xref: /freebsd/sys/dev/sfxge/common/ef10_tx.c (revision ab1e0d2410ece7d391a5b1e2cbc9d1e9857c2fdb)
1 /*-
2  * Copyright (c) 2012-2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are
27  * those of the authors and should not be interpreted as representing official
28  * policies, either expressed or implied, of the FreeBSD Project.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "efx.h"
35 #include "efx_impl.h"
36 
37 
38 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
39 
40 #if EFSYS_OPT_QSTATS
41 #define	EFX_TX_QSTAT_INCR(_etp, _stat)					\
42 	do {								\
43 		(_etp)->et_stat[_stat]++;				\
44 	_NOTE(CONSTANTCONDITION)					\
45 	} while (B_FALSE)
46 #else
47 #define	EFX_TX_QSTAT_INCR(_etp, _stat)
48 #endif
49 
50 static	__checkReturn	efx_rc_t
51 efx_mcdi_init_txq(
52 	__in		efx_nic_t *enp,
53 	__in		uint32_t ndescs,
54 	__in		uint32_t target_evq,
55 	__in		uint32_t label,
56 	__in		uint32_t instance,
57 	__in		uint16_t flags,
58 	__in		efsys_mem_t *esmp)
59 {
60 	efx_mcdi_req_t req;
61 	uint8_t payload[MAX(MC_CMD_INIT_TXQ_IN_LEN(EFX_TXQ_MAX_BUFS),
62 			    MC_CMD_INIT_TXQ_OUT_LEN)];
63 	efx_qword_t *dma_addr;
64 	uint64_t addr;
65 	int npages;
66 	int i;
67 	efx_rc_t rc;
68 
69 	EFSYS_ASSERT(EFX_TXQ_MAX_BUFS >=
70 	    EFX_TXQ_NBUFS(enp->en_nic_cfg.enc_txq_max_ndescs));
71 
72 	npages = EFX_TXQ_NBUFS(ndescs);
73 	if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) {
74 		rc = EINVAL;
75 		goto fail1;
76 	}
77 
78 	(void) memset(payload, 0, sizeof (payload));
79 	req.emr_cmd = MC_CMD_INIT_TXQ;
80 	req.emr_in_buf = payload;
81 	req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages);
82 	req.emr_out_buf = payload;
83 	req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN;
84 
85 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs);
86 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq);
87 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label);
88 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance);
89 
90 	MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS,
91 	    INIT_TXQ_IN_FLAG_BUFF_MODE, 0,
92 	    INIT_TXQ_IN_FLAG_IP_CSUM_DIS,
93 	    (flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1,
94 	    INIT_TXQ_IN_FLAG_TCP_CSUM_DIS,
95 	    (flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1,
96 	    INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN,
97 	    (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0,
98 	    INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN,
99 	    (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
100 	    INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0,
101 	    INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0,
102 	    INIT_TXQ_IN_CRC_MODE, 0,
103 	    INIT_TXQ_IN_FLAG_TIMESTAMP, 0);
104 
105 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0);
106 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
107 
108 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR);
109 	addr = EFSYS_MEM_ADDR(esmp);
110 
111 	for (i = 0; i < npages; i++) {
112 		EFX_POPULATE_QWORD_2(*dma_addr,
113 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
114 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
115 
116 		dma_addr++;
117 		addr += EFX_BUF_SIZE;
118 	}
119 
120 	efx_mcdi_execute(enp, &req);
121 
122 	if (req.emr_rc != 0) {
123 		rc = req.emr_rc;
124 		goto fail2;
125 	}
126 
127 	return (0);
128 
129 fail2:
130 	EFSYS_PROBE(fail2);
131 fail1:
132 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
133 
134 	return (rc);
135 }
136 
137 static	__checkReturn	efx_rc_t
138 efx_mcdi_fini_txq(
139 	__in		efx_nic_t *enp,
140 	__in		uint32_t instance)
141 {
142 	efx_mcdi_req_t req;
143 	uint8_t payload[MAX(MC_CMD_FINI_TXQ_IN_LEN,
144 			    MC_CMD_FINI_TXQ_OUT_LEN)];
145 	efx_rc_t rc;
146 
147 	(void) memset(payload, 0, sizeof (payload));
148 	req.emr_cmd = MC_CMD_FINI_TXQ;
149 	req.emr_in_buf = payload;
150 	req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN;
151 	req.emr_out_buf = payload;
152 	req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN;
153 
154 	MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance);
155 
156 	efx_mcdi_execute_quiet(enp, &req);
157 
158 	if (req.emr_rc != 0) {
159 		rc = req.emr_rc;
160 		goto fail1;
161 	}
162 
163 	return (0);
164 
165 fail1:
166 	/*
167 	 * EALREADY is not an error, but indicates that the MC has rebooted and
168 	 * that the TXQ has already been destroyed.
