xref: /freebsd/sys/dev/sfxge/common/ef10_nic.c (revision 43a5ec4eb41567cc92586503212743d89686d78f)
1 /*-
2  * Copyright (c) 2012-2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are
27  * those of the authors and should not be interpreted as representing official
28  * policies, either expressed or implied, of the FreeBSD Project.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "efx.h"
35 #include "efx_impl.h"
36 #if EFSYS_OPT_MON_MCDI
37 #include "mcdi_mon.h"
38 #endif
39 
40 #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
41 
42 #include "ef10_tlv_layout.h"
43 
44 	__checkReturn	efx_rc_t
45 efx_mcdi_get_port_assignment(
46 	__in		efx_nic_t *enp,
47 	__out		uint32_t *portp)
48 {
49 	efx_mcdi_req_t req;
50 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
51 		MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
52 	efx_rc_t rc;
53 
54 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
55 	    enp->en_family == EFX_FAMILY_MEDFORD ||
56 	    enp->en_family == EFX_FAMILY_MEDFORD2);
57 
58 	req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
59 	req.emr_in_buf = payload;
60 	req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
61 	req.emr_out_buf = payload;
62 	req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
63 
64 	efx_mcdi_execute(enp, &req);
65 
66 	if (req.emr_rc != 0) {
67 		rc = req.emr_rc;
68 		goto fail1;
69 	}
70 
71 	if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
72 		rc = EMSGSIZE;
73 		goto fail2;
74 	}
75 
76 	*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
77 
78 	return (0);
79 
80 fail2:
81 	EFSYS_PROBE(fail2);
82 fail1:
83 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
84 
85 	return (rc);
86 }
87 
88 	__checkReturn	efx_rc_t
89 efx_mcdi_get_port_modes(
90 	__in		efx_nic_t *enp,
91 	__out		uint32_t *modesp,
92 	__out_opt	uint32_t *current_modep,
93 	__out_opt	uint32_t *default_modep)
94 {
95 	efx_mcdi_req_t req;
96 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
97 		MC_CMD_GET_PORT_MODES_OUT_LEN);
98 	efx_rc_t rc;
99 
100 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
101 	    enp->en_family == EFX_FAMILY_MEDFORD ||
102 	    enp->en_family == EFX_FAMILY_MEDFORD2);
103 
104 	req.emr_cmd = MC_CMD_GET_PORT_MODES;
105 	req.emr_in_buf = payload;
106 	req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
107 	req.emr_out_buf = payload;
108 	req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
109 
110 	efx_mcdi_execute(enp, &req);
111 
112 	if (req.emr_rc != 0) {
113 		rc = req.emr_rc;
114 		goto fail1;
115 	}
116 
117 	/*
118 	 * Require only Modes and DefaultMode fields, unless the current mode
119 	 * was requested (CurrentMode field was added for Medford).
120 	 */
121 	if (req.emr_out_length_used <
122 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
123 		rc = EMSGSIZE;
124 		goto fail2;
125 	}
126 	if ((current_modep != NULL) && (req.emr_out_length_used <
127 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
128 		rc = EMSGSIZE;
129 		goto fail3;
130 	}
131 
132 	*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
133 
134 	if (current_modep != NULL) {
135 		*current_modep = MCDI_OUT_DWORD(req,
136 					    GET_PORT_MODES_OUT_CURRENT_MODE);
137 	}
138 
139 	if (default_modep != NULL) {
140 		*default_modep = MCDI_OUT_DWORD(req,
141 					    GET_PORT_MODES_OUT_DEFAULT_MODE);
142 	}
143 
144 	return (0);
145 
146 fail3:
147 	EFSYS_PROBE(fail3);
148 fail2:
149 	EFSYS_PROBE(fail2);
150 fail1:
151 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
152 
153 	return (rc);
154 }
155 
156 	__checkReturn	efx_rc_t
157 ef10_nic_get_port_mode_bandwidth(
158 	__in		efx_nic_t *enp,
159 	__out		uint32_t *bandwidth_mbpsp)
160 {
161 	uint32_t port_modes;
162 	uint32_t current_mode;
163 	efx_port_t *epp = &(enp->en_port);
164 
165 	uint32_t single_lane;
166 	uint32_t dual_lane;
167 	uint32_t quad_lane;
168 	uint32_t bandwidth;
169 	efx_rc_t rc;
170 
171 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
172 				    &current_mode, NULL)) != 0) {
173 		/* No port mode info available. */
174 		goto fail1;
175 	}
176 
177 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
178 		single_lane = 25000;
179 	else
180 		single_lane = 10000;
181 
182 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
183 		dual_lane = 50000;
184 	else
185 		dual_lane = 20000;
186 
187 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
188 		quad_lane = 100000;
189 	else
190 		quad_lane = 40000;
191 
192 	switch (current_mode) {
193 	case TLV_PORT_MODE_1x1_NA:			/* mode 0 */
194 		bandwidth = single_lane;
195 		break;
196 	case TLV_PORT_MODE_1x2_NA:			/* mode 10 */
197 	case TLV_PORT_MODE_NA_1x2:			/* mode 11 */
198 		bandwidth = dual_lane;
199 		break;
200 	case TLV_PORT_MODE_1x1_1x1:			/* mode 2 */
201 		bandwidth = single_lane + single_lane;
202 		break;
203 	case TLV_PORT_MODE_4x1_NA:			/* mode 4 */
204 	case TLV_PORT_MODE_NA_4x1:			/* mode 8 */
205 		bandwidth = 4 * single_lane;
206 		break;
207 	case TLV_PORT_MODE_2x1_2x1:			/* mode 5 */
208 		bandwidth = (2 * single_lane) + (2 * single_lane);
209 		break;
210 	case TLV_PORT_MODE_1x2_1x2:			/* mode 12 */
211 		bandwidth = dual_lane + dual_lane;
212 		break;
213 	case TLV_PORT_MODE_1x2_2x1:			/* mode 17 */
214 	case TLV_PORT_MODE_2x1_1x2:			/* mode 18 */
215 		bandwidth = dual_lane + (2 * single_lane);
216 		break;
217 	/* Legacy Medford-only mode. Do not use (see bug63270) */
218 	case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:	/* mode 9 */
219 		bandwidth = 4 * single_lane;
220 		break;
221 	case TLV_PORT_MODE_1x4_NA:			/* mode 1 */
222 	case TLV_PORT_MODE_NA_1x4:			/* mode 22 */
223 		bandwidth = quad_lane;
224 		break;
225 	case TLV_PORT_MODE_2x2_NA:			/* mode 13 */
226 	case TLV_PORT_MODE_NA_2x2:			/* mode 14 */
227 		bandwidth = 2 * dual_lane;
228 		break;
229 	case TLV_PORT_MODE_1x4_2x1:			/* mode 6 */
230 	case TLV_PORT_MODE_2x1_1x4:			/* mode 7 */
231 		bandwidth = quad_lane + (2 * single_lane);
232 		break;
233 	case TLV_PORT_MODE_1x4_1x2:			/* mode 15 */
234 	case TLV_PORT_MODE_1x2_1x4:			/* mode 16 */
235 		bandwidth = quad_lane + dual_lane;
236 		break;
237 	case TLV_PORT_MODE_1x4_1x4:			/* mode 3 */
238 		bandwidth = quad_lane + quad_lane;
239 		break;
240 	default:
241 		rc = EINVAL;
242 		goto fail2;
243 	}
244 
245 	*bandwidth_mbpsp = bandwidth;
246 
247 	return (0);
248 
249 fail2:
250 	EFSYS_PROBE(fail2);
251 fail1:
252 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
253 
254 	return (rc);
255 }
256 
257 static	__checkReturn		efx_rc_t
258 efx_mcdi_vadaptor_alloc(
259 	__in			efx_nic_t *enp,
260 	__in			uint32_t port_id)
261 {
262 	efx_mcdi_req_t req;
263 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
264 		MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
265 	efx_rc_t rc;
266 
267 	EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL);
268 
269 	req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
270 	req.emr_in_buf = payload;
271 	req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
272 	req.emr_out_buf = payload;
273 	req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
274 
275 	MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
276 	MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
277 	    VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
278 	    enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
279 
280 	efx_mcdi_execute(enp, &req);
281 
282 	if (req.emr_rc != 0) {
283 		rc = req.emr_rc;
284 		goto fail1;
285 	}
286 
287 	return (0);
288 
289 fail1:
290 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
291 
292 	return (rc);
293 }
294 
295 static	__checkReturn		efx_rc_t
296 efx_mcdi_vadaptor_free(
297 	__in			efx_nic_t *enp,
298 	__in			uint32_t port_id)
299 {
300 	efx_mcdi_req_t req;
301 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
302 		MC_CMD_VADAPTOR_FREE_OUT_LEN);
303 	efx_rc_t rc;
304 
305 	req.emr_cmd = MC_CMD_VADAPTOR_FREE;
306 	req.emr_in_buf = payload;
307 	req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
308 	req.emr_out_buf = payload;
309 	req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
310 
311 	MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
312 
313 	efx_mcdi_execute(enp, &req);
314 
315 	if (req.emr_rc != 0) {
316 		rc = req.emr_rc;
317 		goto fail1;
318 	}
319 
320 	return (0);
321 
322 fail1:
323 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
324 
325 	return (rc);
326 }
327 
328 	__checkReturn	efx_rc_t
329 efx_mcdi_get_mac_address_pf(
330 	__in			efx_nic_t *enp,
331 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
332 {
333 	efx_mcdi_req_t req;
334 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
335 		MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
336 	efx_rc_t rc;
337 
338 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
339 	    enp->en_family == EFX_FAMILY_MEDFORD ||
340 	    enp->en_family == EFX_FAMILY_MEDFORD2);
341 
342 	req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
343 	req.emr_in_buf = payload;
344 	req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
345 	req.emr_out_buf = payload;
346 	req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
347 
348 	efx_mcdi_execute(enp, &req);
349 
350 	if (req.emr_rc != 0) {
351 		rc = req.emr_rc;
352 		goto fail1;
353 	}
354 
355 	if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
356 		rc = EMSGSIZE;
357 		goto fail2;
358 	}
359 
360 	if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
361 		rc = ENOENT;
362 		goto fail3;
363 	}
364 
365 	if (mac_addrp != NULL) {
366 		uint8_t *addrp;
367 
368 		addrp = MCDI_OUT2(req, uint8_t,
