xref: /freebsd/sys/dev/sfxge/common/ef10_nic.c (revision db33c6f3ae9d1231087710068ee4ea5398aacca7)
1 /*-
2  * Copyright (c) 2012-2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are
27  * those of the authors and should not be interpreted as representing official
28  * policies, either expressed or implied, of the FreeBSD Project.
29  */
30 
31 #include <sys/cdefs.h>
32 #include "efx.h"
33 #include "efx_impl.h"
34 #if EFSYS_OPT_MON_MCDI
35 #include "mcdi_mon.h"
36 #endif
37 
38 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
39 
40 #include "ef10_tlv_layout.h"
41 
42 	__checkReturn	efx_rc_t
43 efx_mcdi_get_port_assignment(
44 	__in		efx_nic_t *enp,
45 	__out		uint32_t *portp)
46 {
47 	efx_mcdi_req_t req;
48 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
49 		MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
50 	efx_rc_t rc;
51 
52 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
53 	    enp->en_family == EFX_FAMILY_MEDFORD ||
54 	    enp->en_family == EFX_FAMILY_MEDFORD2);
55 
56 	req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
57 	req.emr_in_buf = payload;
58 	req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
59 	req.emr_out_buf = payload;
60 	req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
61 
62 	efx_mcdi_execute(enp, &req);
63 
64 	if (req.emr_rc != 0) {
65 		rc = req.emr_rc;
66 		goto fail1;
67 	}
68 
69 	if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
70 		rc = EMSGSIZE;
71 		goto fail2;
72 	}
73 
74 	*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
75 
76 	return (0);
77 
78 fail2:
79 	EFSYS_PROBE(fail2);
80 fail1:
81 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
82 
83 	return (rc);
84 }
85 
86 	__checkReturn	efx_rc_t
87 efx_mcdi_get_port_modes(
88 	__in		efx_nic_t *enp,
89 	__out		uint32_t *modesp,
90 	__out_opt	uint32_t *current_modep,
91 	__out_opt	uint32_t *default_modep)
92 {
93 	efx_mcdi_req_t req;
94 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
95 		MC_CMD_GET_PORT_MODES_OUT_LEN);
96 	efx_rc_t rc;
97 
98 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
99 	    enp->en_family == EFX_FAMILY_MEDFORD ||
100 	    enp->en_family == EFX_FAMILY_MEDFORD2);
101 
102 	req.emr_cmd = MC_CMD_GET_PORT_MODES;
103 	req.emr_in_buf = payload;
104 	req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
105 	req.emr_out_buf = payload;
106 	req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
107 
108 	efx_mcdi_execute(enp, &req);
109 
110 	if (req.emr_rc != 0) {
111 		rc = req.emr_rc;
112 		goto fail1;
113 	}
114 
115 	/*
116 	 * Require only Modes and DefaultMode fields, unless the current mode
117 	 * was requested (CurrentMode field was added for Medford).
118 	 */
119 	if (req.emr_out_length_used <
120 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
121 		rc = EMSGSIZE;
122 		goto fail2;
123 	}
124 	if ((current_modep != NULL) && (req.emr_out_length_used <
125 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
126 		rc = EMSGSIZE;
127 		goto fail3;
128 	}
129 
130 	*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
131 
132 	if (current_modep != NULL) {
133 		*current_modep = MCDI_OUT_DWORD(req,
134 					    GET_PORT_MODES_OUT_CURRENT_MODE);
135 	}
136 
137 	if (default_modep != NULL) {
138 		*default_modep = MCDI_OUT_DWORD(req,
139 					    GET_PORT_MODES_OUT_DEFAULT_MODE);
140 	}
141 
142 	return (0);
143 
144 fail3:
145 	EFSYS_PROBE(fail3);
146 fail2:
147 	EFSYS_PROBE(fail2);
148 fail1:
149 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
150 
151 	return (rc);
152 }
153 
154 	__checkReturn	efx_rc_t
155 ef10_nic_get_port_mode_bandwidth(
156 	__in		efx_nic_t *enp,
157 	__out		uint32_t *bandwidth_mbpsp)
158 {
159 	uint32_t port_modes;
160 	uint32_t current_mode;
161 	efx_port_t *epp = &(enp->en_port);
162 
163 	uint32_t single_lane;
164 	uint32_t dual_lane;
165 	uint32_t quad_lane;
166 	uint32_t bandwidth;
167 	efx_rc_t rc;
168 
169 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
170 				    &current_mode, NULL)) != 0) {
171 		/* No port mode info available. */
172 		goto fail1;
173 	}
174 
175 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
176 		single_lane = 25000;
177 	else
178 		single_lane = 10000;
179 
180 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
181 		dual_lane = 50000;
182 	else
183 		dual_lane = 20000;
184 
185 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
186 		quad_lane = 100000;
187 	else
188 		quad_lane = 40000;
189 
190 	switch (current_mode) {
191 	case TLV_PORT_MODE_1x1_NA:			/* mode 0 */
192 		bandwidth = single_lane;
193 		break;
194 	case TLV_PORT_MODE_1x2_NA:			/* mode 10 */
195 	case TLV_PORT_MODE_NA_1x2:			/* mode 11 */
196 		bandwidth = dual_lane;
197 		break;
198 	case TLV_PORT_MODE_1x1_1x1:			/* mode 2 */
199 		bandwidth = single_lane + single_lane;
200 		break;
201 	case TLV_PORT_MODE_4x1_NA:			/* mode 4 */
202 	case TLV_PORT_MODE_NA_4x1:			/* mode 8 */
203 		bandwidth = 4 * single_lane;
204 		break;
205 	case TLV_PORT_MODE_2x1_2x1:			/* mode 5 */
206 		bandwidth = (2 * single_lane) + (2 * single_lane);
207 		break;
208 	case TLV_PORT_MODE_1x2_1x2:			/* mode 12 */
209 		bandwidth = dual_lane + dual_lane;
210 		break;
211 	case TLV_PORT_MODE_1x2_2x1:			/* mode 17 */
212 	case TLV_PORT_MODE_2x1_1x2:			/* mode 18 */
213 		bandwidth = dual_lane + (2 * single_lane);
214 		break;
215 	/* Legacy Medford-only mode. Do not use (see bug63270) */
216 	case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:	/* mode 9 */
217 		bandwidth = 4 * single_lane;
218 		break;
219 	case TLV_PORT_MODE_1x4_NA:			/* mode 1 */
220 	case TLV_PORT_MODE_NA_1x4:			/* mode 22 */
221 		bandwidth = quad_lane;
222 		break;
223 	case TLV_PORT_MODE_2x2_NA:			/* mode 13 */
224 	case TLV_PORT_MODE_NA_2x2:			/* mode 14 */
225 		bandwidth = 2 * dual_lane;
226 		break;
227 	case TLV_PORT_MODE_1x4_2x1:			/* mode 6 */
228 	case TLV_PORT_MODE_2x1_1x4:			/* mode 7 */
229 		bandwidth = quad_lane + (2 * single_lane);
230 		break;
231 	case TLV_PORT_MODE_1x4_1x2:			/* mode 15 */
232 	case TLV_PORT_MODE_1x2_1x4:			/* mode 16 */
233 		bandwidth = quad_lane + dual_lane;
234 		break;
235 	case TLV_PORT_MODE_1x4_1x4:			/* mode 3 */
236 		bandwidth = quad_lane + quad_lane;
237 		break;
238 	default:
239 		rc = EINVAL;
240 		goto fail2;
241 	}
242 
243 	*bandwidth_mbpsp = bandwidth;
244 
245 	return (0);
246 
247 fail2:
248 	EFSYS_PROBE(fail2);
249 fail1:
250 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
251 
252 	return (rc);
253 }
254 
255 static	__checkReturn		efx_rc_t
256 efx_mcdi_vadaptor_alloc(
257 	__in			efx_nic_t *enp,
258 	__in			uint32_t port_id)
259 {
260 	efx_mcdi_req_t req;
261 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
262 		MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
263 	efx_rc_t rc;
264 
265 	EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL);
266 
267 	req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
268 	req.emr_in_buf = payload;
269 	req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
270 	req.emr_out_buf = payload;
271 	req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
272 
273 	MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
274 	MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
275 	    VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
276 	    enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
277 
278 	efx_mcdi_execute(enp, &req);
279 
280 	if (req.emr_rc != 0) {
281 		rc = req.emr_rc;
282 		goto fail1;
283 	}
284 
285 	return (0);
286 
287 fail1:
288 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
289 
290 	return (rc);
291 }
292 
293 static	__checkReturn		efx_rc_t
294 efx_mcdi_vadaptor_free(
295 	__in			efx_nic_t *enp,
296 	__in			uint32_t port_id)
297 {
298 	efx_mcdi_req_t req;
299 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
300 		MC_CMD_VADAPTOR_FREE_OUT_LEN);
301 	efx_rc_t rc;
302 
303 	req.emr_cmd = MC_CMD_VADAPTOR_FREE;
304 	req.emr_in_buf = payload;
305 	req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
306 	req.emr_out_buf = payload;
307 	req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
308 
309 	MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
310 
311 	efx_mcdi_execute(enp, &req);
312 
313 	if (req.emr_rc != 0) {
314 		rc = req.emr_rc;
315 		goto fail1;
316 	}
317 
318 	return (0);
319 
320 fail1:
321 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
322 
323 	return (rc);
324 }
325 
326 	__checkReturn	efx_rc_t
327 efx_mcdi_get_mac_address_pf(
328 	__in			efx_nic_t *enp,
329 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
330 {
331 	efx_mcdi_req_t req;
332 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
333 		MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
334 	efx_rc_t rc;
335 
336 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
337 	    enp->en_family == EFX_FAMILY_MEDFORD ||
338 	    enp->en_family == EFX_FAMILY_MEDFORD2);
339 
340 	req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
341 	req.emr_in_buf = payload;
342 	req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
343 	req.emr_out_buf = payload;
344 	req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
345 
346 	efx_mcdi_execute(enp, &req);
347 
348 	if (req.emr_rc != 0) {
349 		rc = req.emr_rc;
350 		goto fail1;
351 	}
352 
353 	if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
354 		rc = EMSGSIZE;
355 		goto fail2;
356 	}
357 
358 	if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
359 		rc = ENOENT;
360 		goto fail3;
361 	}
362 
363 	if (mac_addrp != NULL) {
364 		uint8_t *addrp;
365 
366 		addrp = MCDI_OUT2(req, uint8_t,
