xref: /freebsd/sys/dev/sfxge/common/ef10_nic.c (revision cf94ca3704c68dffefc117c12aad702993dd12e3)
1 /*-
2  * Copyright (c) 2012-2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are
27  * those of the authors and should not be interpreted as representing official
28  * policies, either expressed or implied, of the FreeBSD Project.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "efx.h"
35 #include "efx_impl.h"
36 #if EFSYS_OPT_MON_MCDI
37 #include "mcdi_mon.h"
38 #endif
39 
40 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
41 
42 #include "ef10_tlv_layout.h"
43 
44 	__checkReturn	efx_rc_t
45 efx_mcdi_get_port_assignment(
46 	__in		efx_nic_t *enp,
47 	__out		uint32_t *portp)
48 {
49 	efx_mcdi_req_t req;
50 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
51 		MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
52 	efx_rc_t rc;
53 
54 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
55 	    enp->en_family == EFX_FAMILY_MEDFORD ||
56 	    enp->en_family == EFX_FAMILY_MEDFORD2);
57 
58 	req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
59 	req.emr_in_buf = payload;
60 	req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
61 	req.emr_out_buf = payload;
62 	req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
63 
64 	efx_mcdi_execute(enp, &req);
65 
66 	if (req.emr_rc != 0) {
67 		rc = req.emr_rc;
68 		goto fail1;
69 	}
70 
71 	if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
72 		rc = EMSGSIZE;
73 		goto fail2;
74 	}
75 
76 	*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
77 
78 	return (0);
79 
80 fail2:
81 	EFSYS_PROBE(fail2);
82 fail1:
83 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
84 
85 	return (rc);
86 }
87 
88 	__checkReturn	efx_rc_t
89 efx_mcdi_get_port_modes(
90 	__in		efx_nic_t *enp,
91 	__out		uint32_t *modesp,
92 	__out_opt	uint32_t *current_modep,
93 	__out_opt	uint32_t *default_modep)
94 {
95 	efx_mcdi_req_t req;
96 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
97 		MC_CMD_GET_PORT_MODES_OUT_LEN);
98 	efx_rc_t rc;
99 
100 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
101 	    enp->en_family == EFX_FAMILY_MEDFORD ||
102 	    enp->en_family == EFX_FAMILY_MEDFORD2);
103 
104 	req.emr_cmd = MC_CMD_GET_PORT_MODES;
105 	req.emr_in_buf = payload;
106 	req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
107 	req.emr_out_buf = payload;
108 	req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
109 
110 	efx_mcdi_execute(enp, &req);
111 
112 	if (req.emr_rc != 0) {
113 		rc = req.emr_rc;
114 		goto fail1;
115 	}
116 
117 	/*
118 	 * Require only Modes and DefaultMode fields, unless the current mode
119 	 * was requested (CurrentMode field was added for Medford).
120 	 */
121 	if (req.emr_out_length_used <
122 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
123 		rc = EMSGSIZE;
124 		goto fail2;
125 	}
126 	if ((current_modep != NULL) && (req.emr_out_length_used <
127 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
128 		rc = EMSGSIZE;
129 		goto fail3;
130 	}
131 
132 	*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
133 
134 	if (current_modep != NULL) {
135 		*current_modep = MCDI_OUT_DWORD(req,
136 					    GET_PORT_MODES_OUT_CURRENT_MODE);
137 	}
138 
139 	if (default_modep != NULL) {
140 		*default_modep = MCDI_OUT_DWORD(req,
141 					    GET_PORT_MODES_OUT_DEFAULT_MODE);
142 	}
143 
144 	return (0);
145 
146 fail3:
147 	EFSYS_PROBE(fail3);
148 fail2:
149 	EFSYS_PROBE(fail2);
150 fail1:
151 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
152 
153 	return (rc);
154 }
155 
156 	__checkReturn	efx_rc_t
157 ef10_nic_get_port_mode_bandwidth(
158 	__in		efx_nic_t *enp,
159 	__out		uint32_t *bandwidth_mbpsp)
160 {
161 	uint32_t port_modes;
162 	uint32_t current_mode;
163 	efx_port_t *epp = &(enp->en_port);
164 
165 	uint32_t single_lane;
166 	uint32_t dual_lane;
167 	uint32_t quad_lane;
168 	uint32_t bandwidth;
169 	efx_rc_t rc;
170 
171 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
172 				    &current_mode, NULL)) != 0) {
173 		/* No port mode info available. */
174 		goto fail1;
175 	}
176 
177 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
178 		single_lane = 25000;
179 	else
180 		single_lane = 10000;
181 
182 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
183 		dual_lane = 50000;
184 	else
185 		dual_lane = 20000;
186 
187 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
188 		quad_lane = 100000;
189 	else
190 		quad_lane = 40000;
191 
192 	switch (current_mode) {
193 	case TLV_PORT_MODE_1x1_NA:			/* mode 0 */
194 		bandwidth = single_lane;
195 		break;
196 	case TLV_PORT_MODE_1x2_NA:			/* mode 10 */
197 	case TLV_PORT_MODE_NA_1x2:			/* mode 11 */
198 		bandwidth = dual_lane;
199 		break;
200 	case TLV_PORT_MODE_1x1_1x1:			/* mode 2 */
201 		bandwidth = single_lane + single_lane;
202 		break;
203 	case TLV_PORT_MODE_4x1_NA:			/* mode 4 */
204 	case TLV_PORT_MODE_NA_4x1:			/* mode 8 */
205 		bandwidth = 4 * single_lane;
206 		break;
207 	case TLV_PORT_MODE_2x1_2x1:			/* mode 5 */
208 		bandwidth = (2 * single_lane) + (2 * single_lane);
209 		break;
210 	case TLV_PORT_MODE_1x2_1x2:			/* mode 12 */
211 		bandwidth = dual_lane + dual_lane;
212 		break;
213 	case TLV_PORT_MODE_1x2_2x1:			/* mode 17 */
214 	case TLV_PORT_MODE_2x1_1x2:			/* mode 18 */
215 		bandwidth = dual_lane + (2 * single_lane);
216 		break;
217 	/* Legacy Medford-only mode. Do not use (see bug63270) */
218 	case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:	/* mode 9 */
219 		bandwidth = 4 * single_lane;
220 		break;
221 	case TLV_PORT_MODE_1x4_NA:			/* mode 1 */
222 	case TLV_PORT_MODE_NA_1x4:			/* mode 22 */
223 		bandwidth = quad_lane;
224 		break;
225 	case TLV_PORT_MODE_2x2_NA:			/* mode 13 */
226 	case TLV_PORT_MODE_NA_2x2:			/* mode 14 */
227 		bandwidth = 2 * dual_lane;
228 		break;
229 	case TLV_PORT_MODE_1x4_2x1:			/* mode 6 */
230 	case TLV_PORT_MODE_2x1_1x4:			/* mode 7 */
231 		bandwidth = quad_lane + (2 * single_lane);
232 		break;
233 	case TLV_PORT_MODE_1x4_1x2:			/* mode 15 */
234 	case TLV_PORT_MODE_1x2_1x4:			/* mode 16 */
235 		bandwidth = quad_lane + dual_lane;
236 		break;
237 	case TLV_PORT_MODE_1x4_1x4:			/* mode 3 */
238 		bandwidth = quad_lane + quad_lane;
239 		break;
240 	default:
241 		rc = EINVAL;
242 		goto fail2;
243 	}
244 
245 	*bandwidth_mbpsp = bandwidth;
246 
247 	return (0);
248 
249 fail2:
250 	EFSYS_PROBE(fail2);
251 fail1:
252 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
253 
254 	return (rc);
255 }
256 
257 static	__checkReturn		efx_rc_t
258 efx_mcdi_vadaptor_alloc(
259 	__in			efx_nic_t *enp,
260 	__in			uint32_t port_id)
261 {
262 	efx_mcdi_req_t req;
263 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
264 		MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
265 	efx_rc_t rc;
266 
267 	EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL);
268 
269 	req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
270 	req.emr_in_buf = payload;
271 	req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
272 	req.emr_out_buf = payload;
273 	req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
274 
275 	MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
276 	MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
277 	    VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
278 	    enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
279 
280 	efx_mcdi_execute(enp, &req);
281 
282 	if (req.emr_rc != 0) {
283 		rc = req.emr_rc;
284 		goto fail1;
285 	}
286 
287 	return (0);
288 
289 fail1:
290 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
291 
292 	return (rc);
293 }
294 
295 static	__checkReturn		efx_rc_t
296 efx_mcdi_vadaptor_free(
297 	__in			efx_nic_t *enp,
298 	__in			uint32_t port_id)
299 {
300 	efx_mcdi_req_t req;
301 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
302 		MC_CMD_VADAPTOR_FREE_OUT_LEN);
303 	efx_rc_t rc;
304 
305 	req.emr_cmd = MC_CMD_VADAPTOR_FREE;
306 	req.emr_in_buf = payload;
307 	req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
308 	req.emr_out_buf = payload;
309 	req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
310 
311 	MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
312 
313 	efx_mcdi_execute(enp, &req);
314 
315 	if (req.emr_rc != 0) {
316 		rc = req.emr_rc;
317 		goto fail1;
318 	}
319 
320 	return (0);
321 
322 fail1:
323 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
324 
325 	return (rc);
326 }
327 
328 	__checkReturn	efx_rc_t
329 efx_mcdi_get_mac_address_pf(
330 	__in			efx_nic_t *enp,
331 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
332 {
333 	efx_mcdi_req_t req;
334 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
335 		MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
336 	efx_rc_t rc;
337 
338 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
339 	    enp->en_family == EFX_FAMILY_MEDFORD ||
340 	    enp->en_family == EFX_FAMILY_MEDFORD2);
341 
342 	req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
343 	req.emr_in_buf = payload;
344 	req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
345 	req.emr_out_buf = payload;
346 	req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
347 
348 	efx_mcdi_execute(enp, &req);
349 
350 	if (req.emr_rc != 0) {
351 		rc = req.emr_rc;
352 		goto fail1;
353 	}
354 
355 	if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
356 		rc = EMSGSIZE;
357 		goto fail2;
358 	}
359 
360 	if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
361 		rc = ENOENT;
362 		goto fail3;
363 	}
364 
365 	if (mac_addrp != NULL) {
366 		uint8_t *addrp;
367 
368 		addrp = MCDI_OUT2(req, uint8_t,