369 		    GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
370 
371 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
372 	}
373 
374 	return (0);
375 
376 fail3:
377 	EFSYS_PROBE(fail3);
378 fail2:
379 	EFSYS_PROBE(fail2);
380 fail1:
381 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
382 
383 	return (rc);
384 }
385 
386 	__checkReturn	efx_rc_t
387 efx_mcdi_get_mac_address_vf(
388 	__in			efx_nic_t *enp,
389 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
390 {
391 	efx_mcdi_req_t req;
392 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
393 		MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
394 	efx_rc_t rc;
395 
396 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
397 	    enp->en_family == EFX_FAMILY_MEDFORD ||
398 	    enp->en_family == EFX_FAMILY_MEDFORD2);
399 
400 	req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
401 	req.emr_in_buf = payload;
402 	req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
403 	req.emr_out_buf = payload;
404 	req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
405 
406 	MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
407 	    EVB_PORT_ID_ASSIGNED);
408 
409 	efx_mcdi_execute(enp, &req);
410 
411 	if (req.emr_rc != 0) {
412 		rc = req.emr_rc;
413 		goto fail1;
414 	}
415 
416 	if (req.emr_out_length_used <
417 	    MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
418 		rc = EMSGSIZE;
419 		goto fail2;
420 	}
421 
422 	if (MCDI_OUT_DWORD(req,
423 		VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
424 		rc = ENOENT;
425 		goto fail3;
426 	}
427 
428 	if (mac_addrp != NULL) {
429 		uint8_t *addrp;
430 
431 		addrp = MCDI_OUT2(req, uint8_t,
432 		    VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
433 
434 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
435 	}
436 
437 	return (0);
438 
439 fail3:
440 	EFSYS_PROBE(fail3);
441 fail2:
442 	EFSYS_PROBE(fail2);
443 fail1:
444 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
445 
446 	return (rc);
447 }
448 
449 	__checkReturn	efx_rc_t
450 efx_mcdi_get_clock(
451 	__in		efx_nic_t *enp,
452 	__out		uint32_t *sys_freqp,
453 	__out		uint32_t *dpcpu_freqp)
454 {
455 	efx_mcdi_req_t req;
456 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
457 		MC_CMD_GET_CLOCK_OUT_LEN);
458 	efx_rc_t rc;
459 
460 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
461 	    enp->en_family == EFX_FAMILY_MEDFORD ||
462 	    enp->en_family == EFX_FAMILY_MEDFORD2);
463 
464 	req.emr_cmd = MC_CMD_GET_CLOCK;
465 	req.emr_in_buf = payload;
466 	req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
467 	req.emr_out_buf = payload;
468 	req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
469 
470 	efx_mcdi_execute(enp, &req);
471 
472 	if (req.emr_rc != 0) {
473 		rc = req.emr_rc;
474 		goto fail1;
475 	}
476 
477 	if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
478 		rc = EMSGSIZE;
479 		goto fail2;
480 	}
481 
482 	*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
483 	if (*sys_freqp == 0) {
484 		rc = EINVAL;
485 		goto fail3;
486 	}
487 	*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
488 	if (*dpcpu_freqp == 0) {
489 		rc = EINVAL;
490 		goto fail4;
491 	}
492 
493 	return (0);
494 
495 fail4:
496 	EFSYS_PROBE(fail4);
497 fail3:
498 	EFSYS_PROBE(fail3);
499 fail2:
500 	EFSYS_PROBE(fail2);
501 fail1:
502 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
503 
504 	return (rc);
505 }
506 
507 	__checkReturn	efx_rc_t
508 efx_mcdi_get_rxdp_config(
509 	__in		efx_nic_t *enp,
510 	__out		uint32_t *end_paddingp)
511 {
512 	efx_mcdi_req_t req;
513 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
514 		MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
515 	uint32_t end_padding;
516 	efx_rc_t rc;
517 
518 	req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
519 	req.emr_in_buf = payload;
520 	req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
521 	req.emr_out_buf = payload;
522 	req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
523 
524 	efx_mcdi_execute(enp, &req);
525 	if (req.emr_rc != 0) {
526 		rc = req.emr_rc;
527 		goto fail1;
528 	}
529 
530 	if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
531 				    GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
532 		/* RX DMA end padding is disabled */
533 		end_padding = 0;
534 	} else {
535 		switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
536 					    GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
537 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
538 			end_padding = 64;
539 			break;
540 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
541 			end_padding = 128;
542 			break;
543 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
544 			end_padding = 256;
545 			break;
546 		default:
547 			rc = ENOTSUP;
548 			goto fail2;
549 		}
550 	}
551 
552 	*end_paddingp = end_padding;
553 
554 	return (0);
555 
556 fail2:
557 	EFSYS_PROBE(fail2);
558 fail1:
559 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
560 
561 	return (rc);
562 }
563 
564 	__checkReturn	efx_rc_t
565 efx_mcdi_get_vector_cfg(
566 	__in		efx_nic_t *enp,
567 	__out_opt	uint32_t *vec_basep,
568 	__out_opt	uint32_t *pf_nvecp,
569 	__out_opt	uint32_t *vf_nvecp)
570 {
571 	efx_mcdi_req_t req;
572 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
573 		MC_CMD_GET_VECTOR_CFG_OUT_LEN);
574 	efx_rc_t rc;
575 
576 	req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
577 	req.emr_in_buf = payload;
578 	req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
579 	req.emr_out_buf = payload;
580 	req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
581 
582 	efx_mcdi_execute(enp, &req);
583 
584 	if (req.emr_rc != 0) {
585 		rc = req.emr_rc;
586 		goto fail1;
587 	}
588 
589 	if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
590 		rc = EMSGSIZE;
591 		goto fail2;
592 	}
593 
594 	if (vec_basep != NULL)
595 		*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
596 	if (pf_nvecp != NULL)
597 		*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
598 	if (vf_nvecp != NULL)
599 		*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
600 
601 	return (0);
602 
603 fail2:
604 	EFSYS_PROBE(fail2);
605 fail1:
606 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
607 
608 	return (rc);
609 }
610 
611 static	__checkReturn	efx_rc_t
612 efx_mcdi_alloc_vis(
613 	__in		efx_nic_t *enp,
614 	__in		uint32_t min_vi_count,
615 	__in		uint32_t max_vi_count,
616 	__out		uint32_t *vi_basep,
617 	__out		uint32_t *vi_countp,
618 	__out		uint32_t *vi_shiftp)
619 {
620 	efx_mcdi_req_t req;
621 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
622 		MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
623 	efx_rc_t rc;
624 
625 	if (vi_countp == NULL) {
626 		rc = EINVAL;
627 		goto fail1;
628 	}
629 
630 	req.emr_cmd = MC_CMD_ALLOC_VIS;
631 	req.emr_in_buf = payload;
632 	req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
633 	req.emr_out_buf = payload;
634 	req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
635 
636 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
637 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
638 
639 	efx_mcdi_execute(enp, &req);
640 
641 	if (req.emr_rc != 0) {
642 		rc = req.emr_rc;
643 		goto fail2;
644 	}
645 
646 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
647 		rc = EMSGSIZE;
648 		goto fail3;
649 	}
650 
651 	*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
652 	*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
653 
654 	/* Report VI_SHIFT if available (always zero for Huntington) */
655 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
656 		*vi_shiftp = 0;
657 	else
658 		*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
659 
660 	return (0);
661 
662 fail3:
663 	EFSYS_PROBE(fail3);
664 fail2:
665 	EFSYS_PROBE(fail2);
666 fail1:
667 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
668 
669 	return (rc);
670 }
671 
672 static	__checkReturn	efx_rc_t
673 efx_mcdi_free_vis(
674 	__in		efx_nic_t *enp)
675 {
676 	efx_mcdi_req_t req;
677 	efx_rc_t rc;
678 
679 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
680 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
681 
682 	req.emr_cmd = MC_CMD_FREE_VIS;
683 	req.emr_in_buf = NULL;
684 	req.emr_in_length = 0;
685 	req.emr_out_buf = NULL;
686 	req.emr_out_length = 0;
687 
688 	efx_mcdi_execute_quiet(enp, &req);
689 
690 	/* Ignore ELREADY (no allocated VIs, so nothing to free) */
691 	if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
692 		rc = req.emr_rc;
693 		goto fail1;
694 	}
695 
696 	return (0);
697 
698 fail1:
699 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
700 
701 	return (rc);
702 }
703 
704 static	__checkReturn	efx_rc_t
705 efx_mcdi_alloc_piobuf(
706 	__in		efx_nic_t *enp,
707 	__out		efx_piobuf_handle_t *handlep)
708 {
709 	efx_mcdi_req_t req;
710 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
711 		MC_CMD_ALLOC_PIOBUF_OUT_LEN);
712 	efx_rc_t rc;
713 
714 	if (handlep == NULL) {
715 		rc = EINVAL;
716 		goto fail1;
717 	}
718 
719 	req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
720 	req.emr_in_buf = payload;
721 	req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
722 	req.emr_out_buf = payload;
723 	req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
724 
725 	efx_mcdi_execute_quiet(enp, &req);
726 
727 	if (req.emr_rc != 0) {
728 		rc = req.emr_rc;
729 		goto fail2;
730 	}
731 
732 	if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
733 		rc = EMSGSIZE;
734 		goto fail3;
735 	}
736 
737 	*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
738 
739 	return (0);
740 