367 		    GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
368 
369 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
370 	}
371 
372 	return (0);
373 
374 fail3:
375 	EFSYS_PROBE(fail3);
376 fail2:
377 	EFSYS_PROBE(fail2);
378 fail1:
379 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
380 
381 	return (rc);
382 }
383 
384 	__checkReturn	efx_rc_t
385 efx_mcdi_get_mac_address_vf(
386 	__in			efx_nic_t *enp,
387 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
388 {
389 	efx_mcdi_req_t req;
390 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
391 		MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
392 	efx_rc_t rc;
393 
394 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
395 	    enp->en_family == EFX_FAMILY_MEDFORD ||
396 	    enp->en_family == EFX_FAMILY_MEDFORD2);
397 
398 	req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
399 	req.emr_in_buf = payload;
400 	req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
401 	req.emr_out_buf = payload;
402 	req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
403 
404 	MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
405 	    EVB_PORT_ID_ASSIGNED);
406 
407 	efx_mcdi_execute(enp, &req);
408 
409 	if (req.emr_rc != 0) {
410 		rc = req.emr_rc;
411 		goto fail1;
412 	}
413 
414 	if (req.emr_out_length_used <
415 	    MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
416 		rc = EMSGSIZE;
417 		goto fail2;
418 	}
419 
420 	if (MCDI_OUT_DWORD(req,
421 		VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
422 		rc = ENOENT;
423 		goto fail3;
424 	}
425 
426 	if (mac_addrp != NULL) {
427 		uint8_t *addrp;
428 
429 		addrp = MCDI_OUT2(req, uint8_t,
430 		    VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
431 
432 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
433 	}
434 
435 	return (0);
436 
437 fail3:
438 	EFSYS_PROBE(fail3);
439 fail2:
440 	EFSYS_PROBE(fail2);
441 fail1:
442 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
443 
444 	return (rc);
445 }
446 
447 	__checkReturn	efx_rc_t
448 efx_mcdi_get_clock(
449 	__in		efx_nic_t *enp,
450 	__out		uint32_t *sys_freqp,
451 	__out		uint32_t *dpcpu_freqp)
452 {
453 	efx_mcdi_req_t req;
454 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
455 		MC_CMD_GET_CLOCK_OUT_LEN);
456 	efx_rc_t rc;
457 
458 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
459 	    enp->en_family == EFX_FAMILY_MEDFORD ||
460 	    enp->en_family == EFX_FAMILY_MEDFORD2);
461 
462 	req.emr_cmd = MC_CMD_GET_CLOCK;
463 	req.emr_in_buf = payload;
464 	req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
465 	req.emr_out_buf = payload;
466 	req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
467 
468 	efx_mcdi_execute(enp, &req);
469 
470 	if (req.emr_rc != 0) {
471 		rc = req.emr_rc;
472 		goto fail1;
473 	}
474 
475 	if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
476 		rc = EMSGSIZE;
477 		goto fail2;
478 	}
479 
480 	*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
481 	if (*sys_freqp == 0) {
482 		rc = EINVAL;
483 		goto fail3;
484 	}
485 	*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
486 	if (*dpcpu_freqp == 0) {
487 		rc = EINVAL;
488 		goto fail4;
489 	}
490 
491 	return (0);
492 
493 fail4:
494 	EFSYS_PROBE(fail4);
495 fail3:
496 	EFSYS_PROBE(fail3);
497 fail2:
498 	EFSYS_PROBE(fail2);
499 fail1:
500 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
501 
502 	return (rc);
503 }
504 
505 	__checkReturn	efx_rc_t
506 efx_mcdi_get_rxdp_config(
507 	__in		efx_nic_t *enp,
508 	__out		uint32_t *end_paddingp)
509 {
510 	efx_mcdi_req_t req;
511 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
512 		MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
513 	uint32_t end_padding;
514 	efx_rc_t rc;
515 
516 	req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
517 	req.emr_in_buf = payload;
518 	req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
519 	req.emr_out_buf = payload;
520 	req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
521 
522 	efx_mcdi_execute(enp, &req);
523 	if (req.emr_rc != 0) {
524 		rc = req.emr_rc;
525 		goto fail1;
526 	}
527 
528 	if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
529 				    GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
530 		/* RX DMA end padding is disabled */
531 		end_padding = 0;
532 	} else {
533 		switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
534 					    GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
535 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
536 			end_padding = 64;
537 			break;
538 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
539 			end_padding = 128;
540 			break;
541 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
542 			end_padding = 256;
543 			break;
544 		default:
545 			rc = ENOTSUP;
546 			goto fail2;
547 		}
548 	}
549 
550 	*end_paddingp = end_padding;
551 
552 	return (0);
553 
554 fail2:
555 	EFSYS_PROBE(fail2);
556 fail1:
557 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
558 
559 	return (rc);
560 }
561 
562 	__checkReturn	efx_rc_t
563 efx_mcdi_get_vector_cfg(
564 	__in		efx_nic_t *enp,
565 	__out_opt	uint32_t *vec_basep,
566 	__out_opt	uint32_t *pf_nvecp,
567 	__out_opt	uint32_t *vf_nvecp)
568 {
569 	efx_mcdi_req_t req;
570 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
571 		MC_CMD_GET_VECTOR_CFG_OUT_LEN);
572 	efx_rc_t rc;
573 
574 	req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
575 	req.emr_in_buf = payload;
576 	req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
577 	req.emr_out_buf = payload;
578 	req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
579 
580 	efx_mcdi_execute(enp, &req);
581 
582 	if (req.emr_rc != 0) {
583 		rc = req.emr_rc;
584 		goto fail1;
585 	}
586 
587 	if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
588 		rc = EMSGSIZE;
589 		goto fail2;
590 	}
591 
592 	if (vec_basep != NULL)
593 		*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
594 	if (pf_nvecp != NULL)
595 		*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
596 	if (vf_nvecp != NULL)
597 		*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
598 
599 	return (0);
600 
601 fail2:
602 	EFSYS_PROBE(fail2);
603 fail1:
604 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
605 
606 	return (rc);
607 }
608 
609 static	__checkReturn	efx_rc_t
610 efx_mcdi_alloc_vis(
611 	__in		efx_nic_t *enp,
612 	__in		uint32_t min_vi_count,
613 	__in		uint32_t max_vi_count,
614 	__out		uint32_t *vi_basep,
615 	__out		uint32_t *vi_countp,
616 	__out		uint32_t *vi_shiftp)
617 {
618 	efx_mcdi_req_t req;
619 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
620 		MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
621 	efx_rc_t rc;
622 
623 	if (vi_countp == NULL) {
624 		rc = EINVAL;
625 		goto fail1;
626 	}
627 
628 	req.emr_cmd = MC_CMD_ALLOC_VIS;
629 	req.emr_in_buf = payload;
630 	req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
631 	req.emr_out_buf = payload;
632 	req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
633 
634 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
635 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
636 
637 	efx_mcdi_execute(enp, &req);
638 
639 	if (req.emr_rc != 0) {
640 		rc = req.emr_rc;
641 		goto fail2;
642 	}
643 
644 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
645 		rc = EMSGSIZE;
646 		goto fail3;
647 	}
648 
649 	*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
650 	*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
651 
652 	/* Report VI_SHIFT if available (always zero for Huntington) */
653 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
654 		*vi_shiftp = 0;
655 	else
656 		*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
657 
658 	return (0);
659 
660 fail3:
661 	EFSYS_PROBE(fail3);
662 fail2:
663 	EFSYS_PROBE(fail2);
664 fail1:
665 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
666 
667 	return (rc);
668 }
669 
670 static	__checkReturn	efx_rc_t
671 efx_mcdi_free_vis(
672 	__in		efx_nic_t *enp)
673 {
674 	efx_mcdi_req_t req;
675 	efx_rc_t rc;
676 
677 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
678 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
679 
680 	req.emr_cmd = MC_CMD_FREE_VIS;
681 	req.emr_in_buf = NULL;
682 	req.emr_in_length = 0;
683 	req.emr_out_buf = NULL;
684 	req.emr_out_length = 0;
685 
686 	efx_mcdi_execute_quiet(enp, &req);
687 
688 	/* Ignore ELREADY (no allocated VIs, so nothing to free) */
689 	if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
690 		rc = req.emr_rc;
691 		goto fail1;
692 	}
693 
694 	return (0);
695 
696 fail1:
697 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
698 
699 	return (rc);
700 }
701 
702 static	__checkReturn	efx_rc_t
703 efx_mcdi_alloc_piobuf(
704 	__in		efx_nic_t *enp,
705 	__out		efx_piobuf_handle_t *handlep)
706 {
707 	efx_mcdi_req_t req;
708 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
709 		MC_CMD_ALLOC_PIOBUF_OUT_LEN);
710 	efx_rc_t rc;
711 
712 	if (handlep == NULL) {
713 		rc = EINVAL;
714 		goto fail1;
715 	}
716 
717 	req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
718 	req.emr_in_buf = payload;
719 	req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
720 	req.emr_out_buf = payload;
721 	req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
722 
723 	efx_mcdi_execute_quiet(enp, &req);
724 
725 	if (req.emr_rc != 0) {
726 		rc = req.emr_rc;
727 		goto fail2;
728 	}
729 
730 	if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
731 		rc = EMSGSIZE;
732 		goto fail3;
733 	}
734 
735 	*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
