1 /*- 2 * Copyright (c) 2017 Ilya Bakulin. All rights reserved. 3 * Copyright (c) 2018-2019 The FreeBSD Foundation 4 * 5 * Portions of this software were developed by Björn Zeeb 6 * under sponsorship from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * 29 * Portions of this software may have been developed with reference to 30 * the SD Simplified Specification. The following disclaimer may apply: 31 * 32 * The following conditions apply to the release of the simplified 33 * specification ("Simplified Specification") by the SD Card Association and 34 * the SD Group. The Simplified Specification is a subset of the complete SD 35 * Specification which is owned by the SD Card Association and the SD 36 * Group. This Simplified Specification is provided on a non-confidential 37 * basis subject to the disclaimers below. Any implementation of the 38 * Simplified Specification may require a license from the SD Card 39 * Association, SD Group, SD-3C LLC or other third parties. 40 * 41 * Disclaimers: 42 * 43 * The information contained in the Simplified Specification is presented only 44 * as a standard specification for SD Cards and SD Host/Ancillary products and 45 * is provided "AS-IS" without any representations or warranties of any 46 * kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD 47 * Card Association for any damages, any infringements of patents or other 48 * right of the SD Group, SD-3C LLC, the SD Card Association or any third 49 * parties, which may result from its use. No license is granted by 50 * implication, estoppel or otherwise under any patent or other rights of the 51 * SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing 52 * herein shall be construed as an obligation by the SD Group, the SD-3C LLC 53 * or the SD Card Association to disclose or distribute any technical 54 * information, know-how or other confidential information to any third party. 55 */ 56 /* 57 * Implements the (kernel specific) SDIO parts. 58 * This will hide all cam(4) functionality from the SDIO driver implementations 59 * which will just be newbus/device(9) and hence look like any other driver for, 60 * e.g., PCI. 61 * The sdiob(4) parts effetively "translate" between the two worlds "bridging" 62 * messages from MMCCAM to newbus and back. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_cam.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/types.h> 73 #include <sys/kernel.h> 74 #include <sys/bus.h> 75 #include <sys/endian.h> 76 #include <sys/lock.h> 77 #include <sys/malloc.h> 78 #include <sys/module.h> 79 #include <sys/mutex.h> 80 81 #include <cam/cam.h> 82 #include <cam/cam_ccb.h> 83 #include <cam/cam_queue.h> 84 #include <cam/cam_periph.h> 85 #include <cam/cam_xpt.h> 86 #include <cam/cam_xpt_periph.h> 87 #include <cam/cam_xpt_internal.h> /* for cam_path */ 88 #include <cam/cam_debug.h> 89 90 #include <dev/mmc/mmcreg.h> 91 92 #include <dev/sdio/sdiob.h> 93 #include <dev/sdio/sdio_subr.h> 94 95 #include "sdio_if.h" 96 97 #ifdef DEBUG 98 #define DPRINTF(...) printf(__VA_ARGS__) 99 #define DPRINTFDEV(_dev, ...) device_printf((_dev), __VA_ARGS__) 100 #else 101 #define DPRINTF(...) 102 #define DPRINTFDEV(_dev, ...) 103 #endif 104 105 struct sdiob_softc { 106 uint32_t sdio_state; 107 #define SDIO_STATE_DEAD 0x0001 108 #define SDIO_STATE_INITIALIZING 0x0002 109 #define SDIO_STATE_READY 0x0004 110 uint32_t nb_state; 111 #define NB_STATE_DEAD 0x0001 112 #define NB_STATE_SIM_ADDED 0x0002 113 #define NB_STATE_READY 0x0004 114 115 /* CAM side (including sim_dev). */ 116 struct card_info cardinfo; 117 struct cam_periph *periph; 118 union ccb *ccb; 119 struct task discover_task; 120 121 /* Newbus side. */ 122 device_t dev; /* Ourselves. */ 123 device_t child[8]; 124 }; 125 126 /* -------------------------------------------------------------------------- */ 127 /* 128 * SDIO CMD52 and CM53 implementations along with wrapper functions for 129 * read/write and a CAM periph helper function. 130 * These are the backend implementations of the sdio_if.m framework talking 131 * through CAM to sdhci. 132 * Note: these functions are also called during early discovery stage when 133 * we are not a device(9) yet. Hence they cannot always use device_printf() 134 * to log errors and have to call CAM_DEBUG() during these early stages. 