369 		    GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
370 
371 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
372 	}
373 
374 	return (0);
375 
376 fail3:
377 	EFSYS_PROBE(fail3);
378 fail2:
379 	EFSYS_PROBE(fail2);
380 fail1:
381 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
382 
383 	return (rc);
384 }
385 
386 	__checkReturn	efx_rc_t
387 efx_mcdi_get_mac_address_vf(
388 	__in			efx_nic_t *enp,
389 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
390 {
391 	efx_mcdi_req_t req;
392 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
393 		MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
394 	efx_rc_t rc;
395 
396 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
397 	    enp->en_family == EFX_FAMILY_MEDFORD ||
398 	    enp->en_family == EFX_FAMILY_MEDFORD2);
399 
400 	req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
401 	req.emr_in_buf = payload;
402 	req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
403 	req.emr_out_buf = payload;
404 	req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
405 
406 	MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
407 	    EVB_PORT_ID_ASSIGNED);
408 
409 	efx_mcdi_execute(enp, &req);
410 
411 	if (req.emr_rc != 0) {
412 		rc = req.emr_rc;
413 		goto fail1;
414 	}
415 
416 	if (req.emr_out_length_used <
417 	    MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
418 		rc = EMSGSIZE;
419 		goto fail2;
420 	}
421 
422 	if (MCDI_OUT_DWORD(req,
423 		VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
424 		rc = ENOENT;
425 		goto fail3;
426 	}
427 
428 	if (mac_addrp != NULL) {
429 		uint8_t *addrp;
430 
431 		addrp = MCDI_OUT2(req, uint8_t,
432 		    VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
433 
434 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
435 	}
436 
437 	return (0);
438 
439 fail3:
440 	EFSYS_PROBE(fail3);
441 fail2:
442 	EFSYS_PROBE(fail2);
443 fail1:
444 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
445 
446 	return (rc);
447 }
448 
449 	__checkReturn	efx_rc_t
450 efx_mcdi_get_clock(
451 	__in		efx_nic_t *enp,
452 	__out		uint32_t *sys_freqp,
453 	__out		uint32_t *dpcpu_freqp)
454 {
455 	efx_mcdi_req_t req;
456 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
457 		MC_CMD_GET_CLOCK_OUT_LEN);
458 	efx_rc_t rc;
459 
460 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
461 	    enp->en_family == EFX_FAMILY_MEDFORD ||
462 	    enp->en_family == EFX_FAMILY_MEDFORD2);
463 
464 	req.emr_cmd = MC_CMD_GET_CLOCK;
465 	req.emr_in_buf = payload;
466 	req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
467 	req.emr_out_buf = payload;
468 	req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
469 
470 	efx_mcdi_execute(enp, &req);
471 
472 	if (req.emr_rc != 0) {
473 		rc = req.emr_rc;
474 		goto fail1;
475 	}
476 
477 	if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
478 		rc = EMSGSIZE;
479 		goto fail2;
480 	}
481 
482 	*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
483 	if (*sys_freqp == 0) {
484 		rc = EINVAL;
485 		goto fail3;
486 	}
487 	*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
488 	if (*dpcpu_freqp == 0) {
489 		rc = EINVAL;
490 		goto fail4;
491 	}
492 
493 	return (0);
494 
495 fail4:
496 	EFSYS_PROBE(fail4);
497 fail3:
498 	EFSYS_PROBE(fail3);
499 fail2:
500 	EFSYS_PROBE(fail2);
501 fail1:
502 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
503 
504 	return (rc);
505 }
506 
507 	__checkReturn	efx_rc_t
508 efx_mcdi_get_rxdp_config(
509 	__in		efx_nic_t *enp,
510 	__out		uint32_t *end_paddingp)
511 {
512 	efx_mcdi_req_t req;
513 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
514 		MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
515 	uint32_t end_padding;
516 	efx_rc_t rc;
517 
518 	req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
519 	req.emr_in_buf = payload;
520 	req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
521 	req.emr_out_buf = payload;
522 	req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
523 
524 	efx_mcdi_execute(enp, &req);
525 	if (req.emr_rc != 0) {
526 		rc = req.emr_rc;
527 		goto fail1;
528 	}
529 
530 	if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
531 				    GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
532 		/* RX DMA end padding is disabled */
533 		end_padding = 0;
534 	} else {
535 		switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
536 					    GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
537 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
538 			end_padding = 64;
539 			break;
540 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
541 			end_padding = 128;
542 			break;
543 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
544 			end_padding = 256;
545 			break;
546 		default:
547 			rc = ENOTSUP;
548 			goto fail2;
549 		}
550 	}
551 
552 	*end_paddingp = end_padding;
553 
554 	return (0);
555 
556 fail2:
557 	EFSYS_PROBE(fail2);
558 fail1:
559 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
560 
561 	return (rc);
562 }
563 
564 	__checkReturn	efx_rc_t
565 efx_mcdi_get_vector_cfg(
566 	__in		efx_nic_t *enp,
567 	__out_opt	uint32_t *vec_basep,
568 	__out_opt	uint32_t *pf_nvecp,
569 	__out_opt	uint32_t *vf_nvecp)
570 {
571 	efx_mcdi_req_t req;
572 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
573 		MC_CMD_GET_VECTOR_CFG_OUT_LEN);
574 	efx_rc_t rc;
575 
576 	req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
577 	req.emr_in_buf = payload;
578 	req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
579 	req.emr_out_buf = payload;
580 	req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
581 
582 	efx_mcdi_execute(enp, &req);
583 
584 	if (req.emr_rc != 0) {
585 		rc = req.emr_rc;
586 		goto fail1;
587 	}
588 
589 	if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
590 		rc = EMSGSIZE;
591 		goto fail2;
592 	}
593 
594 	if (vec_basep != NULL)
595 		*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
596 	if (pf_nvecp != NULL)
597 		*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
598 	if (vf_nvecp != NULL)
599 		*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
600 
601 	return (0);
602 
603 fail2:
604 	EFSYS_PROBE(fail2);
605 fail1:
606 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
607 
608 	return (rc);
609 }
610 
611 static	__checkReturn	efx_rc_t
612 efx_mcdi_alloc_vis(
613 	__in		efx_nic_t *enp,
614 	__in		uint32_t min_vi_count,
615 	__in		uint32_t max_vi_count,
616 	__out		uint32_t *vi_basep,
617 	__out		uint32_t *vi_countp,
618 	__out		uint32_t *vi_shiftp)
619 {
620 	efx_mcdi_req_t req;
621 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
622 		MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
623 	efx_rc_t rc;
624 
625 	if (vi_countp == NULL) {
626 		rc = EINVAL;
627 		goto fail1;
628 	}
629 
630 	req.emr_cmd = MC_CMD_ALLOC_VIS;
631 	req.emr_in_buf = payload;
632 	req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
633 	req.emr_out_buf = payload;
634 	req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
635 
636 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
637 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
638 
639 	efx_mcdi_execute(enp, &req);
640 
641 	if (req.emr_rc != 0) {
642 		rc = req.emr_rc;
643 		goto fail2;
644 	}
645 
646 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
647 		rc = EMSGSIZE;
648 		goto fail3;
649 	}
650 
651 	*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
652 	*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
653 
654 	/* Report VI_SHIFT if available (always zero for Huntington) */
655 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
656 		*vi_shiftp = 0;
657 	else
658 		*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
659 
660 	return (0);
661 
662 fail3:
663 	EFSYS_PROBE(fail3);
664 fail2:
665 	EFSYS_PROBE(fail2);
666 fail1:
667 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
668 
669 	return (rc);
670 }
671 
672 
673 static	__checkReturn	efx_rc_t
674 efx_mcdi_free_vis(
675 	__in		efx_nic_t *enp)
676 {
677 	efx_mcdi_req_t req;
678 	efx_rc_t rc;
679 
680 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
681 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
682 
683 	req.emr_cmd = MC_CMD_FREE_VIS;
684 	req.emr_in_buf = NULL;
685 	req.emr_in_length = 0;
686 	req.emr_out_buf = NULL;
687 	req.emr_out_length = 0;
688 
689 	efx_mcdi_execute_quiet(enp, &req);
690 
691 	/* Ignore ELREADY (no allocated VIs, so nothing to free) */
692 	if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
693 		rc = req.emr_rc;
694 		goto fail1;
695 	}
696 
697 	return (0);
698 
699 fail1:
700 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
701 
702 	return (rc);
703 }
704 
705 
706 static	__checkReturn	efx_rc_t
707 efx_mcdi_alloc_piobuf(
708 	__in		efx_nic_t *enp,
709 	__out		efx_piobuf_handle_t *handlep)
710 {
711 	efx_mcdi_req_t req;
712 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
713 		MC_CMD_ALLOC_PIOBUF_OUT_LEN);
714 	efx_rc_t rc;
715 
716 	if (handlep == NULL) {
717 		rc = EINVAL;
718 		goto fail1;
719 	}
720 
721 	req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
722 	req.emr_in_buf = payload;
723 	req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
724 	req.emr_out_buf = payload;
725 	req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
726 
727 	efx_mcdi_execute_quiet(enp, &req);
728 
729 	if (req.emr_rc != 0) {
730 		rc = req.emr_rc;
731 		goto fail2;
732 	}
733 
734 	if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
735 		rc = EMSGSIZE;
736 		goto fail3;
737 	}
738 
739 	*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