169 	 */
170 	if (rc != EALREADY)
171 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
172 
173 	return (rc);
174 }
175 
176 	__checkReturn	efx_rc_t
177 ef10_tx_init(
178 	__in		efx_nic_t *enp)
179 {
180 	_NOTE(ARGUNUSED(enp))
181 	return (0);
182 }
183 
184 			void
185 ef10_tx_fini(
186 	__in		efx_nic_t *enp)
187 {
188 	_NOTE(ARGUNUSED(enp))
189 }
190 
191 	__checkReturn	efx_rc_t
192 ef10_tx_qcreate(
193 	__in		efx_nic_t *enp,
194 	__in		unsigned int index,
195 	__in		unsigned int label,
196 	__in		efsys_mem_t *esmp,
197 	__in		size_t ndescs,
198 	__in		uint32_t id,
199 	__in		uint16_t flags,
200 	__in		efx_evq_t *eep,
201 	__in		efx_txq_t *etp,
202 	__out		unsigned int *addedp)
203 {
204 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
205 	uint16_t inner_csum;
206 	efx_qword_t desc;
207 	efx_rc_t rc;
208 
209 	_NOTE(ARGUNUSED(id))
210 
211 	inner_csum = EFX_TXQ_CKSUM_INNER_IPV4 | EFX_TXQ_CKSUM_INNER_TCPUDP;
212 	if (((flags & inner_csum) != 0) &&
213 	    (encp->enc_tunnel_encapsulations_supported == 0)) {
214 		rc = EINVAL;
215 		goto fail1;
216 	}
217 
218 	if ((rc = efx_mcdi_init_txq(enp, ndescs, eep->ee_index, label, index,
219 	    flags, esmp)) != 0)
220 		goto fail2;
221 
222 	/*
223 	 * A previous user of this TX queue may have written a descriptor to the
224 	 * TX push collector, but not pushed the doorbell (e.g. after a crash).
225 	 * The next doorbell write would then push the stale descriptor.
226 	 *
227 	 * Ensure the (per network port) TX push collector is cleared by writing
228 	 * a no-op TX option descriptor. See bug29981 for details.
