length,
317 		    MCDI_HEADER_SEQ, seq,
318 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
319 		    MCDI_HEADER_ERROR, 0,
320 		    MCDI_HEADER_RESPONSE, 0,
321 		    MCDI_HEADER_XFLAGS, xflags);
322 	}
323 
324 #if EFSYS_OPT_MCDI_LOGGING
325 	if (emtp->emt_logger != NULL) {
326 		emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST,
327 		    &hdr, hdr_len,
328 		    emrp->emr_in_buf, emrp->emr_in_length);
329 	}
330 #endif /* EFSYS_OPT_MCDI_LOGGING */
331 
332 	efx_mcdi_send_request(enp, &hdr[0], hdr_len,
333 	    emrp->emr_in_buf, emrp->emr_in_length);
334 }
335 
336 
337 static			void
338 efx_mcdi_read_response_header(
339 	__in		efx_nic_t *enp,
340 	__inout		efx_mcdi_req_t *emrp)
341 {
342 #if EFSYS_OPT_MCDI_LOGGING
343 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
344 #endif /* EFSYS_OPT_MCDI_LOGGING */
345 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
346 	efx_dword_t hdr[2];
347 	unsigned int hdr_len;
348 	unsigned int data_len;
349 	unsigned int seq;
350 	unsigned int cmd;
351 	unsigned int error;
352 	efx_rc_t rc;
353 
354 	EFSYS_ASSERT(emrp != NULL);
355 
356 	efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0]));
357 	hdr_len = sizeof (hdr[0]);
358 
359 	cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE);
360 	seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ);
361 	error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR);
362 
363 	if (cmd != MC_CMD_V2_EXTN) {
364 		data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN);
365 	} else {
366 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
367 		hdr_len += sizeof (hdr[1]);
368 
369 		cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
370 		data_len =
371 		    EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
372 	}
373 
374 	if (error && (data_len == 0)) {
375 		/* The MC has rebooted since the request was sent. */
376 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
377 		efx_mcdi_poll_reboot(enp);
378 		rc = EIO;
379 		goto fail1;
380 	}
381 	if ((cmd != emrp->emr_cmd) ||
382 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
383 		/* Response is for a different request */
384 		rc = EIO;
385 		goto fail2;
386 	}
387 	if (error) {
388 		efx_dword_t err[2];
389 		unsigned int err_len = MIN(data_len, sizeof (err));
390 		int err_code = MC_CMD_ERR_EPROTO;
391 		int err_arg = 0;
392 
393 		/* Read error code (and arg num for MCDI v2 commands) */
394 		efx_mcdi_read_response(enp, &err, hdr_len, err_len);
395 
396 		if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t)))
397 			err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0);
398 #ifdef WITH_MCDI_V2
399 		if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t)))
400 			err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0);
401 #endif
402 		emrp->emr_err_code = err_code;
403 		emrp->emr_err_arg = err_arg;
404 
405 #if EFSYS_OPT_MCDI_PROXY_AUTH
406 		if ((err_code == MC_CMD_ERR_PROXY_PENDING) &&
407 		    (err_len == sizeof (err))) {
408 			/*
409 			 * The MCDI request would normally fail with EPERM, but
410 			 * firmware has forwarded it to an authorization agent
411 			 * attached to a privileged PF.
412 			 *
413 			 * Save the authorization request handle. The client
414 			 * must wait for a PROXY_RESPONSE event, or timeout.
415 			 */
416 			emrp->emr_proxy_handle = err_arg;
417 		}
418 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
419 
420 #if EFSYS_OPT_MCDI_LOGGING
421 		if (emtp->emt_logger != NULL) {
422 			emtp->emt_logger(emtp->emt_context,
423 			    EFX_LOG_MCDI_RESPONSE,
424 			    &hdr, hdr_len,
425 			    &err, err_len);
426 		}
427 #endif /* EFSYS_OPT_MCDI_LOGGING */
428 
429 		if (!emrp->emr_quiet) {
430 			EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd,
431 			    int, err_code, int, err_arg);
432 		}
433 
434 		rc = efx_mcdi_request_errcode(err_code);
435 		goto fail3;
436 	}
437 
438 	emrp->emr_rc = 0;
439 	emrp->emr_out_length_used = data_len;
440 #if EFSYS_OPT_MCDI_PROXY_AUTH
441 	emrp->emr_proxy_handle = 0;
442 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
443 	return;
444 
445 fail3:
446 fail2:
447 fail1:
448 	emrp->emr_rc = rc;
449 	emrp->emr_out_length_used = 0;
450 }
451 
452 static			void
453 efx_mcdi_finish_response(
454 	__in		efx_nic_t *enp,
455 	__in		efx_mcdi_req_t *emrp)
456 {
457 #if EFSYS_OPT_MCDI_LOGGING
458 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
459 #endif /* EFSYS_OPT_MCDI_LOGGING */
460 	efx_dword_t hdr[2];
461 	unsigned int hdr_len;
462 	size_t bytes;
463 
464 	if (emrp->emr_out_buf == NULL)
465 		return;
466 
467 	/* Read the command header to detect MCDI response format */
468 	hdr_len = sizeof (hdr[0]);
469 	efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len);
470 	if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) {
471 		/*
472 		 * Read the actual payload length. The length given in the event
473 		 * is only correct for responses with the V1 format.
474 		 */
475 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
476 		hdr_len += sizeof (hdr[1]);
477 
478 		emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1],
479 					    MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
480 	}
481 
482 	/* Copy payload out into caller supplied buffer */
483 	bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length);
484 	efx_mcdi_read_response(enp, emrp->emr_out_buf, hdr_len, bytes);
485 
486 #if EFSYS_OPT_MCDI_LOGGING
487 	if (emtp->emt_logger != NULL) {
488 		emtp->emt_logger(emtp->emt_context,
489 		    EFX_LOG_MCDI_RESPONSE,
490 		    &hdr, hdr_len,
491 		    emrp->emr_out_buf, bytes);
492 	}
493 #endif /* EFSYS_OPT_MCDI_LOGGING */
494 }
495 
496 
497 	__checkReturn	boolean_t
498 efx_mcdi_request_poll(
499 	__in		efx_nic_t *enp)
500 {
501 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
502 	efx_mcdi_req_t *emrp;
503 	int state;
504 	efx_rc_t rc;
505 
506 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
507 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
508 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
509 
510 	/* Serialise against post-watchdog efx_mcdi_ev* */
511 	EFSYS_LOCK(enp->en_eslp, state);
512 
513 	EFSYS_ASSERT(emip->emi_pending_req != NULL);
514 	EFSYS_ASSERT(!emip->emi_ev_cpl);
515 	emrp = emip->emi_pending_req;
516 
517 	/* Check for reboot atomically w.r.t efx_mcdi_request_start */
518 	if (emip->emi_poll_cnt++ == 0) {
519 		if ((rc = efx_mcdi_poll_reboot(enp)) != 0) {
520 			emip->emi_pending_req = NULL;
521 			EFSYS_UNLOCK(enp->en_eslp, state);
522 
523 			/* Reboot/Assertion */
524 			if (rc == EIO || rc == EINTR)
525 				efx_mcdi_raise_exception(enp, emrp, rc);
526 
527 			goto fail1;
528 		}
529 	}
530 
531 	/* Check if a response is available */
532 	if (efx_mcdi_poll_response(enp) == B_FALSE) {
533 		EFSYS_UNLOCK(enp->en_eslp, state);
534 		return (B_FALSE);
535 	}
536 
537 	/* Read the response header */
538 	efx_mcdi_read_response_header(enp, emrp);
539 
540 	/* Request complete */
541 	emip->emi_pending_req = NULL;
542 
543 	/* Ensure stale MCDI requests fail after an MC reboot. */
544 	emip->emi_new_epoch = B_FALSE;
545 
546 	EFSYS_UNLOCK(enp->en_eslp, state);
547 
548 	if ((rc = emrp->emr_rc) != 0)
549 		goto fail2;
550 
551 	efx_mcdi_finish_response(enp, emrp);
552 	return (B_TRUE);
553 
554 fail2:
555 	if (!emrp->emr_quiet)
556 		EFSYS_PROBE(fail2);
557 fail1:
558 	if (!emrp->emr_quiet)
559 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
560 
561 	return (B_TRUE);
562 }
563 
564 	__checkReturn	boolean_t
565 efx_mcdi_request_abort(
566 	__in		efx_nic_t *enp)
567 {
568 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
569 	efx_mcdi_req_t *emrp;
570 	boolean_t aborted;
571 	int state;
572 
573 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
574 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
575 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
576 
577 	/*
578 	 * efx_mcdi_ev_* may have already completed this event, and be
579 	 * spinning/blocked on the upper layer lock. So it *is* legitimate
580 	 * to for emi_pending_req to be NULL. If there is a pending event
581 	 * completed request, then provide a "credit" to allow
582 	 * efx_mcdi_ev_cpl() to accept a single spurious completion.