740 
741 	return (0);
742 
743 fail3:
744 	EFSYS_PROBE(fail3);
745 fail2:
746 	EFSYS_PROBE(fail2);
747 fail1:
748 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
749 
750 	return (rc);
751 }
752 
753 static	__checkReturn	efx_rc_t
754 efx_mcdi_free_piobuf(
755 	__in		efx_nic_t *enp,
756 	__in		efx_piobuf_handle_t handle)
757 {
758 	efx_mcdi_req_t req;
759 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
760 		MC_CMD_FREE_PIOBUF_OUT_LEN);
761 	efx_rc_t rc;
762 
763 	req.emr_cmd = MC_CMD_FREE_PIOBUF;
764 	req.emr_in_buf = payload;
765 	req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
766 	req.emr_out_buf = payload;
767 	req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
768 
769 	MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
770 
771 	efx_mcdi_execute_quiet(enp, &req);
772 
773 	if (req.emr_rc != 0) {
774 		rc = req.emr_rc;
775 		goto fail1;
776 	}
777 
778 	return (0);
779 
780 fail1:
781 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
782 
783 	return (rc);
784 }
785 
786 static	__checkReturn	efx_rc_t
787 efx_mcdi_link_piobuf(
788 	__in		efx_nic_t *enp,
789 	__in		uint32_t vi_index,
790 	__in		efx_piobuf_handle_t handle)
791 {
792 	efx_mcdi_req_t req;
793 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
794 		MC_CMD_LINK_PIOBUF_OUT_LEN);
795 	efx_rc_t rc;
796 
797 	req.emr_cmd = MC_CMD_LINK_PIOBUF;
798 	req.emr_in_buf = payload;
799 	req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
800 	req.emr_out_buf = payload;
801 	req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
802 
803 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
804 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
805 
806 	efx_mcdi_execute(enp, &req);
807 
808 	if (req.emr_rc != 0) {
809 		rc = req.emr_rc;
810 		goto fail1;
811 	}
812 
813 	return (0);
814 
815 fail1:
816 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
817 
818 	return (rc);
819 }
820 
821 static	__checkReturn	efx_rc_t
822 efx_mcdi_unlink_piobuf(
823 	__in		efx_nic_t *enp,
824 	__in		uint32_t vi_index)
825 {
826 	efx_mcdi_req_t req;
827 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
828 		MC_CMD_UNLINK_PIOBUF_OUT_LEN);
829 	efx_rc_t rc;
830 
831 	req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
832 	req.emr_in_buf = payload;
833 	req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
834 	req.emr_out_buf = payload;
835 	req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
836 
837 	MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
838 
839 	efx_mcdi_execute_quiet(enp, &req);
840 
841 	if (req.emr_rc != 0) {
842 		rc = req.emr_rc;
843 		goto fail1;
844 	}
845 
846 	return (0);
847 
848 fail1:
849 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
850 
851 	return (rc);
852 }
853 
854 static			void
855 ef10_nic_alloc_piobufs(
856 	__in		efx_nic_t *enp,
857 	__in		uint32_t max_piobuf_count)
858 {
859 	efx_piobuf_handle_t *handlep;
860 	unsigned int i;
861 
862 	EFSYS_ASSERT3U(max_piobuf_count, <=,
863 	    EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
864 
865 	enp->en_arch.ef10.ena_piobuf_count = 0;
866 
867 	for (i = 0; i < max_piobuf_count; i++) {
868 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
869 
870 		if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
871 			goto fail1;
872 
873 		enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
874 		enp->en_arch.ef10.ena_piobuf_count++;
875 	}
876 
877 	return;
878 
879 fail1:
880 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
881 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
882 
883 		(void) efx_mcdi_free_piobuf(enp, *handlep);
884 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
885 	}
886 	enp->en_arch.ef10.ena_piobuf_count = 0;
887 }
888 
889 
890 static			void
891 ef10_nic_free_piobufs(
892 	__in		efx_nic_t *enp)
893 {
894 	efx_piobuf_handle_t *handlep;
895 	unsigned int i;
896 
897 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
898 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
899 
900 		(void) efx_mcdi_free_piobuf(enp, *handlep);
901 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
902 	}
903 	enp->en_arch.ef10.ena_piobuf_count = 0;
904 }
905 
906 /* Sub-allocate a block from a piobuf */
907 	__checkReturn	efx_rc_t
908 ef10_nic_pio_alloc(
909 	__inout		efx_nic_t *enp,
910 	__out		uint32_t *bufnump,
911 	__out		efx_piobuf_handle_t *handlep,
912 	__out		uint32_t *blknump,
913 	__out		uint32_t *offsetp,
914 	__out		size_t *sizep)
915 {
916 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
917 	efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
918 	uint32_t blk_per_buf;
919 	uint32_t buf, blk;
920 	efx_rc_t rc;
921 
922 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
923 	    enp->en_family == EFX_FAMILY_MEDFORD ||
924 	    enp->en_family == EFX_FAMILY_MEDFORD2);
925 	EFSYS_ASSERT(bufnump);
926 	EFSYS_ASSERT(handlep);
927 	EFSYS_ASSERT(blknump);
928 	EFSYS_ASSERT(offsetp);
929 	EFSYS_ASSERT(sizep);
930 
931 	if ((edcp->edc_pio_alloc_size == 0) ||
932 	    (enp->en_arch.ef10.ena_piobuf_count == 0)) {
933 		rc = ENOMEM;
934 		goto fail1;
935 	}
936 	blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
937 
938 	for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
939 		uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
940 
941 		if (~(*map) == 0)
942 			continue;
943 
944 		EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
945 		for (blk = 0; blk < blk_per_buf; blk++) {
946 			if ((*map & (1u << blk)) == 0) {
947 				*map |= (1u << blk);
948 				goto done;
949 			}
950 		}
951 	}
952 	rc = ENOMEM;
953 	goto fail2;
954 
955 done:
956 	*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
957 	*bufnump = buf;
958 	*blknump = blk;
959 	*sizep = edcp->edc_pio_alloc_size;
960 	*offsetp = blk * (*sizep);
961 
962 	return (0);
963 
964 fail2:
965 	EFSYS_PROBE(fail2);
966 fail1:
967 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
968 
969 	return (rc);
970 }
971 
972 /* Free a piobuf sub-allocated block */
973 	__checkReturn	efx_rc_t
974 ef10_nic_pio_free(
975 	__inout		efx_nic_t *enp,
976 	__in		uint32_t bufnum,
977 	__in		uint32_t blknum)
978 {
979 	uint32_t *map;
980 	efx_rc_t rc;
981 
982 	if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
983 	    (blknum >= (8 * sizeof (*map)))) {
984 		rc = EINVAL;
985 		goto fail1;
986 	}
987 
988 	map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
989 	if ((*map & (1u << blknum)) == 0) {
990 		rc = ENOENT;
991 		goto fail2;
992 	}
993 	*map &= ~(1u << blknum);
994 
995 	return (0);
996 
997 fail2:
998 	EFSYS_PROBE(fail2);
999 fail1:
1000 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1001 
1002 	return (rc);
1003 }
1004 
1005 	__checkReturn	efx_rc_t
1006 ef10_nic_pio_link(
1007 	__inout		efx_nic_t *enp,
1008 	__in		uint32_t vi_index,
1009 	__in		efx_piobuf_handle_t handle)
1010 {
1011 	return (efx_mcdi_link_piobuf(enp, vi_index, handle));
1012 }
1013 
1014 	__checkReturn	efx_rc_t
1015 ef10_nic_pio_unlink(
1016 	__inout		efx_nic_t *enp,
1017 	__in		uint32_t vi_index)
1018 {
1019 	return (efx_mcdi_unlink_piobuf(enp, vi_index));
1020 }
1021 
1022 static	__checkReturn	efx_rc_t
1023 ef10_mcdi_get_pf_count(
1024 	__in		efx_nic_t *enp,
1025 	__out		uint32_t *pf_countp)
1026 {
1027 	efx_mcdi_req_t req;
1028 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
1029 		MC_CMD_GET_PF_COUNT_OUT_LEN);
1030 	efx_rc_t rc;
1031 
1032 	req.emr_cmd = MC_CMD_GET_PF_COUNT;
1033 	req.emr_in_buf = payload;
1034 	req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
1035 	req.emr_out_buf = payload;
1036 	req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
1037 
1038 	efx_mcdi_execute(enp, &req);
1039 
1040 	if (req.emr_rc != 0) {
1041 		rc = req.emr_rc;
1042 		goto fail1;
1043 	}
1044 
1045 	if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
1046 		rc = EMSGSIZE;
1047 		goto fail2;
1048 	}
1049 
1050 	*pf_countp = *MCDI_OUT(req, uint8_t,
1051 				MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
1052 
1053 	EFSYS_ASSERT(*pf_countp != 0);
1054 
1055 	return (0);
1056 
1057 fail2:
1058 	EFSYS_PROBE(fail2);
1059 fail1:
1060 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1061 
1062 	return (rc);
1063 }
1064 
1065 static	__checkReturn	efx_rc_t
1066 ef10_get_datapath_caps(
1067 	__in		efx_nic_t *enp)
1068 {
1069 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1070 	efx_mcdi_req_t req;
1071 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1072 		MC_CMD_GET_CAPABILITIES_V5_OUT_LEN);
1073 	efx_rc_t rc;
1074 
1075 	if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
1076 		goto fail1;
1077 
1078 
1079 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1080 	req.emr_in_buf = payload;
1081 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1082 	req.emr_out_buf = payload;
1083 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V5_OUT_LEN;
1084 
1085 	efx_mcdi_execute_quiet(enp, &req);
1086 
1087 	if (req.emr_rc != 0) {
1088 		rc = req.emr_rc;
1089 		goto fail2;
1090 	}
1091 
1092 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1093 		rc = EMSGSIZE;
1094 		goto fail3;
1095 	}
1096 
1097 #define	CAP_FLAGS1(_req, _flag)						\
1098 	(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) &		\
1099 	(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
1100 
1101 #define	CAP_FLAGS2(_req, _flag)						\
1102 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
1103 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) &	\
1104 	    (1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
1105 
1106 	/*
1107 	 * Huntington RXDP firmware inserts a 0 or 14 byte prefix.