229 	 */
230 	*addedp = 1;
231 	EFX_POPULATE_QWORD_6(desc,
232 	    ESF_DZ_TX_DESC_IS_OPT, 1,
233 	    ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
234 	    ESF_DZ_TX_OPTION_UDP_TCP_CSUM,
235 	    (flags & EFX_TXQ_CKSUM_TCPUDP) ? 1 : 0,
236 	    ESF_DZ_TX_OPTION_IP_CSUM,
237 	    (flags & EFX_TXQ_CKSUM_IPV4) ? 1 : 0,
238 	    ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM,
239 	    (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
240 	    ESF_DZ_TX_OPTION_INNER_IP_CSUM,
241 	    (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0);
242 
243 	EFSYS_MEM_WRITEQ(etp->et_esmp, 0, &desc);
244 	ef10_tx_qpush(etp, *addedp, 0);
245 
246 	return (0);
247 
248 fail2:
249 	EFSYS_PROBE(fail2);
250 fail1:
251 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
252 
253 	return (rc);
254 }
255 
256 		void
257 ef10_tx_qdestroy(
258 	__in	efx_txq_t *etp)
259 {
260 	/* FIXME */
261 	_NOTE(ARGUNUSED(etp))
262 	/* FIXME */
263 }
264 
265 	__checkReturn	efx_rc_t
266 ef10_tx_qpio_enable(
267 	__in		efx_txq_t *etp)
268 {
269 	efx_nic_t *enp = etp->et_enp;
270 	efx_piobuf_handle_t handle;
271 	efx_rc_t rc;
272 
273 	if (etp->et_pio_size != 0) {
274 		rc = EALREADY;
275 		goto fail1;
276 	}
277 
278 	/* Sub-allocate a PIO block from a piobuf */
279 	if ((rc = ef10_nic_pio_alloc(enp,
280 		    &etp->et_pio_bufnum,
281 		    &handle,
282 		    &etp->et_pio_blknum,
283 		    &etp->et_pio_offset,
284 		    &etp->et_pio_size)) != 0) {
285 		goto fail2;
286 	}
287 	EFSYS_ASSERT3U(etp->et_pio_size, !=, 0);
288 
289 	/* Link the piobuf to this TXQ */
290 	if ((rc = ef10_nic_pio_link(enp, etp->et_index, handle)) != 0) {
291 		goto fail3;
292 	}
293 
294 	/*
295 	 * et_pio_offset is the offset of the sub-allocated block within the
296 	 * hardware PIO buffer. It is used as the buffer address in the PIO
297 	 * option descriptor.
298 	 *
299 	 * et_pio_write_offset is the offset of the sub-allocated block from the
300 	 * start of the write-combined memory mapping, and is used for writing
301 	 * data into the PIO buffer.
302 	 */
303 	etp->et_pio_write_offset =
304 	    (etp->et_pio_bufnum * ER_DZ_TX_PIOBUF_STEP) +
305 	    ER_DZ_TX_PIOBUF_OFST + etp->et_pio_offset;
306 
307 	return (0);
308 
309 fail3:
310 	EFSYS_PROBE(fail3);
311 	ef10_nic_pio_free(enp, etp->et_pio_bufnum, etp->et_pio_blknum);
312 fail2:
313 	EFSYS_PROBE(fail2);
314 	etp->et_pio_size = 0;
315 fail1:
316 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
317 
318 	return (rc);
319 }
320 
321 			void
322 ef10_tx_qpio_disable(
323 	__in		efx_txq_t *etp)
324 {
325 	efx_nic_t *enp = etp->et_enp;
326 
327 	if (etp->et_pio_size != 0) {
328 		/* Unlink the piobuf from this TXQ */
329 		ef10_nic_pio_unlink(enp, etp->et_index);
330 
331 		/* Free the sub-allocated PIO block */
332 		ef10_nic_pio_free(enp, etp->et_pio_bufnum, etp->et_pio_blknum);
333 		etp->et_pio_size = 0;
334 		etp->et_pio_write_offset = 0;
335 	}
336 }
337 
338 	__checkReturn	efx_rc_t
339 ef10_tx_qpio_write(
340 	__in			efx_txq_t *etp,
341 	__in_ecount(length)	uint8_t *buffer,
342 	__in			size_t length,
343 	__in			size_t offset)
344 {
345 	efx_nic_t *enp = etp->et_enp;
346 	efsys_bar_t *esbp = enp->en_esbp;
347 	uint32_t write_offset;
348 	uint32_t write_offset_limit;
349 	efx_qword_t *eqp;
350 	efx_rc_t rc;
351 
352 	EFSYS_ASSERT(length % sizeof (efx_qword_t) == 0);
353 
354 	if (etp->et_pio_size == 0) {
355 		rc = ENOENT;
356 		goto fail1;
357 	}
358 	if (offset + length > etp->et_pio_size)	{
359 		rc = ENOSPC;
360 		goto fail2;
361 	}
362 
363 	/*
364 	 * Writes to PIO buffers must be 64 bit aligned, and multiples of
365 	 * 64 bits.