741 fail3:
742 	EFSYS_PROBE(fail3);
743 fail2:
744 	EFSYS_PROBE(fail2);
745 fail1:
746 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
747 
748 	return (rc);
749 }
750 
751 static	__checkReturn	efx_rc_t
752 efx_mcdi_free_piobuf(
753 	__in		efx_nic_t *enp,
754 	__in		efx_piobuf_handle_t handle)
755 {
756 	efx_mcdi_req_t req;
757 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
758 		MC_CMD_FREE_PIOBUF_OUT_LEN);
759 	efx_rc_t rc;
760 
761 	req.emr_cmd = MC_CMD_FREE_PIOBUF;
762 	req.emr_in_buf = payload;
763 	req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
764 	req.emr_out_buf = payload;
765 	req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
766 
767 	MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
768 
769 	efx_mcdi_execute_quiet(enp, &req);
770 
771 	if (req.emr_rc != 0) {
772 		rc = req.emr_rc;
773 		goto fail1;
774 	}
775 
776 	return (0);
777 
778 fail1:
779 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
780 
781 	return (rc);
782 }
783 
784 static	__checkReturn	efx_rc_t
785 efx_mcdi_link_piobuf(
786 	__in		efx_nic_t *enp,
787 	__in		uint32_t vi_index,
788 	__in		efx_piobuf_handle_t handle)
789 {
790 	efx_mcdi_req_t req;
791 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
792 		MC_CMD_LINK_PIOBUF_OUT_LEN);
793 	efx_rc_t rc;
794 
795 	req.emr_cmd = MC_CMD_LINK_PIOBUF;
796 	req.emr_in_buf = payload;
797 	req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
798 	req.emr_out_buf = payload;
799 	req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
800 
801 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
802 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
803 
804 	efx_mcdi_execute(enp, &req);
805 
806 	if (req.emr_rc != 0) {
807 		rc = req.emr_rc;
808 		goto fail1;
809 	}
810 
811 	return (0);
812 
813 fail1:
814 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
815 
816 	return (rc);
817 }
818 
819 static	__checkReturn	efx_rc_t
820 efx_mcdi_unlink_piobuf(
821 	__in		efx_nic_t *enp,
822 	__in		uint32_t vi_index)
823 {
824 	efx_mcdi_req_t req;
825 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
826 		MC_CMD_UNLINK_PIOBUF_OUT_LEN);
827 	efx_rc_t rc;
828 
829 	req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
830 	req.emr_in_buf = payload;
831 	req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
832 	req.emr_out_buf = payload;
833 	req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
834 
835 	MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
836 
837 	efx_mcdi_execute_quiet(enp, &req);
838 
839 	if (req.emr_rc != 0) {
840 		rc = req.emr_rc;
841 		goto fail1;
842 	}
843 
844 	return (0);
845 
846 fail1:
847 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
848 
849 	return (rc);
850 }
851 
852 static			void
853 ef10_nic_alloc_piobufs(
854 	__in		efx_nic_t *enp,
855 	__in		uint32_t max_piobuf_count)
856 {
857 	efx_piobuf_handle_t *handlep;
858 	unsigned int i;
859 
860 	EFSYS_ASSERT3U(max_piobuf_count, <=,
861 	    EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
862 
863 	enp->en_arch.ef10.ena_piobuf_count = 0;
864 
865 	for (i = 0; i < max_piobuf_count; i++) {
866 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
867 
868 		if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
869 			goto fail1;
870 
871 		enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
872 		enp->en_arch.ef10.ena_piobuf_count++;
873 	}
874 
875 	return;
876 
877 fail1:
878 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
879 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
880 
881 		(void) efx_mcdi_free_piobuf(enp, *handlep);
882 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
883 	}
884 	enp->en_arch.ef10.ena_piobuf_count = 0;
885 }
886 
887 static			void
888 ef10_nic_free_piobufs(
889 	__in		efx_nic_t *enp)
890 {
891 	efx_piobuf_handle_t *handlep;
892 	unsigned int i;
893 
894 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
895 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
896 
897 		(void) efx_mcdi_free_piobuf(enp, *handlep);
898 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
899 	}
900 	enp->en_arch.ef10.ena_piobuf_count = 0;
901 }
902 
903 /* Sub-allocate a block from a piobuf */
904 	__checkReturn	efx_rc_t
905 ef10_nic_pio_alloc(
906 	__inout		efx_nic_t *enp,
907 	__out		uint32_t *bufnump,
908 	__out		efx_piobuf_handle_t *handlep,
909 	__out		uint32_t *blknump,
910 	__out		uint32_t *offsetp,
911 	__out		size_t *sizep)
912 {
913 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
914 	efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
915 	uint32_t blk_per_buf;
916 	uint32_t buf, blk;
917 	efx_rc_t rc;
918 
919 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
920 	    enp->en_family == EFX_FAMILY_MEDFORD ||
921 	    enp->en_family == EFX_FAMILY_MEDFORD2);
922 	EFSYS_ASSERT(bufnump);
923 	EFSYS_ASSERT(handlep);
924 	EFSYS_ASSERT(blknump);
925 	EFSYS_ASSERT(offsetp);
926 	EFSYS_ASSERT(sizep);
927 
928 	if ((edcp->edc_pio_alloc_size == 0) ||
929 	    (enp->en_arch.ef10.ena_piobuf_count == 0)) {
930 		rc = ENOMEM;
931 		goto fail1;
932 	}
933 	blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
934 
935 	for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
936 		uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
937 
938 		if (~(*map) == 0)
939 			continue;
940 
941 		EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
942 		for (blk = 0; blk < blk_per_buf; blk++) {
943 			if ((*map & (1u << blk)) == 0) {
944 				*map |= (1u << blk);
945 				goto done;
946 			}
947 		}
948 	}
949 	rc = ENOMEM;
950 	goto fail2;
951 
952 done:
953 	*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
954 	*bufnump = buf;
955 	*blknump = blk;
956 	*sizep = edcp->edc_pio_alloc_size;
957 	*offsetp = blk * (*sizep);
958 
959 	return (0);
960 
961 fail2:
962 	EFSYS_PROBE(fail2);
963 fail1:
964 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
965 
966 	return (rc);
967 }
968 
969 /* Free a piobuf sub-allocated block */
970 	__checkReturn	efx_rc_t
971 ef10_nic_pio_free(
972 	__inout		efx_nic_t *enp,
973 	__in		uint32_t bufnum,
974 	__in		uint32_t blknum)
975 {
976 	uint32_t *map;
977 	efx_rc_t rc;
978 
979 	if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
980 	    (blknum >= (8 * sizeof (*map)))) {
981 		rc = EINVAL;
982 		goto fail1;
983 	}
984 
985 	map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
986 	if ((*map & (1u << blknum)) == 0) {
987 		rc = ENOENT;
988 		goto fail2;
989 	}
990 	*map &= ~(1u << blknum);
991 
992 	return (0);
993 
994 fail2:
995 	EFSYS_PROBE(fail2);
996 fail1:
997 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
998 
999 	return (rc);
1000 }
1001 
1002 	__checkReturn	efx_rc_t
1003 ef10_nic_pio_link(
1004 	__inout		efx_nic_t *enp,
1005 	__in		uint32_t vi_index,
1006 	__in		efx_piobuf_handle_t handle)
1007 {
1008 	return (efx_mcdi_link_piobuf(enp, vi_index, handle));
1009 }
1010 
1011 	__checkReturn	efx_rc_t
1012 ef10_nic_pio_unlink(
1013 	__inout		efx_nic_t *enp,
1014 	__in		uint32_t vi_index)
1015 {
1016 	return (efx_mcdi_unlink_piobuf(enp, vi_index));
1017 }
1018 
1019 static	__checkReturn	efx_rc_t
1020 ef10_mcdi_get_pf_count(
1021 	__in		efx_nic_t *enp,
1022 	__out		uint32_t *pf_countp)
1023 {
1024 	efx_mcdi_req_t req;
1025 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
1026 		MC_CMD_GET_PF_COUNT_OUT_LEN);
1027 	efx_rc_t rc;
1028 
1029 	req.emr_cmd = MC_CMD_GET_PF_COUNT;
1030 	req.emr_in_buf = payload;
1031 	req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
1032 	req.emr_out_buf = payload;
1033 	req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
1034 
1035 	efx_mcdi_execute(enp, &req);
1036 
1037 	if (req.emr_rc != 0) {
1038 		rc = req.emr_rc;
1039 		goto fail1;
1040 	}
1041 
1042 	if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
1043 		rc = EMSGSIZE;
1044 		goto fail2;
1045 	}
1046 
1047 	*pf_countp = *MCDI_OUT(req, uint8_t,
1048 				MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
1049 
1050 	EFSYS_ASSERT(*pf_countp != 0);
1051 
1052 	return (0);
1053 
1054 fail2:
1055 	EFSYS_PROBE(fail2);
1056 fail1:
1057 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1058 
1059 	return (rc);
1060 }
1061 
1062 static	__checkReturn	efx_rc_t
1063 ef10_get_datapath_caps(
1064 	__in		efx_nic_t *enp)
1065 {
1066 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1067 	efx_mcdi_req_t req;
1068 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1069 		MC_CMD_GET_CAPABILITIES_V5_OUT_LEN);
1070 	efx_rc_t rc;
1071 
1072 	if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
1073 		goto fail1;
1074 
1075 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1076 	req.emr_in_buf = payload;
1077 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1078 	req.emr_out_buf = payload;
1079 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V5_OUT_LEN;
1080 
1081 	efx_mcdi_execute_quiet(enp, &req);
1082 
1083 	if (req.emr_rc != 0) {
1084 		rc = req.emr_rc;
1085 		goto fail2;
1086 	}
1087 
1088 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1089 		rc = EMSGSIZE;
1090 		goto fail3;
1091 	}
1092 
1093 #define	CAP_FLAGS1(_req, _flag)						\
1094 	(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) &		\
1095 	(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
1096 
1097 #define	CAP_FLAGS2(_req, _flag)						\
1098 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
1099 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) &	\
1100 	    (1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
1101 
1102 	/*
1103 	 * Huntington RXDP firmware inserts a 0 or 14 byte prefix.
1104 	 * We only support the 14 byte prefix here.