583 	 */
584 	EFSYS_LOCK(enp->en_eslp, state);
585 	emrp = emip->emi_pending_req;
586 	aborted = (emrp != NULL);
587 	if (aborted) {
588 		emip->emi_pending_req = NULL;
589 
590 		/* Error the request */
591 		emrp->emr_out_length_used = 0;
592 		emrp->emr_rc = ETIMEDOUT;
593 
594 		/* Provide a credit for seqno/emr_pending_req mismatches */
595 		if (emip->emi_ev_cpl)
596 			++emip->emi_aborted;
597 
598 		/*
599 		 * The upper layer has called us, so we don't
600 		 * need to complete the request.
601 		 */
602 	}
603 	EFSYS_UNLOCK(enp->en_eslp, state);
604 
605 	return (aborted);
606 }
607 
608 	__checkReturn	efx_rc_t
609 efx_mcdi_request_errcode(
610 	__in		unsigned int err)
611 {
612 
613 	switch (err) {
614 		/* MCDI v1 */
615 	case MC_CMD_ERR_EPERM:
616 		return (EACCES);
617 	case MC_CMD_ERR_ENOENT:
618 		return (ENOENT);
619 	case MC_CMD_ERR_EINTR:
620 		return (EINTR);
621 	case MC_CMD_ERR_EACCES:
622 		return (EACCES);
623 	case MC_CMD_ERR_EBUSY:
624 		return (EBUSY);
625 	case MC_CMD_ERR_EINVAL:
626 		return (EINVAL);
627 	case MC_CMD_ERR_EDEADLK:
628 		return (EDEADLK);
629 	case MC_CMD_ERR_ENOSYS:
630 		return (ENOTSUP);
631 	case MC_CMD_ERR_ETIME:
632 		return (ETIMEDOUT);
633 	case MC_CMD_ERR_ENOTSUP:
634 		return (ENOTSUP);
635 	case MC_CMD_ERR_EALREADY:
636 		return (EALREADY);
637 
638 		/* MCDI v2 */
639 	case MC_CMD_ERR_EEXIST:
640 		return (EEXIST);
641 #ifdef MC_CMD_ERR_EAGAIN
642 	case MC_CMD_ERR_EAGAIN:
643 		return (EAGAIN);
644 #endif
645 #ifdef MC_CMD_ERR_ENOSPC
646 	case MC_CMD_ERR_ENOSPC:
647 		return (ENOSPC);
648 #endif
649 
650 	case MC_CMD_ERR_ALLOC_FAIL:
651 		return (ENOMEM);
652 	case MC_CMD_ERR_NO_VADAPTOR:
653 		return (ENOENT);
654 	case MC_CMD_ERR_NO_EVB_PORT:
655 		return (ENOENT);
656 	case MC_CMD_ERR_NO_VSWITCH:
657 		return (ENODEV);
658 	case MC_CMD_ERR_VLAN_LIMIT:
659 		return (EINVAL);
660 	case MC_CMD_ERR_BAD_PCI_FUNC:
661 		return (ENODEV);
662 	case MC_CMD_ERR_BAD_VLAN_MODE:
663 		return (EINVAL);
664 	case MC_CMD_ERR_BAD_VSWITCH_TYPE:
665 		return (EINVAL);
666 	case MC_CMD_ERR_BAD_VPORT_TYPE:
667 		return (EINVAL);
668 	case MC_CMD_ERR_MAC_EXIST:
669 		return (EEXIST);
670 
671 	case MC_CMD_ERR_PROXY_PENDING:
672 		return (EAGAIN);
673 
674 	default:
675 		EFSYS_PROBE1(mc_pcol_error, int, err);
676 		return (EIO);
677 	}
678 }
679 
680 			void
681 efx_mcdi_raise_exception(
682 	__in		efx_nic_t *enp,
683 	__in_opt	efx_mcdi_req_t *emrp,
684 	__in		int rc)
685 {
686 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
687 	efx_mcdi_exception_t exception;
688 
689 	/* Reboot or Assertion failure only */
690 	EFSYS_ASSERT(rc == EIO || rc == EINTR);
691 
692 	/*
693 	 * If MC_CMD_REBOOT causes a reboot (dependent on parameters),
694 	 * then the EIO is not worthy of an exception.
695 	 */
696 	if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO)
697 		return;
698 
699 	exception = (rc == EIO)
700 		? EFX_MCDI_EXCEPTION_MC_REBOOT
701 		: EFX_MCDI_EXCEPTION_MC_BADASSERT;
702 
703 	emtp->emt_exception(emtp->emt_context, exception);
704 }
705 
706 			void
707 efx_mcdi_execute(
708 	__in		efx_nic_t *enp,
709 	__inout		efx_mcdi_req_t *emrp)
710 {
711 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
712 
713 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
714 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
715 
716 	emrp->emr_quiet = B_FALSE;
717 	emtp->emt_execute(emtp->emt_context, emrp);
718 }
719 
720 			void
721 efx_mcdi_execute_quiet(
722 	__in		efx_nic_t *enp,
723 	__inout		efx_mcdi_req_t *emrp)
724 {
725 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
726 
727 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
728 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
729 
730 	emrp->emr_quiet = B_TRUE;
731 	emtp->emt_execute(emtp->emt_context, emrp);
732 }
733 
734 			void
735 efx_mcdi_ev_cpl(
736 	__in		efx_nic_t *enp,
737 	__in		unsigned int seq,
738 	__in		unsigned int outlen,
739 	__in		int errcode)
740 {
741 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
742 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
743 	efx_mcdi_req_t *emrp;
744 	int state;
745 
746 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
747 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
748 
749 	/*
750 	 * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start()
751 	 * when we're completing an aborted request.
752 	 */
753 	EFSYS_LOCK(enp->en_eslp, state);
754 	if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl ||
755 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
756 		EFSYS_ASSERT(emip->emi_aborted > 0);
757 		if (emip->emi_aborted > 0)
758 			--emip->emi_aborted;
759 		EFSYS_UNLOCK(enp->en_eslp, state);
760 		return;
761 	}
762 
763 	emrp = emip->emi_pending_req;
764 	emip->emi_pending_req = NULL;
765 	EFSYS_UNLOCK(enp->en_eslp, state);
766 
767 	if (emip->emi_max_version >= 2) {
768 		/* MCDIv2 response details do not fit into an event. */
769 		efx_mcdi_read_response_header(enp, emrp);
770 	} else {
771 		if (errcode != 0) {
772 			if (!emrp->emr_quiet) {
773 				EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd,
774 				    int, errcode);
775 			}
776 			emrp->emr_out_length_used = 0;
777 			emrp->emr_rc = efx_mcdi_request_errcode(errcode);
778 		} else {
779 			emrp->emr_out_length_used = outlen;
780 			emrp->emr_rc = 0;
781 		}
782 	}
783 	if (errcode == 0) {
784 		efx_mcdi_finish_response(enp, emrp);
785 	}
786 
787 	emtp->emt_ev_cpl(emtp->emt_context);
788 }
789 
790 #if EFSYS_OPT_MCDI_PROXY_AUTH
791 
792 	__checkReturn	efx_rc_t
793 efx_mcdi_get_proxy_handle(
794 	__in		efx_nic_t *enp,
795 	__in		efx_mcdi_req_t *emrp,
796 	__out		uint32_t *handlep)
797 {
798 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
799 	efx_rc_t rc;
800 
801 	/*
802 	 * Return proxy handle from MCDI request that returned with error
803 	 * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching
804 	 * PROXY_RESPONSE event.