736 
737 	return (0);
738 
739 fail3:
740 	EFSYS_PROBE(fail3);
741 fail2:
742 	EFSYS_PROBE(fail2);
743 fail1:
744 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
745 
746 	return (rc);
747 }
748 
749 static	__checkReturn	efx_rc_t
750 efx_mcdi_free_piobuf(
751 	__in		efx_nic_t *enp,
752 	__in		efx_piobuf_handle_t handle)
753 {
754 	efx_mcdi_req_t req;
755 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
756 		MC_CMD_FREE_PIOBUF_OUT_LEN);
757 	efx_rc_t rc;
758 
759 	req.emr_cmd = MC_CMD_FREE_PIOBUF;
760 	req.emr_in_buf = payload;
761 	req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
762 	req.emr_out_buf = payload;
763 	req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
764 
765 	MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
766 
767 	efx_mcdi_execute_quiet(enp, &req);
768 
769 	if (req.emr_rc != 0) {
770 		rc = req.emr_rc;
771 		goto fail1;
772 	}
773 
774 	return (0);
775 
776 fail1:
777 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
778 
779 	return (rc);
780 }
781 
782 static	__checkReturn	efx_rc_t
783 efx_mcdi_link_piobuf(
784 	__in		efx_nic_t *enp,
785 	__in		uint32_t vi_index,
786 	__in		efx_piobuf_handle_t handle)
787 {
788 	efx_mcdi_req_t req;
789 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
790 		MC_CMD_LINK_PIOBUF_OUT_LEN);
791 	efx_rc_t rc;
792 
793 	req.emr_cmd = MC_CMD_LINK_PIOBUF;
794 	req.emr_in_buf = payload;
795 	req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
796 	req.emr_out_buf = payload;
797 	req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
798 
799 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
800 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
801 
802 	efx_mcdi_execute(enp, &req);
803 
804 	if (req.emr_rc != 0) {
805 		rc = req.emr_rc;
806 		goto fail1;
807 	}
808 
809 	return (0);
810 
811 fail1:
812 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
813 
814 	return (rc);
815 }
816 
817 static	__checkReturn	efx_rc_t
818 efx_mcdi_unlink_piobuf(
819 	__in		efx_nic_t *enp,
820 	__in		uint32_t vi_index)
821 {
822 	efx_mcdi_req_t req;
823 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
824 		MC_CMD_UNLINK_PIOBUF_OUT_LEN);
825 	efx_rc_t rc;
826 
827 	req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
828 	req.emr_in_buf = payload;
829 	req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
830 	req.emr_out_buf = payload;
831 	req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
832 
833 	MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
834 
835 	efx_mcdi_execute_quiet(enp, &req);
836 
837 	if (req.emr_rc != 0) {
838 		rc = req.emr_rc;
839 		goto fail1;
840 	}
841 
842 	return (0);
843 
844 fail1:
845 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
846 
847 	return (rc);
848 }
849 
850 static			void
851 ef10_nic_alloc_piobufs(
852 	__in		efx_nic_t *enp,
853 	__in		uint32_t max_piobuf_count)
854 {
855 	efx_piobuf_handle_t *handlep;
856 	unsigned int i;
857 
858 	EFSYS_ASSERT3U(max_piobuf_count, <=,
859 	    EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
860 
861 	enp->en_arch.ef10.ena_piobuf_count = 0;
862 
863 	for (i = 0; i < max_piobuf_count; i++) {
864 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
865 
866 		if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
867 			goto fail1;
868 
869 		enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
870 		enp->en_arch.ef10.ena_piobuf_count++;
871 	}
872 
873 	return;
874 
875 fail1:
876 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
877 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
878 
879 		(void) efx_mcdi_free_piobuf(enp, *handlep);
880 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
881 	}
882 	enp->en_arch.ef10.ena_piobuf_count = 0;
883 }
884 
885 static			void
886 ef10_nic_free_piobufs(
887 	__in		efx_nic_t *enp)
888 {
889 	efx_piobuf_handle_t *handlep;
890 	unsigned int i;
891 
892 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
893 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
894 
895 		(void) efx_mcdi_free_piobuf(enp, *handlep);
896 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
897 	}
898 	enp->en_arch.ef10.ena_piobuf_count = 0;
899 }
900 
901 /* Sub-allocate a block from a piobuf */
902 	__checkReturn	efx_rc_t
903 ef10_nic_pio_alloc(
904 	__inout		efx_nic_t *enp,
905 	__out		uint32_t *bufnump,
906 	__out		efx_piobuf_handle_t *handlep,
907 	__out		uint32_t *blknump,
908 	__out		uint32_t *offsetp,
909 	__out		size_t *sizep)
910 {
911 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
912 	efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
913 	uint32_t blk_per_buf;
914 	uint32_t buf, blk;
915 	efx_rc_t rc;
916 
917 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
918 	    enp->en_family == EFX_FAMILY_MEDFORD ||
919 	    enp->en_family == EFX_FAMILY_MEDFORD2);
920 	EFSYS_ASSERT(bufnump);
921 	EFSYS_ASSERT(handlep);
922 	EFSYS_ASSERT(blknump);
923 	EFSYS_ASSERT(offsetp);
924 	EFSYS_ASSERT(sizep);
925 
926 	if ((edcp->edc_pio_alloc_size == 0) ||
927 	    (enp->en_arch.ef10.ena_piobuf_count == 0)) {
928 		rc = ENOMEM;
929 		goto fail1;
930 	}
931 	blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
932 
933 	for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
934 		uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
935 
936 		if (~(*map) == 0)
937 			continue;
938 
939 		EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
940 		for (blk = 0; blk < blk_per_buf; blk++) {
941 			if ((*map & (1u << blk)) == 0) {
942 				*map |= (1u << blk);
943 				goto done;
944 			}
945 		}
946 	}
947 	rc = ENOMEM;
948 	goto fail2;
949 
950 done:
951 	*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
952 	*bufnump = buf;
953 	*blknump = blk;
954 	*sizep = edcp->edc_pio_alloc_size;
955 	*offsetp = blk * (*sizep);
956 
957 	return (0);
958 
959 fail2:
960 	EFSYS_PROBE(fail2);
961 fail1:
962 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
963 
964 	return (rc);
965 }
966 
967 /* Free a piobuf sub-allocated block */
968 	__checkReturn	efx_rc_t
969 ef10_nic_pio_free(
970 	__inout		efx_nic_t *enp,
971 	__in		uint32_t bufnum,
972 	__in		uint32_t blknum)
973 {
974 	uint32_t *map;
975 	efx_rc_t rc;
976 
977 	if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
978 	    (blknum >= (8 * sizeof (*map)))) {
979 		rc = EINVAL;
980 		goto fail1;
981 	}
982 
983 	map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
984 	if ((*map & (1u << blknum)) == 0) {
985 		rc = ENOENT;
986 		goto fail2;
987 	}
988 	*map &= ~(1u << blknum);
989 
990 	return (0);
991 
992 fail2:
993 	EFSYS_PROBE(fail2);
994 fail1:
995 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
996 
997 	return (rc);
998 }
999 
1000 	__checkReturn	efx_rc_t
1001 ef10_nic_pio_link(
1002 	__inout		efx_nic_t *enp,
1003 	__in		uint32_t vi_index,
1004 	__in		efx_piobuf_handle_t handle)
1005 {
1006 	return (efx_mcdi_link_piobuf(enp, vi_index, handle));
1007 }
1008 
1009 	__checkReturn	efx_rc_t
1010 ef10_nic_pio_unlink(
1011 	__inout		efx_nic_t *enp,
1012 	__in		uint32_t vi_index)
1013 {
1014 	return (efx_mcdi_unlink_piobuf(enp, vi_index));
1015 }
1016 
1017 static	__checkReturn	efx_rc_t
1018 ef10_mcdi_get_pf_count(
1019 	__in		efx_nic_t *enp,
1020 	__out		uint32_t *pf_countp)
1021 {
1022 	efx_mcdi_req_t req;
1023 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
1024 		MC_CMD_GET_PF_COUNT_OUT_LEN);
1025 	efx_rc_t rc;
1026 
1027 	req.emr_cmd = MC_CMD_GET_PF_COUNT;
1028 	req.emr_in_buf = payload;
1029 	req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
1030 	req.emr_out_buf = payload;
1031 	req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
1032 
1033 	efx_mcdi_execute(enp, &req);
1034 
1035 	if (req.emr_rc != 0) {
1036 		rc = req.emr_rc;
1037 		goto fail1;
1038 	}
1039 
1040 	if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
1041 		rc = EMSGSIZE;
1042 		goto fail2;
1043 	}
1044 
1045 	*pf_countp = *MCDI_OUT(req, uint8_t,
1046 				MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
1047 
1048 	EFSYS_ASSERT(*pf_countp != 0);
1049 
1050 	return (0);
1051 
1052 fail2:
1053 	EFSYS_PROBE(fail2);
1054 fail1:
1055 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1056 
1057 	return (rc);
1058 }
1059 
1060 static	__checkReturn	efx_rc_t
1061 ef10_get_datapath_caps(
1062 	__in		efx_nic_t *enp)
1063 {
1064 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1065 	efx_mcdi_req_t req;
1066 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1067 		MC_CMD_GET_CAPABILITIES_V5_OUT_LEN);
1068 	efx_rc_t rc;
1069 
1070 	if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
1071 		goto fail1;
1072 
1073 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1074 	req.emr_in_buf = payload;
1075 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1076 	req.emr_out_buf = payload;
1077 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V5_OUT_LEN;
1078 
1079 	efx_mcdi_execute_quiet(enp, &req);
1080 
1081 	if (req.emr_rc != 0) {
1082 		rc = req.emr_rc;
1083 		goto fail2;
1084 	}
1085 
1086 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1087 		rc = EMSGSIZE;
1088 		goto fail3;
1089 	}
1090 
1091 #define	CAP_FLAGS1(_req, _flag)						\
1092 	(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) &		\
1093 	(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
1094 
1095 #define	CAP_FLAGS2(_req, _flag)						\
1096 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
1097 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) &	\
1098 	    (1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
1099 
1100 	/*
1101 	 * Huntington RXDP firmware inserts a 0 or 14 byte prefix.
