xref: /freebsd/sys/dev/sfxge/common/ef10_tx.c (revision 22d7dd834bc5cd189810e414701e3ad1e98102e4)
1 /*-
2  * Copyright (c) 2012-2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are
27  * those of the authors and should not be interpreted as representing official
28  * policies, either expressed or implied, of the FreeBSD Project.
29  */
30 
31 #include <sys/cdefs.h>
32 #include "efx.h"
33 #include "efx_impl.h"
34 
35 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
36 
37 #if EFSYS_OPT_QSTATS
38 #define	EFX_TX_QSTAT_INCR(_etp, _stat)					\
39 	do {								\
40 		(_etp)->et_stat[_stat]++;				\
41 	_NOTE(CONSTANTCONDITION)					\
42 	} while (B_FALSE)
43 #else
44 #define	EFX_TX_QSTAT_INCR(_etp, _stat)
45 #endif
46 
47 static	__checkReturn	efx_rc_t
48 efx_mcdi_init_txq(
49 	__in		efx_nic_t *enp,
50 	__in		uint32_t ndescs,
51 	__in		uint32_t target_evq,
52 	__in		uint32_t label,
53 	__in		uint32_t instance,
54 	__in		uint16_t flags,
55 	__in		efsys_mem_t *esmp)
56 {
57 	efx_mcdi_req_t req;
58 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_TXQ_IN_LEN(EFX_TXQ_MAX_BUFS),
59 		MC_CMD_INIT_TXQ_OUT_LEN);
60 	efx_qword_t *dma_addr;
61 	uint64_t addr;
62 	int npages;
63 	int i;
64 	efx_rc_t rc;
65 
66 	EFSYS_ASSERT(EFX_TXQ_MAX_BUFS >=
67 	    EFX_TXQ_NBUFS(enp->en_nic_cfg.enc_txq_max_ndescs));
68 
69 	if ((esmp == NULL) || (EFSYS_MEM_SIZE(esmp) < EFX_TXQ_SIZE(ndescs))) {
70 		rc = EINVAL;
71 		goto fail1;
72 	}
73 
74 	npages = EFX_TXQ_NBUFS(ndescs);
75 	if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) {
76 		rc = EINVAL;
77 		goto fail2;
78 	}
79 
80 	req.emr_cmd = MC_CMD_INIT_TXQ;
81 	req.emr_in_buf = payload;
82 	req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages);
83 	req.emr_out_buf = payload;
84 	req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN;
85 
86 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs);
87 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq);
88 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label);
89 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance);
90 
91 	MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS,
92 	    INIT_TXQ_IN_FLAG_BUFF_MODE, 0,
93 	    INIT_TXQ_IN_FLAG_IP_CSUM_DIS,
94 	    (flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1,
95 	    INIT_TXQ_IN_FLAG_TCP_CSUM_DIS,
96 	    (flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1,
97 	    INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN,
98 	    (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0,
99 	    INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN,
100 	    (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
101 	    INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0,
102 	    INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0,
103 	    INIT_TXQ_IN_CRC_MODE, 0,
104 	    INIT_TXQ_IN_FLAG_TIMESTAMP, 0);
105 
106 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0);
107 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
108 
109 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR);
110 	addr = EFSYS_MEM_ADDR(esmp);
111 
112 	for (i = 0; i < npages; i++) {
113 		EFX_POPULATE_QWORD_2(*dma_addr,
114 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
115 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
116 
117 		dma_addr++;
118 		addr += EFX_BUF_SIZE;
119 	}
120 
121 	efx_mcdi_execute(enp, &req);
122 
123 	if (req.emr_rc != 0) {
124 		rc = req.emr_rc;
125 		goto fail3;
126 	}
127 
128 	return (0);
129 
130 fail3:
131 	EFSYS_PROBE(fail3);
132 fail2:
133 	EFSYS_PROBE(fail2);
134 fail1:
135 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
136 
137 	return (rc);
138 }
139 
140 static	__checkReturn	efx_rc_t
141 efx_mcdi_fini_txq(
142 	__in		efx_nic_t *enp,
143 	__in		uint32_t instance)
144 {
145 	efx_mcdi_req_t req;
146 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_TXQ_IN_LEN,
147 		MC_CMD_FINI_TXQ_OUT_LEN);
148 	efx_rc_t rc;
149 
150 	req.emr_cmd = MC_CMD_FINI_TXQ;
151 	req.emr_in_buf = payload;
152 	req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN;
153 	req.emr_out_buf = payload;
154 	req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN;
155 
156 	MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance);
157 
158 	efx_mcdi_execute_quiet(enp, &req);
159 
160 	if (req.emr_rc != 0) {
161 		rc = req.emr_rc;
162 		goto fail1;
163 	}
164 
165 	return (0);
166 
167 fail1:
168 	/*
169 	 * EALREADY is not an error, but indicates that the MC has rebooted and
170 	 * that the TXQ has already been destroyed.