1108 	 * We only support the 14 byte prefix here.
1109 	 */
1110 	if (CAP_FLAGS1(req, RX_PREFIX_LEN_14) == 0) {
1111 		rc = ENOTSUP;
1112 		goto fail4;
1113 	}
1114 	encp->enc_rx_prefix_size = 14;
1115 
1116 #if EFSYS_OPT_RX_SCALE
1117 	/* Check if the firmware supports additional RSS modes */
1118 	if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
1119 		encp->enc_rx_scale_additional_modes_supported = B_TRUE;
1120 	else
1121 		encp->enc_rx_scale_additional_modes_supported = B_FALSE;
1122 #endif /* EFSYS_OPT_RX_SCALE */
1123 
1124 	/* Check if the firmware supports TSO */
1125 	if (CAP_FLAGS1(req, TX_TSO))
1126 		encp->enc_fw_assisted_tso_enabled = B_TRUE;
1127 	else
1128 		encp->enc_fw_assisted_tso_enabled = B_FALSE;
1129 
1130 	/* Check if the firmware supports FATSOv2 */
1131 	if (CAP_FLAGS2(req, TX_TSO_V2)) {
1132 		encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
1133 		encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
1134 		    GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
1135 	} else {
1136 		encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
1137 		encp->enc_fw_assisted_tso_v2_n_contexts = 0;
1138 	}
1139 
1140 	/* Check if the firmware supports FATSOv2 encap */
1141 	if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
1142 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
1143 	else
1144 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
1145 
1146 	/* Check if the firmware has vadapter/vport/vswitch support */
1147 	if (CAP_FLAGS1(req, EVB))
1148 		encp->enc_datapath_cap_evb = B_TRUE;
1149 	else
1150 		encp->enc_datapath_cap_evb = B_FALSE;
1151 
1152 	/* Check if the firmware supports VLAN insertion */
1153 	if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
1154 		encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
1155 	else
1156 		encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
1157 
1158 	/* Check if the firmware supports RX event batching */
1159 	if (CAP_FLAGS1(req, RX_BATCHING))
1160 		encp->enc_rx_batching_enabled = B_TRUE;
1161 	else
1162 		encp->enc_rx_batching_enabled = B_FALSE;
1163 
1164 	/*
1165 	 * Even if batching isn't reported as supported, we may still get
1166 	 * batched events.
1167 	 */
1168 	encp->enc_rx_batch_max = 16;
1169 
1170 	/* Check if the firmware supports disabling scatter on RXQs */
1171 	if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
1172 		encp->enc_rx_disable_scatter_supported = B_TRUE;
1173 	else
1174 		encp->enc_rx_disable_scatter_supported = B_FALSE;
1175 
1176 	/* Check if the firmware supports packed stream mode */
1177 	if (CAP_FLAGS1(req, RX_PACKED_STREAM))
1178 		encp->enc_rx_packed_stream_supported = B_TRUE;
1179 	else
1180 		encp->enc_rx_packed_stream_supported = B_FALSE;
1181 
1182 	/*
1183 	 * Check if the firmware supports configurable buffer sizes
1184 	 * for packed stream mode (otherwise buffer size is 1Mbyte)
1185 	 */
1186 	if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
1187 		encp->enc_rx_var_packed_stream_supported = B_TRUE;
1188 	else
1189 		encp->enc_rx_var_packed_stream_supported = B_FALSE;
1190 
1191 	/* Check if the firmware supports equal stride super-buffer mode */
1192 	if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
1193 		encp->enc_rx_es_super_buffer_supported = B_TRUE;
1194 	else
1195 		encp->enc_rx_es_super_buffer_supported = B_FALSE;
1196 
1197 	/* Check if the firmware supports FW subvariant w/o Tx checksumming */
1198 	if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
1199 		encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
1200 	else
1201 		encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
1202 
1203 	/* Check if the firmware supports set mac with running filters */
1204 	if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
1205 		encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
1206 	else
1207 		encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
1208 
1209 	/*
1210 	 * Check if firmware supports the extended MC_CMD_SET_MAC, which allows
1211 	 * specifying which parameters to configure.
1212 	 */
1213 	if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
1214 		encp->enc_enhanced_set_mac_supported = B_TRUE;
1215 	else
1216 		encp->enc_enhanced_set_mac_supported = B_FALSE;
1217 
1218 	/*
1219 	 * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
1220 	 * us to let the firmware choose the settings to use on an EVQ.
1221 	 */
1222 	if (CAP_FLAGS2(req, INIT_EVQ_V2))
1223 		encp->enc_init_evq_v2_supported = B_TRUE;
1224 	else
1225 		encp->enc_init_evq_v2_supported = B_FALSE;
1226 
1227 	/*
1228 	 * Check if firmware-verified NVRAM updates must be used.
1229 	 *
1230 	 * The firmware trusted installer requires all NVRAM updates to use
1231 	 * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
1232 	 * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
1233 	 * partition and report the result).
1234 	 */
1235 	if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
1236 		encp->enc_nvram_update_verify_result_supported = B_TRUE;
1237 	else
1238 		encp->enc_nvram_update_verify_result_supported = B_FALSE;
1239 
1240 	/*
1241 	 * Check if firmware provides packet memory and Rx datapath
1242 	 * counters.
1243 	 */
1244 	if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
1245 		encp->enc_pm_and_rxdp_counters = B_TRUE;
1246 	else
1247 		encp->enc_pm_and_rxdp_counters = B_FALSE;
1248 
1249 	/*
1250 	 * Check if the 40G MAC hardware is capable of reporting
1251 	 * statistics for Tx size bins.
1252 	 */
1253 	if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
1254 		encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
1255 	else
1256 		encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
1257 
1258 	/*
1259 	 * Check if firmware supports VXLAN and NVGRE tunnels.
1260 	 * The capability indicates Geneve protocol support as well.
1261 	 */
1262 	if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
1263 		encp->enc_tunnel_encapsulations_supported =
1264 		    (1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
1265 		    (1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
1266 		    (1u << EFX_TUNNEL_PROTOCOL_NVGRE);
1267 
1268 		EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
1269 		    MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
1270 		encp->enc_tunnel_config_udp_entries_max =
1271 		    EFX_TUNNEL_MAXNENTRIES;
1272 	} else {
1273 		encp->enc_tunnel_config_udp_entries_max = 0;
1274 	}
1275 
1276 	/*
1277 	 * Check if firmware reports the VI window mode.
1278 	 * Medford2 has a variable VI window size (8K, 16K or 64K).
1279 	 * Medford and Huntington have a fixed 8K VI window size.
1280 	 */
1281 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
1282 		uint8_t mode =
1283 		    MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
1284 
1285 		switch (mode) {
1286 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
1287 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1288 			break;
1289 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
1290 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
1291 			break;
1292 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
1293 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
1294 			break;
1295 		default:
1296 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1297 			break;
1298 		}
1299 	} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
1300 		    (enp->en_family == EFX_FAMILY_MEDFORD)) {
1301 		/* Huntington and Medford have fixed 8K window size */
1302 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1303 	} else {
1304 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1305 	}
1306 
1307 	/* Check if firmware supports extended MAC stats. */
1308 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
1309 		/* Extended stats buffer supported */
1310 		encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
1311 		    GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
1312 	} else {
1313 		/* Use Siena-compatible legacy MAC stats */
1314 		encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
1315 	}
1316 
1317 	if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
1318 		encp->enc_fec_counters = B_TRUE;
1319 	else
1320 		encp->enc_fec_counters = B_FALSE;
1321 
1322 	/* Check if the firmware provides head-of-line blocking counters */
1323 	if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
1324 		encp->enc_hlb_counters = B_TRUE;
1325 	else
1326 		encp->enc_hlb_counters = B_FALSE;
1327 
1328 #if EFSYS_OPT_RX_SCALE
1329 	if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
1330 		/* Only one exclusive RSS context is available per port. */
1331 		encp->enc_rx_scale_max_exclusive_contexts = 1;
1332 
1333 		switch (enp->en_family) {
1334 		case EFX_FAMILY_MEDFORD2:
1335 			encp->enc_rx_scale_hash_alg_mask =
1336 			    (1U << EFX_RX_HASHALG_TOEPLITZ);
1337 			break;
1338 
1339 		case EFX_FAMILY_MEDFORD:
1340 		case EFX_FAMILY_HUNTINGTON:
1341 			/*
1342 			 * Packed stream firmware variant maintains a
1343 			 * non-standard algorithm for hash computation.
1344 			 * It implies explicit XORing together
1345 			 * source + destination IP addresses (or last
1346 			 * four bytes in the case of IPv6) and using the
1347 			 * resulting value as the input to a Toeplitz hash.
1348 			 */
1349 			encp->enc_rx_scale_hash_alg_mask =
1350 			    (1U << EFX_RX_HASHALG_PACKED_STREAM);
1351 			break;
1352 
1353 		default:
1354 			rc = EINVAL;
1355 			goto fail5;
1356 		}
1357 
1358 		/* Port numbers cannot contribute to the hash value */
1359 		encp->enc_rx_scale_l4_hash_supported = B_FALSE;
1360 	} else {
1361 		/*
1362 		 * Maximum number of exclusive RSS contexts.
1363 		 * EF10 hardware supports 64 in total, but 6 are reserved
1364 		 * for shared contexts. They are a global resource so
1365 		 * not all may be available.
1366 		 */
1367 		encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
1368 
1369 		encp->enc_rx_scale_hash_alg_mask =
1370 		    (1U << EFX_RX_HASHALG_TOEPLITZ);
1371 
1372 		/*
1373 		 * It is possible to use port numbers as
1374 		 * the input data for hash computation.