135 */ 136 137 static int 138 sdioerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) 139 { 140 141 return (cam_periph_error(ccb, cam_flags, sense_flags)); 142 } 143 144 /* CMD52: direct byte access. */ 145 static int 146 sdiob_rw_direct_sc(struct sdiob_softc *sc, uint8_t fn, uint32_t addr, bool wr, 147 uint8_t *val) 148 { 149 uint32_t arg, flags; 150 int error; 151 152 KASSERT((val != NULL), ("%s val passed as NULL\n", __func__)); 153 154 if (sc->ccb == NULL) 155 sc->ccb = xpt_alloc_ccb(); 156 else 157 memset(sc->ccb, 0, sizeof(*sc->ccb)); 158 xpt_setup_ccb(&sc->ccb->ccb_h, sc->periph->path, CAM_PRIORITY_NONE); 159 CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_TRACE, 160 ("%s(fn=%d, addr=%#02x, wr=%d, *val=%#02x)\n", __func__, 161 fn, addr, wr, *val)); 162 163 flags = MMC_RSP_R5 | MMC_CMD_AC; 164 arg = SD_IO_RW_FUNC(fn) | SD_IO_RW_ADR(addr); 165 if (wr) 166 arg |= SD_IO_RW_WR | SD_IO_RW_RAW | SD_IO_RW_DAT(*val); 167 168 cam_fill_mmcio(&sc->ccb->mmcio, 169 /*retries*/ 0, 170 /*cbfcnp*/ NULL, 171 /*flags*/ CAM_DIR_NONE, 172 /*mmc_opcode*/ SD_IO_RW_DIRECT, 173 /*mmc_arg*/ arg, 174 /*mmc_flags*/ flags, 175 /*mmc_data*/ 0, 176 /*timeout*/ sc->cardinfo.f[fn].timeout); 177 error = cam_periph_runccb(sc->ccb, sdioerror, CAM_FLAG_NONE, 0, NULL); 178 if (error != 0) { 179 if (sc->dev != NULL) 180 device_printf(sc->dev, 181 "%s: Failed to %s address %#10x error=%d\n", 182 __func__, (wr) ? "write" : "read", addr, error); 183 else 184 CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_INFO, 185 ("%s: Failed to %s address: %#10x error=%d\n", 186 __func__, (wr) ? "write" : "read", addr, error)); 187 return (error); 188 } 189 190 /* TODO: Add handling of MMC errors */ 191 /* ccb->mmcio.cmd.error ? */ 192 if (wr == false) 193 *val = sc->ccb->mmcio.cmd.resp[0] & 0xff; 194 195 return (0); 196 } 197 198 static int 199 sdio_rw_direct(device_t dev, uint8_t fn, uint32_t addr, bool wr, 200 uint8_t *val) 201 { 202 struct sdiob_softc *sc; 203 int error; 204 205 sc = device_get_softc(dev); 206 cam_periph_lock(sc->periph); 207 error = sdiob_rw_direct_sc(sc, fn, addr, wr, val); 208 cam_periph_unlock(sc->periph); 209 return (error); 210 } 211 212 static int 213 sdiob_read_direct(device_t dev, uint8_t fn, uint32_t addr, uint8_t *val) 214 { 215 int error; 216 uint8_t v; 217 218 error = sdio_rw_direct(dev, fn, addr, false, &v); 219 /* Be polite and do not touch the value on read error. */ 220 if (error == 0 && val != NULL) 221 *val = v; 222 return (error); 223 } 224 225 static int 226 sdiob_write_direct(device_t dev, uint8_t fn, uint32_t addr, uint8_t val) 227 { 228 229 return (sdio_rw_direct(dev, fn, addr, true, &val)); 230 } 231 232 /* 233 * CMD53: IO_RW_EXTENDED, read and write multiple I/O registers. 234 * Increment false gets FIFO mode (single register address). 235 */ 236 /* 237 * A b_count of 0 means byte mode, b_count > 0 gets block mode. 238 * A b_count of >= 512 would mean infinitive block transfer, which would become 239 * b_count = 0, is not yet supported. 240 * For b_count == 0, blksz is the len of bytes, otherwise it is the amount of 241 * full sized blocks (you must not round the blocks up and leave the last one 242 * partial!) 243 * For byte mode, the maximum of blksz is the functions cur_blksize. 244 * This function should ever only be called by sdio_rw_extended_sc()! 245 */ 246 static int 247 sdiob_rw_extended_cam(struct sdiob_softc *sc, uint8_t fn, uint32_t addr, 248 bool wr, uint8_t *buffer, bool incaddr, uint32_t b_count, uint16_t blksz) 249 { 250 struct mmc_data mmcd; 251 uint32_t arg, cam_flags, flags, len; 252 int error; 253 254 if (sc->ccb == NULL) 255 sc->ccb = xpt_alloc_ccb(); 256 else 257 memset(sc->ccb, 0, sizeof(*sc->ccb)); 258 xpt_setup_ccb(&sc->ccb->ccb_h, sc->periph->path, CAM_PRIORITY_NONE); 259 CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_TRACE, 260 ("%s(fn=%d addr=%#0x wr=%d b_count=%u blksz=%u buf=%p incr=%d)\n", 261 __func__, fn, addr, wr, b_count, blksz, buffer, incaddr)); 262 263 KASSERT((b_count <= 511), ("%s: infinitive block transfer not yet " 264 "supported: b_count %u blksz %u, sc %p, fn %u, addr %#10x, %s, " 265 "buffer %p, %s\n", __func__, b_count, blksz, sc, fn, addr, 266 wr ? "wr" : "rd", buffer, incaddr ? "incaddr" : "fifo")); 267 /* Blksz needs to be within bounds for both byte and block mode! */ 268 KASSERT((blksz <= sc->cardinfo.f[fn].cur_blksize), ("%s: blksz " 269 "%u > bur_blksize %u, sc %p, fn %u, addr %#10x, %s, " 270 "buffer %p, %s, b_count %u\n", __func__, blksz, 271 sc->cardinfo.f[fn].cur_blksize, sc, fn, addr, 272 wr ? "wr" : "rd", buffer, incaddr ? "incaddr" : "fifo", 273 b_count)); 274 if (b_count == 0) { 275 /* Byte mode */ 276 len = blksz; 277 if (blksz == 512) 278 blksz = 0; 279 arg = SD_IOE_RW_LEN(blksz); 280 } else { 281 /* Block mode. */ 282 #ifdef __notyet__ 283 if (b_count > 511) { 284 /* Infinitive block transfer. */ 285 b_count = 0; 286 } 287 #endif 288 len = b_count * blksz; 289 arg = SD_IOE_RW_BLK | SD_IOE_RW_LEN(b_count); 290 } 291 292 flags = MMC_RSP_R5 | MMC_CMD_ADTC; 293 arg |= SD_IOE_RW_FUNC(fn) | SD_IOE_RW_ADR(addr); 294 if (incaddr) 295 arg |= SD_IOE_RW_INCR; 296 297 memset(&mmcd, 0, sizeof(mmcd)); 298 mmcd.data = buffer; 299 mmcd.len = len; 300 if (arg & SD_IOE_RW_BLK) { 301 /* XXX both should be known from elsewhere, aren't they? */ 302 mmcd.block_size = blksz; 303 mmcd.block_count = b_count; 304 } 305 306 if (wr) { 307 arg |= SD_IOE_RW_WR; 308 cam_flags = CAM_DIR_OUT; 309 mmcd.flags = MMC_DATA_WRITE; 310 } else { 311 cam_flags = CAM_DIR_IN; 312 mmcd.flags = MMC_DATA_READ; 313 } 314 #ifdef __notyet__ 315 if (b_count == 0) { 316 /* XXX-BZ TODO FIXME. Cancel I/O: CCCR -> ASx */ 317 /* Stop cmd. */ 318 } 319 #endif 320 cam_fill_mmcio(&sc->ccb->mmcio, 321 /*retries*/ 0, 322 /*cbfcnp*/ NULL, 323 /*flags*/ cam_flags, 324 /*mmc_opcode*/ SD_IO_RW_EXTENDED, 325 /*mmc_arg*/ arg, 326 /*mmc_flags*/ flags, 327 /*mmc_data*/ &mmcd, 328 /*timeout*/ sc->cardinfo.f[fn].timeout); 329 if (arg & SD_IOE_RW_BLK) { 330 mmcd.flags |= MMC_DATA_BLOCK_SIZE; 331 if (b_count != 1) 332 sc->ccb->mmcio.cmd.data->flags |= MMC_DATA_MULTI; 333 } 334 335 /* Execute. */ 336 error = cam_periph_runccb(sc->ccb, sdioerror, CAM_FLAG_NONE, 0, NULL); 337 if (error != 0) { 338 if (sc->dev != NULL) 339 device_printf(sc->dev, 340 "%s: Failed to %s address %#10x buffer %p size %u " 341 "%s b_count %u blksz %u error=%d\n", 342 __func__, (wr) ? "write to" : "read from", addr, 343 buffer, len, (incaddr) ? "incr" : "fifo", 344 b_count, blksz, error); 345 else 346 CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_INFO, 347 ("%s: Failed to %s address %#10x buffer %p size %u " 348 "%s b_count %u blksz %u error=%d\n", 349 __func__, (wr) ? "write to" : "read from", addr, 350 buffer, len, (incaddr) ? "incr" : "fifo", 351 b_count, blksz, error)); 352 return (error); 353 } 354 355 /* TODO: Add handling of MMC errors */ 356 /* ccb->mmcio.cmd.error ? */ 357 error = sc->ccb->mmcio.cmd.resp[0] & 0xff; 358 if (error != 0) { 359 if (sc->dev != NULL) 360 device_printf(sc->dev, 361 "%s: Failed to %s address %#10x buffer %p size %u " 362 "%s b_count %u blksz %u mmcio resp error=%d\n", 363 __func__, (wr) ? "write to" : "read from", addr, 364 buffer, len, (incaddr) ? "incr" : "fifo", 365 b_count, blksz, error); 366 else 367 CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_INFO, 368 ("%s: Failed to %s address %#10x buffer %p size %u " 369 "%s b_count %u blksz %u mmcio resp error=%d\n", 370 __func__, (wr) ? "write to" : "read from", addr, 371 buffer, len, (incaddr) ? "incr" : "fifo", 372 b_count, blksz, error)); 373 } 374 return (error); 375 } 376 377 static int 378 sdiob_rw_extended_sc(struct sdiob_softc *sc, uint8_t fn, uint32_t addr, 379 bool wr, uint32_t size, uint8_t *buffer, bool incaddr) 380 { 381 int error; 382 uint32_t len; 383 uint32_t b_count; 384 385 /* 386 * If block mode is supported and we have at least 4 bytes to write and 387 * the size is at least one block, then start doing blk transfers. 388 */ 389 while (sc->cardinfo.support_multiblk && 390 size > 4 && size >= sc->cardinfo.f[fn].cur_blksize) { 391 b_count = size / sc->cardinfo.f[fn].cur_blksize; 392 KASSERT(b_count >= 1, ("%s: block count too small %u size %u " 393 "cur_blksize %u\n", __func__, b_count, size, 394 sc->cardinfo.f[fn].cur_blksize)); 395 396 #ifdef __notyet__ 397 /* XXX support inifinite transfer with b_count = 0. */ 398 #else 399 if (b_count > 511) 400 b_count = 511; 401 #endif 402 len = b_count * sc->cardinfo.f[fn].cur_blksize; 403 error = sdiob_rw_extended_cam(sc, fn, addr, wr, buffer, incaddr, 404 b_count, sc->cardinfo.f[fn].cur_blksize); 405 if (error != 0) 406 return (error); 407 408 size -= len; 409 buffer += len; 410 if (incaddr) 411 addr += len; 412 } 413 414 while (size > 0) { 415 len = MIN(size, sc->cardinfo.f[fn].cur_blksize); 416 417 error = sdiob_rw_extended_cam(sc, fn, addr, wr, buffer, incaddr, 418 0, len); 419 if (error != 0) 420 return (error); 421 422 /* Prepare for next iteration. */ 423 size -= len; 424 buffer += len; 425 if (incaddr) 426 addr += len; 427 } 428 429 return (0); 430 } 431 432 static int 433 sdiob_rw_extended(device_t dev, uint8_t fn, uint32_t addr, bool wr, 434 uint32_t size, uint8_t *buffer, bool incaddr) 435 { 436 struct sdiob_softc *sc; 437 int error; 438 439 sc = device_get_softc(dev); 440 cam_periph_lock(sc->periph); 441 error = sdiob_rw_extended_sc(sc, fn, addr, wr, size, buffer, incaddr); 442 cam_periph_unlock(sc->periph); 443 return (error); 444 } 445 446 static int 447 sdiob_read_extended(device_t dev, uint8_t fn, uint32_t addr, uint32_t size, 448 uint8_t *buffer, bool incaddr) 449 { 450 451 return (sdiob_rw_extended(dev, fn, addr, false, size, buffer, incaddr)); 452 } 453 454 static int 455 sdiob_write_extended(device_t dev, uint8_t fn, uint32_t addr, uint32_t size, 456 uint8_t *buffer, bool incaddr) 457 { 458 459 return (sdiob_rw_extended(dev, fn, addr, true, size, buffer, incaddr)); 460 } 461 462 /* -------------------------------------------------------------------------- */ 463 /* Bus interface, ivars handling. */ 464 465 static int 466 sdiob_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 467 { 468 struct sdiob_softc *sc; 469 struct sdio_func *f; 470 471 f = device_get_ivars(child); 472 KASSERT(f != NULL, ("%s: dev %p child %p which %d, child ivars NULL\n", 473 __func__, dev, child, which)); 474 475 switch (which) { 476 case SDIOB_IVAR_SUPPORT_MULTIBLK: 477 sc = device_get_softc(dev); 478 KASSERT(sc != NULL, ("%s: dev %p child %p which %d, sc NULL\n", 479 __func__, dev, child, which)); 480 *result = sc->cardinfo.support_multiblk; 481 break; 482 case SDIOB_IVAR_FUNCTION: 483 *result = (uintptr_t)f; 484 break; 485 case SDIOB_IVAR_FUNCNUM: 486 *result = f->fn; 487 break; 488 case SDIOB_IVAR_CLASS: 489 *result = f->class; 490 break; 491 case SDIOB_IVAR_VENDOR: 492 *result = f->vendor; 493 break; 494 case SDIOB_IVAR_DEVICE: 495 *result = f->device; 496 break; 497 case SDIOB_IVAR_DRVDATA: 498 *result = f->drvdata; 499 break; 500 default: 501 return (ENOENT); 502 } 503 return (0); 504 } 505 506 static int 507 sdiob_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 508 { 509 struct sdio_func *f; 510 511 f = device_get_ivars(child); 512 KASSERT(f != NULL, ("%s: dev %p child %p which %d, child ivars NULL\n", 513 __func__, dev, child, which)); 514 515 switch (which) { 516 case SDIOB_IVAR_SUPPORT_MULTIBLK: 517 case SDIOB_IVAR_FUNCTION: 518 case SDIOB_IVAR_FUNCNUM: 519 case SDIOB_IVAR_CLASS: 520 case SDIOB_IVAR_VENDOR: 521 case SDIOB_IVAR_DEVICE: 522 return (EINVAL); /* Disallowed. */ 523 case SDIOB_IVAR_DRVDATA: 524 f->drvdata = value; 525 break; 526 default: 527 return (ENOENT); 528 } 529 530 return (0); 531 } 532 533 /* -------------------------------------------------------------------------- */ 534 /* 535 * Newbus functions for ourselves to probe/attach/detach and become a proper 536 * device(9). Attach will also probe for child devices (another driver 537 * implementing SDIO). 538 */ 539 540 static int 541 sdiob_probe(device_t dev) 542 { 543 544 device_set_desc(dev, "SDIO CAM-Newbus bridge"); 545 return (BUS_PROBE_DEFAULT); 546 } 547 548 static int 549 sdiob_attach(device_t dev) 550 { 551 struct sdiob_softc *sc; 552 int error, i; 553 554 sc = device_get_softc(dev); 555 if (sc == NULL) 556 return (ENXIO); 557 558 /* 559 * Now that we are a dev, create one child device per function, 560 * initialize the backpointer, so we can pass them around and 561 * call CAM operations on the parent, and also set the function 562 * itself as ivars, so that we can query/update them. 563 * Do this before any child gets a chance to attach. 