805 	 */
806 	if ((emrp == NULL) || (handlep == NULL)) {
807 		rc = EINVAL;
808 		goto fail1;
809 	}
810 	if ((emrp->emr_rc != 0) &&
811 	    (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) {
812 		*handlep = emrp->emr_proxy_handle;
813 		rc = 0;
814 	} else {
815 		*handlep = 0;
816 		rc = ENOENT;
817 	}
818 	return (rc);
819 
820 fail1:
821 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
822 	return (rc);
823 }
824 
825 			void
826 efx_mcdi_ev_proxy_response(
827 	__in		efx_nic_t *enp,
828 	__in		unsigned int handle,
829 	__in		unsigned int status)
830 {
831 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
832 	efx_rc_t rc;
833 
834 	/*
835 	 * Handle results of an authorization request for a privileged MCDI
836 	 * command. If authorization was granted then we must re-issue the
837 	 * original MCDI request. If authorization failed or timed out,
838 	 * then the original MCDI request should be completed with the
839 	 * result code from this event.
840 	 */
841 	rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status);
842 
843 	emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc);
844 }
845 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
846 
847 			void
848 efx_mcdi_ev_death(
849 	__in		efx_nic_t *enp,
850 	__in		int rc)
851 {
852 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
853 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
854 	efx_mcdi_req_t *emrp = NULL;
855 	boolean_t ev_cpl;
856 	int state;
857 
858 	/*
859 	 * The MCDI request (if there is one) has been terminated, either
860 	 * by a BADASSERT or REBOOT event.
861 	 *
862 	 * If there is an outstanding event-completed MCDI operation, then we
863 	 * will never receive the completion event (because both MCDI
864 	 * completions and BADASSERT events are sent to the same evq). So
865 	 * complete this MCDI op.
866 	 *
867 	 * This function might run in parallel with efx_mcdi_request_poll()
868 	 * for poll completed mcdi requests, and also with
869 	 * efx_mcdi_request_start() for post-watchdog completions.
870 	 */
871 	EFSYS_LOCK(enp->en_eslp, state);
872 	emrp = emip->emi_pending_req;
873 	ev_cpl = emip->emi_ev_cpl;
874 	if (emrp != NULL && emip->emi_ev_cpl) {
875 		emip->emi_pending_req = NULL;
876 
877 		emrp->emr_out_length_used = 0;
878 		emrp->emr_rc = rc;
879 		++emip->emi_aborted;
880 	}
881 
882 	/*
883 	 * Since we're running in parallel with a request, consume the
884 	 * status word before dropping the lock.
885 	 */
886 	if (rc == EIO || rc == EINTR) {
887 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
888 		(void) efx_mcdi_poll_reboot(enp);
889 		emip->emi_new_epoch = B_TRUE;
890 	}
891 
892 	EFSYS_UNLOCK(enp->en_eslp, state);
893 
894 	efx_mcdi_raise_exception(enp, emrp, rc);
895 
896 	if (emrp != NULL && ev_cpl)
897 		emtp->emt_ev_cpl(emtp->emt_context);
898 }
899 
900 	__checkReturn		efx_rc_t
901 efx_mcdi_version(
902 	__in			efx_nic_t *enp,
903 	__out_ecount_opt(4)	uint16_t versionp[4],
904 	__out_opt		uint32_t *buildp,
905 	__out_opt		efx_mcdi_boot_t *statusp)
906 {
907 	efx_mcdi_req_t req;
908 	uint8_t payload[MAX(MAX(MC_CMD_GET_VERSION_IN_LEN,
909 				MC_CMD_GET_VERSION_OUT_LEN),
910 			    MAX(MC_CMD_GET_BOOT_STATUS_IN_LEN,
911 				MC_CMD_GET_BOOT_STATUS_OUT_LEN))];
912 	efx_word_t *ver_words;
913 	uint16_t version[4];
914 	uint32_t build;
915 	efx_mcdi_boot_t status;
916 	efx_rc_t rc;
917 
918 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
919 
920 	(void) memset(payload, 0, sizeof (payload));
921 	req.emr_cmd = MC_CMD_GET_VERSION;
922 	req.emr_in_buf = payload;
923 	req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN;
924 	req.emr_out_buf = payload;
925 	req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN;
926 
927 	efx_mcdi_execute(enp, &req);
928 
929 	if (req.emr_rc != 0) {
930 		rc = req.emr_rc;
931 		goto fail1;
932 	}
933 
934 	/* bootrom support */
935 	if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) {
936 		version[0] = version[1] = version[2] = version[3] = 0;
937 		build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
938 
939 		goto version;
940 	}
941 
942 	if (req.emr_out_length_used < MC_CMD_GET_VERSION_OUT_LEN) {
943 		rc = EMSGSIZE;
944 		goto fail2;
945 	}
946 
947 	ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION);
948 	version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0);
949 	version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0);
950 	version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0);
951 	version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0);
952 	build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
953 
954 version:
955 	/* The bootrom doesn't understand BOOT_STATUS */
956 	if (MC_FW_VERSION_IS_BOOTLOADER(build)) {
957 		status = EFX_MCDI_BOOT_ROM;
958 		goto out;
959 	}
960 
961 	(void) memset(payload, 0, sizeof (payload));
962 	req.emr_cmd = MC_CMD_GET_BOOT_STATUS;
963 	req.emr_in_buf = payload;
964 	req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN;
965 	req.emr_out_buf = payload;
966 	req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN;
967 
968 	efx_mcdi_execute_quiet(enp, &req);
969 
970 	if (req.emr_rc == EACCES) {
971 		/* Unprivileged functions cannot access BOOT_STATUS */
972 		status = EFX_MCDI_BOOT_PRIMARY;
973 		version[0] = version[1] = version[2] = version[3] = 0;
974 		build = 0;
975 		goto out;
976 	}
977 
978 	if (req.emr_rc != 0) {
979 		rc = req.emr_rc;
980 		goto fail3;
981 	}
982 
983 	if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) {
984 		rc = EMSGSIZE;
985 		goto fail4;
986 	}
987 
988 	if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS,
989 	    GET_BOOT_STATUS_OUT_FLAGS_PRIMARY))
990 		status = EFX_MCDI_BOOT_PRIMARY;
991 	else
992 		status = EFX_MCDI_BOOT_SECONDARY;
993 
994 out:
995 	if (versionp != NULL)
996 		memcpy(versionp, version, sizeof (version));
997 	if (buildp != NULL)
998 		*buildp = build;
999 	if (statusp != NULL)
1000 		*statusp = status;
1001 
1002 	return (0);
1003 
1004 fail4:
1005 	EFSYS_PROBE(fail4);
1006 fail3:
1007 	EFSYS_PROBE(fail3);
1008 fail2:
1009 	EFSYS_PROBE(fail2);
1010 fail1:
1011 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1012 
1013 	return (rc);
1014 }
1015 
1016 static	__checkReturn	efx_rc_t
1017 efx_mcdi_do_reboot(
1018 	__in		efx_nic_t *enp,
1019 	__in		boolean_t after_assertion)
1020 {
1021 	uint8_t payload[MAX(MC_CMD_REBOOT_IN_LEN, MC_CMD_REBOOT_OUT_LEN)];
1022 	efx_mcdi_req_t req;
1023 	efx_rc_t rc;
1024 
1025 	/*
1026 	 * We could require the caller to have caused en_mod_flags=0 to
1027 	 * call this function. This doesn't help the other port though,
1028 	 * who's about to get the MC ripped out from underneath them.
1029 	 * Since they have to cope with the subsequent fallout of MCDI
1030 	 * failures, we should as well.