171 	 */
172 	if (rc != EALREADY)
173 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
174 
175 	return (rc);
176 }
177 
178 	__checkReturn	efx_rc_t
179 ef10_tx_init(
180 	__in		efx_nic_t *enp)
181 {
182 	_NOTE(ARGUNUSED(enp))
183 	return (0);
184 }
185 
186 			void
187 ef10_tx_fini(
188 	__in		efx_nic_t *enp)
189 {
190 	_NOTE(ARGUNUSED(enp))
191 }
192 
193 	__checkReturn	efx_rc_t
194 ef10_tx_qcreate(
195 	__in		efx_nic_t *enp,
196 	__in		unsigned int index,
197 	__in		unsigned int label,
198 	__in		efsys_mem_t *esmp,
199 	__in		size_t ndescs,
200 	__in		uint32_t id,
201 	__in		uint16_t flags,
202 	__in		efx_evq_t *eep,
203 	__in		efx_txq_t *etp,
204 	__out		unsigned int *addedp)
205 {
206 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
207 	uint16_t inner_csum;
208 	efx_desc_t desc;
209 	efx_rc_t rc;
210 
211 	_NOTE(ARGUNUSED(id))
212 
213 	inner_csum = EFX_TXQ_CKSUM_INNER_IPV4 | EFX_TXQ_CKSUM_INNER_TCPUDP;
214 	if (((flags & inner_csum) != 0) &&
215 	    (encp->enc_tunnel_encapsulations_supported == 0)) {
216 		rc = EINVAL;
217 		goto fail1;
218 	}
219 
220 	if ((rc = efx_mcdi_init_txq(enp, ndescs, eep->ee_index, label, index,
221 	    flags, esmp)) != 0)
222 		goto fail2;
223 
224 	/*
225 	 * A previous user of this TX queue may have written a descriptor to the
226 	 * TX push collector, but not pushed the doorbell (e.g. after a crash).
227 	 * The next doorbell write would then push the stale descriptor.
228 	 *
229 	 * Ensure the (per network port) TX push collector is cleared by writing
230 	 * a no-op TX option descriptor. See bug29981 for details.
231 	 */
232 	*addedp = 1;
233 	ef10_tx_qdesc_checksum_create(etp, flags, &desc);
234 
235 	EFSYS_MEM_WRITEQ(etp->et_esmp, 0, &desc.ed_eq);
236 	ef10_tx_qpush(etp, *addedp, 0);
237 
238 	return (0);
239 
240 fail2:
241 	EFSYS_PROBE(fail2);
242 fail1:
243 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
244 
245 	return (rc);
246 }
247 
248 		void
249 ef10_tx_qdestroy(
250 	__in	efx_txq_t *etp)
251 {
252 	/* FIXME */
253 	_NOTE(ARGUNUSED(etp))
254 	/* FIXME */
255 }
256 
257 	__checkReturn	efx_rc_t
258 ef10_tx_qpio_enable(
259 	__in		efx_txq_t *etp)
260 {
261 	efx_nic_t *enp = etp->et_enp;
262 	efx_piobuf_handle_t handle;
263 	efx_rc_t rc;
264 
265 	if (etp->et_pio_size != 0) {
266 		rc = EALREADY;
267 		goto fail1;
268 	}
269 
270 	/* Sub-allocate a PIO block from a piobuf */
271 	if ((rc = ef10_nic_pio_alloc(enp,
272 		    &etp->et_pio_bufnum,
273 		    &handle,
274 		    &etp->et_pio_blknum,
275 		    &etp->et_pio_offset,
276 		    &etp->et_pio_size)) != 0) {
277 		goto fail2;
278 	}
279 	EFSYS_ASSERT3U(etp->et_pio_size, !=, 0);
280 
281 	/* Link the piobuf to this TXQ */
282 	if ((rc = ef10_nic_pio_link(enp, etp->et_index, handle)) != 0) {
283 		goto fail3;
284 	}
285 
286 	/*
287 	 * et_pio_offset is the offset of the sub-allocated block within the
288 	 * hardware PIO buffer. It is used as the buffer address in the PIO
289 	 * option descriptor.
