1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org> 5 * Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/callout.h> 36 #include <sys/conf.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/libkern.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/mutex.h> 44 #include <sys/resource.h> 45 #include <sys/rman.h> 46 #include <sys/sysctl.h> 47 #include <sys/taskqueue.h> 48 49 #include <machine/bus.h> 50 #include <machine/resource.h> 51 #include <machine/stdarg.h> 52 53 #include <dev/mmc/bridge.h> 54 #include <dev/mmc/mmcreg.h> 55 #include <dev/mmc/mmcbrvar.h> 56 57 #include <dev/sdhci/sdhci.h> 58 59 #include <cam/cam.h> 60 #include <cam/cam_ccb.h> 61 #include <cam/cam_debug.h> 62 #include <cam/cam_sim.h> 63 #include <cam/cam_xpt_sim.h> 64 65 #include "mmcbr_if.h" 66 #include "sdhci_if.h" 67 68 #include "opt_mmccam.h" 69 70 SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 71 "sdhci driver"); 72 73 static int sdhci_debug = 0; 74 SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RWTUN, &sdhci_debug, 0, 75 "Debug level"); 76 u_int sdhci_quirk_clear = 0; 77 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_clear, CTLFLAG_RWTUN, &sdhci_quirk_clear, 78 0, "Mask of quirks to clear"); 79 u_int sdhci_quirk_set = 0; 80 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_set, CTLFLAG_RWTUN, &sdhci_quirk_set, 0, 81 "Mask of quirks to set"); 82 83 #define RD1(slot, off) SDHCI_READ_1((slot)->bus, (slot), (off)) 84 #define RD2(slot, off) SDHCI_READ_2((slot)->bus, (slot), (off)) 85 #define RD4(slot, off) SDHCI_READ_4((slot)->bus, (slot), (off)) 86 #define RD_MULTI_4(slot, off, ptr, count) \ 87 SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count)) 88 89 #define WR1(slot, off, val) SDHCI_WRITE_1((slot)->bus, (slot), (off), (val)) 90 #define WR2(slot, off, val) SDHCI_WRITE_2((slot)->bus, (slot), (off), (val)) 91 #define WR4(slot, off, val) SDHCI_WRITE_4((slot)->bus, (slot), (off), (val)) 92 #define WR_MULTI_4(slot, off, ptr, count) \ 93 SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count)) 94 95 static void sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err); 96 static void sdhci_card_poll(void *arg); 97 static void sdhci_card_task(void *arg, int pending); 98 static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask); 99 static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask); 100 static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset); 101 static void sdhci_handle_card_present_locked(struct sdhci_slot *slot, 102 bool is_present); 103 static void sdhci_finish_command(struct sdhci_slot *slot); 104 static void sdhci_init(struct sdhci_slot *slot); 105 static void sdhci_read_block_pio(struct sdhci_slot *slot); 106 static void sdhci_req_done(struct sdhci_slot *slot); 107 static void sdhci_req_wakeup(struct mmc_request *req); 108 static void sdhci_reset(struct sdhci_slot *slot, uint8_t mask); 109 static void sdhci_retune(void *arg); 110 static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock); 111 static void sdhci_set_power(struct sdhci_slot *slot, u_char power); 112 static void sdhci_set_transfer_mode(struct sdhci_slot *slot, 113 const struct mmc_data *data); 114 static void sdhci_start(struct sdhci_slot *slot); 115 static void sdhci_timeout(void *arg); 116 static void sdhci_start_command(struct sdhci_slot *slot, 117 struct mmc_command *cmd); 118 static void sdhci_start_data(struct sdhci_slot *slot, 119 const struct mmc_data *data); 120 static void sdhci_write_block_pio(struct sdhci_slot *slot); 121 static void sdhci_transfer_pio(struct sdhci_slot *slot); 122 123 #ifdef MMCCAM 124 /* CAM-related */ 125 static void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb); 126 static int sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot, 127 int proposed_clock); 128 static void sdhci_cam_poll(struct cam_sim *sim); 129 static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb); 130 static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb); 131 static int sdhci_cam_update_ios(struct sdhci_slot *slot); 132 #endif 133 134 /* helper routines */ 135 static int sdhci_dma_alloc(struct sdhci_slot *slot); 136 static void sdhci_dma_free(struct sdhci_slot *slot); 137 static void sdhci_dumpregs(struct sdhci_slot *slot); 138 static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, 139 int error); 140 static int slot_printf(const struct sdhci_slot *slot, const char * fmt, ...) 141 __printflike(2, 3); 142 static uint32_t sdhci_tuning_intmask(const struct sdhci_slot *slot); 143 144 #define SDHCI_LOCK(_slot) mtx_lock(&(_slot)->mtx) 145 #define SDHCI_UNLOCK(_slot) mtx_unlock(&(_slot)->mtx) 146 #define SDHCI_LOCK_INIT(_slot) \ 147 mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF) 148 #define SDHCI_LOCK_DESTROY(_slot) mtx_destroy(&_slot->mtx); 149 #define SDHCI_ASSERT_LOCKED(_slot) mtx_assert(&_slot->mtx, MA_OWNED); 150 #define SDHCI_ASSERT_UNLOCKED(_slot) mtx_assert(&_slot->mtx, MA_NOTOWNED); 151 152 #define SDHCI_DEFAULT_MAX_FREQ 50 153 154 #define SDHCI_200_MAX_DIVIDER 256 155 #define SDHCI_300_MAX_DIVIDER 2046 156 157 #define SDHCI_CARD_PRESENT_TICKS (hz / 5) 158 #define SDHCI_INSERT_DELAY_TICKS (hz / 2) 159 160 /* 161 * Broadcom BCM577xx Controller Constants 162 */ 163 /* Maximum divider supported by the default clock source. */ 164 #define BCM577XX_DEFAULT_MAX_DIVIDER 256 165 /* Alternative clock's base frequency. */ 166 #define BCM577XX_ALT_CLOCK_BASE 63000000 167 168 #define BCM577XX_HOST_CONTROL 0x198 169 #define BCM577XX_CTRL_CLKSEL_MASK 0xFFFFCFFF 170 #define BCM577XX_CTRL_CLKSEL_SHIFT 12 171 #define BCM577XX_CTRL_CLKSEL_DEFAULT 0x0 172 #define BCM577XX_CTRL_CLKSEL_64MHZ 0x3 173 174 static void 175 sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 176 { 177 178 if (error != 0) { 179 printf("getaddr: error %d\n", error); 180 return; 181 } 182 *(bus_addr_t *)arg = segs[0].ds_addr; 183 } 184 185 static int 186 slot_printf(const struct sdhci_slot *slot, const char * fmt, ...) 187 { 188 char buf[128]; 189 va_list ap; 190 int retval; 191 192 /* 193 * Make sure we print a single line all together rather than in two 194 * halves to avoid console gibberish bingo. 195 */ 196 va_start(ap, fmt); 197 retval = vsnprintf(buf, sizeof(buf), fmt, ap); 198 va_end(ap); 199 200 retval += printf("%s-slot%d: %s", 201 device_get_nameunit(slot->bus), slot->num, buf); 202 return (retval); 203 } 204 205 static void 206 sdhci_dumpregs(struct sdhci_slot *slot) 207 { 208 209 slot_printf(slot, 210 "============== REGISTER DUMP ==============\n"); 211 212 slot_printf(slot, "Sys addr: 0x%08x | Version: 0x%08x\n", 213 RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION)); 214 slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n", 215 RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT)); 216 slot_printf(slot, "Argument: 0x%08x | Trn mode: 0x%08x\n", 217 RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE)); 218 slot_printf(slot, "Present: 0x%08x | Host ctl: 0x%08x\n", 219 RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL)); 220 slot_printf(slot, "Power: 0x%08x | Blk gap: 0x%08x\n", 221 RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL)); 222 slot_printf(slot, "Wake-up: 0x%08x | Clock: 0x%08x\n", 223 RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL)); 224 slot_printf(slot, "Timeout: 0x%08x | Int stat: 0x%08x\n", 225 RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS)); 226 slot_printf(slot, "Int enab: 0x%08x | Sig enab: 0x%08x\n", 227 RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE)); 228 slot_printf(slot, "AC12 err: 0x%08x | Host ctl2:0x%08x\n", 229 RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2)); 230 slot_printf(slot, "Caps: 0x%08x | Caps2: 0x%08x\n", 231 RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2)); 232 slot_printf(slot, "Max curr: 0x%08x | ADMA err: 0x%08x\n", 233 RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR)); 234 slot_printf(slot, "ADMA addr:0x%08x | Slot int: 0x%08x\n", 235 RD4(slot, SDHCI_ADMA_ADDRESS_LO), RD2(slot, SDHCI_SLOT_INT_STATUS)); 236 237 slot_printf(slot, 238 "===========================================\n"); 239 } 240 241 static void 242 sdhci_reset(struct sdhci_slot *slot, uint8_t mask) 243 { 244 int timeout; 245 uint32_t clock; 246 247 if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) { 248 if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot)) 249 return; 250 } 251 252 /* Some controllers need this kick or reset won't work. */ 253 if ((mask & SDHCI_RESET_ALL) == 0 && 254 (slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) { 255 /* This is to force an update */ 256 clock = slot->clock; 257 slot->clock = 0; 258 sdhci_set_clock(slot, clock); 259 } 260 261 if (mask & SDHCI_RESET_ALL) { 262 slot->clock = 0; 263 slot->power = 0; 264 } 265 266 WR1(slot, SDHCI_SOFTWARE_RESET, mask); 267 268 if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) { 269 /* 270 * Resets on TI OMAPs and AM335x are incompatible with SDHCI 271 * specification. The reset bit has internal propagation delay, 272 * so a fast read after write returns 0 even if reset process is 273 * in progress. The workaround is to poll for 1 before polling 274 * for 0. In the worst case, if we miss seeing it asserted the 275 * time we spent waiting is enough to ensure the reset finishes. 276 */ 277 timeout = 10000; 278 while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) { 279 if (timeout <= 0) 280 break; 281 timeout--; 282 DELAY(1); 283 } 284 } 285 286 /* Wait max 100 ms */ 287 timeout = 10000; 288 /* Controller clears the bits when it's done */ 289 while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) { 290 if (timeout <= 0) { 291 slot_printf(slot, "Reset 0x%x never completed.\n", 292 mask); 293 sdhci_dumpregs(slot); 294 return; 295 } 296 timeout--; 297 DELAY(10); 298 } 299 } 300 301 static uint32_t 302 sdhci_tuning_intmask(const struct sdhci_slot *slot) 303 { 304 uint32_t intmask; 305 306 intmask = 0; 307 if (slot->opt & SDHCI_TUNING_ENABLED) { 308 intmask |= SDHCI_INT_TUNEERR; 309 if (slot->retune_mode == SDHCI_RETUNE_MODE_2 || 310 slot->retune_mode == SDHCI_RETUNE_MODE_3) 311 intmask |= SDHCI_INT_RETUNE; 312 } 313 return (intmask); 314 } 315 316 static void 317 sdhci_init(struct sdhci_slot *slot) 318 { 319 320 sdhci_reset(slot, SDHCI_RESET_ALL); 321 322 /* Enable interrupts. */ 323 slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | 324 SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX | 325 SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT | 326 SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | 327 SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE | 328 SDHCI_INT_ACMD12ERR; 329 330 if (!(slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) && 331 !