1031 	 */
1032 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
1033 
1034 	(void) memset(payload, 0, sizeof (payload));
1035 	req.emr_cmd = MC_CMD_REBOOT;
1036 	req.emr_in_buf = payload;
1037 	req.emr_in_length = MC_CMD_REBOOT_IN_LEN;
1038 	req.emr_out_buf = payload;
1039 	req.emr_out_length = MC_CMD_REBOOT_OUT_LEN;
1040 
1041 	MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS,
1042 	    (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0));
1043 
1044 	efx_mcdi_execute_quiet(enp, &req);
1045 
1046 	if (req.emr_rc == EACCES) {
1047 		/* Unprivileged functions cannot reboot the MC. */
1048 		goto out;
1049 	}
1050 
1051 	/* A successful reboot request returns EIO. */
1052 	if (req.emr_rc != 0 && req.emr_rc != EIO) {
1053 		rc = req.emr_rc;
1054 		goto fail1;
1055 	}
1056 
1057 out:
1058 	return (0);
1059 
1060 fail1:
1061 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1062 
1063 	return (rc);
1064 }
1065 
1066 	__checkReturn	efx_rc_t
1067 efx_mcdi_reboot(
1068 	__in		efx_nic_t *enp)
1069 {
1070 	return (efx_mcdi_do_reboot(enp, B_FALSE));
1071 }
1072 
1073 	__checkReturn	efx_rc_t
1074 efx_mcdi_exit_assertion_handler(
1075 	__in		efx_nic_t *enp)
1076 {
1077 	return (efx_mcdi_do_reboot(enp, B_TRUE));
1078 }
1079 
1080 	__checkReturn	efx_rc_t
1081 efx_mcdi_read_assertion(
1082 	__in		efx_nic_t *enp)
1083 {
1084 	efx_mcdi_req_t req;
1085 	uint8_t payload[MAX(MC_CMD_GET_ASSERTS_IN_LEN,
1086 			    MC_CMD_GET_ASSERTS_OUT_LEN)];
1087 	const char *reason;
1088 	unsigned int flags;
1089 	unsigned int index;
1090 	unsigned int ofst;
1091 	int retry;
1092 	efx_rc_t rc;
1093 
1094 	/*
1095 	 * Before we attempt to chat to the MC, we should verify that the MC
1096 	 * isn't in it's assertion handler, either due to a previous reboot,
1097 	 * or because we're reinitializing due to an eec_exception().
1098 	 *
1099 	 * Use GET_ASSERTS to read any assertion state that may be present.
1100 	 * Retry this command twice. Once because a boot-time assertion failure
1101 	 * might cause the 1st MCDI request to fail. And once again because
1102 	 * we might race with efx_mcdi_exit_assertion_handler() running on
1103 	 * partner port(s) on the same NIC.
1104 	 */
1105 	retry = 2;
1106 	do {
1107 		(void) memset(payload, 0, sizeof (payload));
1108 		req.emr_cmd = MC_CMD_GET_ASSERTS;
1109 		req.emr_in_buf = payload;
1110 		req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN;
1111 		req.emr_out_buf = payload;
1112 		req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN;
1113 
1114 		MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1);
1115 		efx_mcdi_execute_quiet(enp, &req);
1116 
1117 	} while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0);
1118 
1119 	if (req.emr_rc != 0) {
1120 		if (req.emr_rc == EACCES) {
1121 			/* Unprivileged functions cannot clear assertions. */
1122 			goto out;
1123 		}
1124 		rc = req.emr_rc;
1125 		goto fail1;
1126 	}
1127 
1128 	if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) {
1129 		rc = EMSGSIZE;
1130 		goto fail2;
1131 	}
1132 
1133 	/* Print out any assertion state recorded */
1134 	flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1135 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1136 		return (0);
1137 
1138 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1139 		? "system-level assertion"
1140 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1141 		? "thread-level assertion"
1142 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1143 		? "watchdog reset"
1144 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP)
1145 		? "illegal address trap"
1146 		: "unknown assertion";
1147 	EFSYS_PROBE3(mcpu_assertion,
1148 	    const char *, reason, unsigned int,
1149 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1150 	    unsigned int,
1151 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS));
1152 
1153 	/* Print out the registers (r1 ... r31) */
1154 	ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
1155 	for (index = 1;
1156 		index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1157 		index++) {
1158 		EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int,
1159 			    EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst),
1160 					    EFX_DWORD_0));
1161 		ofst += sizeof (efx_dword_t);
1162 	}
1163 	EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN);
1164 
1165 out:
1166 	return (0);
1167 
1168 fail2:
1169 	EFSYS_PROBE(fail2);
1170 fail1:
1171 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1172 
1173 	return (rc);
1174 }
1175 
1176 
1177 /*
1178  * Internal routines for for specific MCDI requests.
1179  */
1180 
1181 	__checkReturn	efx_rc_t
1182 efx_mcdi_drv_attach(
1183 	__in		efx_nic_t *enp,
1184 	__in		boolean_t attach)
1185 {
1186 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1187 	efx_mcdi_req_t req;
1188 	uint8_t payload[MAX(MC_CMD_DRV_ATTACH_IN_LEN,
1189 			    MC_CMD_DRV_ATTACH_EXT_OUT_LEN)];
1190 	uint32_t flags;
1191 	efx_rc_t rc;
1192 
1193 	(void) memset(payload, 0, sizeof (payload));
1194 	req.emr_cmd = MC_CMD_DRV_ATTACH;
1195 	req.emr_in_buf = payload;
1196 	req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN;
1197 	req.emr_out_buf = payload;
1198 	req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN;
1199 
1200 	/*
1201 	 * Use DONT_CARE for the datapath firmware type to ensure that the
1202 	 * driver can attach to an unprivileged function. The datapath firmware
1203 	 * type to use is controlled by the 'sfboot' utility.
1204 	 */
1205 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_NEW_STATE, attach ? 1 : 0);
1206 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1);
1207 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_DONT_CARE);
1208 
1209 	efx_mcdi_execute(enp, &req);
1210 
1211 	if (req.emr_rc != 0) {
1212 		rc = req.emr_rc;
1213 		goto fail1;
1214 	}
1215 
1216 	if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) {
1217 		rc = EMSGSIZE;
1218 		goto fail2;
1219 	}
1220 
1221 	if (attach == B_FALSE) {
1222 		flags = 0;
1223 	} else if (enp->en_family == EFX_FAMILY_SIENA) {
1224 		efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1225 
1226 		/* Create synthetic privileges for Siena functions */
1227 		flags = EFX_NIC_FUNC_LINKCTRL | EFX_NIC_FUNC_TRUSTED;
1228 		if (emip->emi_port == 1)
1229 			flags |= EFX_NIC_FUNC_PRIMARY;
1230 	} else {
1231 		EFX_STATIC_ASSERT(EFX_NIC_FUNC_PRIMARY ==
1232 		    (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY));
1233 		EFX_STATIC_ASSERT(EFX_NIC_FUNC_LINKCTRL ==
1234 		    (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL));
1235 		EFX_STATIC_ASSERT(EFX_NIC_FUNC_TRUSTED ==
1236 		    (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED));
1237 
1238 		/* Save function privilege flags (EF10 and later) */
1239 		if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1240 			rc = EMSGSIZE;
1241 			goto fail3;
1242 		}
1243 		flags = MCDI_OUT_DWORD(req, DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1244 	}
1245 	encp->enc_func_flags = flags;
1246 
1247 	return (0);
1248 
1249 fail3:
1250 	EFSYS_PROBE(fail3);
1251 fail2:
1252 	EFSYS_PROBE(fail2);
1253 fail1:
1254 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1255 
1256 	return (rc);
1257 }
1258 
1259 	__checkReturn		efx_rc_t
1260 efx_mcdi_get_board_cfg(
1261 	__in			efx_nic_t *enp,
1262 	__out_opt		uint32_t *board_typep,
1263 	__out_opt		efx_dword_t *capabilitiesp,
1264 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
1265 {
1266 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1267 	efx_mcdi_req_t req;
1268 	uint8_t payload[MAX(MC_CMD_GET_BOARD_CFG_IN_LEN,
1269 			    MC_CMD_GET_BOARD_CFG_OUT_LENMIN)];
1270 	efx_rc_t rc;
1271 
1272 	(void) memset(payload, 0, sizeof (payload));
1273 	req.emr_cmd = MC_CMD_GET_BOARD_CFG;
1274 	req.emr_in_buf = payload;
1275 	req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN;
1276 	req.emr_out_buf = payload;
1277 	req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN;
1278 
1279 	efx_mcdi_execute(enp, &req);
1280 
1281 	if (req.emr_rc != 0) {
1282 		rc = req.emr_rc;
1283 		goto fail1;
1284 	}
1285 
1286 	if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1287 		rc = EMSGSIZE;
1288 		goto fail2;
1289 	}
1290 
1291 	if (mac_addrp != NULL) {
1292 		uint8_t *addrp;
1293 
1294 		if (emip->emi_port == 1) {
1295 			addrp = MCDI_OUT2(req, uint8_t,
1296 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0);
1297 		} else if (emip->emi_port == 2) {
1298 			addrp = MCDI_OUT2(req, uint8_t,
1299 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1);
1300 		} else {
1301 			rc = EINVAL;
1302 			goto fail3;
1303 		}
1304 
1305 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
1306 	}
1307 
1308 	if (capabilitiesp != NULL) {
1309 		if (emip->emi_port == 1) {