366 	 */
367 	write_offset = etp->et_pio_write_offset + offset;
368 	write_offset_limit = write_offset + length;
369 	eqp = (efx_qword_t *)buffer;
370 	while (write_offset < write_offset_limit) {
371 		EFSYS_BAR_WC_WRITEQ(esbp, write_offset, eqp);
372 		eqp++;
373 		write_offset += sizeof (efx_qword_t);
374 	}
375 
376 	return (0);
377 
378 fail2:
379 	EFSYS_PROBE(fail2);
380 fail1:
381 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
382 
383 	return (rc);
384 }
385 
386 	__checkReturn	efx_rc_t
387 ef10_tx_qpio_post(
388 	__in			efx_txq_t *etp,
389 	__in			size_t pkt_length,
390 	__in			unsigned int completed,
391 	__inout			unsigned int *addedp)
392 {
393 	efx_qword_t pio_desc;
394 	unsigned int id;
395 	size_t offset;
396 	unsigned int added = *addedp;
397 	efx_rc_t rc;
398 
399 
400 	if (added - completed + 1 > EFX_TXQ_LIMIT(etp->et_mask + 1)) {
401 		rc = ENOSPC;
402 		goto fail1;
403 	}
404 
405 	if (etp->et_pio_size == 0) {
406 		rc = ENOENT;
407 		goto fail2;
408 	}
409 
410 	id = added++ & etp->et_mask;
411 	offset = id * sizeof (efx_qword_t);
412 
413 	EFSYS_PROBE4(tx_pio_post, unsigned int, etp->et_index,
414 		    unsigned int, id, uint32_t, etp->et_pio_offset,
415 		    size_t, pkt_length);
416 
417 	EFX_POPULATE_QWORD_5(pio_desc,
418 			ESF_DZ_TX_DESC_IS_OPT, 1,
419 			ESF_DZ_TX_OPTION_TYPE, 1,
420 			ESF_DZ_TX_PIO_CONT, 0,
421 			ESF_DZ_TX_PIO_BYTE_CNT, pkt_length,
422 			ESF_DZ_TX_PIO_BUF_ADDR, etp->et_pio_offset);
423 
424 	EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &pio_desc);
425 
426 	EFX_TX_QSTAT_INCR(etp, TX_POST_PIO);
427 
428 	*addedp = added;
429 	return (0);
430 
431 fail2:
432 	EFSYS_PROBE(fail2);
433 fail1:
434 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
435 
436 	return (rc);
437 }
438 
439 	__checkReturn		efx_rc_t
440 ef10_tx_qpost(
441 	__in			efx_txq_t *etp,
442 	__in_ecount(ndescs)	efx_buffer_t *eb,
443 	__in			unsigned int ndescs,
444 	__in			unsigned int completed,
445 	__inout			unsigned int *addedp)
446 {
447 	unsigned int added = *addedp;
448 	unsigned int i;
449 	efx_rc_t rc;
450 
451 	if (added - completed + ndescs > EFX_TXQ_LIMIT(etp->et_mask + 1)) {
452 		rc = ENOSPC;
453 		goto fail1;
454 	}
455 
456 	for (i = 0; i < ndescs; i++) {
457 		efx_buffer_t *ebp = &eb[i];
458 		efsys_dma_addr_t addr = ebp->eb_addr;
459 		size_t size = ebp->eb_size;
460 		boolean_t eop = ebp->eb_eop;
461 		unsigned int id;
462 		size_t offset;
463 		efx_qword_t qword;
464 
465 		/* No limitations on boundary crossing */
466 		EFSYS_ASSERT(size <=
467 		    etp->et_enp->en_nic_cfg.enc_tx_dma_desc_size_max);
468 
469 		id = added++ & etp->et_mask;
470 		offset = id * sizeof (efx_qword_t);
471 
472 		EFSYS_PROBE5(tx_post, unsigned int, etp->et_index,
473 		    unsigned int, id, efsys_dma_addr_t, addr,
474 		    size_t, size, boolean_t, eop);
475 
476 		EFX_POPULATE_QWORD_5(qword,
477 		    ESF_DZ_TX_KER_TYPE, 0,
478 		    ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1,
479 		    ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size),
480 		    ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff),
481 		    ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32));
482 
483 		EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &qword);
484 	}
485 
486 	EFX_TX_QSTAT_INCR(etp, TX_POST);
487 
488 	*addedp = added;
489 	return (0);
490 
491 fail1:
492 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
493 
494 	return (rc);
495 }
496 
497 /*
498  * This improves performance by, when possible, pushing a TX descriptor at the
499  * same time as the doorbell. The descriptor must be added to the TXQ, so that
500  * can be used if the hardware decides not to use the pushed descriptor.