1375 		 */
1376 		encp->enc_rx_scale_l4_hash_supported = B_TRUE;
1377 	}
1378 #endif /* EFSYS_OPT_RX_SCALE */
1379 
1380 	/* Check if the firmware supports "FLAG" and "MARK" filter actions */
1381 	if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
1382 		encp->enc_filter_action_flag_supported = B_TRUE;
1383 	else
1384 		encp->enc_filter_action_flag_supported = B_FALSE;
1385 
1386 	if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
1387 		encp->enc_filter_action_mark_supported = B_TRUE;
1388 	else
1389 		encp->enc_filter_action_mark_supported = B_FALSE;
1390 
1391 	/* Get maximum supported value for "MARK" filter action */
1392 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
1393 		encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
1394 		    GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
1395 	else
1396 		encp->enc_filter_action_mark_max = 0;
1397 
1398 #undef CAP_FLAGS1
1399 #undef CAP_FLAGS2
1400 
1401 	return (0);
1402 
1403 #if EFSYS_OPT_RX_SCALE
1404 fail5:
1405 	EFSYS_PROBE(fail5);
1406 #endif /* EFSYS_OPT_RX_SCALE */
1407 fail4:
1408 	EFSYS_PROBE(fail4);
1409 fail3:
1410 	EFSYS_PROBE(fail3);
1411 fail2:
1412 	EFSYS_PROBE(fail2);
1413 fail1:
1414 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1415 
1416 	return (rc);
1417 }
1418 
1419 
1420 #define	EF10_LEGACY_PF_PRIVILEGE_MASK					\
1421 	(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN			|	\
1422 	MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK			|	\
1423 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD			|	\
1424 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP			|	\
1425 	MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS		|	\
1426 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING		|	\
1427 	MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST			|	\
1428 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST			|	\
1429 	MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST			|	\
1430 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST		|	\
1431 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
1432 
1433 #define	EF10_LEGACY_VF_PRIVILEGE_MASK	0
1434 
1435 
1436 	__checkReturn		efx_rc_t
1437 ef10_get_privilege_mask(
1438 	__in			efx_nic_t *enp,
1439 	__out			uint32_t *maskp)
1440 {
1441 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1442 	uint32_t mask;
1443 	efx_rc_t rc;
1444 
1445 	if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
1446 					    &mask)) != 0) {
1447 		if (rc != ENOTSUP)
1448 			goto fail1;
1449 
1450 		/* Fallback for old firmware without privilege mask support */
1451 		if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1452 			/* Assume PF has admin privilege */
1453 			mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
1454 		} else {
1455 			/* VF is always unprivileged by default */
1456 			mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
1457 		}
1458 	}
1459 
1460 	*maskp = mask;
1461 
1462 	return (0);
1463 
1464 fail1:
1465 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1466 
1467 	return (rc);
1468 }
1469 
1470 
1471 /*
1472  * Table of mapping schemes from port number to external number.
1473  *
1474  * Each port number ultimately corresponds to a connector: either as part of
1475  * a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
1476  * the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
1477  * "Salina"). In general:
1478  *
1479  * Port number (0-based)
1480  *     |
1481  *   port mapping (n:1)
1482  *     |
1483  *     v
1484  * External port number (normally 1-based)
1485  *     |
1486  *   fixed (1:1) or cable assembly (1:m)
1487  *     |
1488  *     v
1489  * Connector
1490  *
1491  * The external numbering refers to the cages or magjacks on the board,
1492  * as visibly annotated on the board or back panel. This table describes
1493  * how to determine which external cage/magjack corresponds to the port
1494  * numbers used by the driver.
1495  *
1496  * The count of adjacent port numbers that map to each external number,
1497  * and the offset in the numbering, is determined by the chip family and
1498  * current port mode.
1499  *
1500  * For the Huntington family, the current port mode cannot be discovered,
1501  * but a single mapping is used by all modes for a given chip variant,
1502  * so the mapping used is instead the last match in the table to the full
1503  * set of port modes to which the NIC can be configured. Therefore the
1504  * ordering of entries in the mapping table is significant.
1505  */
1506 static struct ef10_external_port_map_s {
1507 	efx_family_t	family;
1508 	uint32_t	modes_mask;
1509 	int32_t		count;
1510 	int32_t		offset;
1511 }	__ef10_external_port_mappings[] = {
1512 	/*
1513 	 * Modes used by Huntington family controllers where each port
1514 	 * number maps to a separate cage.
1515 	 * SFN7x22F (Torino):
1516 	 *	port 0 -> cage 1
1517 	 *	port 1 -> cage 2
1518 	 * SFN7xx4F (Pavia):
1519 	 *	port 0 -> cage 1
1520 	 *	port 1 -> cage 2
1521 	 *	port 2 -> cage 3
1522 	 *	port 3 -> cage 4
1523 	 */
1524 	{
1525 		EFX_FAMILY_HUNTINGTON,
1526 		(1U << TLV_PORT_MODE_10G) |			/* mode 0 */
1527 		(1U << TLV_PORT_MODE_10G_10G) |			/* mode 2 */
1528 		(1U << TLV_PORT_MODE_10G_10G_10G_10G),		/* mode 4 */
1529 		1,	/* ports per cage */
1530 		1	/* first cage */
1531 	},
1532 	/*
1533 	 * Modes which for Huntington identify a chip variant where 2
1534 	 * adjacent port numbers map to each cage.
1535 	 * SFN7x42Q (Monza):
1536 	 *	port 0 -> cage 1
1537 	 *	port 1 -> cage 1
1538 	 *	port 2 -> cage 2
1539 	 *	port 3 -> cage 2
1540 	 */
1541 	{
1542 		EFX_FAMILY_HUNTINGTON,
1543 		(1U << TLV_PORT_MODE_40G) |			/* mode 1 */
1544 		(1U << TLV_PORT_MODE_40G_40G) |			/* mode 3 */
1545 		(1U << TLV_PORT_MODE_40G_10G_10G) |		/* mode 6 */
1546 		(1U << TLV_PORT_MODE_10G_10G_40G),		/* mode 7 */
1547 		2,	/* ports per cage */
1548 		1	/* first cage */
1549 	},
1550 	/*
1551 	 * Modes that on Medford allocate each port number to a separate
1552 	 * cage.
1553 	 *	port 0 -> cage 1
1554 	 *	port 1 -> cage 2
1555 	 *	port 2 -> cage 3
1556 	 *	port 3 -> cage 4
1557 	 */
1558 	{
1559 		EFX_FAMILY_MEDFORD,
1560 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1561 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1562 		1,	/* ports per cage */
1563 		1	/* first cage */
1564 	},
1565 	/*
1566 	 * Modes that on Medford allocate 2 adjacent port numbers to each
1567 	 * cage.
1568 	 *	port 0 -> cage 1
1569 	 *	port 1 -> cage 1
1570 	 *	port 2 -> cage 2
1571 	 *	port 3 -> cage 2
1572 	 */
1573 	{
1574 		EFX_FAMILY_MEDFORD,
1575 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1576 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1577 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1578 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1579 		/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
1580 		(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),	/* mode 9 */
1581 		2,	/* ports per cage */
1582 		1	/* first cage */
1583 	},
1584 	/*
1585 	 * Modes that on Medford allocate 4 adjacent port numbers to each
1586 	 * connector, starting on cage 1.
1587 	 *	port 0 -> cage 1
1588 	 *	port 1 -> cage 1
1589 	 *	port 2 -> cage 1
1590 	 *	port 3 -> cage 1
1591 	 */
1592 	{
1593 		EFX_FAMILY_MEDFORD,
1594 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 5 */
1595 		/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
1596 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 4 */
1597 		4,	/* ports per cage */
1598 		1	/* first cage */
1599 	},
1600 	/*
1601 	 * Modes that on Medford allocate 4 adjacent port numbers to each
1602 	 * connector, starting on cage 2.
1603 	 *	port 0 -> cage 2
1604 	 *	port 1 -> cage 2
1605 	 *	port 2 -> cage 2
1606 	 *	port 3 -> cage 2
1607 	 */
1608 	{
1609 		EFX_FAMILY_MEDFORD,
1610 		(1U << TLV_PORT_MODE_NA_4x1),			/* mode 8 */
1611 		4,	/* ports per cage */
1612 		2	/* first cage */
1613 	},
1614 	/*
1615 	 * Modes that on Medford2 allocate each port number to a separate
1616 	 * cage.
1617 	 *	port 0 -> cage 1
1618 	 *	port 1 -> cage 2
1619 	 *	port 2 -> cage 3
1620 	 *	port 3 -> cage 4
1621 	 */
1622 	{
1623 		EFX_FAMILY_MEDFORD2,
1624 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1625 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1626 		(1U << TLV_PORT_MODE_1x1_1x1) |			/* mode 2 */
1627 		(1U << TLV_PORT_MODE_1x2_NA) |			/* mode 10 */
1628 		(1U << TLV_PORT_MODE_1x2_1x2) |			/* mode 12 */
1629 		(1U << TLV_PORT_MODE_1x4_1x2) |			/* mode 15 */
1630 		(1U << TLV_PORT_MODE_1x2_1x4),			/* mode 16 */
1631 		1,	/* ports per cage */
1632 		1	/* first cage */
1633 	},
1634 	/*
1635 	 * FIXME: Some port modes are not representable in this mapping:
1636 	 *  - TLV_PORT_MODE_1x2_2x1 (mode 17):
1637 	 *	port 0 -> cage 1
1638 	 *	port 1 -> cage 2
1639 	 *	port 2 -> cage 2
1640 	 */
1641 	/*
1642 	 * Modes that on Medford2 allocate 2 adjacent port numbers to each
1643 	 * cage, starting on cage 1.
1644 	 *	port 0 -> cage 1
1645 	 *	port 1 -> cage 1
1646 	 *	port 2 -> cage 2
1647 	 *	port 3 -> cage 2
1648 	 */
1649 	{
1650 		EFX_FAMILY_MEDFORD2,
1651 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1652 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 4 */
1653 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1654 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1655 		(1U << TLV_PORT_MODE_2x2_NA) |			/* mode 13 */
1656 		(1U << TLV_PORT_MODE_2x1_1x2),			/* mode 18 */
1657 		2,	/* ports per cage */
1658 		1	/* first cage */
1659 	},
1660 	/*
1661 	 * Modes that on Medford2 allocate 2 adjacent port numbers to each
1662 	 * cage, starting on cage 2.