564 */ 565 for (i = 0; i < sc->cardinfo.num_funcs; i++) { 566 sc->child[i] = device_add_child(dev, NULL, -1); 567 if (sc->child[i] == NULL) { 568 device_printf(dev, "%s: failed to add child\n", __func__); 569 return (ENXIO); 570 } 571 sc->cardinfo.f[i].dev = sc->child[i]; 572 573 /* Set the function as ivar to the child device. */ 574 device_set_ivars(sc->child[i], &sc->cardinfo.f[i]); 575 } 576 577 /* 578 * No one will ever attach to F0; we do the above to have a "device" 579 * to talk to in a general way in the code. 580 * Also do the probe/attach in a 2nd loop, so that all devices are 581 * present as we do have drivers consuming more than one device/func 582 * and might play "tricks" in order to do that assuming devices and 583 * ivars are available for all. 584 */ 585 for (i = 1; i < sc->cardinfo.num_funcs; i++) { 586 error = device_probe_and_attach(sc->child[i]); 587 if (error != 0 && bootverbose) 588 device_printf(dev, "%s: device_probe_and_attach(%p %s) " 589 "failed %d for function %d, no child yet\n", 590 __func__, 591 sc->child, device_get_nameunit(sc->child[i]), 592 error, i); 593 } 594 595 sc->nb_state = NB_STATE_READY; 596 597 cam_periph_lock(sc->periph); 598 xpt_announce_periph(sc->periph, NULL); 599 cam_periph_unlock(sc->periph); 600 601 return (0); 602 } 603 604 static int 605 sdiob_detach(device_t dev) 606 { 607 608 /* XXX TODO? */ 609 return (EOPNOTSUPP); 610 } 611 612 /* -------------------------------------------------------------------------- */ 613 /* 614 * driver(9) and device(9) "control plane". 615 * This is what we use when we are making ourselves a device(9) in order to 616 * provide a newbus interface again, as well as the implementation of the 617 * SDIO interface. 618 */ 619 620 static device_method_t sdiob_methods[] = { 621 /* Device interface. */ 622 DEVMETHOD(device_probe, sdiob_probe), 623 DEVMETHOD(device_attach, sdiob_attach), 624 DEVMETHOD(device_detach, sdiob_detach), 625 626 /* Bus interface. */ 627 DEVMETHOD(bus_add_child, bus_generic_add_child), 628 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 629 DEVMETHOD(bus_read_ivar, sdiob_read_ivar), 630 DEVMETHOD(bus_write_ivar, sdiob_write_ivar), 631 632 /* SDIO interface. */ 633 DEVMETHOD(sdio_read_direct, sdiob_read_direct), 634 DEVMETHOD(sdio_write_direct, sdiob_write_direct), 635 DEVMETHOD(sdio_read_extended, sdiob_read_extended), 636 DEVMETHOD(sdio_write_extended, sdiob_write_extended), 637 638 DEVMETHOD_END 639 }; 640 641 static devclass_t sdiob_devclass; 642 static driver_t sdiob_driver = { 643 SDIOB_NAME_S, 644 sdiob_methods, 645 0 646 }; 647 648 /* -------------------------------------------------------------------------- */ 649 /* 650 * CIS related. 651 * Read card and function information and populate the cardinfo structure. 652 */ 653 654 static int 655 sdio_read_direct_sc(struct sdiob_softc *sc, uint8_t fn, uint32_t addr, 656 uint8_t *val) 657 { 658 int error; 659 uint8_t v; 660 661 error = sdiob_rw_direct_sc(sc, fn, addr, false, &v); 662 if (error == 0 && val != NULL) 663 *val = v; 664 return (error); 665 } 666 667 static int 668 sdio_func_read_cis(struct sdiob_softc *sc, uint8_t fn, uint32_t cis_addr) 669 { 670 char cis1_info_buf[256]; 671 char *cis1_info[4]; 672 int start, i, count, ret; 673 uint32_t addr; 674 uint8_t ch, tuple_id, tuple_len, tuple_count, v; 675 676 /* If we encounter any read errors, abort and return. */ 677 #define ERR_OUT(ret) \ 678 if (ret != 0) \ 679 goto err; 680 ret = 0; 681 /* Use to prevent infinite loop in case of parse errors. */ 682 tuple_count = 0; 683 memset(cis1_info_buf, 0, 256); 684 do { 685 addr = cis_addr; 686 ret = sdio_read_direct_sc(sc, 0, addr++, &tuple_id); 687 ERR_OUT(ret); 688 if (tuple_id == SD_IO_CISTPL_END) 689 break; 690 if (tuple_id == 0) { 691 cis_addr++; 692 continue; 693 } 694 ret = sdio_read_direct_sc(sc, 0, addr++, &tuple_len); 695 ERR_OUT(ret); 696 if (tuple_len == 0) { 697 CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_PERIPH, 698 ("%s: parse error: 0-length tuple %#02x\n", 699 __func__, tuple_id)); 700 return (EIO); 701 } 702 703 switch (tuple_id) { 704 case SD_IO_CISTPL_VERS_1: 705 addr += 2; 706 for (count = 0, start = 0, i = 0; 707 (count < 4) && ((i + 4) < 256); i++) { 708 ret = sdio_read_direct_sc(sc, 0, addr + i, &ch); 709 ERR_OUT(ret); 710 DPRINTF("%s: count=%d, start=%d, i=%d, got " 711 "(%#02x)\n", __func__, count, start, i, ch); 712 if (ch == 0xff) 713 break; 714 cis1_info_buf[i] = ch; 715 if (ch == 0) { 716 cis1_info[count] = 717 cis1_info_buf + start; 718 start = i + 1; 719 count++; 720 } 721 } 722 DPRINTF("Card info: "); 723 for (i=0; i < 4; i++) 724 if (cis1_info[i]) 725 DPRINTF(" %s", cis1_info[i]); 726 DPRINTF("\n"); 727 break; 728 case SD_IO_CISTPL_MANFID: 729 /* TPLMID_MANF */ 730 ret = sdio_read_direct_sc(sc, 0, addr++, &v); 731 ERR_OUT(ret); 732 sc->cardinfo.f[fn].vendor = v; 733 ret = sdio_read_direct_sc(sc, 0, addr++, &v); 734 ERR_OUT(ret); 735 sc->cardinfo.f[fn].vendor |= (v << 8); 736 /* TPLMID_CARD */ 737 ret = sdio_read_direct_sc(sc, 0, addr++, &v); 738 ERR_OUT(ret); 739 sc->cardinfo.f[fn].device = v; 740 ret = sdio_read_direct_sc(sc, 0, addr, &v); 741 ERR_OUT(ret); 742 sc->cardinfo.f[fn].device |= (v << 8); 743 break; 744 case SD_IO_CISTPL_FUNCID: 745 /* Not sure if we need to parse it? */ 746 break; 747 case SD_IO_CISTPL_FUNCE: 748 if (tuple_len < 4) { 749 printf("%s: FUNCE is too short: %d\n", 750 __func__, tuple_len); 751 break; 752 } 753 /* TPLFE_TYPE (Extended Data) */ 754 ret = sdio_read_direct_sc(sc, 0, addr++, &v); 755 ERR_OUT(ret); 756 if (fn == 0) { 757 if (v != 0x00) 758 break; 759 } else { 760 if (v != 0x01) 761 break; 762 addr += 0x0b; 763 } 764 ret = sdio_read_direct_sc(sc, 0, addr, &v); 765 ERR_OUT(ret); 766 sc->cardinfo.f[fn].max_blksize = v; 767 ret = sdio_read_direct_sc(sc, 0, addr+1, &v); 768 ERR_OUT(ret); 769 sc->cardinfo.f[fn].max_blksize |= (v << 8); 770 break; 771 default: 772 CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_PERIPH, 773 ("%s: Skipping fn %d tuple %d ID %#02x " 774 "len %#02x\n", __func__, fn, tuple_count, 775 tuple_id, tuple_len)); 776 } 777 if (tuple_len == 0xff) { 778 /* Also marks the end of a tuple chain (E1 16.2) */ 779 /* The tuple is valid, hence this going at the end. */ 780 break; 781 } 782 cis_addr += 2 + tuple_len; 783 tuple_count++; 784 } while (tuple_count < 20); 785 err: 786 #undef ERR_OUT 787 return (ret); 788 } 789 790 static int 791 sdio_get_common_cis_addr(struct sdiob_softc *sc, uint32_t *addr) 792 { 793 int error; 794 uint32_t a; 795 uint8_t val; 796 797 error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CISPTR + 0, &val); 798 if (error != 0) 799 goto err; 800 a = val; 801 error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CISPTR + 1, &val); 802 if (error != 0) 803 goto err; 804 a |= (val << 8); 805 error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CISPTR + 2, &val); 806 if (error != 0) 807 goto err; 808 a |= (val << 16); 809 810 if (a < SD_IO_CIS_START || a > SD_IO_CIS_START + SD_IO_CIS_SIZE) { 811 err: 812 CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_PERIPH, 813 ("%s: bad CIS address: %#04x, error %d\n", __func__, a, 814 error)); 815 } else if (error == 0 && addr != NULL) 816 *addr = a; 817 818 return (error); 819 } 820 821 static int 822 sdiob_get_card_info(struct sdiob_softc *sc) 823 { 824 struct mmc_params *mmcp; 825 uint32_t cis_addr, fbr_addr; 826 int fn, error; 827 uint8_t fn_max, val; 828 829 error = sdio_get_common_cis_addr(sc, &cis_addr); 830 if (error != 0) 831 return (-1); 832 833 memset(&sc->cardinfo, 0, sizeof(sc->cardinfo)); 834 835 /* F0 must always be present. */ 836 fn = 0; 837 error = sdio_func_read_cis(sc, fn, cis_addr); 838 if (error != 0) 839 return (error); 840 sc->cardinfo.num_funcs++; 841 /* Read CCCR Card Capability. */ 842 error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CARDCAP, &val); 843 if (error != 0) 844 return (error); 845 sc->cardinfo.support_multiblk = (val & CCCR_CC_SMB) ? true : false; 846 DPRINTF("%s: F%d: Vendor %#04x product %#04x max block size %d bytes " 847 "support_multiblk %s\n", 848 __func__, fn, sc->cardinfo.f[fn].vendor, sc->cardinfo.f[fn].device, 849 sc->cardinfo.f[fn].max_blksize, 850 sc->cardinfo.support_multiblk ? "yes" : "no"); 851 852 /* mmcp->sdio_func_count contains the number of functions w/o F0. */ 853 mmcp = &sc->ccb->ccb_h.path->device->mmc_ident_data; 854 fn_max = MIN(mmcp->sdio_func_count + 1, nitems(sc->cardinfo.f)); 855 for (fn = 1; fn < fn_max; fn++) { 856 fbr_addr = SD_IO_FBR_START * fn + SD_IO_FBR_CIS_OFFSET; 857 858 error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val); 859 if (error != 0) 860 break; 861 cis_addr = val; 862 error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val); 863 if (error != 0) 864 break; 865 cis_addr |= (val << 8); 866 error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val); 867 if (error != 0) 868 break; 869 cis_addr |= (val << 16); 870 871 error = sdio_func_read_cis(sc, fn, cis_addr); 872 if (error != 0) 873 break; 874 875 /* Read the Standard SDIO Function Interface Code. */ 876 fbr_addr = SD_IO_FBR_START * fn; 877 error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val); 878 if (error != 0) 879 break; 880 sc->cardinfo.f[fn].class = (val & 0x0f); 881 if (sc->cardinfo.f[fn].class == 0x0f) { 882 error = sdio_read_direct_sc(sc, 