(slot->opt & SDHCI_NON_REMOVABLE)) { 332 slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT; 333 } 334 335 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 336 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 337 } 338 339 static void 340 sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock) 341 { 342 uint32_t clk_base; 343 uint32_t clk_sel; 344 uint32_t res; 345 uint16_t clk; 346 uint16_t div; 347 int timeout; 348 349 if (clock == slot->clock) 350 return; 351 slot->clock = clock; 352 353 /* Turn off the clock. */ 354 clk = RD2(slot, SDHCI_CLOCK_CONTROL); 355 WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN); 356 /* If no clock requested - leave it so. */ 357 if (clock == 0) 358 return; 359 360 /* Determine the clock base frequency */ 361 clk_base = slot->max_clk; 362 if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) { 363 clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) & 364 BCM577XX_CTRL_CLKSEL_MASK; 365 366 /* 367 * Select clock source appropriate for the requested frequency. 368 */ 369 if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) { 370 clk_base = BCM577XX_ALT_CLOCK_BASE; 371 clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ << 372 BCM577XX_CTRL_CLKSEL_SHIFT); 373 } else { 374 clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT << 375 BCM577XX_CTRL_CLKSEL_SHIFT); 376 } 377 378 WR2(slot, BCM577XX_HOST_CONTROL, clk_sel); 379 } 380 381 /* Recalculate timeout clock frequency based on the new sd clock. */ 382 if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) 383 slot->timeout_clk = slot->clock / 1000; 384 385 if (slot->version < SDHCI_SPEC_300) { 386 /* Looking for highest freq <= clock. */ 387 res = clk_base; 388 for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) { 389 if (res <= clock) 390 break; 391 res >>= 1; 392 } 393 /* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */ 394 div >>= 1; 395 } else { 396 /* Version 3.0 divisors are multiples of two up to 1023 * 2 */ 397 if (clock >= clk_base) 398 div = 0; 399 else { 400 for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) { 401 if ((clk_base / div) <= clock) 402 break; 403 } 404 } 405 div >>= 1; 406 } 407 408 if (bootverbose || sdhci_debug) 409 slot_printf(slot, "Divider %d for freq %d (base %d)\n", 410 div, clock, clk_base); 411 412 /* Now we have got divider, set it. */ 413 clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT; 414 clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK) 415 << SDHCI_DIVIDER_HI_SHIFT; 416 417 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 418 /* Enable clock. */ 419 clk |= SDHCI_CLOCK_INT_EN; 420 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 421 /* Wait up to 10 ms until it stabilize. */ 422 timeout = 10; 423 while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL)) 424 & SDHCI_CLOCK_INT_STABLE)) { 425 if (timeout == 0) { 426 slot_printf(slot, 427 "Internal clock never stabilised.\n"); 428 sdhci_dumpregs(slot); 429 return; 430 } 431 timeout--; 432 DELAY(1000); 433 } 434 /* Pass clock signal to the bus. */ 435 clk |= SDHCI_CLOCK_CARD_EN; 436 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 437 } 438 439 static void 440 sdhci_set_power(struct sdhci_slot *slot, u_char power) 441 { 442 int i; 443 uint8_t pwr; 444 445 if (slot->power == power) 446 return; 447 448 slot->power = power; 449 450 /* Turn off the power. */ 451 pwr = 0; 452 WR1(slot, SDHCI_POWER_CONTROL, pwr); 453 /* If power down requested - leave it so. */ 454 if (power == 0) 455 return; 456 /* Set voltage. */ 457 switch (1 << power) { 458 case MMC_OCR_LOW_VOLTAGE: 459 pwr |= SDHCI_POWER_180; 460 break; 461 case MMC_OCR_290_300: 462 case MMC_OCR_300_310: 463 pwr |= SDHCI_POWER_300; 464 break; 465 case MMC_OCR_320_330: 466 case MMC_OCR_330_340: 467 pwr |= SDHCI_POWER_330; 468 break; 469 } 470 WR1(slot, SDHCI_POWER_CONTROL, pwr); 471 /* 472 * Turn on VDD1 power. Note that at least some Intel controllers can 473 * fail to enable bus power on the first try after transiting from D3 474 * to D0, so we give them up to 2 ms. 475 */ 476 pwr |= SDHCI_POWER_ON; 477 for (i = 0; i < 20; i++) { 478 WR1(slot, SDHCI_POWER_CONTROL, pwr); 479 if (RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON) 480 break; 481 DELAY(100); 482 } 483 if (!(RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON)) 484 slot_printf(slot, "Bus power failed to enable\n"); 485 486 if (slot->quirks & SDHCI_QUIRK_INTEL_POWER_UP_RESET) { 487 WR1(slot, SDHCI_POWER_CONTROL, pwr | 0x10); 488 DELAY(10); 489 WR1(slot, SDHCI_POWER_CONTROL, pwr); 490 DELAY(300); 491 } 492 } 493 494 static void 495 sdhci_read_block_pio(struct sdhci_slot *slot) 496 { 497 uint32_t data; 498 char *buffer; 499 size_t left; 500 501 buffer = slot->curcmd->data->data; 502 buffer += slot->offset; 503 /* Transfer one block at a time. */ 504 #ifdef MMCCAM 505 if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE) 506 left = min(slot->curcmd->data->block_size, 507 slot->curcmd->data->len - slot->offset); 508 else 509 #endif 510 left = min(512, slot->curcmd->data->len - slot->offset); 511 slot->offset += left; 512 513 /* If we are too fast, broken controllers return zeroes. */ 514 if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) 515 DELAY(10); 516 /* Handle unaligned and aligned buffer cases. */ 517 if ((intptr_t)buffer & 3) { 518 while (left > 3) { 519 data = RD4(slot, SDHCI_BUFFER); 520 buffer[0] = data; 521 buffer[1] = (data >> 8); 522 buffer[2] = (data >> 16); 523 buffer[3] = (data >> 24); 524 buffer += 4; 525 left -= 4; 526 } 527 } else { 528 RD_MULTI_4(slot, SDHCI_BUFFER, 529 (uint32_t *)buffer, left >> 2); 530 left &= 3; 531 } 532 /* Handle uneven size case. */ 533 if (left > 0) { 534 data = RD4(slot, SDHCI_BUFFER); 535 while (left > 0) { 536 *(buffer++) = data; 537 data >>= 8; 538 left--; 539 } 540 } 541 } 542 543 static void 544 sdhci_write_block_pio(struct sdhci_slot *slot) 545 { 546 uint32_t data = 0; 547 char *buffer; 548 size_t left; 549 550 buffer = slot->curcmd->data->data; 551 buffer += slot->offset; 552 /* Transfer one block at a time. */ 553 #ifdef MMCCAM 554 if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE) { 555 left = min(slot->curcmd->data->block_size, 556 slot->curcmd->data->len - slot->offset); 557 } else 558 #endif 559 left = min(512, slot->curcmd->data->len - slot->offset); 560 slot->offset += left; 561 562 /* Handle unaligned and aligned buffer cases. */ 563 if ((intptr_t)buffer & 3) { 564 while (left > 3) { 565 data = buffer[0] + 566 (buffer[1] << 8) + 567 (buffer[2] << 16) + 568 (buffer[3] << 24); 569 left -= 4; 570 buffer += 4; 571 WR4(slot, SDHCI_BUFFER, data); 572 } 573 } else { 574 WR_MULTI_4(slot, SDHCI_BUFFER, 575 (uint32_t *)buffer, left >> 2); 576 left &= 3; 577 } 578 /* Handle uneven size case. */ 579 if (left > 0) { 580 while (left > 0) { 581 data <<= 8; 582 data += *(buffer++); 583 left--; 584 } 585 WR4(slot, SDHCI_BUFFER, data); 586 } 587 } 588 589 static void 590 sdhci_transfer_pio(struct sdhci_slot *slot) 591 { 592 593 /* Read as many blocks as possible. */ 594 if (slot->curcmd->data->flags & MMC_DATA_READ) { 595 while (RD4(slot, SDHCI_PRESENT_STATE) & 596 SDHCI_DATA_AVAILABLE) { 597 sdhci_read_block_pio(slot); 598 if (slot->offset >= slot->curcmd->data->len) 599 break; 600 } 601 } else { 602 while (RD4(slot, SDHCI_PRESENT_STATE) & 603 SDHCI_SPACE_AVAILABLE) { 604 sdhci_write_block_pio(slot); 605 if (slot->offset >= slot->curcmd->data->len) 606 break; 607 } 608 } 609 } 610 611 static void 612 sdhci_card_task(void *arg, int pending __unused) 613 { 614 struct sdhci_slot *slot = arg; 615 device_t d; 616 617 SDHCI_LOCK(slot); 618 if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) { 619 #ifdef MMCCAM 620 if (slot->card_present == 0) { 621 #else 622 if (slot->dev == NULL) { 623 #endif 624 /* If card is present - attach mmc bus. */ 625 if (bootverbose || sdhci_debug) 626 slot_printf(slot, "Card inserted\n"); 627 #ifdef MMCCAM 628 slot->card_present = 1; 629 mmccam_start_discovery(slot->sim); 630 SDHCI_UNLOCK(slot); 631 #else 632 d = slot->dev = device_add_child(slot->bus, "mmc", -1); 633 SDHCI_UNLOCK(slot); 634 if (d) { 635 device_set_ivars(d, slot); 636 (void)device_probe_and_attach(d); 637 } 638 #endif 639 } else 640 SDHCI_UNLOCK(slot); 641 } else { 642 #ifdef MMCCAM 643 if (slot->card_present == 1) { 644 #else 645 if (slot->dev != NULL) { 646 #endif 647 /* If no card present - detach mmc bus. */ 648 if (bootverbose || sdhci_debug) 649 slot_printf(slot, "Card removed\n"); 650 d = slot->dev; 651 slot->dev = NULL; 652 #ifdef MMCCAM 653 slot->card_present = 0; 654 mmccam_start_discovery(slot->sim); 655 SDHCI_UNLOCK(slot); 656 #else 657 slot->intmask &= ~sdhci_tuning_intmask(slot); 658 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 659 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 660 slot->opt &= ~SDHCI_TUNING_ENABLED; 661 SDHCI_UNLOCK(slot); 662 callout_drain(&slot->retune_callout); 663 device_delete_child(slot->bus, d); 664 #endif 665 } else 666 SDHCI_UNLOCK(slot); 667 } 668 } 669 670 static void 671 sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present) 672 { 673 bool was_present; 674 675 /* 676 * If there was no card and now there is one, schedule the task to 677 * create the child device after a short delay. The delay is to 678 * debounce the card insert (sometimes the card detect pin stabilizes 679 * before the other pins have made good contact). 680 * 681 * If there was a card present and now it's gone, immediately schedule 682 * the task to delete the child device. No debouncing -- gone is gone, 683 * because once power is removed, a full card re-init is needed, and 684 * that happens by deleting and recreating the child device. 685 */ 686 #ifdef MMCCAM 687 was_present = slot->card_present; 688 #else 689 was_present = slot->dev != NULL; 690 #endif 691 if (!was_present && is_present) { 692 taskqueue_enqueue_timeout(taskqueue_swi_giant, 693 &slot->card_delayed_task, -SDHCI_INSERT_DELAY_TICKS); 694 } else if (was_present && !is_present) { 695 taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task); 696 } 697 } 698 699 void 700 sdhci_handle_card_present(struct sdhci_slot *slot, bool is_present) 701 { 702 703 SDHCI_LOCK(slot); 704 sdhci_handle_card_present_locked(slot, is_present); 705 SDHCI_UNLOCK(slot); 706 } 707 708 static void 709 sdhci_card_poll(void *arg) 710 { 711 struct sdhci_slot *slot = arg; 712 713 sdhci_handle_card_present(slot, 714 SDHCI_GET_CARD_PRESENT(slot->bus, slot)); 715 callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS, 716 sdhci_card_poll, slot); 717 } 718 719 static int 720 sdhci_dma_alloc(struct sdhci_slot *slot) 721 { 722 int err; 723 724 if (!