1105 	 */
1106 	if (CAP_FLAGS1(req, RX_PREFIX_LEN_14) == 0) {
1107 		rc = ENOTSUP;
1108 		goto fail4;
1109 	}
1110 	encp->enc_rx_prefix_size = 14;
1111 
1112 #if EFSYS_OPT_RX_SCALE
1113 	/* Check if the firmware supports additional RSS modes */
1114 	if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
1115 		encp->enc_rx_scale_additional_modes_supported = B_TRUE;
1116 	else
1117 		encp->enc_rx_scale_additional_modes_supported = B_FALSE;
1118 #endif /* EFSYS_OPT_RX_SCALE */
1119 
1120 	/* Check if the firmware supports TSO */
1121 	if (CAP_FLAGS1(req, TX_TSO))
1122 		encp->enc_fw_assisted_tso_enabled = B_TRUE;
1123 	else
1124 		encp->enc_fw_assisted_tso_enabled = B_FALSE;
1125 
1126 	/* Check if the firmware supports FATSOv2 */
1127 	if (CAP_FLAGS2(req, TX_TSO_V2)) {
1128 		encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
1129 		encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
1130 		    GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
1131 	} else {
1132 		encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
1133 		encp->enc_fw_assisted_tso_v2_n_contexts = 0;
1134 	}
1135 
1136 	/* Check if the firmware supports FATSOv2 encap */
1137 	if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
1138 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
1139 	else
1140 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
1141 
1142 	/* Check if the firmware has vadapter/vport/vswitch support */
1143 	if (CAP_FLAGS1(req, EVB))
1144 		encp->enc_datapath_cap_evb = B_TRUE;
1145 	else
1146 		encp->enc_datapath_cap_evb = B_FALSE;
1147 
1148 	/* Check if the firmware supports VLAN insertion */
1149 	if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
1150 		encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
1151 	else
1152 		encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
1153 
1154 	/* Check if the firmware supports RX event batching */
1155 	if (CAP_FLAGS1(req, RX_BATCHING))
1156 		encp->enc_rx_batching_enabled = B_TRUE;
1157 	else
1158 		encp->enc_rx_batching_enabled = B_FALSE;
1159 
1160 	/*
1161 	 * Even if batching isn't reported as supported, we may still get
1162 	 * batched events.
1163 	 */
1164 	encp->enc_rx_batch_max = 16;
1165 
1166 	/* Check if the firmware supports disabling scatter on RXQs */
1167 	if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
1168 		encp->enc_rx_disable_scatter_supported = B_TRUE;
1169 	else
1170 		encp->enc_rx_disable_scatter_supported = B_FALSE;
1171 
1172 	/* Check if the firmware supports packed stream mode */
1173 	if (CAP_FLAGS1(req, RX_PACKED_STREAM))
1174 		encp->enc_rx_packed_stream_supported = B_TRUE;
1175 	else
1176 		encp->enc_rx_packed_stream_supported = B_FALSE;
1177 
1178 	/*
1179 	 * Check if the firmware supports configurable buffer sizes
1180 	 * for packed stream mode (otherwise buffer size is 1Mbyte)
1181 	 */
1182 	if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
1183 		encp->enc_rx_var_packed_stream_supported = B_TRUE;
1184 	else
1185 		encp->enc_rx_var_packed_stream_supported = B_FALSE;
1186 
1187 	/* Check if the firmware supports equal stride super-buffer mode */
1188 	if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
1189 		encp->enc_rx_es_super_buffer_supported = B_TRUE;
1190 	else
1191 		encp->enc_rx_es_super_buffer_supported = B_FALSE;
1192 
1193 	/* Check if the firmware supports FW subvariant w/o Tx checksumming */
1194 	if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
1195 		encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
1196 	else
1197 		encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
1198 
1199 	/* Check if the firmware supports set mac with running filters */
1200 	if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
1201 		encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
1202 	else
1203 		encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
1204 
1205 	/*
1206 	 * Check if firmware supports the extended MC_CMD_SET_MAC, which allows
1207 	 * specifying which parameters to configure.
1208 	 */
1209 	if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
1210 		encp->enc_enhanced_set_mac_supported = B_TRUE;
1211 	else
1212 		encp->enc_enhanced_set_mac_supported = B_FALSE;
1213 
1214 	/*
1215 	 * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
1216 	 * us to let the firmware choose the settings to use on an EVQ.
1217 	 */
1218 	if (CAP_FLAGS2(req, INIT_EVQ_V2))
1219 		encp->enc_init_evq_v2_supported = B_TRUE;
1220 	else
1221 		encp->enc_init_evq_v2_supported = B_FALSE;
1222 
1223 	/*
1224 	 * Check if firmware-verified NVRAM updates must be used.
1225 	 *
1226 	 * The firmware trusted installer requires all NVRAM updates to use
1227 	 * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
1228 	 * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
1229 	 * partition and report the result).
1230 	 */
1231 	if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
1232 		encp->enc_nvram_update_verify_result_supported = B_TRUE;
1233 	else
1234 		encp->enc_nvram_update_verify_result_supported = B_FALSE;
1235 
1236 	/*
1237 	 * Check if firmware provides packet memory and Rx datapath
1238 	 * counters.
1239 	 */
1240 	if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
1241 		encp->enc_pm_and_rxdp_counters = B_TRUE;
1242 	else
1243 		encp->enc_pm_and_rxdp_counters = B_FALSE;
1244 
1245 	/*
1246 	 * Check if the 40G MAC hardware is capable of reporting
1247 	 * statistics for Tx size bins.
1248 	 */
1249 	if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
1250 		encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
1251 	else
1252 		encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
1253 
1254 	/*
1255 	 * Check if firmware supports VXLAN and NVGRE tunnels.
1256 	 * The capability indicates Geneve protocol support as well.
1257 	 */
1258 	if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
1259 		encp->enc_tunnel_encapsulations_supported =
1260 		    (1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
1261 		    (1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
1262 		    (1u << EFX_TUNNEL_PROTOCOL_NVGRE);
1263 
1264 		EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
1265 		    MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
1266 		encp->enc_tunnel_config_udp_entries_max =
1267 		    EFX_TUNNEL_MAXNENTRIES;
1268 	} else {
1269 		encp->enc_tunnel_config_udp_entries_max = 0;
1270 	}
1271 
1272 	/*
1273 	 * Check if firmware reports the VI window mode.
1274 	 * Medford2 has a variable VI window size (8K, 16K or 64K).
1275 	 * Medford and Huntington have a fixed 8K VI window size.
1276 	 */
1277 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
1278 		uint8_t mode =
1279 		    MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
1280 
1281 		switch (mode) {
1282 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
1283 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1284 			break;
1285 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
1286 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
1287 			break;
1288 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
1289 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
1290 			break;
1291 		default:
1292 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1293 			break;
1294 		}
1295 	} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
1296 		    (enp->en_family == EFX_FAMILY_MEDFORD)) {
1297 		/* Huntington and Medford have fixed 8K window size */
1298 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1299 	} else {
1300 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1301 	}
1302 
1303 	/* Check if firmware supports extended MAC stats. */
1304 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
1305 		/* Extended stats buffer supported */
1306 		encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
1307 		    GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
1308 	} else {
1309 		/* Use Siena-compatible legacy MAC stats */
1310 		encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
1311 	}
1312 
1313 	if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
1314 		encp->enc_fec_counters = B_TRUE;
1315 	else
1316 		encp->enc_fec_counters = B_FALSE;
1317 
1318 	/* Check if the firmware provides head-of-line blocking counters */
1319 	if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
1320 		encp->enc_hlb_counters = B_TRUE;
1321 	else
1322 		encp->enc_hlb_counters = B_FALSE;
1323 
1324 #if EFSYS_OPT_RX_SCALE
1325 	if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
1326 		/* Only one exclusive RSS context is available per port. */
1327 		encp->enc_rx_scale_max_exclusive_contexts = 1;
1328 
1329 		switch (enp->en_family) {
1330 		case EFX_FAMILY_MEDFORD2:
1331 			encp->enc_rx_scale_hash_alg_mask =
1332 			    (1U << EFX_RX_HASHALG_TOEPLITZ);
1333 			break;
1334 
1335 		case EFX_FAMILY_MEDFORD:
1336 		case EFX_FAMILY_HUNTINGTON:
1337 			/*
1338 			 * Packed stream firmware variant maintains a
1339 			 * non-standard algorithm for hash computation.
1340 			 * It implies explicit XORing together
1341 			 * source + destination IP addresses (or last
1342 			 * four bytes in the case of IPv6) and using the
1343 			 * resulting value as the input to a Toeplitz hash.
1344 			 */
1345 			encp->enc_rx_scale_hash_alg_mask =
1346 			    (1U << EFX_RX_HASHALG_PACKED_STREAM);
1347 			break;
1348 
1349 		default:
1350 			rc = EINVAL;
1351 			goto fail5;
1352 		}
1353 
1354 		/* Port numbers cannot contribute to the hash value */
1355 		encp->enc_rx_scale_l4_hash_supported = B_FALSE;
1356 	} else {
1357 		/*
1358 		 * Maximum number of exclusive RSS contexts.
1359 		 * EF10 hardware supports 64 in total, but 6 are reserved
1360 		 * for shared contexts. They are a global resource so
1361 		 * not all may be available.
1362 		 */
1363 		encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
1364 
1365 		encp->enc_rx_scale_hash_alg_mask =
1366 		    (1U << EFX_RX_HASHALG_TOEPLITZ);
1367 
1368 		/*
1369 		 * It is possible to use port numbers as
1370 		 * the input data for hash computation.