0, fbr_addr, &val); 883 if (error != 0) 884 break; 885 sc->cardinfo.f[fn].class = val; 886 } 887 888 sc->cardinfo.f[fn].fn = fn; 889 sc->cardinfo.f[fn].cur_blksize = sc->cardinfo.f[fn].max_blksize; 890 sc->cardinfo.f[fn].retries = 0; 891 sc->cardinfo.f[fn].timeout = 5000; 892 893 DPRINTF("%s: F%d: Class %d Vendor %#04x product %#04x " 894 "max_blksize %d bytes\n", __func__, fn, 895 sc->cardinfo.f[fn].class, 896 sc->cardinfo.f[fn].vendor, sc->cardinfo.f[fn].device, 897 sc->cardinfo.f[fn].max_blksize); 898 if (sc->cardinfo.f[fn].vendor == 0) { 899 DPRINTF("%s: F%d doesn't exist\n", __func__, fn); 900 break; 901 } 902 sc->cardinfo.num_funcs++; 903 } 904 return (error); 905 } 906 907 /* -------------------------------------------------------------------------- */ 908 /* 909 * CAM periph registration, allocation, and detached from that a discovery 910 * task, which goes off reads cardinfo, and then adds ourselves to our SIM's 911 * device adding the devclass and registering the driver. This keeps the 912 * newbus chain connected though we will talk CAM in the middle (until one 913 * day CAM might be newbusyfied). 914 */ 915 916 static int 917 sdio_newbus_sim_add(struct sdiob_softc *sc) 918 { 919 device_t pdev; 920 devclass_t bus_devclass; 921 int error; 922 923 /* Add ourselves to our parent (SIM) device. */ 924 925 /* Add ourselves to our parent. That way we can become a parent. */ 926 KASSERT(sc->periph->sim->sim_dev != NULL, ("%s: sim_dev is NULL, sc %p " 927 "periph %p sim %p\n", __func__, sc, sc->periph, sc->periph->sim)); 928 929 if (sc->dev == NULL) 930 sc->dev = BUS_ADD_CHILD(sc->periph->sim->sim_dev, 0, 931 SDIOB_NAME_S, -1); 932 if (sc->dev == NULL) 933 return (ENXIO); 934 device_set_softc(sc->dev, sc); 935 /* 936 * Don't set description here; devclass_add_driver() -> 937 * device_probe_child() -> device_set_driver() will nuke it again. 938 */ 939 940 pdev = device_get_parent(sc->dev); 941 KASSERT(pdev != NULL, ("%s: sc %p dev %p (%s) parent is NULL\n", 942 __func__, sc, sc->dev, device_get_nameunit(sc->dev))); 943 bus_devclass = device_get_devclass(pdev); 944 if (bus_devclass == NULL) { 945 printf("%s: Failed to get devclass from %s.\n", __func__, 946 device_get_nameunit(pdev)); 947 return (ENXIO); 948 } 949 950 mtx_lock(&Giant); 951 error = devclass_add_driver(bus_devclass, &sdiob_driver, 952 BUS_PASS_DEFAULT, &sdiob_devclass); 953 mtx_unlock(&Giant); 954 if (error != 0) { 955 printf("%s: Failed to add driver to devclass: %d.\n", 956 __func__, error); 957 return (error); 958 } 959 960 /* Done. */ 961 sc->nb_state = NB_STATE_SIM_ADDED; 962 963 return (0); 964 } 965 966 static void 967 sdiobdiscover(void *context, int pending) 968 { 969 struct cam_periph *periph; 970 struct sdiob_softc *sc; 971 int error; 972 973 KASSERT(context != NULL, ("%s: context is NULL\n", __func__)); 974 periph = (struct cam_periph *)context; 975 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s\n", __func__)); 976 977 /* Periph was held for us when this task was enqueued. */ 978 if ((periph->flags & CAM_PERIPH_INVALID) != 0) { 979 cam_periph_release(periph); 980 return; 981 } 982 983 sc = periph->softc; 984 sc->sdio_state = SDIO_STATE_INITIALIZING; 985 986 if (sc->ccb == NULL) 987 sc->ccb = xpt_alloc_ccb(); 988 else 989 memset(sc->ccb, 0, sizeof(*sc->ccb)); 990 xpt_setup_ccb(&sc->ccb->ccb_h, periph->path, CAM_PRIORITY_NONE); 991 992 /* 993 * Read CCCR and FBR of each function, get manufacturer and device IDs, 994 * max block size, and whatever else we deem necessary. 995 */ 996 cam_periph_lock(periph); 997 error = sdiob_get_card_info(sc); 998 if (error == 0) 999 sc->sdio_state = SDIO_STATE_READY; 1000 else 1001 sc->sdio_state = SDIO_STATE_DEAD; 1002 cam_periph_unlock(periph); 1003 1004 if (error) 1005 return; 1006 1007 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s: num_func %d\n", 1008 __func__, sc->cardinfo.num_funcs)); 1009 1010 /* 1011 * Now CAM portion of the driver has been initialized and 1012 * we know VID/PID of all the functions on the card. 1013 * Time to hook into the newbus. 