(slot->quirks & SDHCI_QUIRK_BROKEN_SDMA_BOUNDARY)) { 725 if (MAXPHYS <= 1024 * 4) 726 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_4K; 727 else if (MAXPHYS <= 1024 * 8) 728 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_8K; 729 else if (MAXPHYS <= 1024 * 16) 730 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_16K; 731 else if (MAXPHYS <= 1024 * 32) 732 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_32K; 733 else if (MAXPHYS <= 1024 * 64) 734 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_64K; 735 else if (MAXPHYS <= 1024 * 128) 736 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_128K; 737 else if (MAXPHYS <= 1024 * 256) 738 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_256K; 739 else 740 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_512K; 741 } 742 slot->sdma_bbufsz = SDHCI_SDMA_BNDRY_TO_BBUFSZ(slot->sdma_boundary); 743 744 /* 745 * Allocate the DMA tag for an SDMA bounce buffer. 746 * Note that the SDHCI specification doesn't state any alignment 747 * constraint for the SDMA system address. However, controllers 748 * typically ignore the SDMA boundary bits in SDHCI_DMA_ADDRESS when 749 * forming the actual address of data, requiring the SDMA buffer to 750 * be aligned to the SDMA boundary. 751 */ 752 err = bus_dma_tag_create(bus_get_dma_tag(slot->bus), slot->sdma_bbufsz, 753 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 754 slot->sdma_bbufsz, 1, slot->sdma_bbufsz, BUS_DMA_ALLOCNOW, 755 NULL, NULL, &slot->dmatag); 756 if (err != 0) { 757 slot_printf(slot, "Can't create DMA tag for SDMA\n"); 758 return (err); 759 } 760 /* Allocate DMA memory for the SDMA bounce buffer. */ 761 err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem, 762 BUS_DMA_NOWAIT, &slot->dmamap); 763 if (err != 0) { 764 slot_printf(slot, "Can't alloc DMA memory for SDMA\n"); 765 bus_dma_tag_destroy(slot->dmatag); 766 return (err); 767 } 768 /* Map the memory of the SDMA bounce buffer. */ 769 err = bus_dmamap_load(slot->dmatag, slot->dmamap, 770 (void *)slot->dmamem, slot->sdma_bbufsz, sdhci_getaddr, 771 &slot->paddr, 0); 772 if (err != 0 || slot->paddr == 0) { 773 slot_printf(slot, "Can't load DMA memory for SDMA\n"); 774 bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); 775 bus_dma_tag_destroy(slot->dmatag); 776 if (err) 777 return (err); 778 else 779 return (EFAULT); 780 } 781 782 return (0); 783 } 784 785 static void 786 sdhci_dma_free(struct sdhci_slot *slot) 787 { 788 789 bus_dmamap_unload(slot->dmatag, slot->dmamap); 790 bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); 791 bus_dma_tag_destroy(slot->dmatag); 792 } 793 794 int 795 sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num) 796 { 797 kobjop_desc_t kobj_desc; 798 kobj_method_t *kobj_method; 799 uint32_t caps, caps2, freq, host_caps; 800 int err; 801 802 SDHCI_LOCK_INIT(slot); 803 804 slot->num = num; 805 slot->bus = dev; 806 807 slot->version = (RD2(slot, SDHCI_HOST_VERSION) 808 >> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK; 809 if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) { 810 caps = slot->caps; 811 caps2 = slot->caps2; 812 } else { 813 caps = RD4(slot, SDHCI_CAPABILITIES); 814 if (slot->version >= SDHCI_SPEC_300) 815 caps2 = RD4(slot, SDHCI_CAPABILITIES2); 816 else 817 caps2 = 0; 818 } 819 if (slot->version >= SDHCI_SPEC_300) { 820 if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE && 821 (caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) { 822 slot_printf(slot, 823 "Driver doesn't support shared bus slots\n"); 824 SDHCI_LOCK_DESTROY(slot); 825 return (ENXIO); 826 } else if ((caps & SDHCI_SLOTTYPE_MASK) == 827 SDHCI_SLOTTYPE_EMBEDDED) { 828 slot->opt |= SDHCI_SLOT_EMBEDDED | SDHCI_NON_REMOVABLE; 829 } 830 } 831 /* Calculate base clock frequency. */ 832 if (slot->version >= SDHCI_SPEC_300) 833 freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >> 834 SDHCI_CLOCK_BASE_SHIFT; 835 else 836 freq = (caps & SDHCI_CLOCK_BASE_MASK) >> 837 SDHCI_CLOCK_BASE_SHIFT; 838 if (freq != 0) 839 slot->max_clk = freq * 1000000; 840 /* 841 * If the frequency wasn't in the capabilities and the hardware driver 842 * hasn't already set max_clk we're probably not going to work right 843 * with an assumption, so complain about it. 844 */ 845 if (slot->max_clk == 0) { 846 slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000; 847 slot_printf(slot, "Hardware doesn't specify base clock " 848 "frequency, using %dMHz as default.\n", 849 SDHCI_DEFAULT_MAX_FREQ); 850 } 851 /* Calculate/set timeout clock frequency. */ 852 if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) { 853 slot->timeout_clk = slot->max_clk / 1000; 854 } else if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_1MHZ) { 855 slot->timeout_clk = 1000; 856 } else { 857 slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >> 858 SDHCI_TIMEOUT_CLK_SHIFT; 859 if (caps & SDHCI_TIMEOUT_CLK_UNIT) 860 slot->timeout_clk *= 1000; 861 } 862 /* 863 * If the frequency wasn't in the capabilities and the hardware driver 864 * hasn't already set timeout_clk we'll probably work okay using the 865 * max timeout, but still mention it. 866 */ 867 if (slot->timeout_clk == 0) { 868 slot_printf(slot, "Hardware doesn't specify timeout clock " 869 "frequency, setting BROKEN_TIMEOUT quirk.\n"); 870 slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; 871 } 872 873 slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot); 874 slot->host.f_max = slot->max_clk; 875 slot->host.host_ocr = 0; 876 if (caps & SDHCI_CAN_VDD_330) 877 slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340; 878 if (caps & SDHCI_CAN_VDD_300) 879 slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310; 880 /* 881 * 1.8V VDD is not supposed to be used for removable cards. Hardware 882 * prior to v3.0 had no way to indicate embedded slots, but did 883 * sometimes support 1.8v for non-removable devices. 884 */ 885 if ((caps & SDHCI_CAN_VDD_180) && (slot->version < SDHCI_SPEC_300 || 886 (slot->opt & SDHCI_SLOT_EMBEDDED))) 887 slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE; 888 if (slot->host.host_ocr == 0) { 889 slot_printf(slot, "Hardware doesn't report any " 890 "support voltages.\n"); 891 } 892 893 host_caps = MMC_CAP_4_BIT_DATA; 894 if (caps & SDHCI_CAN_DO_8BITBUS) 895 host_caps |= MMC_CAP_8_BIT_DATA; 896 if (caps & SDHCI_CAN_DO_HISPD) 897 host_caps |= MMC_CAP_HSPEED; 898 if (slot->quirks & SDHCI_QUIRK_BOOT_NOACC) 899 host_caps |= MMC_CAP_BOOT_NOACC; 900 if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY) 901 host_caps |= MMC_CAP_WAIT_WHILE_BUSY; 902 903 /* Determine supported UHS-I and eMMC modes. */ 904 if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50)) 905 host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25; 906 if (caps2 & SDHCI_CAN_SDR104) { 907 host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50; 908 if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200)) 909 host_caps |= MMC_CAP_MMC_HS200; 910 } else if (caps2 & SDHCI_CAN_SDR50) 911 host_caps |= MMC_CAP_UHS_SDR50; 912 if (caps2 & SDHCI_CAN_DDR50 && 913 !(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50)) 914 host_caps |= MMC_CAP_UHS_DDR50; 915 if (slot->quirks & SDHCI_QUIRK_MMC_DDR52) 916 host_caps |= MMC_CAP_MMC_DDR52; 917 if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 && 918 caps2 & SDHCI_CAN_MMC_HS400) 919 host_caps |= MMC_CAP_MMC_HS400; 920 if (slot->quirks & SDHCI_QUIRK_MMC_HS400_IF_CAN_SDR104 && 921 caps2 & SDHCI_CAN_SDR104) 922 host_caps |= MMC_CAP_MMC_HS400; 923 924 /* 925 * Disable UHS-I and eMMC modes if the set_uhs_timing method is the 926 * default NULL implementation. 927 */ 928 kobj_desc = &sdhci_set_uhs_timing_desc; 929 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 930 kobj_desc); 931 if (kobj_method == &kobj_desc->deflt) 932 host_caps &= ~(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 933 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | 934 MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400); 935 936 #define SDHCI_CAP_MODES_TUNING(caps2) \ 937 (((caps2) & SDHCI_TUNE_SDR50 ? MMC_CAP_UHS_SDR50 : 0) | \ 938 MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_HS200 | \ 939 MMC_CAP_MMC_HS400) 940 941 /* 942 * Disable UHS-I and eMMC modes that require (re-)tuning if either 943 * the tune or re-tune method is the default NULL implementation. 944 */ 945 kobj_desc = &mmcbr_tune_desc; 946 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 947 kobj_desc); 948 if (kobj_method == &kobj_desc->deflt) 949 goto no_tuning; 950 kobj_desc = &mmcbr_retune_desc; 951 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 952 kobj_desc); 953 if (kobj_method == &kobj_desc->deflt) { 954 no_tuning: 955 host_caps &= ~(SDHCI_CAP_MODES_TUNING(caps2)); 956 } 957 958 /* Allocate tuning structures and determine tuning parameters. */ 959 if (host_caps & SDHCI_CAP_MODES_TUNING(caps2)) { 960 slot->opt |= SDHCI_TUNING_SUPPORTED; 961 slot->tune_req = malloc(sizeof(*slot->tune_req), M_DEVBUF, 962 M_WAITOK); 963 slot->tune_cmd = malloc(sizeof(*slot->tune_cmd), M_DEVBUF, 964 M_WAITOK); 965 slot->tune_data = malloc(sizeof(*slot->tune_data), M_DEVBUF, 966 M_WAITOK); 967 if (caps2 & SDHCI_TUNE_SDR50) 968 slot->opt |= SDHCI_SDR50_NEEDS_TUNING; 969 slot->retune_mode = (caps2 & SDHCI_RETUNE_MODES_MASK) >> 970 SDHCI_RETUNE_MODES_SHIFT; 971 if (slot->retune_mode == SDHCI_RETUNE_MODE_1) { 972 slot->retune_count = (caps2 & SDHCI_RETUNE_CNT_MASK) >> 973 SDHCI_RETUNE_CNT_SHIFT; 974 if (slot->retune_count > 0xb) { 975 slot_printf(slot, "Unknown re-tuning count " 976 "%x, using 1 sec\n", slot->retune_count); 977 slot->retune_count = 1; 978 } else if (slot->retune_count != 0) 979 slot->retune_count = 980 1 << (slot->retune_count - 1); 981 } 982 } 983 984 #undef SDHCI_CAP_MODES_TUNING 985 986 /* Determine supported VCCQ signaling levels. */ 987 host_caps |= MMC_CAP_SIGNALING_330; 988 if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 989 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | 990 MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 | 991 MMC_CAP_MMC_HS400_180)) 992 host_caps |= MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180; 993 994 /* 995 * Disable 1.2 V and 1.8 V signaling if the switch_vccq method is the 996 * default NULL implementation. Disable 1.2 V support if it's the 997 * generic SDHCI implementation. 