1663 	 *	port 0 -> cage 2
1664 	 *	port 1 -> cage 2
1665 	 */
1666 	{
1667 		EFX_FAMILY_MEDFORD2,
1668 		(1U << TLV_PORT_MODE_NA_2x2),			/* mode 14 */
1669 		2,	/* ports per cage */
1670 		2	/* first cage */
1671 	},
1672 	/*
1673 	 * Modes that on Medford2 allocate 4 adjacent port numbers to each
1674 	 * connector, starting on cage 1.
1675 	 *	port 0 -> cage 1
1676 	 *	port 1 -> cage 1
1677 	 *	port 2 -> cage 1
1678 	 *	port 3 -> cage 1
1679 	 */
1680 	{
1681 		EFX_FAMILY_MEDFORD2,
1682 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 5 */
1683 		4,	/* ports per cage */
1684 		1	/* first cage */
1685 	},
1686 	/*
1687 	 * Modes that on Medford2 allocate 4 adjacent port numbers to each
1688 	 * connector, starting on cage 2.
1689 	 *	port 0 -> cage 2
1690 	 *	port 1 -> cage 2
1691 	 *	port 2 -> cage 2
1692 	 *	port 3 -> cage 2
1693 	 */
1694 	{
1695 		EFX_FAMILY_MEDFORD2,
1696 		(1U << TLV_PORT_MODE_NA_4x1) |			/* mode 8 */
1697 		(1U << TLV_PORT_MODE_NA_1x2),			/* mode 11 */
1698 		4,	/* ports per cage */
1699 		2	/* first cage */
1700 	},
1701 };
1702 
1703 static	__checkReturn	efx_rc_t
1704 ef10_external_port_mapping(
1705 	__in		efx_nic_t *enp,
1706 	__in		uint32_t port,
1707 	__out		uint8_t *external_portp)
1708 {
1709 	efx_rc_t rc;
1710 	int i;
1711 	uint32_t port_modes;
1712 	uint32_t matches;
1713 	uint32_t current;
1714 	int32_t count = 1; /* Default 1-1 mapping */
1715 	int32_t offset = 1; /* Default starting external port number */
1716 
1717 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current,
1718 		    NULL)) != 0) {
1719 		/*
1720 		 * No current port mode information (i.e. Huntington)
1721 		 * - infer mapping from available modes
1722 		 */
1723 		if ((rc = efx_mcdi_get_port_modes(enp,
1724 			    &port_modes, NULL, NULL)) != 0) {
1725 			/*
1726 			 * No port mode information available
1727 			 * - use default mapping
1728 			 */
1729 			goto out;
1730 		}
1731 	} else {
1732 		/* Only need to scan the current mode */
1733 		port_modes = 1 << current;
1734 	}
1735 
1736 	/*
1737 	 * Infer the internal port -> external number mapping from
1738 	 * the possible port modes for this NIC.
1739 	 */
1740 	for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
1741 		struct ef10_external_port_map_s *eepmp =
1742 		    &__ef10_external_port_mappings[i];
1743 		if (eepmp->family != enp->en_family)
1744 			continue;
1745 		matches = (eepmp->modes_mask & port_modes);
1746 		if (matches != 0) {
1747 			/*
1748 			 * Some modes match. For some Huntington boards
1749 			 * there will be multiple matches. The mapping on the
1750 			 * last match is used.
1751 			 */
1752 			count = eepmp->count;
1753 			offset = eepmp->offset;
1754 			port_modes &= ~matches;
1755 		}
1756 	}
1757 
1758 	if (port_modes != 0) {
1759 		/* Some advertised modes are not supported */
1760 		rc = ENOTSUP;
1761 		goto fail1;
1762 	}
1763 
1764 out:
1765 	/*
1766 	 * Scale as required by last matched mode and then convert to
1767 	 * correctly offset numbering
1768 	 */
1769 	*external_portp = (uint8_t)((port / count) + offset);
1770 	return (0);
1771 
1772 fail1:
1773 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1774 
1775 	return (rc);
1776 }
1777 
1778 static	__checkReturn	efx_rc_t
1779 ef10_nic_board_cfg(
1780 	__in		efx_nic_t *enp)
1781 {
1782 	const efx_nic_ops_t *enop = enp->en_enop;
1783 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1784 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1785 	ef10_link_state_t els;
1786 	efx_port_t *epp = &(enp->en_port);
1787 	uint32_t board_type = 0;
1788 	uint32_t base, nvec;
1789 	uint32_t port;
1790 	uint32_t mask;
1791 	uint32_t pf;
1792 	uint32_t vf;
1793 	uint8_t mac_addr[6] = { 0 };
1794 	efx_rc_t rc;
1795 
1796 	/* Get the (zero-based) MCDI port number */
1797 	if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
1798 		goto fail1;
1799 
1800 	/* EFX MCDI interface uses one-based port numbers */
1801 	emip->emi_port = port + 1;
1802 
1803 	if ((rc = ef10_external_port_mapping(enp, port,
1804 		    &encp->enc_external_port)) != 0)
1805 		goto fail2;
1806 
1807 	/*
1808 	 * Get PCIe function number from firmware (used for
1809 	 * per-function privilege and dynamic config info).
1810 	 *  - PCIe PF: pf = PF number, vf = 0xffff.
1811 	 *  - PCIe VF: pf = parent PF, vf = VF number.
1812 	 */
1813 	if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf)) != 0)
1814 		goto fail3;
1815 
1816 	encp->enc_pf = pf;
1817 	encp->enc_vf = vf;
1818 
1819 	/* MAC address for this function */
1820 	if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1821 		rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
1822 #if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
1823 		/*
1824 		 * Disable static config checking, ONLY for manufacturing test
1825 		 * and setup at the factory, to allow the static config to be
1826 		 * installed.
1827 		 */
1828 #else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1829 		if ((rc == 0) && (mac_addr[0] & 0x02)) {
1830 			/*
1831 			 * If the static config does not include a global MAC
1832 			 * address pool then the board may return a locally
1833 			 * administered MAC address (this should only happen on
1834 			 * incorrectly programmed boards).
1835 			 */
1836 			rc = EINVAL;
1837 		}
1838 #endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1839 	} else {
1840 		rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
1841 	}
1842 	if (rc != 0)
1843 		goto fail4;
1844 
1845 	EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
1846 
1847 	/* Board configuration (legacy) */
1848 	rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
1849 	if (rc != 0) {
1850 		/* Unprivileged functions may not be able to read board cfg */
1851 		if (rc == EACCES)
1852 			board_type = 0;
1853 		else
1854 			goto fail5;
1855 	}
1856 
1857 	encp->enc_board_type = board_type;
1858 	encp->enc_clk_mult = 1; /* not used for EF10 */
1859 
1860 	/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
1861 	if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
1862 		goto fail6;
1863 
1864 	/*
1865 	 * Firmware with support for *_FEC capability bits does not
1866 	 * report that the corresponding *_FEC_REQUESTED bits are supported.
1867 	 * Add them here so that drivers understand that they are supported.
1868 	 */
1869 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
1870 		epp->ep_phy_cap_mask |=
1871 		    (1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
1872 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
1873 		epp->ep_phy_cap_mask |=
1874 		    (1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
1875 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
1876 		epp->ep_phy_cap_mask |=
1877 		    (1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
1878 
1879 	/* Obtain the default PHY advertised capabilities */
1880 	if ((rc = ef10_phy_get_link(enp, &els)) != 0)
1881 		goto fail7;
1882 	epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
1883 	epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
1884 
1885 	/* Check capabilities of running datapath firmware */
1886 	if ((rc = ef10_get_datapath_caps(enp)) != 0)
1887 		goto fail8;
1888 
1889 	/* Alignment for WPTR updates */
1890 	encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
1891 
1892 	encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
1893 	/* No boundary crossing limits */
1894 	encp->enc_tx_dma_desc_boundary = 0;
1895 
1896 	/*
1897 	 * Maximum number of bytes into the frame the TCP header can start for
1898 	 * firmware assisted TSO to work.
1899 	 */
1900 	encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
1901 
1902 	/*
1903 	 * Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
1904 	 * MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
1905 	 * resources (allocated to this PCIe function), which is zero until
1906 	 * after we have allocated VIs.
1907 	 */
1908 	encp->enc_evq_limit = 1024;
1909 	encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
1910 	encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
1911 
1912 	encp->enc_buftbl_limit = 0xFFFFFFFF;
1913 
1914 	/* Get interrupt vector limits */
1915 	if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
1916 		if (EFX_PCI_FUNCTION_IS_PF(encp))
1917 			goto fail9;
1918 
1919 		/* Ignore error (cannot query vector limits from a VF). */
1920 		base = 0;
1921 		nvec = 1024;
1922 	}
1923 	encp->enc_intr_vec_base = base;
1924 	encp->enc_intr_limit = nvec;
1925 
1926 	/*
1927 	 * Get the current privilege mask. Note that this may be modified
1928 	 * dynamically, so this value is informational only. DO NOT use
1929 	 * the privilege mask to check for sufficient privileges, as that
1930 	 * can result in time-of-check/time-of-use bugs.