1102 	 * We only support the 14 byte prefix here.
1103 	 */
1104 	if (CAP_FLAGS1(req, RX_PREFIX_LEN_14) == 0) {
1105 		rc = ENOTSUP;
1106 		goto fail4;
1107 	}
1108 	encp->enc_rx_prefix_size = 14;
1109 
1110 #if EFSYS_OPT_RX_SCALE
1111 	/* Check if the firmware supports additional RSS modes */
1112 	if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
1113 		encp->enc_rx_scale_additional_modes_supported = B_TRUE;
1114 	else
1115 		encp->enc_rx_scale_additional_modes_supported = B_FALSE;
1116 #endif /* EFSYS_OPT_RX_SCALE */
1117 
1118 	/* Check if the firmware supports TSO */
1119 	if (CAP_FLAGS1(req, TX_TSO))
1120 		encp->enc_fw_assisted_tso_enabled = B_TRUE;
1121 	else
1122 		encp->enc_fw_assisted_tso_enabled = B_FALSE;
1123 
1124 	/* Check if the firmware supports FATSOv2 */
1125 	if (CAP_FLAGS2(req, TX_TSO_V2)) {
1126 		encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
1127 		encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
1128 		    GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
1129 	} else {
1130 		encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
1131 		encp->enc_fw_assisted_tso_v2_n_contexts = 0;
1132 	}
1133 
1134 	/* Check if the firmware supports FATSOv2 encap */
1135 	if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
1136 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
1137 	else
1138 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
1139 
1140 	/* Check if the firmware has vadapter/vport/vswitch support */
1141 	if (CAP_FLAGS1(req, EVB))
1142 		encp->enc_datapath_cap_evb = B_TRUE;
1143 	else
1144 		encp->enc_datapath_cap_evb = B_FALSE;
1145 
1146 	/* Check if the firmware supports VLAN insertion */
1147 	if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
1148 		encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
1149 	else
1150 		encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
1151 
1152 	/* Check if the firmware supports RX event batching */
1153 	if (CAP_FLAGS1(req, RX_BATCHING))
1154 		encp->enc_rx_batching_enabled = B_TRUE;
1155 	else
1156 		encp->enc_rx_batching_enabled = B_FALSE;
1157 
1158 	/*
1159 	 * Even if batching isn't reported as supported, we may still get
1160 	 * batched events.
1161 	 */
1162 	encp->enc_rx_batch_max = 16;
1163 
1164 	/* Check if the firmware supports disabling scatter on RXQs */
1165 	if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
1166 		encp->enc_rx_disable_scatter_supported = B_TRUE;
1167 	else
1168 		encp->enc_rx_disable_scatter_supported = B_FALSE;
1169 
1170 	/* Check if the firmware supports packed stream mode */
1171 	if (CAP_FLAGS1(req, RX_PACKED_STREAM))
1172 		encp->enc_rx_packed_stream_supported = B_TRUE;
1173 	else
1174 		encp->enc_rx_packed_stream_supported = B_FALSE;
1175 
1176 	/*
1177 	 * Check if the firmware supports configurable buffer sizes
1178 	 * for packed stream mode (otherwise buffer size is 1Mbyte)
1179 	 */
1180 	if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
1181 		encp->enc_rx_var_packed_stream_supported = B_TRUE;
1182 	else
1183 		encp->enc_rx_var_packed_stream_supported = B_FALSE;
1184 
1185 	/* Check if the firmware supports equal stride super-buffer mode */
1186 	if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
1187 		encp->enc_rx_es_super_buffer_supported = B_TRUE;
1188 	else
1189 		encp->enc_rx_es_super_buffer_supported = B_FALSE;
1190 
1191 	/* Check if the firmware supports FW subvariant w/o Tx checksumming */
1192 	if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
1193 		encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
1194 	else
1195 		encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
1196 
1197 	/* Check if the firmware supports set mac with running filters */
1198 	if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
1199 		encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
1200 	else
1201 		encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
1202 
1203 	/*
1204 	 * Check if firmware supports the extended MC_CMD_SET_MAC, which allows
1205 	 * specifying which parameters to configure.
1206 	 */
1207 	if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
1208 		encp->enc_enhanced_set_mac_supported = B_TRUE;
1209 	else
1210 		encp->enc_enhanced_set_mac_supported = B_FALSE;
1211 
1212 	/*
1213 	 * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
1214 	 * us to let the firmware choose the settings to use on an EVQ.
1215 	 */
1216 	if (CAP_FLAGS2(req, INIT_EVQ_V2))
1217 		encp->enc_init_evq_v2_supported = B_TRUE;
1218 	else
1219 		encp->enc_init_evq_v2_supported = B_FALSE;
1220 
1221 	/*
1222 	 * Check if firmware-verified NVRAM updates must be used.
1223 	 *
1224 	 * The firmware trusted installer requires all NVRAM updates to use
1225 	 * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
1226 	 * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
1227 	 * partition and report the result).
1228 	 */
1229 	if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
1230 		encp->enc_nvram_update_verify_result_supported = B_TRUE;
1231 	else
1232 		encp->enc_nvram_update_verify_result_supported = B_FALSE;
1233 
1234 	/*
1235 	 * Check if firmware provides packet memory and Rx datapath
1236 	 * counters.
1237 	 */
1238 	if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
1239 		encp->enc_pm_and_rxdp_counters = B_TRUE;
1240 	else
1241 		encp->enc_pm_and_rxdp_counters = B_FALSE;
1242 
1243 	/*
1244 	 * Check if the 40G MAC hardware is capable of reporting
1245 	 * statistics for Tx size bins.
1246 	 */
1247 	if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
1248 		encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
1249 	else
1250 		encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
1251 
1252 	/*
1253 	 * Check if firmware supports VXLAN and NVGRE tunnels.
1254 	 * The capability indicates Geneve protocol support as well.
1255 	 */
1256 	if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
1257 		encp->enc_tunnel_encapsulations_supported =
1258 		    (1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
1259 		    (1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
1260 		    (1u << EFX_TUNNEL_PROTOCOL_NVGRE);
1261 
1262 		EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
1263 		    MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
1264 		encp->enc_tunnel_config_udp_entries_max =
1265 		    EFX_TUNNEL_MAXNENTRIES;
1266 	} else {
1267 		encp->enc_tunnel_config_udp_entries_max = 0;
1268 	}
1269 
1270 	/*
1271 	 * Check if firmware reports the VI window mode.
1272 	 * Medford2 has a variable VI window size (8K, 16K or 64K).
1273 	 * Medford and Huntington have a fixed 8K VI window size.
1274 	 */
1275 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
1276 		uint8_t mode =
1277 		    MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
1278 
1279 		switch (mode) {
1280 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
1281 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1282 			break;
1283 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
1284 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
1285 			break;
1286 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
1287 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
1288 			break;
1289 		default:
1290 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1291 			break;
1292 		}
1293 	} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
1294 		    (enp->en_family == EFX_FAMILY_MEDFORD)) {
1295 		/* Huntington and Medford have fixed 8K window size */
1296 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1297 	} else {
1298 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1299 	}
1300 
1301 	/* Check if firmware supports extended MAC stats. */
1302 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
1303 		/* Extended stats buffer supported */
1304 		encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
1305 		    GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
1306 	} else {
1307 		/* Use Siena-compatible legacy MAC stats */
1308 		encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
1309 	}
1310 
1311 	if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
1312 		encp->enc_fec_counters = B_TRUE;
1313 	else
1314 		encp->enc_fec_counters = B_FALSE;
1315 
1316 	/* Check if the firmware provides head-of-line blocking counters */
1317 	if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
1318 		encp->enc_hlb_counters = B_TRUE;
1319 	else
1320 		encp->enc_hlb_counters = B_FALSE;
1321 
1322 #if EFSYS_OPT_RX_SCALE
1323 	if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
1324 		/* Only one exclusive RSS context is available per port. */
1325 		encp->enc_rx_scale_max_exclusive_contexts = 1;
1326 
1327 		switch (enp->en_family) {
1328 		case EFX_FAMILY_MEDFORD2:
1329 			encp->enc_rx_scale_hash_alg_mask =
1330 			    (1U << EFX_RX_HASHALG_TOEPLITZ);
1331 			break;
1332 
1333 		case EFX_FAMILY_MEDFORD:
1334 		case EFX_FAMILY_HUNTINGTON:
1335 			/*
1336 			 * Packed stream firmware variant maintains a
1337 			 * non-standard algorithm for hash computation.
1338 			 * It implies explicit XORing together
1339 			 * source + destination IP addresses (or last
1340 			 * four bytes in the case of IPv6) and using the
1341 			 * resulting value as the input to a Toeplitz hash.
1342 			 */
1343 			encp->enc_rx_scale_hash_alg_mask =
1344 			    (1U << EFX_RX_HASHALG_PACKED_STREAM);
1345 			break;
1346 
1347 		default:
1348 			rc = EINVAL;
1349 			goto fail5;
1350 		}
1351 
1352 		/* Port numbers cannot contribute to the hash value */
1353 		encp->enc_rx_scale_l4_hash_supported = B_FALSE;
1354 	} else {
1355 		/*
1356 		 * Maximum number of exclusive RSS contexts.
1357 		 * EF10 hardware supports 64 in total, but 6 are reserved
1358 		 * for shared contexts. They are a global resource so
1359 		 * not all may be available.
1360 		 */
1361 		encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
1362 
1363 		encp->enc_rx_scale_hash_alg_mask =
1364 		    (1U << EFX_RX_HASHALG_TOEPLITZ);
1365 
1366 		/*
1367 		 * It is possible to use port numbers as
1368 		 * the input data for hash computation.