998 */ 999 kobj_desc = &mmcbr_switch_vccq_desc; 1000 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 1001 kobj_desc); 1002 if (kobj_method == &kobj_desc->deflt) 1003 host_caps &= ~(MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180); 1004 else if (kobj_method->func == (kobjop_t)sdhci_generic_switch_vccq) 1005 host_caps &= ~MMC_CAP_SIGNALING_120; 1006 1007 /* Determine supported driver types (type B is always mandatory). */ 1008 if (caps2 & SDHCI_CAN_DRIVE_TYPE_A) 1009 host_caps |= MMC_CAP_DRIVER_TYPE_A; 1010 if (caps2 & SDHCI_CAN_DRIVE_TYPE_C) 1011 host_caps |= MMC_CAP_DRIVER_TYPE_C; 1012 if (caps2 & SDHCI_CAN_DRIVE_TYPE_D) 1013 host_caps |= MMC_CAP_DRIVER_TYPE_D; 1014 slot->host.caps = host_caps; 1015 1016 /* Decide if we have usable DMA. */ 1017 if (caps & SDHCI_CAN_DO_DMA) 1018 slot->opt |= SDHCI_HAVE_DMA; 1019 1020 if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA) 1021 slot->opt &= ~SDHCI_HAVE_DMA; 1022 if (slot->quirks & SDHCI_QUIRK_FORCE_DMA) 1023 slot->opt |= SDHCI_HAVE_DMA; 1024 if (slot->quirks & SDHCI_QUIRK_ALL_SLOTS_NON_REMOVABLE) 1025 slot->opt |= SDHCI_NON_REMOVABLE; 1026 1027 /* 1028 * Use platform-provided transfer backend 1029 * with PIO as a fallback mechanism 1030 */ 1031 if (slot->opt & SDHCI_PLATFORM_TRANSFER) 1032 slot->opt &= ~SDHCI_HAVE_DMA; 1033 1034 if (slot->opt & SDHCI_HAVE_DMA) { 1035 err = sdhci_dma_alloc(slot); 1036 if (err != 0) { 1037 if (slot->opt & SDHCI_TUNING_SUPPORTED) { 1038 free(slot->tune_req, M_DEVBUF); 1039 free(slot->tune_cmd, M_DEVBUF); 1040 free(slot->tune_data, M_DEVBUF); 1041 } 1042 SDHCI_LOCK_DESTROY(slot); 1043 return (err); 1044 } 1045 } 1046 1047 if (bootverbose || sdhci_debug) { 1048 slot_printf(slot, 1049 "%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s %s\n", 1050 slot->max_clk / 1000000, 1051 (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "", 1052 (host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" : 1053 ((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"), 1054 (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "", 1055 (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "", 1056 ((caps & SDHCI_CAN_VDD_180) && 1057 (slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "", 1058 (host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "", 1059 (host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "", 1060 (host_caps & MMC_CAP_DRIVER_TYPE_A) ? "A" : "", 1061 (host_caps & MMC_CAP_DRIVER_TYPE_C) ? "C" : "", 1062 (host_caps & MMC_CAP_DRIVER_TYPE_D) ? "D" : "", 1063 (slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO", 1064 (slot->opt & SDHCI_SLOT_EMBEDDED) ? "embedded" : 1065 (slot->opt & SDHCI_NON_REMOVABLE) ? "non-removable" : 1066 "removable"); 1067 if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | 1068 MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) 1069 slot_printf(slot, "eMMC:%s%s%s%s\n", 1070 (host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "", 1071 (host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "", 1072 (host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "", 1073 ((host_caps & 1074 (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) == 1075 (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ? 1076 " HS400ES" : ""); 1077 if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 1078 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104)) 1079 slot_printf(slot, "UHS-I:%s%s%s%s%s\n", 1080 (host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "", 1081 (host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "", 1082 (host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "", 1083 (host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "", 1084 (host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : ""); 1085 if (slot->opt & SDHCI_TUNING_SUPPORTED) 1086 slot_printf(slot, "Re-tuning count %d secs, mode %d\n", 1087 slot->retune_count, slot->retune_mode + 1); 1088 sdhci_dumpregs(slot); 1089 } 1090 1091 slot->timeout = 10; 1092 SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus), 1093 SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO, 1094 "timeout", CTLFLAG_RWTUN, &slot->timeout, 0, 1095 "Maximum timeout for SDHCI transfers (in secs)"); 1096 TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot); 1097 TIMEOUT_TASK_INIT(taskqueue_swi_giant, &slot->card_delayed_task, 0, 1098 sdhci_card_task, slot); 1099 callout_init(&slot->card_poll_callout, 1); 1100 callout_init_mtx(&slot->timeout_callout, &slot->mtx, 0); 1101 callout_init_mtx(&slot->retune_callout, &slot->mtx, 0); 1102 1103 if ((slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) && 1104 !(slot->opt & SDHCI_NON_REMOVABLE)) { 1105 callout_reset(&slot->card_poll_callout, 1106 SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot); 1107 } 1108 1109 sdhci_init(slot); 1110 1111 return (0); 1112 } 1113 1114 #ifndef MMCCAM 1115 void 1116 sdhci_start_slot(struct sdhci_slot *slot) 1117 { 1118 1119 sdhci_card_task(slot, 0); 1120 } 1121 #endif 1122 1123 int 1124 sdhci_cleanup_slot(struct sdhci_slot *slot) 1125 { 1126 device_t d; 1127 1128 callout_drain(&slot->timeout_callout); 1129 callout_drain(&slot->card_poll_callout); 1130 callout_drain(&slot->retune_callout); 1131 taskqueue_drain(taskqueue_swi_giant, &slot->card_task); 1132 taskqueue_drain_timeout(taskqueue_swi_giant, &slot->card_delayed_task); 1133 1134 SDHCI_LOCK(slot); 1135 d = slot->dev; 1136 slot->dev = NULL; 1137 SDHCI_UNLOCK(slot); 1138 if (d != NULL) 1139 device_delete_child(slot->bus, d); 1140 1141 SDHCI_LOCK(slot); 1142 sdhci_reset(slot, SDHCI_RESET_ALL); 1143 SDHCI_UNLOCK(slot); 1144 if (slot->opt & SDHCI_HAVE_DMA) 1145 sdhci_dma_free(slot); 1146 if (slot->opt & SDHCI_TUNING_SUPPORTED) { 1147 free(slot->tune_req, M_DEVBUF); 1148 free(slot->tune_cmd, M_DEVBUF); 1149 free(slot->tune_data, M_DEVBUF); 1150 } 1151 1152 SDHCI_LOCK_DESTROY(slot); 1153 1154 return (0); 1155 } 1156 1157 int 1158 sdhci_generic_suspend(struct sdhci_slot *slot) 1159 { 1160 1161 /* 1162 * We expect the MMC layer to issue initial tuning after resume. 1163 * Otherwise, we'd need to indicate re-tuning including circuit reset 1164 * being required at least for re-tuning modes 1 and 2 ourselves. 1165 */ 1166 callout_drain(&slot->retune_callout); 1167 SDHCI_LOCK(slot); 1168 slot->opt &= ~SDHCI_TUNING_ENABLED; 1169 sdhci_reset(slot, SDHCI_RESET_ALL); 1170 SDHCI_UNLOCK(slot); 1171 1172 return (0); 1173 } 1174 1175 int 1176 sdhci_generic_resume(struct sdhci_slot *slot) 1177 { 1178 1179 SDHCI_LOCK(slot); 1180 sdhci_init(slot); 1181 SDHCI_UNLOCK(slot); 1182 1183 return (0); 1184 } 1185 1186 uint32_t 1187 sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot) 1188 { 1189 1190 if (slot->version >= SDHCI_SPEC_300) 1191 return (slot->max_clk / SDHCI_300_MAX_DIVIDER); 1192 else 1193 return (slot->max_clk / SDHCI_200_MAX_DIVIDER); 1194 } 1195 1196 bool 1197 sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot) 1198 { 1199 1200 if (slot->opt & SDHCI_NON_REMOVABLE) 1201 return true; 1202 1203 return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT); 1204 } 1205 1206 void 1207 sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot) 1208 { 1209 const struct mmc_ios *ios; 1210 uint16_t hostctrl2; 1211 1212 if (slot->version < SDHCI_SPEC_300) 1213 return; 1214 1215 SDHCI_ASSERT_LOCKED(slot); 1216 ios = &slot->host.ios; 1217 sdhci_set_clock(slot, 0); 1218 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1219 hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK; 1220 if (ios->clock > SD_SDR50_MAX) { 1221 if (ios->timing == bus_timing_mmc_hs400 || 1222 ios->timing == bus_timing_mmc_hs400es) 1223 hostctrl2 |= SDHCI_CTRL2_MMC_HS400; 1224 else 1225 hostctrl2 |= SDHCI_CTRL2_UHS_SDR104; 1226 } 1227 else if (ios->clock > SD_SDR25_MAX) 1228 hostctrl2 |= SDHCI_CTRL2_UHS_SDR50; 1229 else if (ios->clock > SD_SDR12_MAX) { 1230 if (ios->timing == bus_timing_uhs_ddr50 || 1231 ios->timing == bus_timing_mmc_ddr52) 1232 hostctrl2 |= SDHCI_CTRL2_UHS_DDR50; 1233 else 1234 hostctrl2 |= SDHCI_CTRL2_UHS_SDR25; 1235 } else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY) 1236 hostctrl2 |= SDHCI_CTRL2_UHS_SDR12; 1237 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1238 sdhci_set_clock(slot, ios->clock); 1239 } 1240 1241 int 1242 sdhci_generic_update_ios(device_t brdev, device_t reqdev) 1243 { 1244 struct sdhci_slot *slot = device_get_ivars(reqdev); 1245 struct mmc_ios *ios = &slot->host.ios; 1246 1247 SDHCI_LOCK(slot); 1248 /* Do full reset on bus power down to clear from any state. */ 1249 if (ios->power_mode == power_off) { 1250 WR4(slot, SDHCI_SIGNAL_ENABLE, 0); 1251 sdhci_init(slot); 1252 } 1253 /* Configure the bus. */ 1254 sdhci_set_clock(slot, ios->clock); 1255 sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd); 1256 if (ios->bus_width == bus_width_8) { 1257 slot->hostctrl |= SDHCI_CTRL_8BITBUS; 1258 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 1259 } else if (ios->bus_width == bus_width_4) { 1260 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 1261 slot->hostctrl |= SDHCI_CTRL_4BITBUS; 1262 } else if (ios->bus_width == bus_width_1) { 1263 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 1264 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 1265 } else { 1266 panic("Invalid bus width: %d", ios->bus_width); 1267 } 1268 if (ios->clock > SD_SDR12_MAX && 1269 !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT)) 1270 slot->hostctrl |= SDHCI_CTRL_HISPD; 1271 else 1272 slot->hostctrl &= ~SDHCI_CTRL_HISPD; 1273 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); 1274 SDHCI_SET_UHS_TIMING(brdev, slot); 1275 /* Some controllers like reset after bus changes. */ 1276 if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS) 1277 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1278 1279 SDHCI_UNLOCK(slot); 1280 return (0); 1281 } 1282 1283 int 1284 sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev) 1285 { 1286 struct sdhci_slot *slot = device_get_ivars(reqdev); 1287 enum mmc_vccq vccq; 1288 int err; 1289 uint16_t hostctrl2; 1290 1291 if (slot->version < SDHCI_SPEC_300) 1292 return (0); 1293 1294 err = 0; 1295 vccq = slot->host.ios.vccq; 1296 SDHCI_LOCK(slot); 1297 sdhci_set_clock(slot, 0); 1298 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1299 switch (vccq) { 1300 case vccq_330: 1301 if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE)) 1302 goto done; 1303 hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE; 1304 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1305 DELAY(5000); 1306 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1307 if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE)) 1308 goto done; 1309 err = EAGAIN; 1310 break; 1311 case vccq_180: 1312 if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) { 1313 err = EINVAL; 1314 goto done; 1315 } 1316 if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE) 1317 goto done; 1318 hostctrl2 |= SDHCI_CTRL2_S18_ENABLE; 1319 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1320 DELAY(5000); 1321 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1322 if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE) 1323 goto done; 1324 err = EAGAIN; 1325 break; 1326 default: 1327 slot_printf(slot, 1328 "Attempt to set unsupported signaling voltage\n"); 1329 err = EINVAL; 1330 break; 1331 } 1332 done: 1333 sdhci_set_clock(slot, slot->host.ios.clock); 1334 SDHCI_UNLOCK(slot); 1335 return (err); 1336 } 1337 1338 int 1339 sdhci_generic_tune(device_t brdev __unused, device_t reqdev, bool hs400) 1340 { 1341 struct sdhci_slot *slot = device_get_ivars(reqdev); 1342 const struct mmc_ios *ios = &slot->host.ios; 1343 struct mmc_command *tune_cmd; 1344 struct mmc_data *tune_data; 1345 uint32_t opcode; 1346 int err; 1347 1348 if (!