290 	 *
291 	 * et_pio_write_offset is the offset of the sub-allocated block from the
292 	 * start of the write-combined memory mapping, and is used for writing
293 	 * data into the PIO buffer.
294 	 */
295 	etp->et_pio_write_offset =
296 	    (etp->et_pio_bufnum * ER_DZ_TX_PIOBUF_STEP) +
297 	    ER_DZ_TX_PIOBUF_OFST + etp->et_pio_offset;
298 
299 	return (0);
300 
301 fail3:
302 	EFSYS_PROBE(fail3);
303 	(void) ef10_nic_pio_free(enp, etp->et_pio_bufnum, etp->et_pio_blknum);
304 fail2:
305 	EFSYS_PROBE(fail2);
306 	etp->et_pio_size = 0;
307 fail1:
308 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
309 
310 	return (rc);
311 }
312 
313 			void
314 ef10_tx_qpio_disable(
315 	__in		efx_txq_t *etp)
316 {
317 	efx_nic_t *enp = etp->et_enp;
318 
319 	if (etp->et_pio_size != 0) {
320 		/* Unlink the piobuf from this TXQ */
321 		if (ef10_nic_pio_unlink(enp, etp->et_index) != 0)
322 			return;
323 
324 		/* Free the sub-allocated PIO block */
325 		(void) ef10_nic_pio_free(enp, etp->et_pio_bufnum,
326 		    etp->et_pio_blknum);
327 		etp->et_pio_size = 0;
328 		etp->et_pio_write_offset = 0;
329 	}
330 }
331 
332 	__checkReturn	efx_rc_t
333 ef10_tx_qpio_write(
334 	__in			efx_txq_t *etp,
335 	__in_ecount(length)	uint8_t *buffer,
336 	__in			size_t length,
337 	__in			size_t offset)
338 {
339 	efx_nic_t *enp = etp->et_enp;
340 	efsys_bar_t *esbp = enp->en_esbp;
341 	uint32_t write_offset;
342 	uint32_t write_offset_limit;
343 	efx_qword_t *eqp;
344 	efx_rc_t rc;
345 
346 	EFSYS_ASSERT(length % sizeof (efx_qword_t) == 0);
347 
348 	if (etp->et_pio_size == 0) {
349 		rc = ENOENT;
350 		goto fail1;
351 	}
352 	if (offset + length > etp->et_pio_size)	{
353 		rc = ENOSPC;
354 		goto fail2;
355 	}
356 
357 	/*
358 	 * Writes to PIO buffers must be 64 bit aligned, and multiples of
359 	 * 64 bits.