501  */
502 			void
503 ef10_tx_qpush(
504 	__in		efx_txq_t *etp,
505 	__in		unsigned int added,
506 	__in		unsigned int pushed)
507 {
508 	efx_nic_t *enp = etp->et_enp;
509 	unsigned int wptr;
510 	unsigned int id;
511 	size_t offset;
512 	efx_qword_t desc;
513 	efx_oword_t oword;
514 
515 	wptr = added & etp->et_mask;
516 	id = pushed & etp->et_mask;
517 	offset = id * sizeof (efx_qword_t);
518 
519 	EFSYS_MEM_READQ(etp->et_esmp, offset, &desc);
520 
521 	/*
522 	 * SF Bug 65776: TSO option descriptors cannot be pushed if pacer bypass
523 	 * is enabled on the event queue this transmit queue is attached to.
524 	 *
525 	 * To ensure the code is safe, it is easiest to simply test the type of
526 	 * the descriptor to push, and only push it is if it not a TSO option
527 	 * descriptor.
528 	 */
529 	if ((EFX_QWORD_FIELD(desc, ESF_DZ_TX_DESC_IS_OPT) != 1) ||
530 	    (EFX_QWORD_FIELD(desc, ESF_DZ_TX_OPTION_TYPE) !=
531 	    ESE_DZ_TX_OPTION_DESC_TSO)) {
532 		/* Push the descriptor and update the wptr. */
533 		EFX_POPULATE_OWORD_3(oword, ERF_DZ_TX_DESC_WPTR, wptr,
534 		    ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1),
535 		    ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0));
536 
537 		/* Ensure ordering of memory (descriptors) and PIO (doorbell) */
538 		EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1,
539 					    wptr, id);
540 		EFSYS_PIO_WRITE_BARRIER();
541 		EFX_BAR_TBL_DOORBELL_WRITEO(enp, ER_DZ_TX_DESC_UPD_REG,
542 					    etp->et_index, &oword);
543 	} else {
544 		efx_dword_t dword;
545 
546 		/*
547 		 * Only update the wptr. This is signalled to the hardware by
548 		 * only writing one DWORD of the doorbell register.