(slot->opt & SDHCI_TUNING_SUPPORTED)) 1349 return (0); 1350 1351 slot->retune_ticks = slot->retune_count * hz; 1352 opcode = MMC_SEND_TUNING_BLOCK; 1353 SDHCI_LOCK(slot); 1354 switch (ios->timing) { 1355 case bus_timing_mmc_hs400: 1356 slot_printf(slot, "HS400 must be tuned in HS200 mode\n"); 1357 SDHCI_UNLOCK(slot); 1358 return (EINVAL); 1359 case bus_timing_mmc_hs200: 1360 /* 1361 * In HS400 mode, controllers use the data strobe line to 1362 * latch data from the devices so periodic re-tuning isn't 1363 * expected to be required. 1364 */ 1365 if (hs400) 1366 slot->retune_ticks = 0; 1367 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1368 break; 1369 case bus_timing_uhs_ddr50: 1370 case bus_timing_uhs_sdr104: 1371 break; 1372 case bus_timing_uhs_sdr50: 1373 if (slot->opt & SDHCI_SDR50_NEEDS_TUNING) 1374 break; 1375 /* FALLTHROUGH */ 1376 default: 1377 SDHCI_UNLOCK(slot); 1378 return (0); 1379 } 1380 1381 tune_cmd = slot->tune_cmd; 1382 memset(tune_cmd, 0, sizeof(*tune_cmd)); 1383 tune_cmd->opcode = opcode; 1384 tune_cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1385 tune_data = tune_cmd->data = slot->tune_data; 1386 memset(tune_data, 0, sizeof(*tune_data)); 1387 tune_data->len = (opcode == MMC_SEND_TUNING_BLOCK_HS200 && 1388 ios->bus_width == bus_width_8) ? MMC_TUNING_LEN_HS200 : 1389 MMC_TUNING_LEN; 1390 tune_data->flags = MMC_DATA_READ; 1391 tune_data->mrq = tune_cmd->mrq = slot->tune_req; 1392 1393 slot->opt &= ~SDHCI_TUNING_ENABLED; 1394 err = sdhci_exec_tuning(slot, true); 1395 if (err == 0) { 1396 slot->opt |= SDHCI_TUNING_ENABLED; 1397 slot->intmask |= sdhci_tuning_intmask(slot); 1398 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 1399 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 1400 if (slot->retune_ticks) { 1401 callout_reset(&slot->retune_callout, slot->retune_ticks, 1402 sdhci_retune, slot); 1403 } 1404 } 1405 SDHCI_UNLOCK(slot); 1406 return (err); 1407 } 1408 1409 int 1410 sdhci_generic_retune(device_t brdev __unused, device_t reqdev, bool reset) 1411 { 1412 struct sdhci_slot *slot = device_get_ivars(reqdev); 1413 int err; 1414 1415 if (!(slot->opt & SDHCI_TUNING_ENABLED)) 1416 return (0); 1417 1418 /* HS400 must be tuned in HS200 mode. */ 1419 if (slot->host.ios.timing == bus_timing_mmc_hs400) 1420 return (EINVAL); 1421 1422 SDHCI_LOCK(slot); 1423 err = sdhci_exec_tuning(slot, reset); 1424 /* 1425 * There are two ways sdhci_exec_tuning() can fail: 1426 * EBUSY should not actually happen when requests are only issued 1427 * with the host properly acquired, and 1428 * EIO re-tuning failed (but it did work initially). 1429 * 1430 * In both cases, we should retry at later point if periodic re-tuning 1431 * is enabled. Note that due to slot->retune_req not being cleared in 1432 * these failure cases, the MMC layer should trigger another attempt at 1433 * re-tuning with the next request anyway, though. 1434 */ 1435 if (slot->retune_ticks) { 1436 callout_reset(&slot->retune_callout, slot->retune_ticks, 1437 sdhci_retune, slot); 1438 } 1439 SDHCI_UNLOCK(slot); 1440 return (err); 1441 } 1442 1443 static int 1444 sdhci_exec_tuning(struct sdhci_slot *slot, bool reset) 1445 { 1446 struct mmc_request *tune_req; 1447 struct mmc_command *tune_cmd; 1448 int i; 1449 uint32_t intmask; 1450 uint16_t hostctrl2; 1451 u_char opt; 1452 1453 SDHCI_ASSERT_LOCKED(slot); 1454 if (slot->req != NULL) 1455 return (EBUSY); 1456 1457 /* Tuning doesn't work with DMA enabled. */ 1458 opt = slot->opt; 1459 slot->opt = opt & ~SDHCI_HAVE_DMA; 1460 1461 /* 1462 * Ensure that as documented, SDHCI_INT_DATA_AVAIL is the only 1463 * kind of interrupt we receive in response to a tuning request. 1464 */ 1465 intmask = slot->intmask; 1466 slot->intmask = SDHCI_INT_DATA_AVAIL; 1467 WR4(slot, SDHCI_INT_ENABLE, SDHCI_INT_DATA_AVAIL); 1468 WR4(slot, SDHCI_SIGNAL_ENABLE, SDHCI_INT_DATA_AVAIL); 1469 1470 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1471 if (reset) 1472 hostctrl2 &= ~SDHCI_CTRL2_SAMPLING_CLOCK; 1473 else 1474 hostctrl2 |= SDHCI_CTRL2_SAMPLING_CLOCK; 1475 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 | SDHCI_CTRL2_EXEC_TUNING); 1476 1477 tune_req = slot->tune_req; 1478 tune_cmd = slot->tune_cmd; 1479 for (i = 0; i < MMC_TUNING_MAX; i++) { 1480 memset(tune_req, 0, sizeof(*tune_req)); 1481 tune_req->cmd = tune_cmd; 1482 tune_req->done = sdhci_req_wakeup; 1483 tune_req->done_data = slot; 1484 slot->req = tune_req; 1485 slot->flags = 0; 1486 sdhci_start(slot); 1487 while (!(tune_req->flags & MMC_REQ_DONE)) 1488 msleep(tune_req, &slot->mtx, 0, "sdhciet", 0); 1489 if (!(tune_req->flags & MMC_TUNE_DONE)) 1490 break; 1491 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1492 if (!(hostctrl2 & SDHCI_CTRL2_EXEC_TUNING)) 1493 break; 1494 if (tune_cmd->opcode == MMC_SEND_TUNING_BLOCK) 1495 DELAY(1000); 1496 } 1497 1498 /* 1499 * Restore DMA usage and interrupts. 1500 * Note that the interrupt aggregation code might have cleared 1501 * SDHCI_INT_DMA_END and/or SDHCI_INT_RESPONSE in slot->intmask 1502 * and SDHCI_SIGNAL_ENABLE respectively so ensure SDHCI_INT_ENABLE 1503 * doesn't lose these. 1504 */ 1505 slot->opt = opt; 1506 slot->intmask = intmask; 1507 WR4(slot, SDHCI_INT_ENABLE, intmask | SDHCI_INT_DMA_END | 1508 SDHCI_INT_RESPONSE); 1509 WR4(slot, SDHCI_SIGNAL_ENABLE, intmask); 1510 1511 if ((hostctrl2 & (SDHCI_CTRL2_EXEC_TUNING | 1512 SDHCI_CTRL2_SAMPLING_CLOCK)) == SDHCI_CTRL2_SAMPLING_CLOCK) { 1513 slot->retune_req = 0; 1514 return (0); 1515 } 1516 1517 slot_printf(slot, "Tuning failed, using fixed sampling clock\n"); 1518 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 & ~(SDHCI_CTRL2_EXEC_TUNING | 1519 SDHCI_CTRL2_SAMPLING_CLOCK)); 1520 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1521 return (EIO); 1522 } 1523 1524 static void 1525 sdhci_retune(void *arg) 1526 { 1527 struct sdhci_slot *slot = arg; 1528 1529 slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED; 1530 } 1531 1532 #ifdef MMCCAM 1533 static void 1534 sdhci_req_done(struct sdhci_slot *slot) 1535 { 1536 union ccb *ccb; 1537 1538 if (__predict_false(sdhci_debug > 1)) 1539 slot_printf(slot, "%s\n", __func__); 1540 if (slot->ccb != NULL && slot->curcmd != NULL) { 1541 callout_stop(&slot->timeout_callout); 1542 ccb = slot->ccb; 1543 slot->ccb = NULL; 1544 slot->curcmd = NULL; 1545 1546 /* Tell CAM the request is finished */ 1547 struct ccb_mmcio *mmcio; 1548 mmcio = &ccb->mmcio; 1549 1550 ccb->ccb_h.status = 1551 (mmcio->cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR); 1552 xpt_done(ccb); 1553 } 1554 } 1555 #else 1556 static void 1557 sdhci_req_done(struct sdhci_slot *slot) 1558 { 1559 struct mmc_request *req; 1560 1561 if (slot->req != NULL && slot->curcmd != NULL) { 1562 callout_stop(&slot->timeout_callout); 1563 req = slot->req; 1564 slot->req = NULL; 1565 slot->curcmd = NULL; 1566 req->done(req); 1567 } 1568 } 1569 #endif 1570 1571 static void 1572 sdhci_req_wakeup(struct mmc_request *req) 1573 { 1574 struct sdhci_slot *slot; 1575 1576 slot = req->done_data; 1577 req->flags |= MMC_REQ_DONE; 1578 wakeup(req); 1579 } 1580 1581 static void 1582 sdhci_timeout(void *arg) 1583 { 1584 struct sdhci_slot *slot = arg; 1585 1586 if (slot->curcmd != NULL) { 1587 slot_printf(slot, "Controller timeout\n"); 1588 sdhci_dumpregs(slot); 1589 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1590 slot->curcmd->error = MMC_ERR_TIMEOUT; 1591 sdhci_req_done(slot); 1592 } else { 1593 slot_printf(slot, "Spurious timeout - no active command\n"); 1594 } 1595 } 1596 1597 static void 1598 sdhci_set_transfer_mode(struct sdhci_slot *slot, const struct mmc_data *data) 1599 { 1600 uint16_t mode; 1601 1602 if (data == NULL) 1603 return; 1604 1605 mode = SDHCI_TRNS_BLK_CNT_EN; 1606 if (data->len > 512 || data->block_count > 1) { 1607 mode |= SDHCI_TRNS_MULTI; 1608 if (data->block_count == 0 && __predict_true( 1609 #ifdef MMCCAM 1610 slot->ccb->mmcio.stop.opcode == MMC_STOP_TRANSMISSION && 1611 #else 1612 slot->req->stop != NULL && 1613 #endif 1614 !(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP))) 1615 mode |= SDHCI_TRNS_ACMD12; 1616 } 1617 if (data->flags & MMC_DATA_READ) 1618 mode |= SDHCI_TRNS_READ; 1619 if (slot->flags & SDHCI_USE_DMA) 1620 mode |= SDHCI_TRNS_DMA; 1621 1622 WR2(slot, SDHCI_TRANSFER_MODE, mode); 1623 } 1624 1625 static void 1626 sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd) 1627 { 1628 int flags, timeout; 1629 uint32_t mask; 1630 1631 slot->curcmd = cmd; 1632 slot->cmd_done = 0; 1633 1634 cmd->error = MMC_ERR_NONE; 1635 1636 /* This flags combination is not supported by controller. */ 1637 if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) { 1638 slot_printf(slot, "Unsupported response type!\n"); 1639 cmd->error = MMC_ERR_FAILED; 1640 sdhci_req_done(slot); 1641 return; 1642 } 1643 1644 /* 1645 * Do not issue command if there is no card, clock or power. 1646 * Controller will not detect timeout without clock active. 1647 */ 1648 if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) || 1649 slot->power == 0 || 1650 slot->clock == 0) { 1651 slot_printf(slot, 1652 "Cannot issue a command (power=%d clock=%d)", 1653 slot->power, slot->clock); 1654 cmd->error = MMC_ERR_FAILED; 1655 sdhci_req_done(slot); 1656 return; 1657 } 1658 /* Always wait for free CMD bus. */ 1659 mask = SDHCI_CMD_INHIBIT; 1660 /* Wait for free DAT if we have data or busy signal. */ 1661 if (cmd->data != NULL || (cmd->flags & MMC_RSP_BUSY)) 1662 mask |= SDHCI_DAT_INHIBIT; 1663 /* 1664 * We shouldn't wait for DAT for stop commands or CMD19/CMD21. Note 1665 * that these latter are also special in that SDHCI_CMD_DATA should 1666 * be set below but no actual data is ever read from the controller. 1667 */ 1668 #ifdef MMCCAM 1669 if (cmd == &slot->ccb->mmcio.stop || 1670 #else 1671 if (cmd == slot->req->stop || 1672 #endif 1673 __predict_false(cmd->opcode == MMC_SEND_TUNING_BLOCK || 1674 cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)) 1675 mask &= ~SDHCI_DAT_INHIBIT; 1676 /* 1677 * Wait for bus no more then 250 ms. Typically there will be no wait 1678 * here at all, but when writing a crash dump we may be bypassing the 1679 * host platform's interrupt handler, and in some cases that handler 1680 * may be working around hardware quirks such as not respecting r1b 1681 * busy indications. In those cases, this wait-loop serves the purpose 1682 * of waiting for the prior command and data transfers to be done, and 1683 * SD cards are allowed to take up to 250ms for write and erase ops. 1684 * (It's usually more like 20-30ms in the real world.) 1685 */ 1686 timeout = 250; 1687 while (mask & RD4(slot, SDHCI_PRESENT_STATE)) { 1688 if (timeout == 0) { 1689 slot_printf(slot, "Controller never released " 1690 "inhibit bit(s).\n"); 1691 sdhci_dumpregs(slot); 1692 cmd->error = MMC_ERR_FAILED; 1693 sdhci_req_done(slot); 1694 return; 1695 } 1696 timeout--; 1697 DELAY(1000); 1698 } 1699 1700 /* Prepare command flags. */ 1701 if (!