1369 		 */
1370 		encp->enc_rx_scale_l4_hash_supported = B_TRUE;
1371 	}
1372 #endif /* EFSYS_OPT_RX_SCALE */
1373 
1374 	/* Check if the firmware supports "FLAG" and "MARK" filter actions */
1375 	if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
1376 		encp->enc_filter_action_flag_supported = B_TRUE;
1377 	else
1378 		encp->enc_filter_action_flag_supported = B_FALSE;
1379 
1380 	if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
1381 		encp->enc_filter_action_mark_supported = B_TRUE;
1382 	else
1383 		encp->enc_filter_action_mark_supported = B_FALSE;
1384 
1385 	/* Get maximum supported value for "MARK" filter action */
1386 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
1387 		encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
1388 		    GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
1389 	else
1390 		encp->enc_filter_action_mark_max = 0;
1391 
1392 #undef CAP_FLAGS1
1393 #undef CAP_FLAGS2
1394 
1395 	return (0);
1396 
1397 #if EFSYS_OPT_RX_SCALE
1398 fail5:
1399 	EFSYS_PROBE(fail5);
1400 #endif /* EFSYS_OPT_RX_SCALE */
1401 fail4:
1402 	EFSYS_PROBE(fail4);
1403 fail3:
1404 	EFSYS_PROBE(fail3);
1405 fail2:
1406 	EFSYS_PROBE(fail2);
1407 fail1:
1408 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1409 
1410 	return (rc);
1411 }
1412 
1413 #define	EF10_LEGACY_PF_PRIVILEGE_MASK					\
1414 	(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN			|	\
1415 	MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK			|	\
1416 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD			|	\
1417 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP			|	\
1418 	MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS		|	\
1419 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING		|	\
1420 	MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST			|	\
1421 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST			|	\
1422 	MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST			|	\
1423 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST		|	\
1424 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
1425 
1426 #define	EF10_LEGACY_VF_PRIVILEGE_MASK	0
1427 
1428 	__checkReturn		efx_rc_t
1429 ef10_get_privilege_mask(
1430 	__in			efx_nic_t *enp,
1431 	__out			uint32_t *maskp)
1432 {
1433 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1434 	uint32_t mask;
1435 	efx_rc_t rc;
1436 
1437 	if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
1438 					    &mask)) != 0) {
1439 		if (rc != ENOTSUP)
1440 			goto fail1;
1441 
1442 		/* Fallback for old firmware without privilege mask support */
1443 		if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1444 			/* Assume PF has admin privilege */
1445 			mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
1446 		} else {
1447 			/* VF is always unprivileged by default */
1448 			mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
1449 		}
1450 	}
1451 
1452 	*maskp = mask;
1453 
1454 	return (0);
1455 
1456 fail1:
1457 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1458 
1459 	return (rc);
1460 }
1461 
1462 #define	EFX_EXT_PORT_MAX	4
1463 #define	EFX_EXT_PORT_NA		0xFF
1464 
1465 /*
1466  * Table of mapping schemes from port number to external number.
1467  *
1468  * Each port number ultimately corresponds to a connector: either as part of
1469  * a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
1470  * the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
1471  * "Salina"). In general:
1472  *
1473  * Port number (0-based)
1474  *     |
1475  *   port mapping (n:1)
1476  *     |
1477  *     v
1478  * External port number (1-based)
1479  *     |
1480  *   fixed (1:1) or cable assembly (1:m)
1481  *     |
1482  *     v
1483  * Connector
1484  *
1485  * The external numbering refers to the cages or magjacks on the board,
1486  * as visibly annotated on the board or back panel. This table describes
1487  * how to determine which external cage/magjack corresponds to the port
1488  * numbers used by the driver.
1489  *
1490  * The count of consecutive port numbers that map to each external number,
1491  * is determined by the chip family and the current port mode.
1492  *
1493  * For the Huntington family, the current port mode cannot be discovered,
1494  * but a single mapping is used by all modes for a given chip variant,
1495  * so the mapping used is instead the last match in the table to the full
1496  * set of port modes to which the NIC can be configured. Therefore the
1497  * ordering of entries in the mapping table is significant.
1498  */
1499 static struct ef10_external_port_map_s {
1500 	efx_family_t	family;
1501 	uint32_t	modes_mask;
1502 	uint8_t		base_port[EFX_EXT_PORT_MAX];
1503 }	__ef10_external_port_mappings[] = {
1504 	/*
1505 	 * Modes used by Huntington family controllers where each port
1506 	 * number maps to a separate cage.
1507 	 * SFN7x22F (Torino):
1508 	 *	port 0 -> cage 1
1509 	 *	port 1 -> cage 2
1510 	 * SFN7xx4F (Pavia):
1511 	 *	port 0 -> cage 1
1512 	 *	port 1 -> cage 2
1513 	 *	port 2 -> cage 3
1514 	 *	port 3 -> cage 4
1515 	 */
1516 	{
1517 		EFX_FAMILY_HUNTINGTON,
1518 		(1U << TLV_PORT_MODE_10G) |			/* mode 0 */
1519 		(1U << TLV_PORT_MODE_10G_10G) |			/* mode 2 */
1520 		(1U << TLV_PORT_MODE_10G_10G_10G_10G),		/* mode 4 */
1521 		{ 0, 1, 2, 3 }
1522 	},
1523 	/*
1524 	 * Modes which for Huntington identify a chip variant where 2
1525 	 * adjacent port numbers map to each cage.
1526 	 * SFN7x42Q (Monza):
1527 	 *	port 0 -> cage 1
1528 	 *	port 1 -> cage 1
1529 	 *	port 2 -> cage 2
1530 	 *	port 3 -> cage 2
1531 	 */
1532 	{
1533 		EFX_FAMILY_HUNTINGTON,
1534 		(1U << TLV_PORT_MODE_40G) |			/* mode 1 */
1535 		(1U << TLV_PORT_MODE_40G_40G) |			/* mode 3 */
1536 		(1U << TLV_PORT_MODE_40G_10G_10G) |		/* mode 6 */
1537 		(1U << TLV_PORT_MODE_10G_10G_40G),		/* mode 7 */
1538 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1539 	},
1540 	/*
1541 	 * Modes that on Medford allocate each port number to a separate
1542 	 * cage.
1543 	 *	port 0 -> cage 1
1544 	 *	port 1 -> cage 2
1545 	 *	port 2 -> cage 3
1546 	 *	port 3 -> cage 4
1547 	 */
1548 	{
1549 		EFX_FAMILY_MEDFORD,
1550 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1551 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1552 		{ 0, 1, 2, 3 }
1553 	},
1554 	/*
1555 	 * Modes that on Medford allocate 2 adjacent port numbers to each
1556 	 * cage.
1557 	 *	port 0 -> cage 1
1558 	 *	port 1 -> cage 1
1559 	 *	port 2 -> cage 2
1560 	 *	port 3 -> cage 2
1561 	 */
1562 	{
1563 		EFX_FAMILY_MEDFORD,
1564 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1565 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1566 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1567 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1568 		/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
1569 		(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),	/* mode 9 */
1570 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1571 	},
1572 	/*
1573 	 * Modes that on Medford allocate 4 adjacent port numbers to each
1574 	 * connector, starting on cage 1.
1575 	 *	port 0 -> cage 1
1576 	 *	port 1 -> cage 1
1577 	 *	port 2 -> cage 1
1578 	 *	port 3 -> cage 1
1579 	 */
1580 	{
1581 		EFX_FAMILY_MEDFORD,
1582 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 5 */
1583 		/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
1584 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 4 */
1585 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1586 	},
1587 	/*
1588 	 * Modes that on Medford allocate 4 adjacent port numbers to each
1589 	 * connector, starting on cage 2.
1590 	 *	port 0 -> cage 2
1591 	 *	port 1 -> cage 2
1592 	 *	port 2 -> cage 2
1593 	 *	port 3 -> cage 2
1594 	 */
1595 	{
1596 		EFX_FAMILY_MEDFORD,
1597 		(1U << TLV_PORT_MODE_NA_4x1),			/* mode 8 */
1598 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1599 	},
1600 	/*
1601 	 * Modes that on Medford2 allocate each port number to a separate
1602 	 * cage.
1603 	 *	port 0 -> cage 1
1604 	 *	port 1 -> cage 2
1605 	 *	port 2 -> cage 3
1606 	 *	port 3 -> cage 4
1607 	 */
1608 	{
1609 		EFX_FAMILY_MEDFORD2,
1610 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1611 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1612 		(1U << TLV_PORT_MODE_1x1_1x1) |			/* mode 2 */
1613 		(1U << TLV_PORT_MODE_1x2_NA) |			/* mode 10 */
1614 		(1U << TLV_PORT_MODE_1x2_1x2) |			/* mode 12 */
1615 		(1U << TLV_PORT_MODE_1x4_1x2) |			/* mode 15 */
1616 		(1U << TLV_PORT_MODE_1x2_1x4),			/* mode 16 */
1617 		{ 0, 1, 2, 3 }
1618 	},
1619 	/*
1620 	 * Modes that on Medford2 allocate 1 port to cage 1 and the rest
1621 	 * to cage 2.
1622 	 *	port 0 -> cage 1
1623 	 *	port 1 -> cage 2
1624 	 *	port 2 -> cage 2
1625 	 */
1626 	{
1627 		EFX_FAMILY_MEDFORD2,
1628 		(1U << TLV_PORT_MODE_1x2_2x1) |			/* mode 17 */
1629 		(1U << TLV_PORT_MODE_1x4_2x1),			/* mode 6 */
1630 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1631 	},
1632 	/*
1633 	 * Modes that on Medford2 allocate 2 adjacent port numbers to each
1634 	 * cage, starting on cage 1.
1635 	 *	port 0 -> cage 1
1636 	 *	port 1 -> cage 1
1637 	 *	port 2 -> cage 2
1638 	 *	port 3 -> cage 2
1639 	 */
1640 	{
1641 		EFX_FAMILY_MEDFORD2,
1642 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1643 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 4 */
1644 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1645 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1646 		(1U << TLV_PORT_MODE_2x2_NA) |			/* mode 13 */
1647 		(1U << TLV_PORT_MODE_2x1_1x2),			/* mode 18 */
1648 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1649 	},
1650 	/*
1651 	 * Modes that on Medford2 allocate 2 adjacent port numbers to each
1652 	 * cage, starting on cage 2.