1310 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1311 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1312 		} else if (emip->emi_port == 2) {
1313 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1314 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1315 		} else {
1316 			rc = EINVAL;
1317 			goto fail4;
1318 		}
1319 	}
1320 
1321 	if (board_typep != NULL) {
1322 		*board_typep = MCDI_OUT_DWORD(req,
1323 		    GET_BOARD_CFG_OUT_BOARD_TYPE);
1324 	}
1325 
1326 	return (0);
1327 
1328 fail4:
1329 	EFSYS_PROBE(fail4);
1330 fail3:
1331 	EFSYS_PROBE(fail3);
1332 fail2:
1333 	EFSYS_PROBE(fail2);
1334 fail1:
1335 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1336 
1337 	return (rc);
1338 }
1339 
1340 	__checkReturn	efx_rc_t
1341 efx_mcdi_get_resource_limits(
1342 	__in		efx_nic_t *enp,
1343 	__out_opt	uint32_t *nevqp,
1344 	__out_opt	uint32_t *nrxqp,
1345 	__out_opt	uint32_t *ntxqp)
1346 {
1347 	efx_mcdi_req_t req;
1348 	uint8_t payload[MAX(MC_CMD_GET_RESOURCE_LIMITS_IN_LEN,
1349 			    MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN)];
1350 	efx_rc_t rc;
1351 
1352 	(void) memset(payload, 0, sizeof (payload));
1353 	req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS;
1354 	req.emr_in_buf = payload;
1355 	req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN;
1356 	req.emr_out_buf = payload;
1357 	req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN;
1358 
1359 	efx_mcdi_execute(enp, &req);
1360 
1361 	if (req.emr_rc != 0) {
1362 		rc = req.emr_rc;
1363 		goto fail1;
1364 	}
1365 
1366 	if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) {
1367 		rc = EMSGSIZE;
1368 		goto fail2;
1369 	}
1370 
1371 	if (nevqp != NULL)
1372 		*nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ);
1373 	if (nrxqp != NULL)
1374 		*nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ);
1375 	if (ntxqp != NULL)
1376 		*ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ);
1377 
1378 	return (0);
1379 
1380 fail2:
1381 	EFSYS_PROBE(fail2);
1382 fail1:
1383 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1384 
1385 	return (rc);
1386 }
1387 
1388 	__checkReturn	efx_rc_t
1389 efx_mcdi_get_phy_cfg(
1390 	__in		efx_nic_t *enp)
1391 {
1392 	efx_port_t *epp = &(enp->en_port);
1393 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1394 	efx_mcdi_req_t req;
1395 	uint8_t payload[MAX(MC_CMD_GET_PHY_CFG_IN_LEN,
1396 			    MC_CMD_GET_PHY_CFG_OUT_LEN)];
1397 	efx_rc_t rc;
1398 
1399 	(void) memset(payload, 0, sizeof (payload));
1400 	req.emr_cmd = MC_CMD_GET_PHY_CFG;
1401 	req.emr_in_buf = payload;
1402 	req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN;
1403 	req.emr_out_buf = payload;
1404 	req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN;
1405 
1406 	efx_mcdi_execute(enp, &req);
1407 
1408 	if (req.emr_rc != 0) {
1409 		rc = req.emr_rc;
1410 		goto fail1;
1411 	}
1412 
1413 	if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) {
1414 		rc = EMSGSIZE;
1415 		goto fail2;
1416 	}
1417 
1418 	encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE);
1419 #if EFSYS_OPT_NAMES
1420 	(void) strncpy(encp->enc_phy_name,
1421 		MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME),
1422 		MIN(sizeof (encp->enc_phy_name) - 1,
1423 		    MC_CMD_GET_PHY_CFG_OUT_NAME_LEN));
1424 #endif	/* EFSYS_OPT_NAMES */
1425 	(void) memset(encp->enc_phy_revision, 0,
1426 	    sizeof (encp->enc_phy_revision));
1427 	memcpy(encp->enc_phy_revision,
1428 		MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION),
1429 		MIN(sizeof (encp->enc_phy_revision) - 1,
1430 		    MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN));
1431 #if EFSYS_OPT_PHY_LED_CONTROL
1432 	encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) |
1433 			    (1 << EFX_PHY_LED_OFF) |
1434 			    (1 << EFX_PHY_LED_ON));
1435 #endif	/* EFSYS_OPT_PHY_LED_CONTROL */
1436 
1437 	/* Get the media type of the fixed port, if recognised. */
1438 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI);
1439 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4);
1440 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4);
1441 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP);
1442 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS);
1443 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T);
1444 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS);
1445 	epp->ep_fixed_port_type =
1446 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE);
1447 	if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES)
1448 		epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID;
1449 
1450 	epp->ep_phy_cap_mask =
1451 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP);
1452 #if EFSYS_OPT_PHY_FLAGS
1453 	encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS);
1454 #endif	/* EFSYS_OPT_PHY_FLAGS */
1455 
1456 	encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT);
1457 
1458 	/* Populate internal state */
1459 	encp->enc_mcdi_mdio_channel =
1460 		(uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL);
1461 
1462 #if EFSYS_OPT_PHY_STATS
1463 	encp->enc_mcdi_phy_stat_mask =
1464 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK);
1465 #endif	/* EFSYS_OPT_PHY_STATS */
1466 
1467 #if EFSYS_OPT_BIST
1468 	encp->enc_bist_mask = 0;
1469 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1470 	    GET_PHY_CFG_OUT_BIST_CABLE_SHORT))
1471 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT);
1472 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1473 	    GET_PHY_CFG_OUT_BIST_CABLE_LONG))
1474 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG);
1475 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1476 	    GET_PHY_CFG_OUT_BIST))
1477 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL);
1478 #endif  /* EFSYS_OPT_BIST */
1479 
1480 	return (0);
1481 
1482 fail2:
1483 	EFSYS_PROBE(fail2);
1484 fail1:
1485 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1486 
1487 	return (rc);
1488 }
1489 
1490 	__checkReturn		efx_rc_t
1491 efx_mcdi_firmware_update_supported(
1492 	__in			efx_nic_t *enp,
1493 	__out			boolean_t *supportedp)
1494 {
1495 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1496 	efx_rc_t rc;
1497 
1498 	if (emcop != NULL) {
1499 		if ((rc = emcop->emco_feature_supported(enp,
1500 			    EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0)
1501 			goto fail1;
1502 	} else {
1503 		/* Earlier devices always supported updates */
1504 		*supportedp = B_TRUE;
1505 	}
1506 
1507 	return (0);
1508 
1509 fail1:
1510 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1511 
1512 	return (rc);
1513 }
1514 
1515 	__checkReturn		efx_rc_t
1516 efx_mcdi_macaddr_change_supported(
1517 	__in			efx_nic_t *enp,
1518 	__out			boolean_t *supportedp)
1519 {
1520 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1521 	efx_rc_t rc;
1522 
1523 	if (emcop != NULL) {
1524 		if ((rc = emcop->emco_feature_supported(enp,
1525 			    EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0)
1526 			goto fail1;
1527 	} else {
1528 		/* Earlier devices always supported MAC changes */
1529 		*supportedp = B_TRUE;
1530 	}
1531 
1532 	return (0);
1533 
1534 fail1:
1535 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1536 
1537 	return (rc);
1538 }
1539 
1540 	__checkReturn		efx_rc_t
1541 efx_mcdi_link_control_supported(
1542 	__in			efx_nic_t *enp,
1543 	__out			boolean_t *supportedp)
1544 {
1545 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1546 	efx_rc_t rc;
1547 
1548 	if (emcop != NULL) {
1549 		if ((rc = emcop->emco_feature_supported(enp,
1550 			    EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0)
1551 			goto fail1;
1552 	} else {
1553 		/* Earlier devices always supported link control */
1554 		*supportedp = B_TRUE;
1555 	}
1556 
1557 	return (0);
1558 
1559 fail1:
1560 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1561 
1562 	return (rc);
1563 }
1564 
1565 	__checkReturn		efx_rc_t
1566 efx_mcdi_mac_spoofing_supported(
1567 	__in			efx_nic_t *enp,
1568 	__out			boolean_t *supportedp)
1569 {
1570 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1571 	efx_rc_t rc;
1572 
1573 	if (emcop != NULL) {
1574 		if ((rc = emcop->emco_feature_supported(enp,
1575 			    EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0)
1576 			goto fail1;
1577 	} else {
1578 		/* Earlier devices always supported MAC spoofing */
1579 		*supportedp = B_TRUE;
1580 	}
1581 
1582 	return (0);
1583 
1584 fail1:
1585 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1586 
1587 	return (rc);
1588 }
1589 
1590 #if EFSYS_OPT_BIST
1591 
1592 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
1593 /*
1594  * Enter bist offline mode. This is a fw mode which puts the NIC into a state
1595  * where memory BIST tests can be run and not much else can interfere or happen.