(cmd->flags & MMC_RSP_PRESENT)) 1702 flags = SDHCI_CMD_RESP_NONE; 1703 else if (cmd->flags & MMC_RSP_136) 1704 flags = SDHCI_CMD_RESP_LONG; 1705 else if (cmd->flags & MMC_RSP_BUSY) 1706 flags = SDHCI_CMD_RESP_SHORT_BUSY; 1707 else 1708 flags = SDHCI_CMD_RESP_SHORT; 1709 if (cmd->flags & MMC_RSP_CRC) 1710 flags |= SDHCI_CMD_CRC; 1711 if (cmd->flags & MMC_RSP_OPCODE) 1712 flags |= SDHCI_CMD_INDEX; 1713 if (cmd->data != NULL) 1714 flags |= SDHCI_CMD_DATA; 1715 if (cmd->opcode == MMC_STOP_TRANSMISSION) 1716 flags |= SDHCI_CMD_TYPE_ABORT; 1717 /* Prepare data. */ 1718 sdhci_start_data(slot, cmd->data); 1719 /* 1720 * Interrupt aggregation: To reduce total number of interrupts 1721 * group response interrupt with data interrupt when possible. 1722 * If there going to be data interrupt, mask response one. 1723 */ 1724 if (slot->data_done == 0) { 1725 WR4(slot, SDHCI_SIGNAL_ENABLE, 1726 slot->intmask &= ~SDHCI_INT_RESPONSE); 1727 } 1728 /* Set command argument. */ 1729 WR4(slot, SDHCI_ARGUMENT, cmd->arg); 1730 /* Set data transfer mode. */ 1731 sdhci_set_transfer_mode(slot, cmd->data); 1732 if (__predict_false(sdhci_debug > 1)) 1733 slot_printf(slot, "Starting command opcode %#04x flags %#04x\n", 1734 cmd->opcode, flags); 1735 1736 /* Start command. */ 1737 WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff)); 1738 /* Start timeout callout. */ 1739 callout_reset(&slot->timeout_callout, slot->timeout * hz, 1740 sdhci_timeout, slot); 1741 } 1742 1743 static void 1744 sdhci_finish_command(struct sdhci_slot *slot) 1745 { 1746 int i; 1747 uint32_t val; 1748 uint8_t extra; 1749 1750 if (__predict_false(sdhci_debug > 1)) 1751 slot_printf(slot, "%s: called, err %d flags %#04x\n", 1752 __func__, slot->curcmd->error, slot->curcmd->flags); 1753 slot->cmd_done = 1; 1754 /* 1755 * Interrupt aggregation: Restore command interrupt. 1756 * Main restore point for the case when command interrupt 1757 * happened first. 1758 */ 1759 if (__predict_true(slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK && 1760 slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK_HS200)) 1761 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |= 1762 SDHCI_INT_RESPONSE); 1763 /* In case of error - reset host and return. */ 1764 if (slot->curcmd->error) { 1765 if (slot->curcmd->error == MMC_ERR_BADCRC) 1766 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 1767 sdhci_reset(slot, SDHCI_RESET_CMD); 1768 sdhci_reset(slot, SDHCI_RESET_DATA); 1769 sdhci_start(slot); 1770 return; 1771 } 1772 /* If command has response - fetch it. */ 1773 if (slot->curcmd->flags & MMC_RSP_PRESENT) { 1774 if (slot->curcmd->flags & MMC_RSP_136) { 1775 /* CRC is stripped so we need one byte shift. */ 1776 extra = 0; 1777 for (i = 0; i < 4; i++) { 1778 val = RD4(slot, SDHCI_RESPONSE + i * 4); 1779 if (slot->quirks & 1780 SDHCI_QUIRK_DONT_SHIFT_RESPONSE) 1781 slot->curcmd->resp[3 - i] = val; 1782 else { 1783 slot->curcmd->resp[3 - i] = 1784 (val << 8) | extra; 1785 extra = val >> 24; 1786 } 1787 } 1788 } else 1789 slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE); 1790 } 1791 if (__predict_false(sdhci_debug > 1)) 1792 slot_printf(slot, "Resp: %#04x %#04x %#04x %#04x\n", 1793 slot->curcmd->resp[0], slot->curcmd->resp[1], 1794 slot->curcmd->resp[2], slot->curcmd->resp[3]); 1795 1796 /* If data ready - finish. */ 1797 if (slot->data_done) 1798 sdhci_start(slot); 1799 } 1800 1801 static void 1802 sdhci_start_data(struct sdhci_slot *slot, const struct mmc_data *data) 1803 { 1804 uint32_t blkcnt, blksz, current_timeout, sdma_bbufsz, target_timeout; 1805 uint8_t div; 1806 1807 if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { 1808 slot->data_done = 1; 1809 return; 1810 } 1811 1812 slot->data_done = 0; 1813 1814 /* Calculate and set data timeout.*/ 1815 /* XXX: We should have this from mmc layer, now assume 1 sec. */ 1816 if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) { 1817 div = 0xE; 1818 } else { 1819 target_timeout = 1000000; 1820 div = 0; 1821 current_timeout = (1 << 13) * 1000 / slot->timeout_clk; 1822 while (current_timeout < target_timeout && div < 0xE) { 1823 ++div; 1824 current_timeout <<= 1; 1825 } 1826 /* Compensate for an off-by-one error in the CaFe chip.*/ 1827 if (div < 0xE && 1828 (slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) { 1829 ++div; 1830 } 1831 } 1832 WR1(slot, SDHCI_TIMEOUT_CONTROL, div); 1833 1834 if (data == NULL) 1835 return; 1836 1837 /* Use DMA if possible. */ 1838 if ((slot->opt & SDHCI_HAVE_DMA)) 1839 slot->flags |= SDHCI_USE_DMA; 1840 /* If data is small, broken DMA may return zeroes instead of data. */ 1841 if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) && 1842 (data->len <= 512)) 1843 slot->flags &= ~SDHCI_USE_DMA; 1844 /* Some controllers require even block sizes. */ 1845 if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) && 1846 ((data->len) & 0x3)) 1847 slot->flags &= ~SDHCI_USE_DMA; 1848 /* Load DMA buffer. */ 1849 if (slot->flags & SDHCI_USE_DMA) { 1850 sdma_bbufsz = slot->sdma_bbufsz; 1851 if (data->flags & MMC_DATA_READ) 1852 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1853 BUS_DMASYNC_PREREAD); 1854 else { 1855 memcpy(slot->dmamem, data->data, ulmin(data->len, 1856 sdma_bbufsz)); 1857 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1858 BUS_DMASYNC_PREWRITE); 1859 } 1860 WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); 1861 /* 1862 * Interrupt aggregation: Mask border interrupt for the last 1863 * bounce buffer and unmask otherwise. 1864 */ 1865 if (data->len == sdma_bbufsz) 1866 slot->intmask &= ~SDHCI_INT_DMA_END; 1867 else 1868 slot->intmask |= SDHCI_INT_DMA_END; 1869 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 1870 } 1871 /* Current data offset for both PIO and DMA. */ 1872 slot->offset = 0; 1873 #ifdef MMCCAM 1874 if (data->flags & MMC_DATA_BLOCK_SIZE) { 1875 /* Set block size and request border interrupts on the SDMA boundary. */ 1876 blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, data->block_size); 1877 blkcnt = data->block_count; 1878 if (__predict_false(sdhci_debug > 0)) 1879 slot_printf(slot, "SDIO Custom block params: blksz: " 1880 "%#10x, blk cnt: %#10x\n", blksz, blkcnt); 1881 } else 1882 #endif 1883 { 1884 /* Set block size and request border interrupts on the SDMA boundary. */ 1885 blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, ulmin(data->len, 512)); 1886 blkcnt = howmany(data->len, 512); 1887 } 1888 1889 WR2(slot, SDHCI_BLOCK_SIZE, blksz); 1890 WR2(slot, SDHCI_BLOCK_COUNT, blkcnt); 1891 if (__predict_false(sdhci_debug > 1)) 1892 slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n", 1893 blksz, blkcnt); 1894 } 1895 1896 void 1897 sdhci_finish_data(struct sdhci_slot *slot) 1898 { 1899 struct mmc_data *data = slot->curcmd->data; 1900 size_t left; 1901 1902 /* Interrupt aggregation: Restore command interrupt. 1903 * Auxiliary restore point for the case when data interrupt 1904 * happened first. */ 1905 if (!slot->cmd_done) { 1906 WR4(slot, SDHCI_SIGNAL_ENABLE, 1907 slot->intmask |= SDHCI_INT_RESPONSE); 1908 } 1909 /* Unload rest of data from DMA buffer. */ 1910 if (!slot->data_done && (slot->flags & SDHCI_USE_DMA) && 1911 slot->curcmd->data != NULL) { 1912 if (data->flags & MMC_DATA_READ) { 1913 left = data->len - slot->offset; 1914 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1915 BUS_DMASYNC_POSTREAD); 1916 memcpy((u_char*)data->data + slot->offset, slot->dmamem, 1917 ulmin(left, slot->sdma_bbufsz)); 1918 } else 1919 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1920 BUS_DMASYNC_POSTWRITE); 1921 } 1922 slot->data_done = 1; 1923 /* If there was error - reset the host. */ 1924 if (slot->curcmd->error) { 1925 if (slot->curcmd->error == MMC_ERR_BADCRC) 1926 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 1927 sdhci_reset(slot, SDHCI_RESET_CMD); 1928 sdhci_reset(slot, SDHCI_RESET_DATA); 1929 sdhci_start(slot); 1930 return; 1931 } 1932 /* If we already have command response - finish. */ 1933 if (slot->cmd_done) 1934 sdhci_start(slot); 1935 } 1936 1937 #ifdef MMCCAM 1938 static void 1939 sdhci_start(struct sdhci_slot *slot) 1940 { 1941 union ccb *ccb; 1942 struct ccb_mmcio *mmcio; 1943 1944 ccb = slot->ccb; 1945 if (ccb == NULL) 1946 return; 1947 1948 mmcio = &ccb->mmcio; 1949 if (!(slot->flags & CMD_STARTED)) { 1950 slot->flags |= CMD_STARTED; 1951 sdhci_start_command(slot, &mmcio->cmd); 1952 return; 1953 } 1954 1955 /* 1956 * Old stack doesn't use this! 1957 * Enabling this code causes significant performance degradation 1958 * and IRQ storms on BBB, Wandboard behaves fine. 1959 * Not using this code does no harm... 1960 if (!(slot->flags & STOP_STARTED) && mmcio->stop.opcode != 0) { 1961 slot->flags |= STOP_STARTED; 1962 sdhci_start_command(slot, &mmcio->stop); 1963 return; 1964 } 1965 */ 1966 if (__predict_false(sdhci_debug > 1)) 1967 slot_printf(slot, "result: %d\n", mmcio->cmd.error); 1968 if (mmcio->cmd.error == 0 && 1969 (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) { 1970 sdhci_reset(slot, SDHCI_RESET_CMD); 1971 sdhci_reset(slot, SDHCI_RESET_DATA); 1972 } 1973 1974 sdhci_req_done(slot); 1975 } 1976 #else 1977 static void 1978 sdhci_start(struct sdhci_slot *slot) 1979 { 1980 const struct mmc_request *req; 1981 1982 req = slot->req; 1983 if (req == NULL) 1984 return; 1985 1986 if (!(slot->flags & CMD_STARTED)) { 1987 slot->flags |= CMD_STARTED; 1988 sdhci_start_command(slot, req->cmd); 1989 return; 1990 } 1991 if ((slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP) && 1992 !(slot->flags & STOP_STARTED) && req->stop) { 1993 slot->flags |= STOP_STARTED; 1994 sdhci_start_command(slot, req->stop); 1995 return; 1996 } 1997 if (__predict_false(sdhci_debug > 1)) 1998 slot_printf(slot, "result: %d\n", req->cmd->error); 1999 if (!req->cmd->error && 2000 ((slot->curcmd == req->stop && 2001 (slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) || 2002 (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) { 2003 sdhci_reset(slot, SDHCI_RESET_CMD); 2004 sdhci_reset(slot, SDHCI_RESET_DATA); 2005 } 2006 2007 sdhci_req_done(slot); 2008 } 2009 #endif 2010 2011 int 2012 sdhci_generic_request(device_t brdev __unused, device_t reqdev, 2013 struct mmc_request *req) 2014 { 2015 struct sdhci_slot *slot = device_get_ivars(reqdev); 2016 2017 SDHCI_LOCK(slot); 2018 if (slot->req != NULL) { 2019 SDHCI_UNLOCK(slot); 2020 return (EBUSY); 2021 } 2022 if (__predict_false(sdhci_debug > 1)) { 2023 slot_printf(slot, 2024 "CMD%u arg %#x flags %#x dlen %u dflags %#x\n", 2025 req->cmd->opcode, req->cmd->arg, req->cmd->flags, 2026 (req->cmd->data)?(u_int)req->cmd->data->len:0, 2027 (req->cmd->data)?req->cmd->data->flags:0); 2028 } 2029 slot->req = req; 2030 slot->flags = 0; 2031 sdhci_start(slot); 2032 SDHCI_UNLOCK(slot); 2033 if (dumping) { 2034 while (slot->req != NULL) { 2035 sdhci_generic_intr(slot); 2036 DELAY(10); 2037 } 2038 } 2039 return (0); 2040 } 2041 2042 int 2043 sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev) 2044 { 2045 struct sdhci_slot *slot = device_get_ivars(reqdev); 2046 uint32_t val; 2047 2048 SDHCI_LOCK(slot); 2049 val = RD4(slot, SDHCI_PRESENT_STATE); 2050 SDHCI_UNLOCK(slot); 2051 return (!