360 	 */
361 	write_offset = etp->et_pio_write_offset + offset;
362 	write_offset_limit = write_offset + length;
363 	eqp = (efx_qword_t *)buffer;
364 	while (write_offset < write_offset_limit) {
365 		EFSYS_BAR_WC_WRITEQ(esbp, write_offset, eqp);
366 		eqp++;
367 		write_offset += sizeof (efx_qword_t);
368 	}
369 
370 	return (0);
371 
372 fail2:
373 	EFSYS_PROBE(fail2);
374 fail1:
375 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
376 
377 	return (rc);
378 }
379 
380 	__checkReturn	efx_rc_t
381 ef10_tx_qpio_post(
382 	__in			efx_txq_t *etp,
383 	__in			size_t pkt_length,
384 	__in			unsigned int completed,
385 	__inout			unsigned int *addedp)
386 {
387 	efx_qword_t pio_desc;
388 	unsigned int id;
389 	size_t offset;
390 	unsigned int added = *addedp;
391 	efx_rc_t rc;
392 
393 	if (added - completed + 1 > EFX_TXQ_LIMIT(etp->et_mask + 1)) {
394 		rc = ENOSPC;
395 		goto fail1;
396 	}
397 
398 	if (etp->et_pio_size == 0) {
399 		rc = ENOENT;
400 		goto fail2;
401 	}
402 
403 	id = added++ & etp->et_mask;
404 	offset = id * sizeof (efx_qword_t);
405 
406 	EFSYS_PROBE4(tx_pio_post, unsigned int, etp->et_index,
407 		    unsigned int, id, uint32_t, etp->et_pio_offset,
408 		    size_t, pkt_length);
409 
410 	EFX_POPULATE_QWORD_5(pio_desc,
411 			ESF_DZ_TX_DESC_IS_OPT, 1,
412 			ESF_DZ_TX_OPTION_TYPE, 1,
413 			ESF_DZ_TX_PIO_CONT, 0,
414 			ESF_DZ_TX_PIO_BYTE_CNT, pkt_length,
415 			ESF_DZ_TX_PIO_BUF_ADDR, etp->et_pio_offset);
416 
417 	EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &pio_desc);
418 
419 	EFX_TX_QSTAT_INCR(etp, TX_POST_PIO);
420 
421 	*addedp = added;
422 	return (0);
423 
424 fail2:
425 	EFSYS_PROBE(fail2);
426 fail1:
427 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
428 
429 	return (rc);
430 }
431 
432 	__checkReturn		efx_rc_t
433 ef10_tx_qpost(
434 	__in			efx_txq_t *etp,
435 	__in_ecount(ndescs)	efx_buffer_t *eb,
436 	__in			unsigned int ndescs,
437 	__in			unsigned int completed,
438 	__inout			unsigned int *addedp)
439 {
440 	unsigned int added = *addedp;
441 	unsigned int i;
442 	efx_rc_t rc;
443 
444 	if (added - completed + ndescs > EFX_TXQ_LIMIT(etp->et_mask + 1)) {
445 		rc = ENOSPC;
446 		goto fail1;
447 	}
448 
449 	for (i = 0; i < ndescs; i++) {
450 		efx_buffer_t *ebp = &eb[i];
451 		efsys_dma_addr_t addr = ebp->eb_addr;
452 		size_t size = ebp->eb_size;
453 		boolean_t eop = ebp->eb_eop;
454 		unsigned int id;
455 		size_t offset;
456 		efx_qword_t qword;
457 
458 		/* No limitations on boundary crossing */
459 		EFSYS_ASSERT(size <=
460 		    etp->et_enp->en_nic_cfg.enc_tx_dma_desc_size_max);
461 
462 		id = added++ & etp->et_mask;
463 		offset = id * sizeof (efx_qword_t);
464 
465 		EFSYS_PROBE5(tx_post, unsigned int, etp->et_index,
466 		    unsigned int, id, efsys_dma_addr_t, addr,
467 		    size_t, size, boolean_t, eop);
468 
469 		EFX_POPULATE_QWORD_5(qword,
470 		    ESF_DZ_TX_KER_TYPE, 0,
471 		    ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1,
472 		    ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size),
473 		    ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff),
474 		    ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32));
475 
476 		EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &qword);
477 	}
478 
479 	EFX_TX_QSTAT_INCR(etp, TX_POST);
480 
481 	*addedp = added;
482 	return (0);
483 
484 fail1:
485 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
486 
487 	return (rc);
488 }
489 
490 /*
491  * This improves performance by, when possible, pushing a TX descriptor at the
492  * same time as the doorbell. The descriptor must be added to the TXQ, so that
493  * can be used if the hardware decides not to use the pushed descriptor.