1371 		 */
1372 		encp->enc_rx_scale_l4_hash_supported = B_TRUE;
1373 	}
1374 #endif /* EFSYS_OPT_RX_SCALE */
1375 
1376 	/* Check if the firmware supports "FLAG" and "MARK" filter actions */
1377 	if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
1378 		encp->enc_filter_action_flag_supported = B_TRUE;
1379 	else
1380 		encp->enc_filter_action_flag_supported = B_FALSE;
1381 
1382 	if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
1383 		encp->enc_filter_action_mark_supported = B_TRUE;
1384 	else
1385 		encp->enc_filter_action_mark_supported = B_FALSE;
1386 
1387 	/* Get maximum supported value for "MARK" filter action */
1388 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
1389 		encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
1390 		    GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
1391 	else
1392 		encp->enc_filter_action_mark_max = 0;
1393 
1394 #undef CAP_FLAGS1
1395 #undef CAP_FLAGS2
1396 
1397 	return (0);
1398 
1399 #if EFSYS_OPT_RX_SCALE
1400 fail5:
1401 	EFSYS_PROBE(fail5);
1402 #endif /* EFSYS_OPT_RX_SCALE */
1403 fail4:
1404 	EFSYS_PROBE(fail4);
1405 fail3:
1406 	EFSYS_PROBE(fail3);
1407 fail2:
1408 	EFSYS_PROBE(fail2);
1409 fail1:
1410 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1411 
1412 	return (rc);
1413 }
1414 
1415 #define	EF10_LEGACY_PF_PRIVILEGE_MASK					\
1416 	(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN			|	\
1417 	MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK			|	\
1418 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD			|	\
1419 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP			|	\
1420 	MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS		|	\
1421 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING		|	\
1422 	MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST			|	\
1423 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST			|	\
1424 	MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST			|	\
1425 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST		|	\
1426 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
1427 
1428 #define	EF10_LEGACY_VF_PRIVILEGE_MASK	0
1429 
1430 	__checkReturn		efx_rc_t
1431 ef10_get_privilege_mask(
1432 	__in			efx_nic_t *enp,
1433 	__out			uint32_t *maskp)
1434 {
1435 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1436 	uint32_t mask;
1437 	efx_rc_t rc;
1438 
1439 	if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
1440 					    &mask)) != 0) {
1441 		if (rc != ENOTSUP)
1442 			goto fail1;
1443 
1444 		/* Fallback for old firmware without privilege mask support */
1445 		if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1446 			/* Assume PF has admin privilege */
1447 			mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
1448 		} else {
1449 			/* VF is always unprivileged by default */
1450 			mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
1451 		}
1452 	}
1453 
1454 	*maskp = mask;
1455 
1456 	return (0);
1457 
1458 fail1:
1459 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1460 
1461 	return (rc);
1462 }
1463 
1464 #define	EFX_EXT_PORT_MAX	4
1465 #define	EFX_EXT_PORT_NA		0xFF
1466 
1467 /*
1468  * Table of mapping schemes from port number to external number.
1469  *
1470  * Each port number ultimately corresponds to a connector: either as part of
1471  * a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
1472  * the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
1473  * "Salina"). In general:
1474  *
1475  * Port number (0-based)
1476  *     |
1477  *   port mapping (n:1)
1478  *     |
1479  *     v
1480  * External port number (1-based)
1481  *     |
1482  *   fixed (1:1) or cable assembly (1:m)
1483  *     |
1484  *     v
1485  * Connector
1486  *
1487  * The external numbering refers to the cages or magjacks on the board,
1488  * as visibly annotated on the board or back panel. This table describes
1489  * how to determine which external cage/magjack corresponds to the port
1490  * numbers used by the driver.
1491  *
1492  * The count of consecutive port numbers that map to each external number,
1493  * is determined by the chip family and the current port mode.
1494  *
1495  * For the Huntington family, the current port mode cannot be discovered,
1496  * but a single mapping is used by all modes for a given chip variant,
1497  * so the mapping used is instead the last match in the table to the full
1498  * set of port modes to which the NIC can be configured. Therefore the
1499  * ordering of entries in the mapping table is significant.
1500  */
1501 static struct ef10_external_port_map_s {
1502 	efx_family_t	family;
1503 	uint32_t	modes_mask;
1504 	uint8_t		base_port[EFX_EXT_PORT_MAX];
1505 }	__ef10_external_port_mappings[] = {
1506 	/*
1507 	 * Modes used by Huntington family controllers where each port
1508 	 * number maps to a separate cage.
1509 	 * SFN7x22F (Torino):
1510 	 *	port 0 -> cage 1
1511 	 *	port 1 -> cage 2
1512 	 * SFN7xx4F (Pavia):
1513 	 *	port 0 -> cage 1
1514 	 *	port 1 -> cage 2
1515 	 *	port 2 -> cage 3
1516 	 *	port 3 -> cage 4
1517 	 */
1518 	{
1519 		EFX_FAMILY_HUNTINGTON,
1520 		(1U << TLV_PORT_MODE_10G) |			/* mode 0 */
1521 		(1U << TLV_PORT_MODE_10G_10G) |			/* mode 2 */
1522 		(1U << TLV_PORT_MODE_10G_10G_10G_10G),		/* mode 4 */
1523 		{ 0, 1, 2, 3 }
1524 	},
1525 	/*
1526 	 * Modes which for Huntington identify a chip variant where 2
1527 	 * adjacent port numbers map to each cage.
1528 	 * SFN7x42Q (Monza):
1529 	 *	port 0 -> cage 1
1530 	 *	port 1 -> cage 1
1531 	 *	port 2 -> cage 2
1532 	 *	port 3 -> cage 2
1533 	 */
1534 	{
1535 		EFX_FAMILY_HUNTINGTON,
1536 		(1U << TLV_PORT_MODE_40G) |			/* mode 1 */
1537 		(1U << TLV_PORT_MODE_40G_40G) |			/* mode 3 */
1538 		(1U << TLV_PORT_MODE_40G_10G_10G) |		/* mode 6 */
1539 		(1U << TLV_PORT_MODE_10G_10G_40G),		/* mode 7 */
1540 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1541 	},
1542 	/*
1543 	 * Modes that on Medford allocate each port number to a separate
1544 	 * cage.
1545 	 *	port 0 -> cage 1
1546 	 *	port 1 -> cage 2
1547 	 *	port 2 -> cage 3
1548 	 *	port 3 -> cage 4
1549 	 */
1550 	{
1551 		EFX_FAMILY_MEDFORD,
1552 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1553 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1554 		{ 0, 1, 2, 3 }
1555 	},
1556 	/*
1557 	 * Modes that on Medford allocate 2 adjacent port numbers to each
1558 	 * cage.
1559 	 *	port 0 -> cage 1
1560 	 *	port 1 -> cage 1
1561 	 *	port 2 -> cage 2
1562 	 *	port 3 -> cage 2
1563 	 */
1564 	{
1565 		EFX_FAMILY_MEDFORD,
1566 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1567 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1568 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1569 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1570 		/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
1571 		(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),	/* mode 9 */
1572 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1573 	},
1574 	/*
1575 	 * Modes that on Medford allocate 4 adjacent port numbers to each
1576 	 * connector, starting on cage 1.
1577 	 *	port 0 -> cage 1
1578 	 *	port 1 -> cage 1
1579 	 *	port 2 -> cage 1
1580 	 *	port 3 -> cage 1
1581 	 */
1582 	{
1583 		EFX_FAMILY_MEDFORD,
1584 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 5 */
1585 		/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
1586 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 4 */
1587 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1588 	},
1589 	/*
1590 	 * Modes that on Medford allocate 4 adjacent port numbers to each
1591 	 * connector, starting on cage 2.
1592 	 *	port 0 -> cage 2
1593 	 *	port 1 -> cage 2
1594 	 *	port 2 -> cage 2
1595 	 *	port 3 -> cage 2
1596 	 */
1597 	{
1598 		EFX_FAMILY_MEDFORD,
1599 		(1U << TLV_PORT_MODE_NA_4x1),			/* mode 8 */
1600 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1601 	},
1602 	/*
1603 	 * Modes that on Medford2 allocate each port number to a separate
1604 	 * cage.
1605 	 *	port 0 -> cage 1
1606 	 *	port 1 -> cage 2
1607 	 *	port 2 -> cage 3
1608 	 *	port 3 -> cage 4
1609 	 */
1610 	{
1611 		EFX_FAMILY_MEDFORD2,
1612 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1613 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1614 		(1U << TLV_PORT_MODE_1x1_1x1) |			/* mode 2 */
1615 		(1U << TLV_PORT_MODE_1x2_NA) |			/* mode 10 */
1616 		(1U << TLV_PORT_MODE_1x2_1x2) |			/* mode 12 */
1617 		(1U << TLV_PORT_MODE_1x4_1x2) |			/* mode 15 */
1618 		(1U << TLV_PORT_MODE_1x2_1x4),			/* mode 16 */
1619 		{ 0, 1, 2, 3 }
1620 	},
1621 	/*
1622 	 * Modes that on Medford2 allocate 1 port to cage 1 and the rest
1623 	 * to cage 2.
1624 	 *	port 0 -> cage 1
1625 	 *	port 1 -> cage 2
1626 	 *	port 2 -> cage 2
1627 	 */
1628 	{
1629 		EFX_FAMILY_MEDFORD2,
1630 		(1U << TLV_PORT_MODE_1x2_2x1) |			/* mode 17 */
1631 		(1U << TLV_PORT_MODE_1x4_2x1),			/* mode 6 */
1632 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1633 	},
1634 	/*
1635 	 * Modes that on Medford2 allocate 2 adjacent port numbers to each
1636 	 * cage, starting on cage 1.
1637 	 *	port 0 -> cage 1
1638 	 *	port 1 -> cage 1
1639 	 *	port 2 -> cage 2
1640 	 *	port 3 -> cage 2
1641 	 */
1642 	{
1643 		EFX_FAMILY_MEDFORD2,
1644 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1645 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 4 */
1646 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1647 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1648 		(1U << TLV_PORT_MODE_2x2_NA) |			/* mode 13 */
1649 		(1U << TLV_PORT_MODE_2x1_1x2),			/* mode 18 */
1650 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1651 	},
1652 	/*
1653 	 * Modes that on Medford2 allocate 2 adjacent port numbers to each
1654 	 * cage, starting on cage 2.