1931 	 */
1932 	if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
1933 		goto fail10;
1934 	encp->enc_privilege_mask = mask;
1935 
1936 	/* Get remaining controller-specific board config */
1937 	if ((rc = enop->eno_board_cfg(enp)) != 0)
1938 		if (rc != EACCES)
1939 			goto fail11;
1940 
1941 	return (0);
1942 
1943 fail11:
1944 	EFSYS_PROBE(fail11);
1945 fail10:
1946 	EFSYS_PROBE(fail10);
1947 fail9:
1948 	EFSYS_PROBE(fail9);
1949 fail8:
1950 	EFSYS_PROBE(fail8);
1951 fail7:
1952 	EFSYS_PROBE(fail7);
1953 fail6:
1954 	EFSYS_PROBE(fail6);
1955 fail5:
1956 	EFSYS_PROBE(fail5);
1957 fail4:
1958 	EFSYS_PROBE(fail4);
1959 fail3:
1960 	EFSYS_PROBE(fail3);
1961 fail2:
1962 	EFSYS_PROBE(fail2);
1963 fail1:
1964 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1965 
1966 	return (rc);
1967 }
1968 
1969 	__checkReturn	efx_rc_t
1970 ef10_nic_probe(
1971 	__in		efx_nic_t *enp)
1972 {
1973 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1974 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
1975 	efx_rc_t rc;
1976 
1977 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
1978 	    enp->en_family == EFX_FAMILY_MEDFORD ||
1979 	    enp->en_family == EFX_FAMILY_MEDFORD2);
1980 
1981 	/* Read and clear any assertion state */
1982 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
1983 		goto fail1;
1984 
1985 	/* Exit the assertion handler */
1986 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
1987 		if (rc != EACCES)
1988 			goto fail2;
1989 
1990 	if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
1991 		goto fail3;
1992 
1993 	if ((rc = ef10_nic_board_cfg(enp)) != 0)
1994 		goto fail4;
1995 
1996 	/*
1997 	 * Set default driver config limits (based on board config).
1998 	 *
1999 	 * FIXME: For now allocate a fixed number of VIs which is likely to be
2000 	 * sufficient and small enough to allow multiple functions on the same
2001 	 * port.
2002 	 */
2003 	edcp->edc_min_vi_count = edcp->edc_max_vi_count =
2004 	    MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
2005 
2006 	/* The client driver must configure and enable PIO buffer support */
2007 	edcp->edc_max_piobuf_count = 0;
2008 	edcp->edc_pio_alloc_size = 0;
2009 
2010 #if EFSYS_OPT_MAC_STATS
2011 	/* Wipe the MAC statistics */
2012 	if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
2013 		goto fail5;
2014 #endif
2015 
2016 #if EFSYS_OPT_LOOPBACK
2017 	if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
2018 		goto fail6;
2019 #endif
2020 
2021 #if EFSYS_OPT_MON_STATS
2022 	if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
2023 		/* Unprivileged functions do not have access to sensors */
2024 		if (rc != EACCES)
2025 			goto fail7;
2026 	}
2027 #endif
2028 
2029 	encp->enc_features = enp->en_features;
2030 
2031 	return (0);
2032 
2033 #if EFSYS_OPT_MON_STATS
2034 fail7:
2035 	EFSYS_PROBE(fail7);
2036 #endif
2037 #if EFSYS_OPT_LOOPBACK
2038 fail6:
2039 	EFSYS_PROBE(fail6);
2040 #endif
2041 #if EFSYS_OPT_MAC_STATS
2042 fail5:
2043 	EFSYS_PROBE(fail5);
2044 #endif
2045 fail4:
2046 	EFSYS_PROBE(fail4);
2047 fail3:
2048 	EFSYS_PROBE(fail3);
2049 fail2:
2050 	EFSYS_PROBE(fail2);
2051 fail1:
2052 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2053 
2054 	return (rc);
2055 }
2056 
2057 	__checkReturn	efx_rc_t
2058 ef10_nic_set_drv_limits(
2059 	__inout		efx_nic_t *enp,
2060 	__in		efx_drv_limits_t *edlp)
2061 {
2062 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2063 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2064 	uint32_t min_evq_count, max_evq_count;
2065 	uint32_t min_rxq_count, max_rxq_count;
2066 	uint32_t min_txq_count, max_txq_count;
2067 	efx_rc_t rc;
2068 
2069 	if (edlp == NULL) {
2070 		rc = EINVAL;
2071 		goto fail1;
2072 	}
2073 
2074 	/* Get minimum required and maximum usable VI limits */
2075 	min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
2076 	min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
2077 	min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
2078 
2079 	edcp->edc_min_vi_count =
2080 	    MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
2081 
2082 	max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
2083 	max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
2084 	max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
2085 
2086 	edcp->edc_max_vi_count =
2087 	    MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
2088 
2089 	/*
2090 	 * Check limits for sub-allocated piobuf blocks.
2091 	 * PIO is optional, so don't fail if the limits are incorrect.
2092 	 */
2093 	if ((encp->enc_piobuf_size == 0) ||
2094 	    (encp->enc_piobuf_limit == 0) ||
2095 	    (edlp->edl_min_pio_alloc_size == 0) ||
2096 	    (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
2097 		/* Disable PIO */
2098 		edcp->edc_max_piobuf_count = 0;
2099 		edcp->edc_pio_alloc_size = 0;
2100 	} else {
2101 		uint32_t blk_size, blk_count, blks_per_piobuf;
2102 
2103 		blk_size =
2104 		    MAX(edlp->edl_min_pio_alloc_size,
2105 			    encp->enc_piobuf_min_alloc_size);
2106 
2107 		blks_per_piobuf = encp->enc_piobuf_size / blk_size;
2108 		EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
2109 
2110 		blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
2111 
2112 		/* A zero max pio alloc count means unlimited */
2113 		if ((edlp->edl_max_pio_alloc_count > 0) &&
2114 		    (edlp->edl_max_pio_alloc_count < blk_count)) {
2115 			blk_count = edlp->edl_max_pio_alloc_count;
2116 		}
2117 
2118 		edcp->edc_pio_alloc_size = blk_size;
2119 		edcp->edc_max_piobuf_count =
2120 		    (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
2121 	}
2122 
2123 	return (0);
2124 
2125 fail1:
2126 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2127 
2128 	return (rc);
2129 }
2130 
2131 
2132 	__checkReturn	efx_rc_t
2133 ef10_nic_reset(
2134 	__in		efx_nic_t *enp)
2135 {
2136 	efx_mcdi_req_t req;
2137 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
2138 		MC_CMD_ENTITY_RESET_OUT_LEN);
2139 	efx_rc_t rc;
2140 
2141 	/* ef10_nic_reset() is called to recover from BADASSERT failures. */
2142 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2143 		goto fail1;
2144 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2145 		goto fail2;
2146 
2147 	req.emr_cmd = MC_CMD_ENTITY_RESET;
2148 	req.emr_in_buf = payload;
2149 	req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
2150 	req.emr_out_buf = payload;
2151 	req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
2152 
2153 	MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
2154 	    ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
2155 
2156 	efx_mcdi_execute(enp, &req);
2157 
2158 	if (req.emr_rc != 0) {
2159 		rc = req.emr_rc;
2160 		goto fail3;
2161 	}
2162 
2163 	/* Clear RX/TX DMA queue errors */
2164 	enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
2165 
2166 	return (0);
2167 
2168 fail3:
2169 	EFSYS_PROBE(fail3);
2170 fail2:
2171 	EFSYS_PROBE(fail2);
2172 fail1:
2173 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2174 
2175 	return (rc);
2176 }
2177 
2178 	__checkReturn	efx_rc_t
2179 ef10_nic_init(
2180 	__in		efx_nic_t *enp)
2181 {
2182 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2183 	uint32_t min_vi_count, max_vi_count;
2184 	uint32_t vi_count, vi_base, vi_shift;
2185 	uint32_t i;
2186 	uint32_t retry;
2187 	uint32_t delay_us;
2188 	uint32_t vi_window_size;
2189 	efx_rc_t rc;
2190 
2191 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
2192 	    enp->en_family == EFX_FAMILY_MEDFORD ||
2193 	    enp->en_family == EFX_FAMILY_MEDFORD2);
2194 
2195 	/* Enable reporting of some events (e.g. link change) */
2196 	if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
2197 		goto fail1;
2198 
2199 	/* Allocate (optional) on-chip PIO buffers */
2200 	ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
2201 
2202 	/*
2203 	 * For best performance, PIO writes should use a write-combined
2204 	 * (WC) memory mapping. Using a separate WC mapping for the PIO
2205 	 * aperture of each VI would be a burden to drivers (and not
2206 	 * possible if the host page size is >4Kbyte).
2207 	 *
2208 	 * To avoid this we use a single uncached (UC) mapping for VI
2209 	 * register access, and a single WC mapping for extra VIs used
2210 	 * for PIO writes.
2211 	 *
2212 	 * Each piobuf must be linked to a VI in the WC mapping, and to
2213 	 * each VI that is using a sub-allocated block from the piobuf.
2214 	 */
2215 	min_vi_count = edcp->edc_min_vi_count;
2216 	max_vi_count =
2217 	    edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
2218 
2219 	/* Ensure that the previously attached driver's VIs are freed */
2220 	if ((rc = efx_mcdi_free_vis(enp)) != 0)
2221 		goto fail2;
2222 
2223 	/*
2224 	 * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
2225 	 * fails then retrying the request for fewer VI resources may succeed.