549 		 */
550 		EFX_POPULATE_OWORD_1(oword, ERF_DZ_TX_DESC_WPTR, wptr);
551 		dword = oword.eo_dword[2];
552 
553 		/* Ensure ordering of memory (descriptors) and PIO (doorbell) */
554 		EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1,
555 					    wptr, id);
556 		EFSYS_PIO_WRITE_BARRIER();
557 		EFX_BAR_TBL_WRITED2(enp, ER_DZ_TX_DESC_UPD_REG,
558 				    etp->et_index, &dword, B_FALSE);
559 	}
560 }
561 
562 	__checkReturn		efx_rc_t
563 ef10_tx_qdesc_post(
564 	__in			efx_txq_t *etp,
565 	__in_ecount(ndescs)	efx_desc_t *ed,
566 	__in			unsigned int ndescs,
567 	__in			unsigned int completed,
568 	__inout			unsigned int *addedp)
569 {
570 	unsigned int added = *addedp;
571 	unsigned int i;
572 	efx_rc_t rc;
573 
574 	if (added - completed + ndescs > EFX_TXQ_LIMIT(etp->et_mask + 1)) {
575 		rc = ENOSPC;
576 		goto fail1;
577 	}
578 
579 	for (i = 0; i < ndescs; i++) {
580 		efx_desc_t *edp = &ed[i];
581 		unsigned int id;
582 		size_t offset;
583 
584 		id = added++ & etp->et_mask;
585 		offset = id * sizeof (efx_desc_t);
586 
587 		EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &edp->ed_eq);
588 	}
589 
590 	EFSYS_PROBE3(tx_desc_post, unsigned int, etp->et_index,
591 		    unsigned int, added, unsigned int, ndescs);
592 
593 	EFX_TX_QSTAT_INCR(etp, TX_POST);
594 
595 	*addedp = added;
596 	return (0);
597 
598 fail1:
599 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
600 
601 	return (rc);
602 }
603 
604 	void
605 ef10_tx_qdesc_dma_create(
606 	__in	efx_txq_t *etp,
607 	__in	efsys_dma_addr_t addr,
608 	__in	size_t size,
609 	__in	boolean_t eop,
610 	__out	efx_desc_t *edp)
611 {
612 	/* No limitations on boundary crossing */
613 	EFSYS_ASSERT(size <= etp->et_enp->en_nic_cfg.enc_tx_dma_desc_size_max);
614 
615 	EFSYS_PROBE4(tx_desc_dma_create, unsigned int, etp->et_index,
616 		    efsys_dma_addr_t, addr,
617 		    size_t, size, boolean_t, eop);
618 
619 	EFX_POPULATE_QWORD_5(edp->ed_eq,
620 		    ESF_DZ_TX_KER_TYPE, 0,
621 		    ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1,
622 		    ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size),
623 		    ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff),
624 		    ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32));
625 }
626 
627 	void
628 ef10_tx_qdesc_tso_create(
629 	__in	efx_txq_t *etp,
630 	__in	uint16_t ipv4_id,
631 	__in	uint32_t tcp_seq,
632 	__in	uint8_t  tcp_flags,
633 	__out	efx_desc_t *edp)
634 {
635 	EFSYS_PROBE4(tx_desc_tso_create, unsigned int, etp->et_index,
636 		    uint16_t, ipv4_id, uint32_t, tcp_seq,
637 		    uint8_t, tcp_flags);
638 
639 	EFX_POPULATE_QWORD_5(edp->ed_eq,
640 			    ESF_DZ_TX_DESC_IS_OPT, 1,
641 			    ESF_DZ_TX_OPTION_TYPE,
642 			    ESE_DZ_TX_OPTION_DESC_TSO,
643 			    ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
644 			    ESF_DZ_TX_TSO_IP_ID, ipv4_id,
645 			    ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
646 }
647 
648 	void
649 ef10_tx_qdesc_tso2_create(
650 	__in			efx_txq_t *etp,
651 	__in			uint16_t ipv4_id,
652 	__in			uint32_t tcp_seq,
653 	__in			uint16_t tcp_mss,