1653 	 *	port 0 -> cage 2
1654 	 *	port 1 -> cage 2
1655 	 */
1656 	{
1657 		EFX_FAMILY_MEDFORD2,
1658 		(1U << TLV_PORT_MODE_NA_2x2),			/* mode 14 */
1659 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1660 	},
1661 	/*
1662 	 * Modes that on Medford2 allocate 4 adjacent port numbers to each
1663 	 * connector, starting on cage 1.
1664 	 *	port 0 -> cage 1
1665 	 *	port 1 -> cage 1
1666 	 *	port 2 -> cage 1
1667 	 *	port 3 -> cage 1
1668 	 */
1669 	{
1670 		EFX_FAMILY_MEDFORD2,
1671 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 5 */
1672 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1673 	},
1674 	/*
1675 	 * Modes that on Medford2 allocate 4 adjacent port numbers to each
1676 	 * connector, starting on cage 2.
1677 	 *	port 0 -> cage 2
1678 	 *	port 1 -> cage 2
1679 	 *	port 2 -> cage 2
1680 	 *	port 3 -> cage 2
1681 	 */
1682 	{
1683 		EFX_FAMILY_MEDFORD2,
1684 		(1U << TLV_PORT_MODE_NA_4x1) |			/* mode 8 */
1685 		(1U << TLV_PORT_MODE_NA_1x2),			/* mode 11 */
1686 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1687 	},
1688 };
1689 
1690 static	__checkReturn	efx_rc_t
1691 ef10_external_port_mapping(
1692 	__in		efx_nic_t *enp,
1693 	__in		uint32_t port,
1694 	__out		uint8_t *external_portp)
1695 {
1696 	efx_rc_t rc;
1697 	int i;
1698 	uint32_t port_modes;
1699 	uint32_t matches;
1700 	uint32_t current;
1701 	struct ef10_external_port_map_s *mapp = NULL;
1702 	int ext_index = port; /* Default 1-1 mapping */
1703 
1704 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current,
1705 		    NULL)) != 0) {
1706 		/*
1707 		 * No current port mode information (i.e. Huntington)
1708 		 * - infer mapping from available modes
1709 		 */
1710 		if ((rc = efx_mcdi_get_port_modes(enp,
1711 			    &port_modes, NULL, NULL)) != 0) {
1712 			/*
1713 			 * No port mode information available
1714 			 * - use default mapping
1715 			 */
1716 			goto out;
1717 		}
1718 	} else {
1719 		/* Only need to scan the current mode */
1720 		port_modes = 1 << current;
1721 	}
1722 
1723 	/*
1724 	 * Infer the internal port -> external number mapping from
1725 	 * the possible port modes for this NIC.
1726 	 */
1727 	for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
1728 		struct ef10_external_port_map_s *eepmp =
1729 		    &__ef10_external_port_mappings[i];
1730 		if (eepmp->family != enp->en_family)
1731 			continue;
1732 		matches = (eepmp->modes_mask & port_modes);
1733 		if (matches != 0) {
1734 			/*
1735 			 * Some modes match. For some Huntington boards
1736 			 * there will be multiple matches. The mapping on the
1737 			 * last match is used.
1738 			 */
1739 			mapp = eepmp;
1740 			port_modes &= ~matches;
1741 		}
1742 	}
1743 
1744 	if (port_modes != 0) {
1745 		/* Some advertised modes are not supported */
1746 		rc = ENOTSUP;
1747 		goto fail1;
1748 	}
1749 
1750 out:
1751 	if (mapp != NULL) {
1752 		/*
1753 		 * External ports are assigned a sequence of consecutive
1754 		 * port numbers, so find the one with the closest base_port.
1755 		 */
1756 		uint32_t delta = EFX_EXT_PORT_NA;
1757 
1758 		for (i = 0; i < EFX_EXT_PORT_MAX; i++) {
1759 			uint32_t base = mapp->base_port[i];
1760 			if ((base != EFX_EXT_PORT_NA) && (base <= port)) {
1761 				if ((port - base) < delta) {
1762 					delta = (port - base);
1763 					ext_index = i;
1764 				}
1765 			}
1766 		}
1767 	}
1768 	*external_portp = (uint8_t)(ext_index + 1);
1769 
1770 	return (0);
1771 
1772 fail1:
1773 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1774 
1775 	return (rc);
1776 }
1777 
1778 static	__checkReturn	efx_rc_t
1779 ef10_nic_board_cfg(
1780 	__in		efx_nic_t *enp)
1781 {
1782 	const efx_nic_ops_t *enop = enp->en_enop;
1783 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1784 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1785 	ef10_link_state_t els;
1786 	efx_port_t *epp = &(enp->en_port);
1787 	uint32_t board_type = 0;
1788 	uint32_t base, nvec;
1789 	uint32_t port;
1790 	uint32_t mask;
1791 	uint32_t pf;
1792 	uint32_t vf;
1793 	uint8_t mac_addr[6] = { 0 };
1794 	efx_rc_t rc;
1795 
1796 	/* Get the (zero-based) MCDI port number */
1797 	if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
1798 		goto fail1;
1799 
1800 	/* EFX MCDI interface uses one-based port numbers */
1801 	emip->emi_port = port + 1;
1802 
1803 	if ((rc = ef10_external_port_mapping(enp, port,
1804 		    &encp->enc_external_port)) != 0)
1805 		goto fail2;
1806 
1807 	/*
1808 	 * Get PCIe function number from firmware (used for
1809 	 * per-function privilege and dynamic config info).
1810 	 *  - PCIe PF: pf = PF number, vf = 0xffff.
1811 	 *  - PCIe VF: pf = parent PF, vf = VF number.
1812 	 */
1813 	if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf)) != 0)
1814 		goto fail3;
1815 
1816 	encp->enc_pf = pf;
1817 	encp->enc_vf = vf;
1818 
1819 	/* MAC address for this function */
1820 	if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1821 		rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
1822 #if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
1823 		/*
1824 		 * Disable static config checking, ONLY for manufacturing test
1825 		 * and setup at the factory, to allow the static config to be
1826 		 * installed.
1827 		 */
1828 #else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1829 		if ((rc == 0) && (mac_addr[0] & 0x02)) {
1830 			/*
1831 			 * If the static config does not include a global MAC
1832 			 * address pool then the board may return a locally
1833 			 * administered MAC address (this should only happen on
1834 			 * incorrectly programmed boards).
1835 			 */
1836 			rc = EINVAL;
1837 		}
1838 #endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1839 	} else {
1840 		rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
1841 	}
1842 	if (rc != 0)
1843 		goto fail4;
1844 
1845 	EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
1846 
1847 	/* Board configuration (legacy) */
1848 	rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
1849 	if (rc != 0) {
1850 		/* Unprivileged functions may not be able to read board cfg */
1851 		if (rc == EACCES)
1852 			board_type = 0;
1853 		else
1854 			goto fail5;
1855 	}
1856 
1857 	encp->enc_board_type = board_type;
1858 	encp->enc_clk_mult = 1; /* not used for EF10 */
1859 
1860 	/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
1861 	if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
1862 		goto fail6;
1863 
1864 	/*
1865 	 * Firmware with support for *_FEC capability bits does not
1866 	 * report that the corresponding *_FEC_REQUESTED bits are supported.
1867 	 * Add them here so that drivers understand that they are supported.
1868 	 */
1869 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
1870 		epp->ep_phy_cap_mask |=
1871 		    (1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
1872 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
1873 		epp->ep_phy_cap_mask |=
1874 		    (1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
1875 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
1876 		epp->ep_phy_cap_mask |=
1877 		    (1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
1878 
1879 	/* Obtain the default PHY advertised capabilities */
1880 	if ((rc = ef10_phy_get_link(enp, &els)) != 0)
1881 		goto fail7;
1882 	epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
1883 	epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
1884 
1885 	/* Check capabilities of running datapath firmware */
1886 	if ((rc = ef10_get_datapath_caps(enp)) != 0)
1887 		goto fail8;
1888 
1889 	/* Alignment for WPTR updates */
1890 	encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
1891 
1892 	encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
1893 	/* No boundary crossing limits */
1894 	encp->enc_tx_dma_desc_boundary = 0;
1895 
1896 	/*
1897 	 * Maximum number of bytes into the frame the TCP header can start for
1898 	 * firmware assisted TSO to work.
1899 	 */
1900 	encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
1901 
1902 	/*
1903 	 * Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
1904 	 * MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
1905 	 * resources (allocated to this PCIe function), which is zero until
1906 	 * after we have allocated VIs.
1907 	 */
1908 	encp->enc_evq_limit = 1024;
1909 	encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
1910 	encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
1911 
1912 	encp->enc_buftbl_limit = 0xFFFFFFFF;
1913 
1914 	/* Get interrupt vector limits */
1915 	if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
1916 		if (EFX_PCI_FUNCTION_IS_PF(encp))
1917 			goto fail9;
1918 
1919 		/* Ignore error (cannot query vector limits from a VF). */
1920 		base = 0;
1921 		nvec = 1024;
1922 	}
1923 	encp->enc_intr_vec_base = base;
1924 	encp->enc_intr_limit = nvec;
1925 
1926 	/*
1927 	 * Get the current privilege mask. Note that this may be modified
1928 	 * dynamically, so this value is informational only. DO NOT use
1929 	 * the privilege mask to check for sufficient privileges, as that
1930 	 * can result in time-of-check/time-of-use bugs.