494  */
495 			void
496 ef10_tx_qpush(
497 	__in		efx_txq_t *etp,
498 	__in		unsigned int added,
499 	__in		unsigned int pushed)
500 {
501 	efx_nic_t *enp = etp->et_enp;
502 	unsigned int wptr;
503 	unsigned int id;
504 	size_t offset;
505 	efx_qword_t desc;
506 	efx_oword_t oword;
507 
508 	wptr = added & etp->et_mask;
509 	id = pushed & etp->et_mask;
510 	offset = id * sizeof (efx_qword_t);
511 
512 	EFSYS_MEM_READQ(etp->et_esmp, offset, &desc);
513 
514 	/*
515 	 * SF Bug 65776: TSO option descriptors cannot be pushed if pacer bypass
516 	 * is enabled on the event queue this transmit queue is attached to.
517 	 *
518 	 * To ensure the code is safe, it is easiest to simply test the type of
519 	 * the descriptor to push, and only push it is if it not a TSO option
520 	 * descriptor.
521 	 */
522 	if ((EFX_QWORD_FIELD(desc, ESF_DZ_TX_DESC_IS_OPT) != 1) ||
523 	    (EFX_QWORD_FIELD(desc, ESF_DZ_TX_OPTION_TYPE) !=
524 	    ESE_DZ_TX_OPTION_DESC_TSO)) {
525 		/* Push the descriptor and update the wptr. */
526 		EFX_POPULATE_OWORD_3(oword, ERF_DZ_TX_DESC_WPTR, wptr,
527 		    ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1),
528 		    ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0));
529 
530 		/* Ensure ordering of memory (descriptors) and PIO (doorbell) */
531 		EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1,
532 					    wptr, id);
533 		EFSYS_PIO_WRITE_BARRIER();
534 		EFX_BAR_VI_DOORBELL_WRITEO(enp, ER_DZ_TX_DESC_UPD_REG,
535 		    etp->et_index, &oword);
536 	} else {
537 		efx_dword_t dword;
538 
539 		/*
540 		 * Only update the wptr. This is signalled to the hardware by
541 		 * only writing one DWORD of the doorbell register.
542 		 */
543 		EFX_POPULATE_OWORD_1(oword, ERF_DZ_TX_DESC_WPTR, wptr);
544 		dword = oword.eo_dword[2];
545 
546 		/* Ensure ordering of memory (descriptors) and PIO (doorbell) */
547 		EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1,
548 					    wptr, id);
549 		EFSYS_PIO_WRITE_BARRIER();
550 		EFX_BAR_VI_WRITED2(enp, ER_DZ_TX_DESC_UPD_REG,
551 		    etp->et_index, &dword, B_FALSE);
552 	}
553 }
554 
555 	__checkReturn		efx_rc_t
556 ef10_tx_qdesc_post(
557 	__in			efx_txq_t *etp,
558 	__in_ecount(ndescs)	efx_desc_t *ed,
559 	__in			unsigned int ndescs,
560 	__in			unsigned int completed,
561 	__inout			unsigned int *addedp)
562 {
563 	unsigned int added = *addedp;
564 	unsigned int i;
565 
566 	if (added - completed + ndescs > EFX_TXQ_LIMIT(etp->et_mask + 1))
567 		return (ENOSPC);
568 
569 	for (i = 0; i < ndescs; i++) {
570 		efx_desc_t *edp = &ed[i];
571 		unsigned int id;
572 		size_t offset;
573 
574 		id = added++ & etp->et_mask;
575 		offset = id * sizeof (efx_desc_t);
576 
577 		EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &edp->ed_eq);
578 	}
579 
580 	EFSYS_PROBE3(tx_desc_post, unsigned int, etp->et_index,
581 		    unsigned int, added, unsigned int, ndescs);
582 
583 	EFX_TX_QSTAT_INCR(etp, TX_POST);