654 	__out_ecount(count)	efx_desc_t *edp,
655 	__in			int count)
656 {
657 	EFSYS_PROBE4(tx_desc_tso2_create, unsigned int, etp->et_index,
658 		    uint16_t, ipv4_id, uint32_t, tcp_seq,
659 		    uint16_t, tcp_mss);
660 
661 	EFSYS_ASSERT(count >= EFX_TX_FATSOV2_OPT_NDESCS);
662 
663 	EFX_POPULATE_QWORD_5(edp[0].ed_eq,
664 			    ESF_DZ_TX_DESC_IS_OPT, 1,
665 			    ESF_DZ_TX_OPTION_TYPE,
666 			    ESE_DZ_TX_OPTION_DESC_TSO,
667 			    ESF_DZ_TX_TSO_OPTION_TYPE,
668 			    ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
669 			    ESF_DZ_TX_TSO_IP_ID, ipv4_id,
670 			    ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
671 	EFX_POPULATE_QWORD_4(edp[1].ed_eq,
672 			    ESF_DZ_TX_DESC_IS_OPT, 1,
673 			    ESF_DZ_TX_OPTION_TYPE,
674 			    ESE_DZ_TX_OPTION_DESC_TSO,
675 			    ESF_DZ_TX_TSO_OPTION_TYPE,
676 			    ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
677 			    ESF_DZ_TX_TSO_TCP_MSS, tcp_mss);
678 }
679 
680 	void
681 ef10_tx_qdesc_vlantci_create(
682 	__in	efx_txq_t *etp,
683 	__in	uint16_t  tci,
684 	__out	efx_desc_t *edp)
685 {
686 	EFSYS_PROBE2(tx_desc_vlantci_create, unsigned int, etp->et_index,
687 		    uint16_t, tci);
688 
689 	EFX_POPULATE_QWORD_4(edp->ed_eq,
690 			    ESF_DZ_TX_DESC_IS_OPT, 1,
691 			    ESF_DZ_TX_OPTION_TYPE,
692 			    ESE_DZ_TX_OPTION_DESC_VLAN,
693 			    ESF_DZ_TX_VLAN_OP, tci ? 1 : 0,
694 			    ESF_DZ_TX_VLAN_TAG1, tci);
695 }
696 
697 
698 	__checkReturn	efx_rc_t
699 ef10_tx_qpace(
700 	__in		efx_txq_t *etp,
701 	__in		unsigned int ns)
702 {
703 	efx_rc_t rc;
704 
705 	/* FIXME */
706 	_NOTE(ARGUNUSED(etp, ns))
707 	_NOTE(CONSTANTCONDITION)
708 	if (B_FALSE) {
709 		rc = ENOTSUP;
710 		goto fail1;
711 	}
712 	/* FIXME */
713 
714 	return (0);
715 
716 fail1:
717 	/*
718 	 * EALREADY is not an error, but indicates that the MC has rebooted and
719 	 * that the TXQ has already been destroyed. Callers need to know that
720 	 * the TXQ flush has completed to avoid waiting until timeout for a
721 	 * flush done event that will not be delivered.
722 	 */
723 	if (rc != EALREADY)
724 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
725 
726 	return (rc);
727 }
728 
729 	__checkReturn	efx_rc_t
730 ef10_tx_qflush(
731 	__in		efx_txq_t *etp)
732 {
733 	efx_nic_t *enp = etp->et_enp;
734 	efx_rc_t rc;
735 
736 	if ((rc = efx_mcdi_fini_txq(enp, etp->et_index)) != 0)
737 		goto fail1;
738 
739 	return (0);
740 
741 fail1:
742 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
743 
744 	return (rc);
745 }
746 
747 			void
748 ef10_tx_qenable(
749 	__in		efx_txq_t *etp)
750 {
751 	/* FIXME */
752 	_NOTE(ARGUNUSED(etp))
753 	/* FIXME */
754 }
755 
756 #if EFSYS_OPT_QSTATS
757 			void
758 ef10_tx_qstats_update(
759 	__in				efx_txq_t *etp,
760 	__inout_ecount(TX_NQSTATS)	efsys_stat_t *stat)
761 {
762 	unsigned int id;
763 
764 	for (id = 0; id < TX_NQSTATS; id++) {
765 		efsys_stat_t *essp = &stat[id];
766 
767 		EFSYS_STAT_INCR(essp, etp->et_stat[id]);
768 		etp->et_stat[id] = 0;
769 	}
770 }
771 
772 #endif /* EFSYS_OPT_QSTATS */
773 
774 #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
775