1931 	 */
1932 	if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
1933 		goto fail10;
1934 	encp->enc_privilege_mask = mask;
1935 
1936 	/* Get remaining controller-specific board config */
1937 	if ((rc = enop->eno_board_cfg(enp)) != 0)
1938 		if (rc != EACCES)
1939 			goto fail11;
1940 
1941 	return (0);
1942 
1943 fail11:
1944 	EFSYS_PROBE(fail11);
1945 fail10:
1946 	EFSYS_PROBE(fail10);
1947 fail9:
1948 	EFSYS_PROBE(fail9);
1949 fail8:
1950 	EFSYS_PROBE(fail8);
1951 fail7:
1952 	EFSYS_PROBE(fail7);
1953 fail6:
1954 	EFSYS_PROBE(fail6);
1955 fail5:
1956 	EFSYS_PROBE(fail5);
1957 fail4:
1958 	EFSYS_PROBE(fail4);
1959 fail3:
1960 	EFSYS_PROBE(fail3);
1961 fail2:
1962 	EFSYS_PROBE(fail2);
1963 fail1:
1964 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1965 
1966 	return (rc);
1967 }
1968 
1969 	__checkReturn	efx_rc_t
1970 ef10_nic_probe(
1971 	__in		efx_nic_t *enp)
1972 {
1973 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1974 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
1975 	efx_rc_t rc;
1976 
1977 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
1978 	    enp->en_family == EFX_FAMILY_MEDFORD ||
1979 	    enp->en_family == EFX_FAMILY_MEDFORD2);
1980 
1981 	/* Read and clear any assertion state */
1982 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
1983 		goto fail1;
1984 
1985 	/* Exit the assertion handler */
1986 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
1987 		if (rc != EACCES)
1988 			goto fail2;
1989 
1990 	if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
1991 		goto fail3;
1992 
1993 	if ((rc = ef10_nic_board_cfg(enp)) != 0)
1994 		goto fail4;
1995 
1996 	/*
1997 	 * Set default driver config limits (based on board config).
1998 	 *
1999 	 * FIXME: For now allocate a fixed number of VIs which is likely to be
2000 	 * sufficient and small enough to allow multiple functions on the same
2001 	 * port.
2002 	 */
2003 	edcp->edc_min_vi_count = edcp->edc_max_vi_count =
2004 	    MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
2005 
2006 	/* The client driver must configure and enable PIO buffer support */
2007 	edcp->edc_max_piobuf_count = 0;
2008 	edcp->edc_pio_alloc_size = 0;
2009 
2010 #if EFSYS_OPT_MAC_STATS
2011 	/* Wipe the MAC statistics */
2012 	if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
2013 		goto fail5;
2014 #endif
2015 
2016 #if EFSYS_OPT_LOOPBACK
2017 	if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
2018 		goto fail6;
2019 #endif
2020 
2021 #if EFSYS_OPT_MON_STATS
2022 	if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
2023 		/* Unprivileged functions do not have access to sensors */
2024 		if (rc != EACCES)
2025 			goto fail7;
2026 	}
2027 #endif
2028 
2029 	encp->enc_features = enp->en_features;
2030 
2031 	return (0);
2032 
2033 #if EFSYS_OPT_MON_STATS
2034 fail7:
2035 	EFSYS_PROBE(fail7);
2036 #endif
2037 #if EFSYS_OPT_LOOPBACK
2038 fail6:
2039 	EFSYS_PROBE(fail6);
2040 #endif
2041 #if EFSYS_OPT_MAC_STATS
2042 fail5:
2043 	EFSYS_PROBE(fail5);
2044 #endif
2045 fail4:
2046 	EFSYS_PROBE(fail4);
2047 fail3:
2048 	EFSYS_PROBE(fail3);
2049 fail2:
2050 	EFSYS_PROBE(fail2);
2051 fail1:
2052 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2053 
2054 	return (rc);
2055 }
2056 
2057 	__checkReturn	efx_rc_t
2058 ef10_nic_set_drv_limits(
2059 	__inout		efx_nic_t *enp,
2060 	__in		efx_drv_limits_t *edlp)
2061 {
2062 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2063 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2064 	uint32_t min_evq_count, max_evq_count;
2065 	uint32_t min_rxq_count, max_rxq_count;
2066 	uint32_t min_txq_count, max_txq_count;
2067 	efx_rc_t rc;
2068 
2069 	if (edlp == NULL) {
2070 		rc = EINVAL;
2071 		goto fail1;
2072 	}
2073 
2074 	/* Get minimum required and maximum usable VI limits */
2075 	min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
2076 	min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
2077 	min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
2078 
2079 	edcp->edc_min_vi_count =
2080 	    MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
2081 
2082 	max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
2083 	max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
2084 	max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
2085 
2086 	edcp->edc_max_vi_count =
2087 	    MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
2088 
2089 	/*
2090 	 * Check limits for sub-allocated piobuf blocks.
2091 	 * PIO is optional, so don't fail if the limits are incorrect.
2092 	 */
2093 	if ((encp->enc_piobuf_size == 0) ||
2094 	    (encp->enc_piobuf_limit == 0) ||
2095 	    (edlp->edl_min_pio_alloc_size == 0) ||
2096 	    (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
2097 		/* Disable PIO */
2098 		edcp->edc_max_piobuf_count = 0;
2099 		edcp->edc_pio_alloc_size = 0;
2100 	} else {
2101 		uint32_t blk_size, blk_count, blks_per_piobuf;
2102 
2103 		blk_size =
2104 		    MAX(edlp->edl_min_pio_alloc_size,
2105 			    encp->enc_piobuf_min_alloc_size);
2106 
2107 		blks_per_piobuf = encp->enc_piobuf_size / blk_size;
2108 		EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
2109 
2110 		blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
2111 
2112 		/* A zero max pio alloc count means unlimited */
2113 		if ((edlp->edl_max_pio_alloc_count > 0) &&
2114 		    (edlp->edl_max_pio_alloc_count < blk_count)) {
2115 			blk_count = edlp->edl_max_pio_alloc_count;
2116 		}
2117 
2118 		edcp->edc_pio_alloc_size = blk_size;
2119 		edcp->edc_max_piobuf_count =
2120 		    (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
2121 	}
2122 
2123 	return (0);
2124 
2125 fail1:
2126 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2127 
2128 	return (rc);
2129 }
2130 
2131 	__checkReturn	efx_rc_t
2132 ef10_nic_reset(
2133 	__in		efx_nic_t *enp)
2134 {
2135 	efx_mcdi_req_t req;
2136 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
2137 		MC_CMD_ENTITY_RESET_OUT_LEN);
2138 	efx_rc_t rc;
2139 
2140 	/* ef10_nic_reset() is called to recover from BADASSERT failures. */
2141 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2142 		goto fail1;
2143 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2144 		goto fail2;
2145 
2146 	req.emr_cmd = MC_CMD_ENTITY_RESET;
2147 	req.emr_in_buf = payload;
2148 	req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
2149 	req.emr_out_buf = payload;
2150 	req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
2151 
2152 	MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
2153 	    ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
2154 
2155 	efx_mcdi_execute(enp, &req);
2156 
2157 	if (req.emr_rc != 0) {
2158 		rc = req.emr_rc;
2159 		goto fail3;
2160 	}
2161 
2162 	/* Clear RX/TX DMA queue errors */
2163 	enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
2164 
2165 	return (0);
2166 
2167 fail3:
2168 	EFSYS_PROBE(fail3);
2169 fail2:
2170 	EFSYS_PROBE(fail2);
2171 fail1:
2172 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2173 
2174 	return (rc);
2175 }
2176 
2177 	__checkReturn	efx_rc_t
2178 ef10_nic_init(
2179 	__in		efx_nic_t *enp)
2180 {
2181 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2182 	uint32_t min_vi_count, max_vi_count;
2183 	uint32_t vi_count, vi_base, vi_shift;
2184 	uint32_t i;
2185 	uint32_t retry;
2186 	uint32_t delay_us;
2187 	uint32_t vi_window_size;
2188 	efx_rc_t rc;
2189 
2190 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
2191 	    enp->en_family == EFX_FAMILY_MEDFORD ||
2192 	    enp->en_family == EFX_FAMILY_MEDFORD2);
2193 
2194 	/* Enable reporting of some events (e.g. link change) */
2195 	if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
2196 		goto fail1;
2197 
2198 	/* Allocate (optional) on-chip PIO buffers */
2199 	ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
2200 
2201 	/*
2202 	 * For best performance, PIO writes should use a write-combined
2203 	 * (WC) memory mapping. Using a separate WC mapping for the PIO
2204 	 * aperture of each VI would be a burden to drivers (and not
2205 	 * possible if the host page size is >4Kbyte).
2206 	 *
2207 	 * To avoid this we use a single uncached (UC) mapping for VI
2208 	 * register access, and a single WC mapping for extra VIs used
2209 	 * for PIO writes.
2210 	 *
2211 	 * Each piobuf must be linked to a VI in the WC mapping, and to
2212 	 * each VI that is using a sub-allocated block from the piobuf.
2213 	 */
2214 	min_vi_count = edcp->edc_min_vi_count;
2215 	max_vi_count =
2216 	    edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
2217 
2218 	/* Ensure that the previously attached driver's VIs are freed */
2219 	if ((rc = efx_mcdi_free_vis(enp)) != 0)
2220 		goto fail2;
2221 
2222 	/*
2223 	 * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
2224 	 * fails then retrying the request for fewer VI resources may succeed.