1655 	 *	port 0 -> cage 2
1656 	 *	port 1 -> cage 2
1657 	 */
1658 	{
1659 		EFX_FAMILY_MEDFORD2,
1660 		(1U << TLV_PORT_MODE_NA_2x2),			/* mode 14 */
1661 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1662 	},
1663 	/*
1664 	 * Modes that on Medford2 allocate 4 adjacent port numbers to each
1665 	 * connector, starting on cage 1.
1666 	 *	port 0 -> cage 1
1667 	 *	port 1 -> cage 1
1668 	 *	port 2 -> cage 1
1669 	 *	port 3 -> cage 1
1670 	 */
1671 	{
1672 		EFX_FAMILY_MEDFORD2,
1673 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 5 */
1674 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1675 	},
1676 	/*
1677 	 * Modes that on Medford2 allocate 4 adjacent port numbers to each
1678 	 * connector, starting on cage 2.
1679 	 *	port 0 -> cage 2
1680 	 *	port 1 -> cage 2
1681 	 *	port 2 -> cage 2
1682 	 *	port 3 -> cage 2
1683 	 */
1684 	{
1685 		EFX_FAMILY_MEDFORD2,
1686 		(1U << TLV_PORT_MODE_NA_4x1) |			/* mode 8 */
1687 		(1U << TLV_PORT_MODE_NA_1x2),			/* mode 11 */
1688 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1689 	},
1690 };
1691 
1692 static	__checkReturn	efx_rc_t
1693 ef10_external_port_mapping(
1694 	__in		efx_nic_t *enp,
1695 	__in		uint32_t port,
1696 	__out		uint8_t *external_portp)
1697 {
1698 	efx_rc_t rc;
1699 	int i;
1700 	uint32_t port_modes;
1701 	uint32_t matches;
1702 	uint32_t current;
1703 	struct ef10_external_port_map_s *mapp = NULL;
1704 	int ext_index = port; /* Default 1-1 mapping */
1705 
1706 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current,
1707 		    NULL)) != 0) {
1708 		/*
1709 		 * No current port mode information (i.e. Huntington)
1710 		 * - infer mapping from available modes
1711 		 */
1712 		if ((rc = efx_mcdi_get_port_modes(enp,
1713 			    &port_modes, NULL, NULL)) != 0) {
1714 			/*
1715 			 * No port mode information available
1716 			 * - use default mapping
1717 			 */
1718 			goto out;
1719 		}
1720 	} else {
1721 		/* Only need to scan the current mode */
1722 		port_modes = 1 << current;
1723 	}
1724 
1725 	/*
1726 	 * Infer the internal port -> external number mapping from
1727 	 * the possible port modes for this NIC.
1728 	 */
1729 	for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
1730 		struct ef10_external_port_map_s *eepmp =
1731 		    &__ef10_external_port_mappings[i];
1732 		if (eepmp->family != enp->en_family)
1733 			continue;
1734 		matches = (eepmp->modes_mask & port_modes);
1735 		if (matches != 0) {
1736 			/*
1737 			 * Some modes match. For some Huntington boards
1738 			 * there will be multiple matches. The mapping on the
1739 			 * last match is used.
1740 			 */
1741 			mapp = eepmp;
1742 			port_modes &= ~matches;
1743 		}
1744 	}
1745 
1746 	if (port_modes != 0) {
1747 		/* Some advertised modes are not supported */
1748 		rc = ENOTSUP;
1749 		goto fail1;
1750 	}
1751 
1752 out:
1753 	if (mapp != NULL) {
1754 		/*
1755 		 * External ports are assigned a sequence of consecutive
1756 		 * port numbers, so find the one with the closest base_port.
1757 		 */
1758 		uint32_t delta = EFX_EXT_PORT_NA;
1759 
1760 		for (i = 0; i < EFX_EXT_PORT_MAX; i++) {
1761 			uint32_t base = mapp->base_port[i];
1762 			if ((base != EFX_EXT_PORT_NA) && (base <= port)) {
1763 				if ((port - base) < delta) {
1764 					delta = (port - base);
1765 					ext_index = i;
1766 				}
1767 			}
1768 		}
1769 	}
1770 	*external_portp = (uint8_t)(ext_index + 1);
1771 
1772 	return (0);
1773 
1774 fail1:
1775 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1776 
1777 	return (rc);
1778 }
1779 
1780 static	__checkReturn	efx_rc_t
1781 ef10_nic_board_cfg(
1782 	__in		efx_nic_t *enp)
1783 {
1784 	const efx_nic_ops_t *enop = enp->en_enop;
1785 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1786 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1787 	ef10_link_state_t els;
1788 	efx_port_t *epp = &(enp->en_port);
1789 	uint32_t board_type = 0;
1790 	uint32_t base, nvec;
1791 	uint32_t port;
1792 	uint32_t mask;
1793 	uint32_t pf;
1794 	uint32_t vf;
1795 	uint8_t mac_addr[6] = { 0 };
1796 	efx_rc_t rc;
1797 
1798 	/* Get the (zero-based) MCDI port number */
1799 	if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
1800 		goto fail1;
1801 
1802 	/* EFX MCDI interface uses one-based port numbers */
1803 	emip->emi_port = port + 1;
1804 
1805 	if ((rc = ef10_external_port_mapping(enp, port,
1806 		    &encp->enc_external_port)) != 0)
1807 		goto fail2;
1808 
1809 	/*
1810 	 * Get PCIe function number from firmware (used for
1811 	 * per-function privilege and dynamic config info).
1812 	 *  - PCIe PF: pf = PF number, vf = 0xffff.
1813 	 *  - PCIe VF: pf = parent PF, vf = VF number.
1814 	 */
1815 	if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf)) != 0)
1816 		goto fail3;
1817 
1818 	encp->enc_pf = pf;
1819 	encp->enc_vf = vf;
1820 
1821 	/* MAC address for this function */
1822 	if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1823 		rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
1824 #if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
1825 		/*
1826 		 * Disable static config checking, ONLY for manufacturing test
1827 		 * and setup at the factory, to allow the static config to be
1828 		 * installed.
1829 		 */
1830 #else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1831 		if ((rc == 0) && (mac_addr[0] & 0x02)) {
1832 			/*
1833 			 * If the static config does not include a global MAC
1834 			 * address pool then the board may return a locally
1835 			 * administered MAC address (this should only happen on
1836 			 * incorrectly programmed boards).
1837 			 */
1838 			rc = EINVAL;
1839 		}
1840 #endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1841 	} else {
1842 		rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
1843 	}
1844 	if (rc != 0)
1845 		goto fail4;
1846 
1847 	EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
1848 
1849 	/* Board configuration (legacy) */
1850 	rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
1851 	if (rc != 0) {
1852 		/* Unprivileged functions may not be able to read board cfg */
1853 		if (rc == EACCES)
1854 			board_type = 0;
1855 		else
1856 			goto fail5;
1857 	}
1858 
1859 	encp->enc_board_type = board_type;
1860 	encp->enc_clk_mult = 1; /* not used for EF10 */
1861 
1862 	/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
1863 	if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
1864 		goto fail6;
1865 
1866 	/*
1867 	 * Firmware with support for *_FEC capability bits does not
1868 	 * report that the corresponding *_FEC_REQUESTED bits are supported.
1869 	 * Add them here so that drivers understand that they are supported.
1870 	 */
1871 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
1872 		epp->ep_phy_cap_mask |=
1873 		    (1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
1874 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
1875 		epp->ep_phy_cap_mask |=
1876 		    (1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
1877 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
1878 		epp->ep_phy_cap_mask |=
1879 		    (1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
1880 
1881 	/* Obtain the default PHY advertised capabilities */
1882 	if ((rc = ef10_phy_get_link(enp, &els)) != 0)
1883 		goto fail7;
1884 	epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
1885 	epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
1886 
1887 	/* Check capabilities of running datapath firmware */
1888 	if ((rc = ef10_get_datapath_caps(enp)) != 0)
1889 		goto fail8;
1890 
1891 	/* Alignment for WPTR updates */
1892 	encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
1893 
1894 	encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
1895 	/* No boundary crossing limits */
1896 	encp->enc_tx_dma_desc_boundary = 0;
1897 
1898 	/*
1899 	 * Maximum number of bytes into the frame the TCP header can start for
1900 	 * firmware assisted TSO to work.
1901 	 */
1902 	encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
1903 
1904 	/*
1905 	 * Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
1906 	 * MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
1907 	 * resources (allocated to this PCIe function), which is zero until
1908 	 * after we have allocated VIs.
1909 	 */
1910 	encp->enc_evq_limit = 1024;
1911 	encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
1912 	encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
1913 
1914 	encp->enc_buftbl_limit = 0xFFFFFFFF;
1915 
1916 	/* Get interrupt vector limits */
1917 	if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
1918 		if (EFX_PCI_FUNCTION_IS_PF(encp))
1919 			goto fail9;
1920 
1921 		/* Ignore error (cannot query vector limits from a VF). */
1922 		base = 0;
1923 		nvec = 1024;
1924 	}
1925 	encp->enc_intr_vec_base = base;
1926 	encp->enc_intr_limit = nvec;
1927 
1928 	/*
1929 	 * Get the current privilege mask. Note that this may be modified
1930 	 * dynamically, so this value is informational only. DO NOT use
1931 	 * the privilege mask to check for sufficient privileges, as that
1932 	 * can result in time-of-check/time-of-use bugs.