1596  * A reboot is required to exit this mode.
1597  */
1598 	__checkReturn		efx_rc_t
1599 efx_mcdi_bist_enable_offline(
1600 	__in			efx_nic_t *enp)
1601 {
1602 	efx_mcdi_req_t req;
1603 	efx_rc_t rc;
1604 
1605 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0);
1606 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0);
1607 
1608 	req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST;
1609 	req.emr_in_buf = NULL;
1610 	req.emr_in_length = 0;
1611 	req.emr_out_buf = NULL;
1612 	req.emr_out_length = 0;
1613 
1614 	efx_mcdi_execute(enp, &req);
1615 
1616 	if (req.emr_rc != 0) {
1617 		rc = req.emr_rc;
1618 		goto fail1;
1619 	}
1620 
1621 	return (0);
1622 
1623 fail1:
1624 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1625 
1626 	return (rc);
1627 }
1628 #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
1629 
1630 	__checkReturn		efx_rc_t
1631 efx_mcdi_bist_start(
1632 	__in			efx_nic_t *enp,
1633 	__in			efx_bist_type_t type)
1634 {
1635 	efx_mcdi_req_t req;
1636 	uint8_t payload[MAX(MC_CMD_START_BIST_IN_LEN,
1637 			    MC_CMD_START_BIST_OUT_LEN)];
1638 	efx_rc_t rc;
1639 
1640 	(void) memset(payload, 0, sizeof (payload));
1641 	req.emr_cmd = MC_CMD_START_BIST;
1642 	req.emr_in_buf = payload;
1643 	req.emr_in_length = MC_CMD_START_BIST_IN_LEN;
1644 	req.emr_out_buf = payload;
1645 	req.emr_out_length = MC_CMD_START_BIST_OUT_LEN;
1646 
1647 	switch (type) {
1648 	case EFX_BIST_TYPE_PHY_NORMAL:
1649 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST);
1650 		break;
1651 	case EFX_BIST_TYPE_PHY_CABLE_SHORT:
1652 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1653 		    MC_CMD_PHY_BIST_CABLE_SHORT);
1654 		break;
1655 	case EFX_BIST_TYPE_PHY_CABLE_LONG:
1656 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1657 		    MC_CMD_PHY_BIST_CABLE_LONG);
1658 		break;
1659 	case EFX_BIST_TYPE_MC_MEM:
1660 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1661 		    MC_CMD_MC_MEM_BIST);
1662 		break;
1663 	case EFX_BIST_TYPE_SAT_MEM:
1664 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1665 		    MC_CMD_PORT_MEM_BIST);
1666 		break;
1667 	case EFX_BIST_TYPE_REG:
1668 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1669 		    MC_CMD_REG_BIST);
1670 		break;
1671 	default:
1672 		EFSYS_ASSERT(0);
1673 	}
1674 
1675 	efx_mcdi_execute(enp, &req);
1676 
1677 	if (req.emr_rc != 0) {
1678 		rc = req.emr_rc;
1679 		goto fail1;
1680 	}
1681 
1682 	return (0);
1683 
1684 fail1:
1685 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1686 
1687 	return (rc);
1688 }
1689 
1690 #endif /* EFSYS_OPT_BIST */
1691 
1692 
1693 /* Enable logging of some events (e.g. link state changes) */
1694 	__checkReturn	efx_rc_t
1695 efx_mcdi_log_ctrl(
1696 	__in		efx_nic_t *enp)
1697 {
1698 	efx_mcdi_req_t req;
1699 	uint8_t payload[MAX(MC_CMD_LOG_CTRL_IN_LEN,
1700 			    MC_CMD_LOG_CTRL_OUT_LEN)];
1701 	efx_rc_t rc;
1702 
1703 	(void) memset(payload, 0, sizeof (payload));
1704 	req.emr_cmd = MC_CMD_LOG_CTRL;
1705 	req.emr_in_buf = payload;
1706 	req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN;
1707 	req.emr_out_buf = payload;
1708 	req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN;
1709 
1710 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST,
1711 		    MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ);
1712 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0);
1713 
1714 	efx_mcdi_execute(enp, &req);
1715 
1716 	if (req.emr_rc != 0) {
1717 		rc = req.emr_rc;
1718 		goto fail1;
1719 	}
1720 
1721 	return (0);
1722 
1723 fail1:
1724 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1725 
1726 	return (rc);
1727 }
1728 
1729 
1730 #if EFSYS_OPT_MAC_STATS
1731 
1732 typedef enum efx_stats_action_e
1733 {
1734 	EFX_STATS_CLEAR,
1735 	EFX_STATS_UPLOAD,
1736 	EFX_STATS_ENABLE_NOEVENTS,
1737 	EFX_STATS_ENABLE_EVENTS,
1738 	EFX_STATS_DISABLE,
1739 } efx_stats_action_t;
1740 
1741 static	__checkReturn	efx_rc_t
1742 efx_mcdi_mac_stats(
1743 	__in		efx_nic_t *enp,
1744 	__in_opt	efsys_mem_t *esmp,
1745 	__in		efx_stats_action_t action)
1746 {
1747 	efx_mcdi_req_t req;
1748 	uint8_t payload[MAX(MC_CMD_MAC_STATS_IN_LEN,
1749 			    MC_CMD_MAC_STATS_OUT_DMA_LEN)];
1750 	int clear = (action == EFX_STATS_CLEAR);
1751 	int upload = (action == EFX_STATS_UPLOAD);
1752 	int enable = (action == EFX_STATS_ENABLE_NOEVENTS);
1753 	int events = (action == EFX_STATS_ENABLE_EVENTS);
1754 	int disable = (action == EFX_STATS_DISABLE);
1755 	efx_rc_t rc;
1756 
1757 	(void) memset(payload, 0, sizeof (payload));
1758 	req.emr_cmd = MC_CMD_MAC_STATS;
1759 	req.emr_in_buf = payload;
1760 	req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN;
1761 	req.emr_out_buf = payload;
1762 	req.emr_out_length = MC_CMD_MAC_STATS_OUT_DMA_LEN;
1763 
1764 	MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD,
1765 	    MAC_STATS_IN_DMA, upload,
1766 	    MAC_STATS_IN_CLEAR, clear,
1767 	    MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable,
1768 	    MAC_STATS_IN_PERIODIC_ENABLE, enable | events,
1769 	    MAC_STATS_IN_PERIODIC_NOEVENT, !events,
1770 	    MAC_STATS_IN_PERIOD_MS, (enable | events) ? 1000: 0);
1771 
1772 	if (esmp != NULL) {
1773 		int bytes = MC_CMD_MAC_NSTATS * sizeof (uint64_t);
1774 
1775 		EFX_STATIC_ASSERT(MC_CMD_MAC_NSTATS * sizeof (uint64_t) <=
1776 		    EFX_MAC_STATS_SIZE);
1777 
1778 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO,
1779 			    EFSYS_MEM_ADDR(esmp) & 0xffffffff);
1780 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI,
1781 			    EFSYS_MEM_ADDR(esmp) >> 32);
1782 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes);
1783 	} else {
1784 		EFSYS_ASSERT(!upload && !enable && !events);
1785 	}
1786 
1787 	/*
1788 	 * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats,
1789 	 *	 as this may fail (and leave periodic DMA enabled) if the
1790 	 *	 vadapter has already been deleted.