(val & SDHCI_WRITE_PROTECT)); 2052 } 2053 2054 int 2055 sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev) 2056 { 2057 struct sdhci_slot *slot = device_get_ivars(reqdev); 2058 int err = 0; 2059 2060 SDHCI_LOCK(slot); 2061 while (slot->bus_busy) 2062 msleep(slot, &slot->mtx, 0, "sdhciah", 0); 2063 slot->bus_busy++; 2064 /* Activate led. */ 2065 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED); 2066 SDHCI_UNLOCK(slot); 2067 return (err); 2068 } 2069 2070 int 2071 sdhci_generic_release_host(device_t brdev __unused, device_t reqdev) 2072 { 2073 struct sdhci_slot *slot = device_get_ivars(reqdev); 2074 2075 SDHCI_LOCK(slot); 2076 /* Deactivate led. */ 2077 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED); 2078 slot->bus_busy--; 2079 SDHCI_UNLOCK(slot); 2080 wakeup(slot); 2081 return (0); 2082 } 2083 2084 static void 2085 sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask) 2086 { 2087 2088 if (!slot->curcmd) { 2089 slot_printf(slot, "Got command interrupt 0x%08x, but " 2090 "there is no active command.\n", intmask); 2091 sdhci_dumpregs(slot); 2092 return; 2093 } 2094 if (intmask & SDHCI_INT_TIMEOUT) 2095 slot->curcmd->error = MMC_ERR_TIMEOUT; 2096 else if (intmask & SDHCI_INT_CRC) 2097 slot->curcmd->error = MMC_ERR_BADCRC; 2098 else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) 2099 slot->curcmd->error = MMC_ERR_FIFO; 2100 2101 sdhci_finish_command(slot); 2102 } 2103 2104 static void 2105 sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask) 2106 { 2107 struct mmc_data *data; 2108 size_t left; 2109 uint32_t sdma_bbufsz; 2110 2111 if (!slot->curcmd) { 2112 slot_printf(slot, "Got data interrupt 0x%08x, but " 2113 "there is no active command.\n", intmask); 2114 sdhci_dumpregs(slot); 2115 return; 2116 } 2117 if (slot->curcmd->data == NULL && 2118 (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { 2119 slot_printf(slot, "Got data interrupt 0x%08x, but " 2120 "there is no active data operation.\n", 2121 intmask); 2122 sdhci_dumpregs(slot); 2123 return; 2124 } 2125 if (intmask & SDHCI_INT_DATA_TIMEOUT) 2126 slot->curcmd->error = MMC_ERR_TIMEOUT; 2127 else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT)) 2128 slot->curcmd->error = MMC_ERR_BADCRC; 2129 if (slot->curcmd->data == NULL && 2130 (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | 2131 SDHCI_INT_DMA_END))) { 2132 slot_printf(slot, "Got data interrupt 0x%08x, but " 2133 "there is busy-only command.\n", intmask); 2134 sdhci_dumpregs(slot); 2135 slot->curcmd->error = MMC_ERR_INVALID; 2136 } 2137 if (slot->curcmd->error) { 2138 /* No need to continue after any error. */ 2139 goto done; 2140 } 2141 2142 /* Handle tuning completion interrupt. */ 2143 if (__predict_false((intmask & SDHCI_INT_DATA_AVAIL) && 2144 (slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK || 2145 slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))) { 2146 slot->req->flags |= MMC_TUNE_DONE; 2147 sdhci_finish_command(slot); 2148 sdhci_finish_data(slot); 2149 return; 2150 } 2151 /* Handle PIO interrupt. */ 2152 if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) { 2153 if ((slot->opt & SDHCI_PLATFORM_TRANSFER) && 2154 SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) { 2155 SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot, 2156 &intmask); 2157 slot->flags |= PLATFORM_DATA_STARTED; 2158 } else 2159 sdhci_transfer_pio(slot); 2160 } 2161 /* Handle DMA border. */ 2162 if (intmask & SDHCI_INT_DMA_END) { 2163 data = slot->curcmd->data; 2164 sdma_bbufsz = slot->sdma_bbufsz; 2165 2166 /* Unload DMA buffer ... */ 2167 left = data->len - slot->offset; 2168 if (data->flags & MMC_DATA_READ) { 2169 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2170 BUS_DMASYNC_POSTREAD); 2171 memcpy((u_char*)data->data + slot->offset, slot->dmamem, 2172 ulmin(left, sdma_bbufsz)); 2173 } else { 2174 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2175 BUS_DMASYNC_POSTWRITE); 2176 } 2177 /* ... and reload it again. */ 2178 slot->offset += sdma_bbufsz; 2179 left = data->len - slot->offset; 2180 if (data->flags & MMC_DATA_READ) { 2181 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2182 BUS_DMASYNC_PREREAD); 2183 } else { 2184 memcpy(slot->dmamem, (u_char*)data->data + slot->offset, 2185 ulmin(left, sdma_bbufsz)); 2186 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2187 BUS_DMASYNC_PREWRITE); 2188 } 2189 /* 2190 * Interrupt aggregation: Mask border interrupt for the last 2191 * bounce buffer. 2192 */ 2193 if (left == sdma_bbufsz) { 2194 slot->intmask &= ~SDHCI_INT_DMA_END; 2195 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 2196 } 2197 /* Restart DMA. */ 2198 WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); 2199 } 2200 /* We have got all data. */ 2201 if (intmask & SDHCI_INT_DATA_END) { 2202 if (slot->flags & PLATFORM_DATA_STARTED) { 2203 slot->flags &= ~PLATFORM_DATA_STARTED; 2204 SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot); 2205 } else 2206 sdhci_finish_data(slot); 2207 } 2208 done: 2209 if (slot->curcmd != NULL && slot->curcmd->error != 0) { 2210 if (slot->flags & PLATFORM_DATA_STARTED) { 2211 slot->flags &= ~PLATFORM_DATA_STARTED; 2212 SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot); 2213 } else 2214 sdhci_finish_data(slot); 2215 } 2216 } 2217 2218 static void 2219 sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err) 2220 { 2221 2222 if (!slot->curcmd) { 2223 slot_printf(slot, "Got AutoCMD12 error 0x%04x, but " 2224 "there is no active command.\n", acmd_err); 2225 sdhci_dumpregs(slot); 2226 return; 2227 } 2228 slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", acmd_err); 2229 sdhci_reset(slot, SDHCI_RESET_CMD); 2230 } 2231 2232 void 2233 sdhci_generic_intr(struct sdhci_slot *slot) 2234 { 2235 uint32_t intmask, present; 2236 uint16_t val16; 2237 2238 SDHCI_LOCK(slot); 2239 /* Read slot interrupt status. */ 2240 intmask = RD4(slot, SDHCI_INT_STATUS); 2241 if (intmask == 0 || intmask == 0xffffffff) { 2242 SDHCI_UNLOCK(slot); 2243 return; 2244 } 2245 if (__predict_false(sdhci_debug > 2)) 2246 slot_printf(slot, "Interrupt %#x\n", intmask); 2247 2248 /* Handle tuning error interrupt. */ 2249 if (__predict_false(intmask & SDHCI_INT_TUNEERR)) { 2250 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_TUNEERR); 2251 slot_printf(slot, "Tuning error indicated\n"); 2252 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 2253 if (slot->curcmd) { 2254 slot->curcmd->error = MMC_ERR_BADCRC; 2255 sdhci_finish_command(slot); 2256 } 2257 } 2258 /* Handle re-tuning interrupt. */ 2259 if (__predict_false(intmask & SDHCI_INT_RETUNE)) 2260 slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED; 2261 /* Handle card presence interrupts. */ 2262 if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { 2263 present = (intmask & SDHCI_INT_CARD_INSERT) != 0; 2264 slot->intmask &= 2265 ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE); 2266 slot->intmask |= present ? SDHCI_INT_CARD_REMOVE : 2267 SDHCI_INT_CARD_INSERT; 2268 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 2269 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 2270 WR4(slot, SDHCI_INT_STATUS, intmask & 2271 (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)); 2272 sdhci_handle_card_present_locked(slot, present); 2273 } 2274 /* Handle command interrupts. */ 2275 if (intmask & SDHCI_INT_CMD_MASK) { 2276 WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK); 2277 sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK); 2278 } 2279 /* Handle data interrupts. */ 2280 if (intmask & SDHCI_INT_DATA_MASK) { 2281 WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK); 2282 /* Don't call data_irq in case of errored command. */ 2283 if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0) 2284 sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK); 2285 } 2286 /* Handle AutoCMD12 error interrupt. */ 2287 if (intmask & SDHCI_INT_ACMD12ERR) { 2288 /* Clearing SDHCI_INT_ACMD12ERR may clear SDHCI_ACMD12_ERR. */ 2289 val16 = RD2(slot, SDHCI_ACMD12_ERR); 2290 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR); 2291 sdhci_acmd_irq(slot, val16); 2292 } 2293 /* Handle bus power interrupt. */ 2294 if (intmask & SDHCI_INT_BUS_POWER) { 2295 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER); 2296 slot_printf(slot, "Card is consuming too much power!\n"); 2297 } 2298 intmask &= ~(SDHCI_INT_ERROR | SDHCI_INT_TUNEERR | SDHCI_INT_RETUNE | 2299 SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK | 2300 SDHCI_INT_DATA_MASK | SDHCI_INT_ACMD12ERR | SDHCI_INT_BUS_POWER); 2301 /* The rest is unknown. */ 2302 if (intmask) { 2303 WR4(slot, SDHCI_INT_STATUS, intmask); 2304 slot_printf(slot, "Unexpected interrupt 0x%08x.\n", 2305 intmask); 2306 sdhci_dumpregs(slot); 2307 } 2308 2309 SDHCI_UNLOCK(slot); 2310 } 2311 2312 int 2313 sdhci_generic_read_ivar(device_t bus, device_t child, int which, 2314 uintptr_t *result) 2315 { 2316 const struct sdhci_slot *slot = device_get_ivars(child); 2317 2318 switch (which) { 2319 default: 2320 return (EINVAL); 2321 case MMCBR_IVAR_BUS_MODE: 2322 *result = slot->host.ios.bus_mode; 2323 break; 2324 case MMCBR_IVAR_BUS_WIDTH: 2325 *result = slot->host.ios.bus_width; 2326 break; 2327 case MMCBR_IVAR_CHIP_SELECT: 2328 *result = slot->host.ios.chip_select; 2329 break; 2330 case MMCBR_IVAR_CLOCK: 2331 *result = slot->host.ios.clock; 2332 break; 2333 case MMCBR_IVAR_F_MIN: 2334 *result = slot->host.f_min; 2335 break; 2336 case MMCBR_IVAR_F_MAX: 2337 *result = slot->host.f_max; 2338 break; 2339 case MMCBR_IVAR_HOST_OCR: 2340 *result = slot->host.host_ocr; 2341 break; 2342 case MMCBR_IVAR_MODE: 2343 *result = slot->host.mode; 2344 break; 2345 case MMCBR_IVAR_OCR: 2346 *result = slot->host.ocr; 2347 break; 2348 case MMCBR_IVAR_POWER_MODE: 2349 *result = slot->host.ios.power_mode; 2350 break; 2351 case MMCBR_IVAR_VDD: 2352 *result = slot->host.ios.vdd; 2353 break; 2354 case MMCBR_IVAR_RETUNE_REQ: 2355 if (slot->opt & SDHCI_TUNING_ENABLED) { 2356 if (slot->retune_req & SDHCI_RETUNE_REQ_RESET) { 2357 *result = retune_req_reset; 2358 break; 2359 } 2360 if (slot->retune_req & SDHCI_RETUNE_REQ_NEEDED) { 2361 *result = retune_req_normal; 2362 break; 2363 } 2364 } 2365 *result = retune_req_none; 2366 break; 2367 case MMCBR_IVAR_VCCQ: 2368 *result = slot->host.ios.vccq; 2369 break; 2370 case MMCBR_IVAR_CAPS: 2371 *result = slot->host.caps; 2372 break; 2373 case MMCBR_IVAR_TIMING: 2374 *result = slot->host.ios.timing; 2375 break; 2376 case MMCBR_IVAR_MAX_DATA: 2377 /* 2378 * Re-tuning modes 1 and 2 restrict the maximum data length 2379 * per read/write command to 4 MiB. 2380 */ 2381 if (slot->opt & SDHCI_TUNING_ENABLED && 2382 (slot->retune_mode == SDHCI_RETUNE_MODE_1 || 2383 slot->retune_mode == SDHCI_RETUNE_MODE_2)) { 2384 *result = 4 * 1024 * 1024 / MMC_SECTOR_SIZE; 2385 break; 