2226 	 */
2227 	vi_count = 0;
2228 	if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
2229 		    &vi_base, &vi_count, &vi_shift)) != 0)
2230 		goto fail3;
2231 
2232 	EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
2233 
2234 	if (vi_count < min_vi_count) {
2235 		rc = ENOMEM;
2236 		goto fail4;
2237 	}
2238 
2239 	enp->en_arch.ef10.ena_vi_base = vi_base;
2240 	enp->en_arch.ef10.ena_vi_count = vi_count;
2241 	enp->en_arch.ef10.ena_vi_shift = vi_shift;
2242 
2243 	if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
2244 		/* Not enough extra VIs to map piobufs */
2245 		ef10_nic_free_piobufs(enp);
2246 	}
2247 
2248 	enp->en_arch.ef10.ena_pio_write_vi_base =
2249 	    vi_count - enp->en_arch.ef10.ena_piobuf_count;
2250 
2251 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
2252 	    EFX_VI_WINDOW_SHIFT_INVALID);
2253 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
2254 	    EFX_VI_WINDOW_SHIFT_64K);
2255 	vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
2256 
2257 	/* Save UC memory mapping details */
2258 	enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
2259 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2260 		enp->en_arch.ef10.ena_uc_mem_map_size =
2261 		    (vi_window_size *
2262 		    enp->en_arch.ef10.ena_pio_write_vi_base);
2263 	} else {
2264 		enp->en_arch.ef10.ena_uc_mem_map_size =
2265 		    (vi_window_size *
2266 		    enp->en_arch.ef10.ena_vi_count);
2267 	}
2268 
2269 	/* Save WC memory mapping details */
2270 	enp->en_arch.ef10.ena_wc_mem_map_offset =
2271 	    enp->en_arch.ef10.ena_uc_mem_map_offset +
2272 	    enp->en_arch.ef10.ena_uc_mem_map_size;
2273 
2274 	enp->en_arch.ef10.ena_wc_mem_map_size =
2275 	    (vi_window_size *
2276 	    enp->en_arch.ef10.ena_piobuf_count);
2277 
2278 	/* Link piobufs to extra VIs in WC mapping */
2279 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2280 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2281 			rc = efx_mcdi_link_piobuf(enp,
2282 			    enp->en_arch.ef10.ena_pio_write_vi_base + i,
2283 			    enp->en_arch.ef10.ena_piobuf_handle[i]);
2284 			if (rc != 0)
2285 				break;
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * Allocate a vAdaptor attached to our upstream vPort/pPort.
2291 	 *
2292 	 * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
2293 	 * driver has yet to bring up the EVB port. See bug 56147. In this case,
2294 	 * retry the request several times after waiting a while. The wait time
2295 	 * between retries starts small (10ms) and exponentially increases.
2296 	 * Total wait time is a little over two seconds. Retry logic in the
2297 	 * client driver may mean this whole loop is repeated if it continues to
2298 	 * fail.
2299 	 */
2300 	retry = 0;
2301 	delay_us = 10000;
2302 	while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
2303 		if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
2304 		    (rc != ENOENT)) {
2305 			/*
2306 			 * Do not retry alloc for PF, or for other errors on
2307 			 * a VF.
2308 			 */
2309 			goto fail5;
2310 		}
2311 
2312 		/* VF startup before PF is ready. Retry allocation. */
2313 		if (retry > 5) {
2314 			/* Too many attempts */
2315 			rc = EINVAL;
2316 			goto fail6;
2317 		}
2318 		EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
2319 		EFSYS_SLEEP(delay_us);
2320 		retry++;
2321 		if (delay_us < 500000)
2322 			delay_us <<= 2;
2323 	}
2324 
2325 	enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
2326 	enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
2327 
2328 	return (0);
2329 
2330 fail6:
2331 	EFSYS_PROBE(fail6);
2332 fail5:
2333 	EFSYS_PROBE(fail5);
2334 fail4:
2335 	EFSYS_PROBE(fail4);
2336 fail3:
2337 	EFSYS_PROBE(fail3);
2338 fail2:
2339 	EFSYS_PROBE(fail2);
2340 
2341 	ef10_nic_free_piobufs(enp);
2342 
2343 fail1:
2344 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2345 
2346 	return (rc);
2347 }
2348 
2349 	__checkReturn	efx_rc_t
2350 ef10_nic_get_vi_pool(
2351 	__in		efx_nic_t *enp,
2352 	__out		uint32_t *vi_countp)
2353 {
2354 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
2355 	    enp->en_family == EFX_FAMILY_MEDFORD ||
2356 	    enp->en_family == EFX_FAMILY_MEDFORD2);
2357 
2358 	/*
2359 	 * Report VIs that the client driver can use.
2360 	 * Do not include VIs used for PIO buffer writes.
2361 	 */
2362 	*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
2363 
2364 	return (0);
2365 }
2366 
2367 	__checkReturn	efx_rc_t
2368 ef10_nic_get_bar_region(
2369 	__in		efx_nic_t *enp,
2370 	__in		efx_nic_region_t region,
2371 	__out		uint32_t *offsetp,
2372 	__out		size_t *sizep)
2373 {
2374 	efx_rc_t rc;
2375 
2376 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
2377 	    enp->en_family == EFX_FAMILY_MEDFORD ||
2378 	    enp->en_family == EFX_FAMILY_MEDFORD2);
2379 
2380 	/*
2381 	 * TODO: Specify host memory mapping alignment and granularity
2382 	 * in efx_drv_limits_t so that they can be taken into account
2383 	 * when allocating extra VIs for PIO writes.
2384 	 */
2385 	switch (region) {
2386 	case EFX_REGION_VI:
2387 		/* UC mapped memory BAR region for VI registers */
2388 		*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
2389 		*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
2390 		break;
2391 
2392 	case EFX_REGION_PIO_WRITE_VI:
2393 		/* WC mapped memory BAR region for piobuf writes */
2394 		*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
2395 		*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
2396 		break;
2397 
2398 	default:
2399 		rc = EINVAL;
2400 		goto fail1;
2401 	}
2402 
2403 	return (0);
2404 
2405 fail1:
2406 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2407 
2408 	return (rc);
2409 }
2410 
2411 	__checkReturn	boolean_t
2412 ef10_nic_hw_unavailable(
2413 	__in		efx_nic_t *enp)
2414 {
2415 	efx_dword_t dword;
2416 
2417 	if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
2418 		return (B_TRUE);
2419 
2420 	EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
2421 	if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
2422 		goto unavail;
2423 
2424 	return (B_FALSE);
2425 
2426 unavail:
2427 	ef10_nic_set_hw_unavailable(enp);
2428 
2429 	return (B_TRUE);
2430 }
2431 
2432 			void
2433 ef10_nic_set_hw_unavailable(
2434 	__in		efx_nic_t *enp)
2435 {
2436 	EFSYS_PROBE(hw_unavail);
2437 	enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
2438 }
2439 
2440 
2441 			void
2442 ef10_nic_fini(
2443 	__in		efx_nic_t *enp)
2444 {
2445 	uint32_t i;
2446 	efx_rc_t rc;
2447 
2448 	(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
2449 	enp->en_vport_id = 0;
2450 
2451 	/* Unlink piobufs from extra VIs in WC mapping */
2452 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2453 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2454 			rc = efx_mcdi_unlink_piobuf(enp,
2455 			    enp->en_arch.ef10.ena_pio_write_vi_base + i);
2456 			if (rc != 0)
2457 				break;
2458 		}
2459 	}
2460 
2461 	ef10_nic_free_piobufs(enp);
2462 
2463 	(void) efx_mcdi_free_vis(enp);
2464 	enp->en_arch.ef10.ena_vi_count = 0;
2465 }
2466 
2467 			void
2468 ef10_nic_unprobe(
2469 	__in		efx_nic_t *enp)
2470 {
2471 #if EFSYS_OPT_MON_STATS
2472 	mcdi_mon_cfg_free(enp);
2473 #endif /* EFSYS_OPT_MON_STATS */
2474 	(void) efx_mcdi_drv_attach(enp, B_FALSE);
2475 }
2476 
2477 #if EFSYS_OPT_DIAG
2478 
2479 	__checkReturn	efx_rc_t
2480 ef10_nic_register_test(
2481 	__in		efx_nic_t *enp)
2482 {
2483 	efx_rc_t rc;
2484 
2485 	/* FIXME */
2486 	_NOTE(ARGUNUSED(enp))
2487 	_NOTE(CONSTANTCONDITION)
2488 	if (B_FALSE) {
2489 		rc = ENOTSUP;
2490 		goto fail1;
2491 	}
2492 	/* FIXME */
2493 
2494 	return (0);
2495 
2496 fail1:
2497 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2498 
2499 	return (rc);
2500 }
2501 
2502 #endif	/* EFSYS_OPT_DIAG */
2503 
2504 #if EFSYS_OPT_FW_SUBVARIANT_AWARE
2505 
2506 	__checkReturn	efx_rc_t
2507 efx_mcdi_get_nic_global(
2508 	__in		efx_nic_t *enp,
2509 	__in		uint32_t key,
2510 	__out		uint32_t *valuep)
2511 {
2512 	efx_mcdi_req_t req;
2513 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
2514 		MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
2515 	efx_rc_t rc;
2516 
2517 	req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
2518 	req.emr_in_buf = payload;
2519 	req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
2520 	req.emr_out_buf = payload;
2521 	req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
2522 
2523 	MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
2524 
2525 	efx_mcdi_execute(enp, &req);
2526 
2527 	if (req.emr_rc != 0) {
2528 		rc = req.emr_rc;
2529 		goto fail1;
2530 	}
2531 
2532 	if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
2533 		rc = EMSGSIZE;
2534 		goto fail2;
2535 	}
2536 
2537 	*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
2538 
2539 	return (0);
2540 
2541 fail2:
2542 	EFSYS_PROBE(fail2);
2543 fail1:
2544 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2545 
2546 	return (rc);
2547 }
2548 
2549 	__checkReturn	efx_rc_t
2550 efx_mcdi_set_nic_global(
2551 	__in		efx_nic_t *enp,
2552 	__in		uint32_t key,
2553 	__in		uint32_t value)
2554 {
2555 	efx_mcdi_req_t req;
2556 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
2557 	efx_rc_t rc;
2558 
2559 	req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
2560 	req.emr_in_buf = payload;
2561 	req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
2562 	req.emr_out_buf = NULL;
2563 	req.emr_out_length = 0;
2564 
2565 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
2566 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
2567 
2568 	efx_mcdi_execute(enp, &req);
2569 
2570 	if (req.emr_rc != 0) {
2571 		rc = req.emr_rc;
2572 		goto fail1;
2573 	}
2574 
2575 	return (0);
2576 
2577 fail1:
2578 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2579 
2580 	return (rc);
2581 }
2582 
2583 #endif	/* EFSYS_OPT_FW_SUBVARIANT_AWARE */
2584 
2585 #endif	/* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */
2586