1791 	 */
1792 	MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID,
1793 	    (disable ? EVB_PORT_ID_NULL : enp->en_vport_id));
1794 
1795 	efx_mcdi_execute(enp, &req);
1796 
1797 	if (req.emr_rc != 0) {
1798 		/* EF10: Expect ENOENT if no DMA queues are initialised */
1799 		if ((req.emr_rc != ENOENT) ||
1800 		    (enp->en_rx_qcount + enp->en_tx_qcount != 0)) {
1801 			rc = req.emr_rc;
1802 			goto fail1;
1803 		}
1804 	}
1805 
1806 	return (0);
1807 
1808 fail1:
1809 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1810 
1811 	return (rc);
1812 }
1813 
1814 	__checkReturn	efx_rc_t
1815 efx_mcdi_mac_stats_clear(
1816 	__in		efx_nic_t *enp)
1817 {
1818 	efx_rc_t rc;
1819 
1820 	if ((rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_CLEAR)) != 0)
1821 		goto fail1;
1822 
1823 	return (0);
1824 
1825 fail1:
1826 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1827 
1828 	return (rc);
1829 }
1830 
1831 	__checkReturn	efx_rc_t
1832 efx_mcdi_mac_stats_upload(
1833 	__in		efx_nic_t *enp,
1834 	__in		efsys_mem_t *esmp)
1835 {
1836 	efx_rc_t rc;
1837 
1838 	/*
1839 	 * The MC DMAs aggregate statistics for our convenience, so we can
1840 	 * avoid having to pull the statistics buffer into the cache to
1841 	 * maintain cumulative statistics.
1842 	 */
1843 	if ((rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_UPLOAD)) != 0)
1844 		goto fail1;
1845 
1846 	return (0);
1847 
1848 fail1:
1849 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1850 
1851 	return (rc);
1852 }
1853 
1854 	__checkReturn	efx_rc_t
1855 efx_mcdi_mac_stats_periodic(
1856 	__in		efx_nic_t *enp,
1857 	__in		efsys_mem_t *esmp,
1858 	__in		uint16_t period,
1859 	__in		boolean_t events)
1860 {
1861 	efx_rc_t rc;
1862 
1863 	/*
1864 	 * The MC DMAs aggregate statistics for our convenience, so we can
1865 	 * avoid having to pull the statistics buffer into the cache to
1866 	 * maintain cumulative statistics.
1867 	 * Huntington uses a fixed 1sec period, so use that on Siena too.
1868 	 */
1869 	if (period == 0)
1870 		rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_DISABLE);
1871 	else if (events)
1872 		rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_EVENTS);
1873 	else
1874 		rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_NOEVENTS);
1875 
1876 	if (rc != 0)
1877 		goto fail1;
1878 
1879 	return (0);
1880 
1881 fail1:
1882 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1883 
1884 	return (rc);
1885 }
1886 
1887 #endif	/* EFSYS_OPT_MAC_STATS */
1888 
1889 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
1890 
1891 /*
1892  * This function returns the pf and vf number of a function.  If it is a pf the
1893  * vf number is 0xffff.  The vf number is the index of the vf on that
1894  * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0),
1895  * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff).
1896  */
1897 	__checkReturn		efx_rc_t
1898 efx_mcdi_get_function_info(
1899 	__in			efx_nic_t *enp,
1900 	__out			uint32_t *pfp,
1901 	__out_opt		uint32_t *vfp)
1902 {
1903 	efx_mcdi_req_t req;
1904 	uint8_t payload[MAX(MC_CMD_GET_FUNCTION_INFO_IN_LEN,
1905 			    MC_CMD_GET_FUNCTION_INFO_OUT_LEN)];
1906 	efx_rc_t rc;
1907 
1908 	(void) memset(payload, 0, sizeof (payload));
1909 	req.emr_cmd = MC_CMD_GET_FUNCTION_INFO;
1910 	req.emr_in_buf = payload;
1911 	req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN;
1912 	req.emr_out_buf = payload;
1913 	req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN;
1914 
1915 	efx_mcdi_execute(enp, &req);
1916 
1917 	if (req.emr_rc != 0) {
1918 		rc = req.emr_rc;
1919 		goto fail1;
1920 	}
1921 
1922 	if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) {
1923 		rc = EMSGSIZE;
1924 		goto fail2;
1925 	}
1926 
1927 	*pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF);
1928 	if (vfp != NULL)
1929 		*vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF);
1930 
1931 	return (0);
1932 
1933 fail2:
1934 	EFSYS_PROBE(fail2);
1935 fail1:
1936 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1937 
1938 	return (rc);
1939 }
1940 
1941 	__checkReturn		efx_rc_t
1942 efx_mcdi_privilege_mask(
1943 	__in			efx_nic_t *enp,
1944 	__in			uint32_t pf,
1945 	__in			uint32_t vf,
1946 	__out			uint32_t *maskp)
1947 {
1948 	efx_mcdi_req_t req;
1949 	uint8_t payload[MAX(MC_CMD_PRIVILEGE_MASK_IN_LEN,
1950 			    MC_CMD_PRIVILEGE_MASK_OUT_LEN)];
1951 	efx_rc_t rc;
1952 
1953 	(void) memset(payload, 0, sizeof (payload));
1954 	req.emr_cmd = MC_CMD_PRIVILEGE_MASK;
1955 	req.emr_in_buf = payload;
1956 	req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN;
1957 	req.emr_out_buf = payload;
1958 	req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN;
1959 
1960 	MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION,
1961 	    PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
1962 	    PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
1963 
1964 	efx_mcdi_execute(enp, &req);
1965 
1966 	if (req.emr_rc != 0) {
1967 		rc = req.emr_rc;
1968 		goto fail1;
1969 	}
1970 
1971 	if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) {
1972 		rc = EMSGSIZE;
1973 		goto fail2;
1974 	}
1975 
1976 	*maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK);
1977 
1978 	return (0);
1979 
1980 fail2:
1981 	EFSYS_PROBE(fail2);
1982 fail1:
1983 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1984 
1985 	return (rc);
1986 }
1987 
1988 #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
1989 
1990 	__checkReturn		efx_rc_t
1991 efx_mcdi_set_workaround(
1992 	__in			efx_nic_t *enp,
1993 	__in			uint32_t type,
1994 	__in			boolean_t enabled,
1995 	__out_opt		uint32_t *flagsp)
1996 {
1997 	efx_mcdi_req_t req;
1998 	uint8_t payload[MAX(MC_CMD_WORKAROUND_IN_LEN,
1999 			    MC_CMD_WORKAROUND_EXT_OUT_LEN)];
2000 	efx_rc_t rc;
2001 
2002 	(void) memset(payload, 0, sizeof (payload));
2003 	req.emr_cmd = MC_CMD_WORKAROUND;
2004 	req.emr_in_buf = payload;
2005 	req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN;
2006 	req.emr_out_buf = payload;
2007 	req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN;
2008 
2009 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type);
2010 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0);
2011 
2012 	efx_mcdi_execute_quiet(enp, &req);
2013 
2014 	if (req.emr_rc != 0) {
2015 		rc = req.emr_rc;
2016 		goto fail1;
2017 	}
2018 
2019 	if (flagsp != NULL) {
2020 		if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2021 			*flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS);
2022 		else
2023 			*flagsp = 0;
2024 	}
2025 
2026 	return (0);
2027 
2028 fail1:
2029 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2030 
2031 	return (rc);
2032 }
2033 
2034 
2035 	__checkReturn		efx_rc_t
2036 efx_mcdi_get_workarounds(
2037 	__in			efx_nic_t *enp,
2038 	__out_opt		uint32_t *implementedp,
2039 	__out_opt		uint32_t *enabledp)
2040 {
2041 	efx_mcdi_req_t req;
2042 	uint8_t payload[MC_CMD_GET_WORKAROUNDS_OUT_LEN];
2043 	efx_rc_t rc;
2044 
2045 	(void) memset(payload, 0, sizeof (payload));
2046 	req.emr_cmd = MC_CMD_GET_WORKAROUNDS;
2047 	req.emr_in_buf = NULL;
2048 	req.emr_in_length = 0;
2049 	req.emr_out_buf = payload;
2050 	req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN;
2051 
2052 	efx_mcdi_execute(enp, &req);
2053 
2054 	if (req.emr_rc != 0) {
2055 		rc = req.emr_rc;
2056 		goto fail1;
2057 	}
2058 
2059 	if (implementedp != NULL) {
2060 		*implementedp =
2061 		    MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2062 	}
2063 
2064 	if (enabledp != NULL) {
2065 		*enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED);
2066 	}
2067 
2068 	return (0);
2069 
2070 fail1:
2071 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2072 
2073 	return (rc);
2074 }
2075 
2076 /*
2077  * Size of media information page in accordance with SFF-8472 and SFF-8436.