2386 } 2387 *result = 65535; 2388 break; 2389 case MMCBR_IVAR_MAX_BUSY_TIMEOUT: 2390 /* 2391 * Currently, sdhci_start_data() hardcodes 1 s for all CMDs. 2392 */ 2393 *result = 1000000; 2394 break; 2395 } 2396 return (0); 2397 } 2398 2399 int 2400 sdhci_generic_write_ivar(device_t bus, device_t child, int which, 2401 uintptr_t value) 2402 { 2403 struct sdhci_slot *slot = device_get_ivars(child); 2404 uint32_t clock, max_clock; 2405 int i; 2406 2407 if (sdhci_debug > 1) 2408 slot_printf(slot, "%s: var=%d\n", __func__, which); 2409 switch (which) { 2410 default: 2411 return (EINVAL); 2412 case MMCBR_IVAR_BUS_MODE: 2413 slot->host.ios.bus_mode = value; 2414 break; 2415 case MMCBR_IVAR_BUS_WIDTH: 2416 slot->host.ios.bus_width = value; 2417 break; 2418 case MMCBR_IVAR_CHIP_SELECT: 2419 slot->host.ios.chip_select = value; 2420 break; 2421 case MMCBR_IVAR_CLOCK: 2422 if (value > 0) { 2423 max_clock = slot->max_clk; 2424 clock = max_clock; 2425 2426 if (slot->version < SDHCI_SPEC_300) { 2427 for (i = 0; i < SDHCI_200_MAX_DIVIDER; 2428 i <<= 1) { 2429 if (clock <= value) 2430 break; 2431 clock >>= 1; 2432 } 2433 } else { 2434 for (i = 0; i < SDHCI_300_MAX_DIVIDER; 2435 i += 2) { 2436 if (clock <= value) 2437 break; 2438 clock = max_clock / (i + 2); 2439 } 2440 } 2441 2442 slot->host.ios.clock = clock; 2443 } else 2444 slot->host.ios.clock = 0; 2445 break; 2446 case MMCBR_IVAR_MODE: 2447 slot->host.mode = value; 2448 break; 2449 case MMCBR_IVAR_OCR: 2450 slot->host.ocr = value; 2451 break; 2452 case MMCBR_IVAR_POWER_MODE: 2453 slot->host.ios.power_mode = value; 2454 break; 2455 case MMCBR_IVAR_VDD: 2456 slot->host.ios.vdd = value; 2457 break; 2458 case MMCBR_IVAR_VCCQ: 2459 slot->host.ios.vccq = value; 2460 break; 2461 case MMCBR_IVAR_TIMING: 2462 slot->host.ios.timing = value; 2463 break; 2464 case MMCBR_IVAR_CAPS: 2465 case MMCBR_IVAR_HOST_OCR: 2466 case MMCBR_IVAR_F_MIN: 2467 case MMCBR_IVAR_F_MAX: 2468 case MMCBR_IVAR_MAX_DATA: 2469 case MMCBR_IVAR_RETUNE_REQ: 2470 return (EINVAL); 2471 } 2472 return (0); 2473 } 2474 2475 #ifdef MMCCAM 2476 void 2477 sdhci_start_slot(struct sdhci_slot *slot) 2478 { 2479 2480 if ((slot->devq = cam_simq_alloc(1)) == NULL) 2481 goto fail; 2482 2483 mtx_init(&slot->sim_mtx, "sdhcisim", NULL, MTX_DEF); 2484 slot->sim = cam_sim_alloc_dev(sdhci_cam_action, sdhci_cam_poll, 2485 "sdhci_slot", slot, slot->bus, 2486 &slot->sim_mtx, 1, 1, slot->devq); 2487 2488 if (slot->sim == NULL) { 2489 cam_simq_free(slot->devq); 2490 slot_printf(slot, "cannot allocate CAM SIM\n"); 2491 goto fail; 2492 } 2493 2494 mtx_lock(&slot->sim_mtx); 2495 if (xpt_bus_register(slot->sim, slot->bus, 0) != 0) { 2496 slot_printf(slot, "cannot register SCSI pass-through bus\n"); 2497 cam_sim_free(slot->sim, FALSE); 2498 cam_simq_free(slot->devq); 2499 mtx_unlock(&slot->sim_mtx); 2500 goto fail; 2501 } 2502 mtx_unlock(&slot->sim_mtx); 2503 2504 /* End CAM-specific init */ 2505 slot->card_present = 0; 2506 sdhci_card_task(slot, 0); 2507 return; 2508 2509 fail: 2510 if (slot->sim != NULL) { 2511 mtx_lock(&slot->sim_mtx); 2512 xpt_bus_deregister(cam_sim_path(slot->sim)); 2513 cam_sim_free(slot->sim, FALSE); 2514 mtx_unlock(&slot->sim_mtx); 2515 } 2516 2517 if (slot->devq != NULL) 2518 cam_simq_free(slot->devq); 2519 } 2520 2521 void 2522 sdhci_cam_action(struct cam_sim *sim, union ccb *ccb) 2523 { 2524 struct sdhci_slot *slot; 2525 2526 slot = cam_sim_softc(sim); 2527 if (slot == NULL) { 2528 ccb->ccb_h.status = CAM_SEL_TIMEOUT; 2529 xpt_done(ccb); 2530 return; 2531 } 2532 2533 mtx_assert(&slot->sim_mtx, MA_OWNED); 2534 2535 switch (ccb->ccb_h.func_code) { 2536 case XPT_PATH_INQ: 2537 mmc_path_inq(&ccb->cpi, "Deglitch Networks", sim, MAXPHYS); 2538 break; 2539 2540 case XPT_GET_TRAN_SETTINGS: 2541 { 2542 struct ccb_trans_settings *cts = &ccb->cts; 2543 uint32_t max_data; 2544 2545 if (sdhci_debug > 1) 2546 slot_printf(slot, "Got XPT_GET_TRAN_SETTINGS\n"); 2547 2548 cts->protocol = PROTO_MMCSD; 2549 cts->protocol_version = 1; 2550 cts->transport = XPORT_MMCSD; 2551 cts->transport_version = 1; 2552 cts->xport_specific.valid = 0; 2553 cts->proto_specific.mmc.host_ocr = slot->host.host_ocr; 2554 cts->proto_specific.mmc.host_f_min = slot->host.f_min; 2555 cts->proto_specific.mmc.host_f_max = slot->host.f_max; 2556 cts->proto_specific.mmc.host_caps = slot->host.caps; 2557 /* 2558 * Re-tuning modes 1 and 2 restrict the maximum data length 2559 * per read/write command to 4 MiB. 2560 */ 2561 if (slot->opt & SDHCI_TUNING_ENABLED && 2562 (slot->retune_mode == SDHCI_RETUNE_MODE_1 || 2563 slot->retune_mode == SDHCI_RETUNE_MODE_2)) { 2564 max_data = 4 * 1024 * 1024 / MMC_SECTOR_SIZE; 2565 } else { 2566 max_data = 65535; 2567 } 2568 cts->proto_specific.mmc.host_max_data = max_data; 2569 2570 memcpy(&cts->proto_specific.mmc.ios, &slot->host.ios, sizeof(struct mmc_ios)); 2571 ccb->ccb_h.status = CAM_REQ_CMP; 2572 break; 2573 } 2574 case XPT_SET_TRAN_SETTINGS: 2575 if (sdhci_debug > 1) 2576 slot_printf(slot, "Got XPT_SET_TRAN_SETTINGS\n"); 2577 sdhci_cam_settran_settings(slot, ccb); 2578 ccb->ccb_h.status = CAM_REQ_CMP; 2579 break; 2580 case XPT_RESET_BUS: 2581 if (sdhci_debug > 1) 2582 slot_printf(slot, "Got XPT_RESET_BUS, ACK it...\n"); 2583 ccb->ccb_h.status = CAM_REQ_CMP; 2584 break; 2585 case XPT_MMC_IO: 2586 /* 2587 * Here is the HW-dependent part of 2588 * sending the command to the underlying h/w 2589 * At some point in the future an interrupt comes. 2590 * Then the request will be marked as completed. 2591 */ 2592 if (__predict_false(sdhci_debug > 1)) 2593 slot_printf(slot, "Got XPT_MMC_IO\n"); 2594 ccb->ccb_h.status = CAM_REQ_INPROG; 2595 2596 sdhci_cam_request(cam_sim_softc(sim), ccb); 2597 return; 2598 default: 2599 ccb->ccb_h.status = CAM_REQ_INVALID; 2600 break; 2601 } 2602 xpt_done(ccb); 2603 return; 2604 } 2605 2606 void 2607 sdhci_cam_poll(struct cam_sim *sim) 2608 { 2609 return; 2610 } 2611 2612 static int 2613 sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot, 2614 int proposed_clock) 2615 { 2616 int max_clock, clock, i; 2617 2618 if (proposed_clock == 0) 2619 return 0; 2620 max_clock = slot->max_clk; 2621 clock = max_clock; 2622 2623 if (slot->version < SDHCI_SPEC_300) { 2624 for (i = 0; i < SDHCI_200_MAX_DIVIDER; i <<= 1) { 2625 if (clock <= proposed_clock) 2626 break; 2627 clock >>= 1; 2628 } 2629 } else { 2630 for (i = 0; i < SDHCI_300_MAX_DIVIDER; i += 2) { 2631 if (clock <= proposed_clock) 2632 break; 2633 clock = max_clock / (i + 2); 2634 } 2635 } 2636 return clock; 2637 } 2638 2639 static int 2640 sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb) 2641 { 2642 struct mmc_ios *ios; 2643 const struct mmc_ios *new_ios; 2644 const struct ccb_trans_settings_mmc *cts; 2645 2646 ios = &slot->host.ios; 2647 cts = &ccb->cts.proto_specific.mmc; 2648 new_ios = &cts->ios; 2649 2650 /* Update only requested fields */ 2651 if (cts->ios_valid & MMC_CLK) { 2652 ios->clock = sdhci_cam_get_possible_host_clock(slot, new_ios->clock); 2653 slot_printf(slot, "Clock => %d\n", ios->clock); 2654 } 2655 if (cts->ios_valid & MMC_VDD) { 2656 ios->vdd = new_ios->vdd; 2657 slot_printf(slot, "VDD => %d\n", ios->vdd); 2658 } 2659 if (cts->ios_valid & MMC_CS) { 2660 ios->chip_select = new_ios->chip_select; 2661 slot_printf(slot, "CS => %d\n", ios->chip_select); 2662 } 2663 if (cts->ios_valid & MMC_BW) { 2664 ios->bus_width = new_ios->bus_width; 2665 slot_printf(slot, "Bus width => %d\n", ios->bus_width); 2666 } 2667 if (cts->ios_valid & MMC_PM) { 2668 ios->power_mode = new_ios->power_mode; 2669 slot_printf(slot, "Power mode => %d\n", ios->power_mode); 2670 } 2671 if (cts->ios_valid & MMC_BT) { 2672 ios->timing = new_ios->timing; 2673 slot_printf(slot, "Timing => %d\n", ios->timing); 2674 } 2675 if (cts->ios_valid & MMC_BM) { 2676 ios->bus_mode = new_ios->bus_mode; 2677 slot_printf(slot, "Bus mode => %d\n", ios->bus_mode); 2678 } 2679 2680 /* XXX Provide a way to call a chip-specific IOS update, required for TI */ 2681 return (sdhci_cam_update_ios(slot)); 2682 } 2683 2684 static int 2685 sdhci_cam_update_ios(struct sdhci_slot *slot) 2686 { 2687 struct mmc_ios *ios = &slot->host.ios; 2688 2689 slot_printf(slot, "%s: power_mode=%d, clk=%d, bus_width=%d, timing=%d\n", 2690 __func__, ios->power_mode, ios->clock, ios->bus_width, ios->timing); 2691 SDHCI_LOCK(slot); 2692 /* Do full reset on bus power down to clear from any state. */ 2693 if (ios->power_mode == power_off) { 2694 WR4(slot, SDHCI_SIGNAL_ENABLE, 0); 2695 sdhci_init(slot); 2696 } 2697 /* Configure the bus. */ 2698 sdhci_set_clock(slot, ios->clock); 2699 sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd); 2700 if (ios->bus_width == bus_width_8) { 2701 slot->hostctrl |= SDHCI_CTRL_8BITBUS; 2702 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 2703 } else if (ios->bus_width == bus_width_4) { 2704 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 2705 slot->hostctrl |= SDHCI_CTRL_4BITBUS; 2706 } else if (ios->bus_width == bus_width_1) { 2707 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 2708 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 2709 } else { 2710 panic("Invalid bus width: %d", ios->bus_width); 2711 } 2712 if (ios->timing == bus_timing_hs && 2713 !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT)) 2714 slot->hostctrl |= SDHCI_CTRL_HISPD; 2715 else 2716 slot->hostctrl &= ~SDHCI_CTRL_HISPD; 2717 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); 2718 /* Some controllers like reset after bus changes. */ 2719 if(slot->quirks & SDHCI_QUIRK_RESET_ON_IOS) 2720 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 2721 2722 SDHCI_UNLOCK(slot); 2723 return (0); 2724 } 2725 2726 static int 2727 sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb) 2728 { 2729 const struct ccb_mmcio *mmcio; 2730 2731 mmcio = &ccb->mmcio; 2732 2733 SDHCI_LOCK(slot); 2734 /* if (slot->req != NULL) { 2735 SDHCI_UNLOCK(slot); 2736 return (EBUSY); 2737 } 2738 */ 2739 if (__predict_false(sdhci_debug > 1)) { 2740 slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x " 2741 "blksz=%zu blkcnt=%zu\n", 2742 mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags, 2743 mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0, 2744 mmcio->cmd.data != NULL ? mmcio->cmd.data->flags : 0, 2745 mmcio->cmd.data != NULL ? mmcio->cmd.data->block_size : 0, 2746 mmcio->cmd.data != NULL ? mmcio->cmd.data->block_count : 0); 2747 } 2748 if (mmcio->cmd.data != NULL) { 2749 if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0) 2750 panic("data->len = %d, data->flags = %d -- something is b0rked", 2751 (int)mmcio->cmd.data->len, mmcio->cmd.data->flags); 2752 } 2753 slot->ccb = ccb; 2754 slot->flags = 0; 2755 sdhci_start(slot); 2756 SDHCI_UNLOCK(slot); 2757 if (dumping) { 2758 while (slot->ccb != NULL) { 2759 sdhci_generic_intr(slot); 2760 DELAY(10); 2761 } 2762 } 2763 return (0); 2764 } 2765 #endif /* MMCCAM */ 2766 2767 MODULE_VERSION(sdhci, SDHCI_VERSION); 2768