584 
585 	*addedp = added;
586 	return (0);
587 }
588 
589 	void
590 ef10_tx_qdesc_dma_create(
591 	__in	efx_txq_t *etp,
592 	__in	efsys_dma_addr_t addr,
593 	__in	size_t size,
594 	__in	boolean_t eop,
595 	__out	efx_desc_t *edp)
596 {
597 	_NOTE(ARGUNUSED(etp))
598 
599 	/* No limitations on boundary crossing */
600 	EFSYS_ASSERT(size <= etp->et_enp->en_nic_cfg.enc_tx_dma_desc_size_max);
601 
602 	EFSYS_PROBE4(tx_desc_dma_create, unsigned int, etp->et_index,
603 		    efsys_dma_addr_t, addr,
604 		    size_t, size, boolean_t, eop);
605 
606 	EFX_POPULATE_QWORD_5(edp->ed_eq,
607 		    ESF_DZ_TX_KER_TYPE, 0,
608 		    ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1,
609 		    ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size),
610 		    ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff),
611 		    ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32));
612 }
613 
614 	void
615 ef10_tx_qdesc_tso_create(
616 	__in	efx_txq_t *etp,
617 	__in	uint16_t ipv4_id,
618 	__in	uint32_t tcp_seq,
619 	__in	uint8_t  tcp_flags,
620 	__out	efx_desc_t *edp)
621 {
622 	_NOTE(ARGUNUSED(etp))
623 
624 	EFSYS_PROBE4(tx_desc_tso_create, unsigned int, etp->et_index,
625 		    uint16_t, ipv4_id, uint32_t, tcp_seq,
626 		    uint8_t, tcp_flags);
627 
628 	EFX_POPULATE_QWORD_5(edp->ed_eq,
629 			    ESF_DZ_TX_DESC_IS_OPT, 1,
630 			    ESF_DZ_TX_OPTION_TYPE,
631 			    ESE_DZ_TX_OPTION_DESC_TSO,
632 			    ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
633 			    ESF_DZ_TX_TSO_IP_ID, ipv4_id,
634 			    ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
635 }
636 
637 	void
638 ef10_tx_qdesc_tso2_create(
639 	__in			efx_txq_t *etp,
640 	__in			uint16_t ipv4_id,
641 	__in			uint16_t outer_ipv4_id,
642 	__in			uint32_t tcp_seq,
643 	__in			uint16_t tcp_mss,
644 	__out_ecount(count)	efx_desc_t *edp,
645 	__in			int count)
646 {
647 	_NOTE(ARGUNUSED(etp, count))
648 
649 	EFSYS_PROBE4(tx_desc_tso2_create, unsigned int, etp->et_index,
650 		    uint16_t, ipv4_id, uint32_t, tcp_seq,
651 		    uint16_t, tcp_mss);
652 
653 	EFSYS_ASSERT(count >= EFX_TX_FATSOV2_OPT_NDESCS);
654 
655 	EFX_POPULATE_QWORD_5(edp[0].ed_eq,
656 			    ESF_DZ_TX_DESC_IS_OPT, 1,
657 			    ESF_DZ_TX_OPTION_TYPE,
658 			    ESE_DZ_TX_OPTION_DESC_TSO,
659 			    ESF_DZ_TX_TSO_OPTION_TYPE,
660 			    ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
661 			    ESF_DZ_TX_TSO_IP_ID, ipv4_id,
662 			    ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
663 	EFX_POPULATE_QWORD_5(edp[1].ed_eq,
664 			    ESF_DZ_TX_DESC_IS_OPT, 1,
665 			    ESF_DZ_TX_OPTION_TYPE,
666 			    ESE_DZ_TX_OPTION_DESC_TSO,
667 			    ESF_DZ_TX_TSO_OPTION_TYPE,
668 			    ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
669 			    ESF_DZ_TX_TSO_TCP_MSS, tcp_mss,
670 			    ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id);
671 }
672 
673 	void
674 ef10_tx_qdesc_vlantci_create(
675 	__in	efx_txq_t *etp,