2078  * It is used in MCDI interface as well.
2079  */
2080 #define	EFX_PHY_MEDIA_INFO_PAGE_SIZE		0x80
2081 
2082 static	__checkReturn		efx_rc_t
2083 efx_mcdi_get_phy_media_info(
2084 	__in			efx_nic_t *enp,
2085 	__in			uint32_t mcdi_page,
2086 	__in			uint8_t offset,
2087 	__in			uint8_t len,
2088 	__out_bcount(len)	uint8_t *data)
2089 {
2090 	efx_mcdi_req_t req;
2091 	uint8_t payload[MAX(MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN,
2092 			    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(
2093 				EFX_PHY_MEDIA_INFO_PAGE_SIZE))];
2094 	efx_rc_t rc;
2095 
2096 	EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2097 
2098 	(void) memset(payload, 0, sizeof (payload));
2099 	req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO;
2100 	req.emr_in_buf = payload;
2101 	req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN;
2102 	req.emr_out_buf = payload;
2103 	req.emr_out_length =
2104 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2105 
2106 	MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page);
2107 
2108 	efx_mcdi_execute(enp, &req);
2109 
2110 	if (req.emr_rc != 0) {
2111 		rc = req.emr_rc;
2112 		goto fail1;
2113 	}
2114 
2115 	if (req.emr_out_length_used !=
2116 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) {
2117 		rc = EMSGSIZE;
2118 		goto fail2;
2119 	}
2120 
2121 	if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) !=
2122 	    EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2123 		rc = EIO;
2124 		goto fail3;
2125 	}
2126 
2127 	memcpy(data,
2128 	    MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset,
2129 	    len);
2130 
2131 	return (0);
2132 
2133 fail3:
2134 	EFSYS_PROBE(fail3);
2135 fail2:
2136 	EFSYS_PROBE(fail2);
2137 fail1:
2138 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2139 
2140 	return (rc);
2141 }
2142 
2143 /*
2144  * 2-wire device address of the base information in accordance with SFF-8472
2145  * Diagnostic Monitoring Interface for Optical Transceivers section
2146  * 4 Memory Organization.
2147  */
2148 #define	EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE	0xA0
2149 
2150 /*
2151  * 2-wire device address of the digital diagnostics monitoring interface
2152  * in accordance with SFF-8472 Diagnostic Monitoring Interface for Optical
2153  * Transceivers section 4 Memory Organization.
2154  */
2155 #define	EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM	0xA2
2156 
2157 /*
2158  * Hard wired 2-wire device address for QSFP+ in accordance with SFF-8436
2159  * QSFP+ 10 Gbs 4X PLUGGABLE TRANSCEIVER section 7.4 Device Addressing and
2160  * Operation.
2161  */
2162 #define	EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP	0xA0
2163 
2164 	__checkReturn		efx_rc_t
2165 efx_mcdi_phy_module_get_info(
2166 	__in			efx_nic_t *enp,
2167 	__in			uint8_t dev_addr,
2168 	__in			uint8_t offset,
2169 	__in			uint8_t len,
2170 	__out_bcount(len)	uint8_t *data)
2171 {
2172 	efx_port_t *epp = &(enp->en_port);
2173 	efx_rc_t rc;
2174 	uint32_t mcdi_lower_page;
2175 	uint32_t mcdi_upper_page;
2176 
2177 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
2178 
2179 	/*
2180 	 * Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages.
2181 	 * Offset plus length interface allows to access page 0 only.
2182 	 * I.e. non-zero upper pages are not accessible.
2183 	 * See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6
2184 	 * QSFP+ Memory Map for details on how information is structured
2185 	 * and accessible.
2186 	 */
2187 	switch (epp->ep_fixed_port_type) {
2188 	case EFX_PHY_MEDIA_SFP_PLUS:
2189 		/*
2190 		 * In accordance with SFF-8472 Diagnostic Monitoring
2191 		 * Interface for Optical Transceivers section 4 Memory
2192 		 * Organization two 2-wire addresses are defined.
2193 		 */
2194 		switch (dev_addr) {
2195 		/* Base information */
2196 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE:
2197 			/*
2198 			 * MCDI page 0 should be used to access lower
2199 			 * page 0 (0x00 - 0x7f) at the device address 0xA0.
2200 			 */
2201 			mcdi_lower_page = 0;
2202 			/*
2203 			 * MCDI page 1 should be used to access  upper
2204 			 * page 0 (0x80 - 0xff) at the device address 0xA0.
2205 			 */
2206 			mcdi_upper_page = 1;
2207 			break;
2208 		/* Diagnostics */
2209 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM:
2210 			/*
2211 			 * MCDI page 2 should be used to access lower
2212 			 * page 0 (0x00 - 0x7f) at the device address 0xA2.
2213 			 */
2214 			mcdi_lower_page = 2;
2215 			/*
2216 			 * MCDI page 3 should be used to access upper
2217 			 * page 0 (0x80 - 0xff) at the device address 0xA2.
2218 			 */
2219 			mcdi_upper_page = 3;
2220 			break;
2221 		default:
2222 			rc = ENOTSUP;
2223 			goto fail1;
2224 		}
2225 		break;
2226 	case EFX_PHY_MEDIA_QSFP_PLUS:
2227 		switch (dev_addr) {
2228 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP:
2229 			/*
2230 			 * MCDI page -1 should be used to access lower page 0
2231 			 * (0x00 - 0x7f).
2232 			 */
2233 			mcdi_lower_page = (uint32_t)-1;
2234 			/*
2235 			 * MCDI page 0 should be used to access upper page 0
2236 			 * (0x80h - 0xff).
2237 			 */
2238 			mcdi_upper_page = 0;
2239 			break;
2240 		default:
2241 			rc = ENOTSUP;
2242 			goto fail1;
2243 		}
2244 		break;
2245 	default:
2246 		rc = ENOTSUP;
2247 		goto fail1;
2248 	}
2249 
2250 	if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2251 		uint8_t read_len =
2252 		    MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset);
2253 
2254 		rc = efx_mcdi_get_phy_media_info(enp,
2255 		    mcdi_lower_page, offset, read_len, data);
2256 		if (rc != 0)
2257 			goto fail2;
2258 
2259 		data += read_len;
2260 		len -= read_len;
2261 
2262 		offset = 0;
2263 	} else {
2264 		offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE;
2265 	}
2266 
2267 	if (len > 0) {
2268 		EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2269 		EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2270 
2271 		rc = efx_mcdi_get_phy_media_info(enp,
2272 		    mcdi_upper_page, offset, len, data);
2273 		if (rc != 0)
2274 			goto fail3;
2275 	}
2276 
2277 	return (0);
2278 
2279 fail3:
2280 	EFSYS_PROBE(fail3);
2281 fail2:
2282 	EFSYS_PROBE(fail2);
2283 fail1:
2284 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2285 
2286 	return (rc);
2287 }
2288 
2289 #endif	/* EFSYS_OPT_MCDI */
2290