1933 	 */
1934 	if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
1935 		goto fail10;
1936 	encp->enc_privilege_mask = mask;
1937 
1938 	/* Get remaining controller-specific board config */
1939 	if ((rc = enop->eno_board_cfg(enp)) != 0)
1940 		if (rc != EACCES)
1941 			goto fail11;
1942 
1943 	return (0);
1944 
1945 fail11:
1946 	EFSYS_PROBE(fail11);
1947 fail10:
1948 	EFSYS_PROBE(fail10);
1949 fail9:
1950 	EFSYS_PROBE(fail9);
1951 fail8:
1952 	EFSYS_PROBE(fail8);
1953 fail7:
1954 	EFSYS_PROBE(fail7);
1955 fail6:
1956 	EFSYS_PROBE(fail6);
1957 fail5:
1958 	EFSYS_PROBE(fail5);
1959 fail4:
1960 	EFSYS_PROBE(fail4);
1961 fail3:
1962 	EFSYS_PROBE(fail3);
1963 fail2:
1964 	EFSYS_PROBE(fail2);
1965 fail1:
1966 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1967 
1968 	return (rc);
1969 }
1970 
1971 	__checkReturn	efx_rc_t
1972 ef10_nic_probe(
1973 	__in		efx_nic_t *enp)
1974 {
1975 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1976 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
1977 	efx_rc_t rc;
1978 
1979 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
1980 	    enp->en_family == EFX_FAMILY_MEDFORD ||
1981 	    enp->en_family == EFX_FAMILY_MEDFORD2);
1982 
1983 	/* Read and clear any assertion state */
1984 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
1985 		goto fail1;
1986 
1987 	/* Exit the assertion handler */
1988 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
1989 		if (rc != EACCES)
1990 			goto fail2;
1991 
1992 	if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
1993 		goto fail3;
1994 
1995 	if ((rc = ef10_nic_board_cfg(enp)) != 0)
1996 		goto fail4;
1997 
1998 	/*
1999 	 * Set default driver config limits (based on board config).
2000 	 *
2001 	 * FIXME: For now allocate a fixed number of VIs which is likely to be
2002 	 * sufficient and small enough to allow multiple functions on the same
2003 	 * port.
2004 	 */
2005 	edcp->edc_min_vi_count = edcp->edc_max_vi_count =
2006 	    MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
2007 
2008 	/* The client driver must configure and enable PIO buffer support */
2009 	edcp->edc_max_piobuf_count = 0;
2010 	edcp->edc_pio_alloc_size = 0;
2011 
2012 #if EFSYS_OPT_MAC_STATS
2013 	/* Wipe the MAC statistics */
2014 	if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
2015 		goto fail5;
2016 #endif
2017 
2018 #if EFSYS_OPT_LOOPBACK
2019 	if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
2020 		goto fail6;
2021 #endif
2022 
2023 #if EFSYS_OPT_MON_STATS
2024 	if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
2025 		/* Unprivileged functions do not have access to sensors */
2026 		if (rc != EACCES)
2027 			goto fail7;
2028 	}
2029 #endif
2030 
2031 	encp->enc_features = enp->en_features;
2032 
2033 	return (0);
2034 
2035 #if EFSYS_OPT_MON_STATS
2036 fail7:
2037 	EFSYS_PROBE(fail7);
2038 #endif
2039 #if EFSYS_OPT_LOOPBACK
2040 fail6:
2041 	EFSYS_PROBE(fail6);
2042 #endif
2043 #if EFSYS_OPT_MAC_STATS
2044 fail5:
2045 	EFSYS_PROBE(fail5);
2046 #endif
2047 fail4:
2048 	EFSYS_PROBE(fail4);
2049 fail3:
2050 	EFSYS_PROBE(fail3);
2051 fail2:
2052 	EFSYS_PROBE(fail2);
2053 fail1:
2054 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2055 
2056 	return (rc);
2057 }
2058 
2059 	__checkReturn	efx_rc_t
2060 ef10_nic_set_drv_limits(
2061 	__inout		efx_nic_t *enp,
2062 	__in		efx_drv_limits_t *edlp)
2063 {
2064 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2065 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2066 	uint32_t min_evq_count, max_evq_count;
2067 	uint32_t min_rxq_count, max_rxq_count;
2068 	uint32_t min_txq_count, max_txq_count;
2069 	efx_rc_t rc;
2070 
2071 	if (edlp == NULL) {
2072 		rc = EINVAL;
2073 		goto fail1;
2074 	}
2075 
2076 	/* Get minimum required and maximum usable VI limits */
2077 	min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
2078 	min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
2079 	min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
2080 
2081 	edcp->edc_min_vi_count =
2082 	    MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
2083 
2084 	max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
2085 	max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
2086 	max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
2087 
2088 	edcp->edc_max_vi_count =
2089 	    MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
2090 
2091 	/*
2092 	 * Check limits for sub-allocated piobuf blocks.
2093 	 * PIO is optional, so don't fail if the limits are incorrect.
2094 	 */
2095 	if ((encp->enc_piobuf_size == 0) ||
2096 	    (encp->enc_piobuf_limit == 0) ||
2097 	    (edlp->edl_min_pio_alloc_size == 0) ||
2098 	    (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
2099 		/* Disable PIO */
2100 		edcp->edc_max_piobuf_count = 0;
2101 		edcp->edc_pio_alloc_size = 0;
2102 	} else {
2103 		uint32_t blk_size, blk_count, blks_per_piobuf;
2104 
2105 		blk_size =
2106 		    MAX(edlp->edl_min_pio_alloc_size,
2107 			    encp->enc_piobuf_min_alloc_size);
2108 
2109 		blks_per_piobuf = encp->enc_piobuf_size / blk_size;
2110 		EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
2111 
2112 		blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
2113 
2114 		/* A zero max pio alloc count means unlimited */
2115 		if ((edlp->edl_max_pio_alloc_count > 0) &&
2116 		    (edlp->edl_max_pio_alloc_count < blk_count)) {
2117 			blk_count = edlp->edl_max_pio_alloc_count;
2118 		}
2119 
2120 		edcp->edc_pio_alloc_size = blk_size;
2121 		edcp->edc_max_piobuf_count =
2122 		    (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
2123 	}
2124 
2125 	return (0);
2126 
2127 fail1:
2128 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2129 
2130 	return (rc);
2131 }
2132 
2133 	__checkReturn	efx_rc_t
2134 ef10_nic_reset(
2135 	__in		efx_nic_t *enp)
2136 {
2137 	efx_mcdi_req_t req;
2138 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
2139 		MC_CMD_ENTITY_RESET_OUT_LEN);
2140 	efx_rc_t rc;
2141 
2142 	/* ef10_nic_reset() is called to recover from BADASSERT failures. */
2143 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2144 		goto fail1;
2145 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2146 		goto fail2;
2147 
2148 	req.emr_cmd = MC_CMD_ENTITY_RESET;
2149 	req.emr_in_buf = payload;
2150 	req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
2151 	req.emr_out_buf = payload;
2152 	req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
2153 
2154 	MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
2155 	    ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
2156 
2157 	efx_mcdi_execute(enp, &req);
2158 
2159 	if (req.emr_rc != 0) {
2160 		rc = req.emr_rc;
2161 		goto fail3;
2162 	}
2163 
2164 	/* Clear RX/TX DMA queue errors */
2165 	enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
2166 
2167 	return (0);
2168 
2169 fail3:
2170 	EFSYS_PROBE(fail3);
2171 fail2:
2172 	EFSYS_PROBE(fail2);
2173 fail1:
2174 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2175 
2176 	return (rc);
2177 }
2178 
2179 	__checkReturn	efx_rc_t
2180 ef10_nic_init(
2181 	__in		efx_nic_t *enp)
2182 {
2183 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2184 	uint32_t min_vi_count, max_vi_count;
2185 	uint32_t vi_count, vi_base, vi_shift;
2186 	uint32_t i;
2187 	uint32_t retry;
2188 	uint32_t delay_us;
2189 	uint32_t vi_window_size;
2190 	efx_rc_t rc;
2191 
2192 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
2193 	    enp->en_family == EFX_FAMILY_MEDFORD ||
2194 	    enp->en_family == EFX_FAMILY_MEDFORD2);
2195 
2196 	/* Enable reporting of some events (e.g. link change) */
2197 	if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
2198 		goto fail1;
2199 
2200 	/* Allocate (optional) on-chip PIO buffers */
2201 	ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
2202 
2203 	/*
2204 	 * For best performance, PIO writes should use a write-combined
2205 	 * (WC) memory mapping. Using a separate WC mapping for the PIO
2206 	 * aperture of each VI would be a burden to drivers (and not
2207 	 * possible if the host page size is >4Kbyte).
2208 	 *
2209 	 * To avoid this we use a single uncached (UC) mapping for VI
2210 	 * register access, and a single WC mapping for extra VIs used
2211 	 * for PIO writes.
2212 	 *
2213 	 * Each piobuf must be linked to a VI in the WC mapping, and to
2214 	 * each VI that is using a sub-allocated block from the piobuf.
2215 	 */
2216 	min_vi_count = edcp->edc_min_vi_count;
2217 	max_vi_count =
2218 	    edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
2219 
2220 	/* Ensure that the previously attached driver's VIs are freed */
2221 	if ((rc = efx_mcdi_free_vis(enp)) != 0)
2222 		goto fail2;
2223 
2224 	/*
2225 	 * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
2226 	 * fails then retrying the request for fewer VI resources may succeed.