676 	__in	uint16_t  tci,
677 	__out	efx_desc_t *edp)
678 {
679 	_NOTE(ARGUNUSED(etp))
680 
681 	EFSYS_PROBE2(tx_desc_vlantci_create, unsigned int, etp->et_index,
682 		    uint16_t, tci);
683 
684 	EFX_POPULATE_QWORD_4(edp->ed_eq,
685 			    ESF_DZ_TX_DESC_IS_OPT, 1,
686 			    ESF_DZ_TX_OPTION_TYPE,
687 			    ESE_DZ_TX_OPTION_DESC_VLAN,
688 			    ESF_DZ_TX_VLAN_OP, tci ? 1 : 0,
689 			    ESF_DZ_TX_VLAN_TAG1, tci);
690 }
691 
692 	void
693 ef10_tx_qdesc_checksum_create(
694 	__in	efx_txq_t *etp,
695 	__in	uint16_t flags,
696 	__out	efx_desc_t *edp)
697 {
698 	_NOTE(ARGUNUSED(etp));
699 
700 	EFSYS_PROBE2(tx_desc_checksum_create, unsigned int, etp->et_index,
701 		    uint32_t, flags);
702 
703 	EFX_POPULATE_QWORD_6(edp->ed_eq,
704 	    ESF_DZ_TX_DESC_IS_OPT, 1,
705 	    ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
706 	    ESF_DZ_TX_OPTION_UDP_TCP_CSUM,
707 	    (flags & EFX_TXQ_CKSUM_TCPUDP) ? 1 : 0,
708 	    ESF_DZ_TX_OPTION_IP_CSUM,
709 	    (flags & EFX_TXQ_CKSUM_IPV4) ? 1 : 0,
710 	    ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM,
711 	    (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
712 	    ESF_DZ_TX_OPTION_INNER_IP_CSUM,
713 	    (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0);
714 }
715 
716 	__checkReturn	efx_rc_t
717 ef10_tx_qpace(
718 	__in		efx_txq_t *etp,
719 	__in		unsigned int ns)
720 {
721 	efx_rc_t rc;
722 
723 	/* FIXME */
724 	_NOTE(ARGUNUSED(etp, ns))
725 	_NOTE(CONSTANTCONDITION)
726 	if (B_FALSE) {
727 		rc = ENOTSUP;
728 		goto fail1;
729 	}
730 	/* FIXME */
731 
732 	return (0);
733 
734 fail1:
735 	/*
736 	 * EALREADY is not an error, but indicates that the MC has rebooted and
737 	 * that the TXQ has already been destroyed. Callers need to know that
738 	 * the TXQ flush has completed to avoid waiting until timeout for a
739 	 * flush done event that will not be delivered.
740 	 */
741 	if (rc != EALREADY)
742 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
743 
744 	return (rc);
745 }
746 
747 	__checkReturn	efx_rc_t
748 ef10_tx_qflush(
749 	__in		efx_txq_t *etp)
750 {
751 	efx_nic_t *enp = etp->et_enp;
752 	efx_rc_t rc;
753 
754 	if ((rc = efx_mcdi_fini_txq(enp, etp->et_index)) != 0)
755 		goto fail1;
756 
757 	return (0);
758 
759 fail1:
760 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
761 
762 	return (rc);
763 }
764 
765 			void
766 ef10_tx_qenable(
767 	__in		efx_txq_t *etp)
768 {
769 	/* FIXME */
770 	_NOTE(ARGUNUSED(etp))
771 	/* FIXME */
772 }
773 
774 #if EFSYS_OPT_QSTATS
775 			void
776 ef10_tx_qstats_update(
777 	__in				efx_txq_t *etp,
778 	__inout_ecount(TX_NQSTATS)	efsys_stat_t *stat)
779 {
780 	unsigned int id;
781 
782 	for (id = 0; id < TX_NQSTATS; id++) {
783 		efsys_stat_t *essp = &stat[id];
784 
785 		EFSYS_STAT_INCR(essp, etp->et_stat[id]);
786 		etp->et_stat[id] = 0;
787 	}
788 }
789 
790 #endif /* EFSYS_OPT_QSTATS */
791 
792 #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */
793