1014 */ 1015 error = sdio_newbus_sim_add(sc); 1016 if (error != 0) 1017 sc->nb_state = NB_STATE_DEAD; 1018 1019 return; 1020 } 1021 1022 /* Called at the end of cam_periph_alloc() for us to finish allocation. */ 1023 static cam_status 1024 sdiobregister(struct cam_periph *periph, void *arg) 1025 { 1026 struct sdiob_softc *sc; 1027 int error; 1028 1029 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s: arg %p\n", __func__, arg)); 1030 if (arg == NULL) { 1031 printf("%s: no getdev CCB, can't register device pariph %p\n", 1032 __func__, periph); 1033 return(CAM_REQ_CMP_ERR); 1034 } 1035 if (periph->sim == NULL || periph->sim->sim_dev == NULL) { 1036 printf("%s: no sim %p or sim_dev %p\n", __func__, periph->sim, 1037 (periph->sim != NULL) ? periph->sim->sim_dev : NULL); 1038 return(CAM_REQ_CMP_ERR); 1039 } 1040 1041 sc = (struct sdiob_softc *) malloc(sizeof(*sc), M_DEVBUF, 1042 M_NOWAIT|M_ZERO); 1043 if (sc == NULL) { 1044 printf("%s: unable to allocate sc\n", __func__); 1045 return (CAM_REQ_CMP_ERR); 1046 } 1047 sc->sdio_state = SDIO_STATE_DEAD; 1048 sc->nb_state = NB_STATE_DEAD; 1049 TASK_INIT(&sc->discover_task, 0, sdiobdiscover, periph); 1050 1051 /* Refcount until we are setup. Can't block. */ 1052 error = cam_periph_hold(periph, PRIBIO); 1053 if (error != 0) { 1054 printf("%s: lost periph during registration!\n", __func__); 1055 free(sc, M_DEVBUF); 1056 return(CAM_REQ_CMP_ERR); 1057 } 1058 periph->softc = sc; 1059 sc->periph = periph; 1060 cam_periph_unlock(periph); 1061 1062 error = taskqueue_enqueue(taskqueue_thread, &sc->discover_task); 1063 1064 cam_periph_lock(periph); 1065 /* We will continue to hold a refcount for discover_task. */ 1066 /* cam_periph_unhold(periph); */ 1067 1068 xpt_schedule(periph, CAM_PRIORITY_XPT); 1069 1070 return (CAM_REQ_CMP); 1071 } 1072 1073 static void 1074 sdioboninvalidate(struct cam_periph *periph) 1075 { 1076 1077 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s:\n", __func__)); 1078 1079 return; 1080 } 1081 1082 static void 1083 sdiobcleanup(struct cam_periph *periph) 1084 { 1085 1086 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s:\n", __func__)); 1087 1088 return; 1089 } 1090 1091 static void 1092 sdiobstart(struct cam_periph *periph, union ccb *ccb) 1093 { 1094 1095 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s: ccb %p\n", __func__, ccb)); 1096 1097 return; 1098 } 1099 1100 static void 1101 sdiobasync(void *softc, uint32_t code, struct cam_path *path, void *arg) 1102 { 1103 struct cam_periph *periph; 1104 struct ccb_getdev *cgd; 1105 cam_status status; 1106 1107 periph = (struct cam_periph *)softc; 1108 1109 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("%s(code=%d)\n", __func__, code)); 1110 switch (code) { 1111 case AC_FOUND_DEVICE: 1112 if (arg == NULL) 1113 break; 1114 cgd = (struct ccb_getdev *)arg; 1115 if (cgd->protocol != PROTO_MMCSD) 1116 break; 1117 1118 /* We do not support SD memory (Combo) Cards. */ 1119 if ((path->device->mmc_ident_data.card_features & 1120 CARD_FEATURE_MEMORY)) { 1121 CAM_DEBUG(path, CAM_DEBUG_TRACE, 1122 ("Memory card, not interested\n")); 1123 break; 1124 } 1125 1126 /* 1127 * Allocate a peripheral instance for this device which starts 1128 * the probe process. 1129 */ 1130 status = cam_periph_alloc(sdiobregister, sdioboninvalidate, 1131 sdiobcleanup, sdiobstart, SDIOB_NAME_S, CAM_PERIPH_BIO, path, 1132 sdiobasync, AC_FOUND_DEVICE, cgd); 1133 if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) 1134 CAM_DEBUG(path, CAM_DEBUG_PERIPH, 1135 ("%s: Unable to attach to new device due to " 1136 "status %#02x\n", __func__, status)); 1137 break; 1138 default: 1139 CAM_DEBUG(path, CAM_DEBUG_PERIPH, 1140 ("%s: cannot handle async code %#02x\n", __func__, code)); 1141 cam_periph_async(periph, code, path, arg); 1142 break; 1143 } 1144 } 1145 1146 static void 1147 sdiobinit(void) 1148 { 1149 cam_status status; 1150 1151 /* 1152 * Register for new device notification. We will be notified for all 1153 * already existing ones. 1154 */ 1155 status = xpt_register_async(AC_FOUND_DEVICE, sdiobasync, NULL, NULL); 1156 if (status != CAM_REQ_CMP) 1157 printf("%s: Failed to attach async callback, statux %#02x", 1158 __func__, status); 1159 } 1160 1161 /* This function will allow unloading the KLD. */ 1162 static int 1163 sdiobdeinit(void) 1164 { 1165 1166 return (EOPNOTSUPP); 1167 } 1168 1169 static struct periph_driver sdiobdriver = 1170 { 1171 .init = sdiobinit, 1172 .driver_name = SDIOB_NAME_S, 1173 .units = TAILQ_HEAD_INITIALIZER(sdiobdriver.units), 1174 .generation = 0, 1175 .flags = 0, 1176 .deinit = sdiobdeinit, 1177 }; 1178 1179 PERIPHDRIVER_DECLARE(SDIOB_NAME, sdiobdriver); 1180 MODULE_VERSION(SDIOB_NAME, 1); 1181