2227 	 */
2228 	vi_count = 0;
2229 	if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
2230 		    &vi_base, &vi_count, &vi_shift)) != 0)
2231 		goto fail3;
2232 
2233 	EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
2234 
2235 	if (vi_count < min_vi_count) {
2236 		rc = ENOMEM;
2237 		goto fail4;
2238 	}
2239 
2240 	enp->en_arch.ef10.ena_vi_base = vi_base;
2241 	enp->en_arch.ef10.ena_vi_count = vi_count;
2242 	enp->en_arch.ef10.ena_vi_shift = vi_shift;
2243 
2244 	if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
2245 		/* Not enough extra VIs to map piobufs */
2246 		ef10_nic_free_piobufs(enp);
2247 	}
2248 
2249 	enp->en_arch.ef10.ena_pio_write_vi_base =
2250 	    vi_count - enp->en_arch.ef10.ena_piobuf_count;
2251 
2252 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
2253 	    EFX_VI_WINDOW_SHIFT_INVALID);
2254 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
2255 	    EFX_VI_WINDOW_SHIFT_64K);
2256 	vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
2257 
2258 	/* Save UC memory mapping details */
2259 	enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
2260 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2261 		enp->en_arch.ef10.ena_uc_mem_map_size =
2262 		    (vi_window_size *
2263 		    enp->en_arch.ef10.ena_pio_write_vi_base);
2264 	} else {
2265 		enp->en_arch.ef10.ena_uc_mem_map_size =
2266 		    (vi_window_size *
2267 		    enp->en_arch.ef10.ena_vi_count);
2268 	}
2269 
2270 	/* Save WC memory mapping details */
2271 	enp->en_arch.ef10.ena_wc_mem_map_offset =
2272 	    enp->en_arch.ef10.ena_uc_mem_map_offset +
2273 	    enp->en_arch.ef10.ena_uc_mem_map_size;
2274 
2275 	enp->en_arch.ef10.ena_wc_mem_map_size =
2276 	    (vi_window_size *
2277 	    enp->en_arch.ef10.ena_piobuf_count);
2278 
2279 	/* Link piobufs to extra VIs in WC mapping */
2280 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2281 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2282 			rc = efx_mcdi_link_piobuf(enp,
2283 			    enp->en_arch.ef10.ena_pio_write_vi_base + i,
2284 			    enp->en_arch.ef10.ena_piobuf_handle[i]);
2285 			if (rc != 0)
2286 				break;
2287 		}
2288 	}
2289 
2290 	/*
2291 	 * Allocate a vAdaptor attached to our upstream vPort/pPort.
2292 	 *
2293 	 * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
2294 	 * driver has yet to bring up the EVB port. See bug 56147. In this case,
2295 	 * retry the request several times after waiting a while. The wait time
2296 	 * between retries starts small (10ms) and exponentially increases.
2297 	 * Total wait time is a little over two seconds. Retry logic in the
2298 	 * client driver may mean this whole loop is repeated if it continues to
2299 	 * fail.
2300 	 */
2301 	retry = 0;
2302 	delay_us = 10000;
2303 	while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
2304 		if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
2305 		    (rc != ENOENT)) {
2306 			/*
2307 			 * Do not retry alloc for PF, or for other errors on
2308 			 * a VF.
2309 			 */
2310 			goto fail5;
2311 		}
2312 
2313 		/* VF startup before PF is ready. Retry allocation. */
2314 		if (retry > 5) {
2315 			/* Too many attempts */
2316 			rc = EINVAL;
2317 			goto fail6;
2318 		}
2319 		EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
2320 		EFSYS_SLEEP(delay_us);
2321 		retry++;
2322 		if (delay_us < 500000)
2323 			delay_us <<= 2;
2324 	}
2325 
2326 	enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
2327 	enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
2328 
2329 	return (0);
2330 
2331 fail6:
2332 	EFSYS_PROBE(fail6);
2333 fail5:
2334 	EFSYS_PROBE(fail5);
2335 fail4:
2336 	EFSYS_PROBE(fail4);
2337 fail3:
2338 	EFSYS_PROBE(fail3);
2339 fail2:
2340 	EFSYS_PROBE(fail2);
2341 
2342 	ef10_nic_free_piobufs(enp);
2343 
2344 fail1:
2345 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2346 
2347 	return (rc);
2348 }
2349 
2350 	__checkReturn	efx_rc_t
2351 ef10_nic_get_vi_pool(
2352 	__in		efx_nic_t *enp,
2353 	__out		uint32_t *vi_countp)
2354 {
2355 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
2356 	    enp->en_family == EFX_FAMILY_MEDFORD ||
2357 	    enp->en_family == EFX_FAMILY_MEDFORD2);
2358 
2359 	/*
2360 	 * Report VIs that the client driver can use.
2361 	 * Do not include VIs used for PIO buffer writes.
2362 	 */
2363 	*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
2364 
2365 	return (0);
2366 }
2367 
2368 	__checkReturn	efx_rc_t
2369 ef10_nic_get_bar_region(
2370 	__in		efx_nic_t *enp,
2371 	__in		efx_nic_region_t region,
2372 	__out		uint32_t *offsetp,
2373 	__out		size_t *sizep)
2374 {
2375 	efx_rc_t rc;
2376 
2377 	EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
2378 	    enp->en_family == EFX_FAMILY_MEDFORD ||
2379 	    enp->en_family == EFX_FAMILY_MEDFORD2);
2380 
2381 	/*
2382 	 * TODO: Specify host memory mapping alignment and granularity
2383 	 * in efx_drv_limits_t so that they can be taken into account
2384 	 * when allocating extra VIs for PIO writes.
2385 	 */
2386 	switch (region) {
2387 	case EFX_REGION_VI:
2388 		/* UC mapped memory BAR region for VI registers */
2389 		*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
2390 		*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
2391 		break;
2392 
2393 	case EFX_REGION_PIO_WRITE_VI:
2394 		/* WC mapped memory BAR region for piobuf writes */
2395 		*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
2396 		*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
2397 		break;
2398 
2399 	default:
2400 		rc = EINVAL;
2401 		goto fail1;
2402 	}
2403 
2404 	return (0);
2405 
2406 fail1:
2407 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2408 
2409 	return (rc);
2410 }
2411 
2412 	__checkReturn	boolean_t
2413 ef10_nic_hw_unavailable(
2414 	__in		efx_nic_t *enp)
2415 {
2416 	efx_dword_t dword;
2417 
2418 	if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
2419 		return (B_TRUE);
2420 
2421 	EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
2422 	if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
2423 		goto unavail;
2424 
2425 	return (B_FALSE);
2426 
2427 unavail:
2428 	ef10_nic_set_hw_unavailable(enp);
2429 
2430 	return (B_TRUE);
2431 }
2432 
2433 			void
2434 ef10_nic_set_hw_unavailable(
2435 	__in		efx_nic_t *enp)
2436 {
2437 	EFSYS_PROBE(hw_unavail);
2438 	enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
2439 }
2440 
2441 			void
2442 ef10_nic_fini(
2443 	__in		efx_nic_t *enp)
2444 {
2445 	uint32_t i;
2446 	efx_rc_t rc;
2447 
2448 	(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
2449 	enp->en_vport_id = 0;
2450 
2451 	/* Unlink piobufs from extra VIs in WC mapping */
2452 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2453 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2454 			rc = efx_mcdi_unlink_piobuf(enp,
2455 			    enp->en_arch.ef10.ena_pio_write_vi_base + i);
2456 			if (rc != 0)
2457 				break;
2458 		}
2459 	}
2460 
2461 	ef10_nic_free_piobufs(enp);
2462 
2463 	(void) efx_mcdi_free_vis(enp);
2464 	enp->en_arch.ef10.ena_vi_count = 0;
2465 }
2466 
2467 			void
2468 ef10_nic_unprobe(
2469 	__in		efx_nic_t *enp)
2470 {
2471 #if EFSYS_OPT_MON_STATS
2472 	mcdi_mon_cfg_free(enp);
2473 #endif /* EFSYS_OPT_MON_STATS */
2474 	(void) efx_mcdi_drv_attach(enp, B_FALSE);
2475 }
2476 
2477 #if EFSYS_OPT_DIAG
2478 
2479 	__checkReturn	efx_rc_t
2480 ef10_nic_register_test(
2481 	__in		efx_nic_t *enp)
2482 {
2483 	efx_rc_t rc;
2484 
2485 	/* FIXME */
2486 	_NOTE(ARGUNUSED(enp))
2487 	_NOTE(CONSTANTCONDITION)
2488 	if (B_FALSE) {
2489 		rc = ENOTSUP;
2490 		goto fail1;
2491 	}
2492 	/* FIXME */
2493 
2494 	return (0);
2495 
2496 fail1:
2497 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2498 
2499 	return (rc);
2500 }
2501 
2502 #endif	/* EFSYS_OPT_DIAG */
2503 
2504 #if EFSYS_OPT_FW_SUBVARIANT_AWARE
2505 
2506 	__checkReturn	efx_rc_t
2507 efx_mcdi_get_nic_global(
2508 	__in		efx_nic_t *enp,
2509 	__in		uint32_t key,
2510 	__out		uint32_t *valuep)
2511 {
2512 	efx_mcdi_req_t req;
2513 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
2514 		MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
2515 	efx_rc_t rc;
2516 
2517 	req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
2518 	req.emr_in_buf = payload;
2519 	req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
2520 	req.emr_out_buf = payload;
2521 	req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
2522 
2523 	MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
2524 
2525 	efx_mcdi_execute(enp, &req);
2526 
2527 	if (req.emr_rc != 0) {
2528 		rc = req.emr_rc;
2529 		goto fail1;
2530 	}
2531 
2532 	if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
2533 		rc = EMSGSIZE;
2534 		goto fail2;
2535 	}
2536 
2537 	*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
2538 
2539 	return (0);
2540 
2541 fail2:
2542 	EFSYS_PROBE(fail2);
2543 fail1:
2544 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2545 
2546 	return (rc);
2547 }
2548 
2549 	__checkReturn	efx_rc_t
2550 efx_mcdi_set_nic_global(
2551 	__in		efx_nic_t *enp,
2552 	__in		uint32_t key,
2553 	__in		uint32_t value)
2554 {
2555 	efx_mcdi_req_t req;
2556 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
2557 	efx_rc_t rc;
2558 
2559 	req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
2560 	req.emr_in_buf = payload;
2561 	req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
2562 	req.emr_out_buf = NULL;
2563 	req.emr_out_length = 0;
2564 
2565 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
2566 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
2567 
2568 	efx_mcdi_execute(enp, &req);
2569 
2570 	if (req.emr_rc != 0) {
2571 		rc = req.emr_rc;
2572 		goto fail1;
2573 	}
2574 
2575 	return (0);
2576 
2577 fail1:
2578 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2579 
2580 	return (rc);
2581 }
2582 
2583 #endif	/* EFSYS_OPT_FW_SUBVARIANT_AWARE */
2584 
2585 #endif	/* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */
2586