2225 	 */
2226 	vi_count = 0;
2227 	if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
2228 		    &vi_base, &vi_count, &vi_shift)) != 0)
2229 		goto fail3;
2230 
2231 	EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
2232 
2233 	if (vi_count < min_vi_count) {
2234 		rc = ENOMEM;
2235 		goto fail4;
2236 	}
2237 
2238 	enp->en_arch.ef10.ena_vi_base = vi_base;
2239 	enp->en_arch.ef10.ena_vi_count = vi_count;
2240 	enp->en_arch.ef10.ena_vi_shift = vi_shift;
2241 
2242 	if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
2243 		/* Not enough extra VIs to map piobufs */
2244 		ef10_nic_free_piobufs(enp);
2245 	}
2246 
2247 	enp->en_arch.ef10.ena_pio_write_vi_base =
2248 	    vi_count - enp->en_arch.ef10.ena_piobuf_count;
2249 
2250 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
2251 	    EFX_VI_WINDOW_SHIFT_INVALID);
2252 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
2253 	    EFX_VI_WINDOW_SHIFT_64K);
2254 	vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
2255 
2256 	/* Save UC memory mapping details */
2257 	enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
2258 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2259 		enp->en_arch.ef10.ena_uc_mem_map_size =
2260 		    (vi_window_size *
2261 		    enp->en_arch.ef10.ena_pio_write_vi_base);
2262 	} else {
2263 		enp->en_arch.ef10.ena_uc_mem_map_size =
2264 		    (vi_window_size *
2265 		    enp->en_arch.ef10.ena_vi_count);
2266 	}
2267 
2268 	/* Save WC memory mapping details */
2269 	enp->en_arch.ef10.ena_wc_mem_map_offset =
2270 	    enp->en_arch.ef10.ena_uc_mem_map_offset +
2271 	    enp->en_arch.ef10.ena_uc_mem_map_size;
2272 
2273 	enp->en_arch.ef10.ena_wc_mem_map_size =
2274 	    (vi_window_size *
2275 	    enp->en_arch.ef10.ena_piobuf_count);
2276 
2277 	/* Link piobufs to extra VIs in WC mapping */
2278 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2279 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2280 			rc = efx_mcdi_link_piobuf(enp,
2281 			    enp->en_arch.ef10.ena_pio_write_vi_base + i,
2282 			    enp->en_arch.ef10.ena_piobuf_handle[i]);
2283 			if (rc != 0)
2284 				break;
2285 		}
2286 	}
2287 
2288 	/*
2289 	 * Allocate a vAdaptor attached to our upstream vPort/pPort.
2290 	 *
2291 	 * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
2292 	 * driver has yet to bring up the EVB port. See bug 56147. In this case,
2293 	 * retry the request several times after waiting a while. The wait time
2294 	 * between retries starts small (10ms) and exponentially increases.
2295 	 * Total wait time is a little over two seconds. Retry logic in the
2296 	 * client driver may mean this whole loop is repeated if it continues to
2297 	 * fail.
2298 	 */
2299 	retry = 0;
2300 	delay_us = 10000;
2301 	while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
2302 		if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
2303 		    (rc != ENOENT)) {
2304 			/*
2305 			 * Do not retry alloc for PF, or for other errors on
2306 			 * a VF.
2307 			 */
2308 			goto fail5;
2309 		}
2310 
2311 		/* VF startup before PF is ready. Retry allocation. */
2312 		if (retry > 5) {
2313 			/* Too many attempts */
2314 			rc = EINVAL;
2315 			goto fail6;
2316 		}
2317 		EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
2318 		EFSYS_SLEEP(delay_us);
2319 		retry++;
2320 		if (delay_us < 500000)
2321 			delay_us <<= 2;
2322 	}
2323 
2324 	enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
2325 	enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
2326 
2327 	return (0);
2328 
2329 fail6:
2330 	EFSYS_PROBE(fail6);
2331 fail5:
2332 	EFSYS_PROBE(fail5);
2333 fail4:
2334 	EFSYS_PROBE(fail4);
2335 fail3:
2336 	EFSYS_PROBE(fail3);
2337 fail2:
2338 	EFSYS_PROBE(fail2);
2339 
2340 	ef10_nic_free_piobufs(enp);
2341 
2342 fail1:
2343 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2344 
2345 	return (rc);
2346 }
2347 
2348 	__checkReturn	efx_rc_t
2349 ef10_nic_get_vi_pool(
2350 	__in		efx_nic_t *enp,
2351 	__out		uint32_t *vi_countp)
2352 {
2353 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
2354 	    enp->en_family == EFX_FAMILY_MEDFORD ||
2355 	    enp->en_family == EFX_FAMILY_MEDFORD2);
2356 
2357 	/*
2358 	 * Report VIs that the client driver can use.
2359 	 * Do not include VIs used for PIO buffer writes.
2360 	 */
2361 	*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
2362 
2363 	return (0);
2364 }
2365 
2366 	__checkReturn	efx_rc_t
2367 ef10_nic_get_bar_region(
2368 	__in		efx_nic_t *enp,
2369 	__in		efx_nic_region_t region,
2370 	__out		uint32_t *offsetp,
2371 	__out		size_t *sizep)
2372 {
2373 	efx_rc_t rc;
2374 
2375 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
2376 	    enp->en_family == EFX_FAMILY_MEDFORD ||
2377 	    enp->en_family == EFX_FAMILY_MEDFORD2);
2378 
2379 	/*
2380 	 * TODO: Specify host memory mapping alignment and granularity
2381 	 * in efx_drv_limits_t so that they can be taken into account
2382 	 * when allocating extra VIs for PIO writes.
2383 	 */
2384 	switch (region) {
2385 	case EFX_REGION_VI:
2386 		/* UC mapped memory BAR region for VI registers */
2387 		*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
2388 		*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
2389 		break;
2390 
2391 	case EFX_REGION_PIO_WRITE_VI:
2392 		/* WC mapped memory BAR region for piobuf writes */
2393 		*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
2394 		*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
2395 		break;
2396 
2397 	default:
2398 		rc = EINVAL;
2399 		goto fail1;
2400 	}
2401 
2402 	return (0);
2403 
2404 fail1:
2405 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2406 
2407 	return (rc);
2408 }
2409 
2410 	__checkReturn	boolean_t
2411 ef10_nic_hw_unavailable(
2412 	__in		efx_nic_t *enp)
2413 {
2414 	efx_dword_t dword;
2415 
2416 	if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
2417 		return (B_TRUE);
2418 
2419 	EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
2420 	if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
2421 		goto unavail;
2422 
2423 	return (B_FALSE);
2424 
2425 unavail:
2426 	ef10_nic_set_hw_unavailable(enp);
2427 
2428 	return (B_TRUE);
2429 }
2430 
2431 			void
2432 ef10_nic_set_hw_unavailable(
2433 	__in		efx_nic_t *enp)
2434 {
2435 	EFSYS_PROBE(hw_unavail);
2436 	enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
2437 }
2438 
2439 			void
2440 ef10_nic_fini(
2441 	__in		efx_nic_t *enp)
2442 {
2443 	uint32_t i;
2444 	efx_rc_t rc;
2445 
2446 	(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
2447 	enp->en_vport_id = 0;
2448 
2449 	/* Unlink piobufs from extra VIs in WC mapping */
2450 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2451 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2452 			rc = efx_mcdi_unlink_piobuf(enp,
2453 			    enp->en_arch.ef10.ena_pio_write_vi_base + i);
2454 			if (rc != 0)
2455 				break;
2456 		}
2457 	}
2458 
2459 	ef10_nic_free_piobufs(enp);
2460 
2461 	(void) efx_mcdi_free_vis(enp);
2462 	enp->en_arch.ef10.ena_vi_count = 0;
2463 }
2464 
2465 			void
2466 ef10_nic_unprobe(
2467 	__in		efx_nic_t *enp)
2468 {
2469 #if EFSYS_OPT_MON_STATS
2470 	mcdi_mon_cfg_free(enp);
2471 #endif /* EFSYS_OPT_MON_STATS */
2472 	(void) efx_mcdi_drv_attach(enp, B_FALSE);
2473 }
2474 
2475 #if EFSYS_OPT_DIAG
2476 
2477 	__checkReturn	efx_rc_t
2478 ef10_nic_register_test(
2479 	__in		efx_nic_t *enp)
2480 {
2481 	efx_rc_t rc;
2482 
2483 	/* FIXME */
2484 	_NOTE(ARGUNUSED(enp))
2485 	_NOTE(CONSTANTCONDITION)
2486 	if (B_FALSE) {
2487 		rc = ENOTSUP;
2488 		goto fail1;
2489 	}
2490 	/* FIXME */
2491 
2492 	return (0);
2493 
2494 fail1:
2495 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2496 
2497 	return (rc);
2498 }
2499 
2500 #endif	/* EFSYS_OPT_DIAG */
2501 
2502 #if EFSYS_OPT_FW_SUBVARIANT_AWARE
2503 
2504 	__checkReturn	efx_rc_t
2505 efx_mcdi_get_nic_global(
2506 	__in		efx_nic_t *enp,
2507 	__in		uint32_t key,
2508 	__out		uint32_t *valuep)
2509 {
2510 	efx_mcdi_req_t req;
2511 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
2512 		MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
2513 	efx_rc_t rc;
2514 
2515 	req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
2516 	req.emr_in_buf = payload;
2517 	req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
2518 	req.emr_out_buf = payload;
2519 	req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
2520 
2521 	MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
2522 
2523 	efx_mcdi_execute(enp, &req);
2524 
2525 	if (req.emr_rc != 0) {
2526 		rc = req.emr_rc;
2527 		goto fail1;
2528 	}
2529 
2530 	if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
2531 		rc = EMSGSIZE;
2532 		goto fail2;
2533 	}
2534 
2535 	*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
2536 
2537 	return (0);
2538 
2539 fail2:
2540 	EFSYS_PROBE(fail2);
2541 fail1:
2542 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2543 
2544 	return (rc);
2545 }
2546 
2547 	__checkReturn	efx_rc_t
2548 efx_mcdi_set_nic_global(
2549 	__in		efx_nic_t *enp,
2550 	__in		uint32_t key,
2551 	__in		uint32_t value)
2552 {
2553 	efx_mcdi_req_t req;
2554 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
2555 	efx_rc_t rc;
2556 
2557 	req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
2558 	req.emr_in_buf = payload;
2559 	req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
2560 	req.emr_out_buf = NULL;
2561 	req.emr_out_length = 0;
2562 
2563 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
2564 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
2565 
2566 	efx_mcdi_execute(enp, &req);
2567 
2568 	if (req.emr_rc != 0) {
2569 		rc = req.emr_rc;
2570 		goto fail1;
2571 	}
2572 
2573 	return (0);
2574 
2575 fail1:
2576 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2577 
2578 	return (rc);
2579 }
2580 
2581 #endif	/* EFSYS_OPT_FW_SUBVARIANT_AWARE */
2582 
2583 #endif	/* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */
2584