xref: /freebsd/sys/dev/sdhci/sdhci.c (revision 562894f0dc310f658284863ff329906e7737a0a0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org>
5  * Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/callout.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/kobj.h>
39 #include <sys/libkern.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/mutex.h>
44 #include <sys/resource.h>
45 #include <sys/rman.h>
46 #include <sys/sysctl.h>
47 #include <sys/taskqueue.h>
48 
49 #include <machine/bus.h>
50 #include <machine/resource.h>
51 #include <machine/stdarg.h>
52 
53 #include <dev/mmc/bridge.h>
54 #include <dev/mmc/mmcreg.h>
55 #include <dev/mmc/mmcbrvar.h>
56 
57 #include <dev/sdhci/sdhci.h>
58 
59 #include <cam/cam.h>
60 #include <cam/cam_ccb.h>
61 #include <cam/cam_debug.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt_sim.h>
64 
65 #include "mmcbr_if.h"
66 #include "sdhci_if.h"
67 
68 #include "opt_mmccam.h"
69 
70 SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
71     "sdhci driver");
72 
73 static int sdhci_debug = 0;
74 SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RWTUN, &sdhci_debug, 0,
75     "Debug level");
76 u_int sdhci_quirk_clear = 0;
77 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_clear, CTLFLAG_RWTUN, &sdhci_quirk_clear,
78     0, "Mask of quirks to clear");
79 u_int sdhci_quirk_set = 0;
80 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_set, CTLFLAG_RWTUN, &sdhci_quirk_set, 0,
81     "Mask of quirks to set");
82 
83 #define	RD1(slot, off)	SDHCI_READ_1((slot)->bus, (slot), (off))
84 #define	RD2(slot, off)	SDHCI_READ_2((slot)->bus, (slot), (off))
85 #define	RD4(slot, off)	SDHCI_READ_4((slot)->bus, (slot), (off))
86 #define	RD_MULTI_4(slot, off, ptr, count)	\
87     SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
88 
89 #define	WR1(slot, off, val)	SDHCI_WRITE_1((slot)->bus, (slot), (off), (val))
90 #define	WR2(slot, off, val)	SDHCI_WRITE_2((slot)->bus, (slot), (off), (val))
91 #define	WR4(slot, off, val)	SDHCI_WRITE_4((slot)->bus, (slot), (off), (val))
92 #define	WR_MULTI_4(slot, off, ptr, count)	\
93     SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
94 
95 static void sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err);
96 static void sdhci_card_poll(void *arg);
97 static void sdhci_card_task(void *arg, int pending);
98 static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask);
99 static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask);
100 static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset);
101 static void sdhci_handle_card_present_locked(struct sdhci_slot *slot,
102     bool is_present);
103 static void sdhci_finish_command(struct sdhci_slot *slot);
104 static void sdhci_init(struct sdhci_slot *slot);
105 static void sdhci_read_block_pio(struct sdhci_slot *slot);
106 static void sdhci_req_done(struct sdhci_slot *slot);
107 static void sdhci_req_wakeup(struct mmc_request *req);
108 static void sdhci_reset(struct sdhci_slot *slot, uint8_t mask);
109 static void sdhci_retune(void *arg);
110 static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock);
111 static void sdhci_set_power(struct sdhci_slot *slot, u_char power);
112 static void sdhci_set_transfer_mode(struct sdhci_slot *slot,
113    const struct mmc_data *data);
114 static void sdhci_start(struct sdhci_slot *slot);
115 static void sdhci_timeout(void *arg);
116 static void sdhci_start_command(struct sdhci_slot *slot,
117    struct mmc_command *cmd);
118 static void sdhci_start_data(struct sdhci_slot *slot,
119    const struct mmc_data *data);
120 static void sdhci_write_block_pio(struct sdhci_slot *slot);
121 static void sdhci_transfer_pio(struct sdhci_slot *slot);
122 
123 #ifdef MMCCAM
124 /* CAM-related */
125 static void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb);
126 static int sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot,
127     int proposed_clock);
128 static void sdhci_cam_poll(struct cam_sim *sim);
129 static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb);
130 static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb);
131 static int sdhci_cam_update_ios(struct sdhci_slot *slot);
132 #endif
133 
134 /* helper routines */
135 static int sdhci_dma_alloc(struct sdhci_slot *slot);
136 static void sdhci_dma_free(struct sdhci_slot *slot);
137 static void sdhci_dumpregs(struct sdhci_slot *slot);
138 static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs,
139     int error);
140 static int slot_printf(const struct sdhci_slot *slot, const char * fmt, ...)
141     __printflike(2, 3);
142 static uint32_t sdhci_tuning_intmask(const struct sdhci_slot *slot);
143 
144 #define	SDHCI_LOCK(_slot)		mtx_lock(&(_slot)->mtx)
145 #define	SDHCI_UNLOCK(_slot)		mtx_unlock(&(_slot)->mtx)
146 #define	SDHCI_LOCK_INIT(_slot) \
147 	mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF)
148 #define	SDHCI_LOCK_DESTROY(_slot)	mtx_destroy(&_slot->mtx);
149 #define	SDHCI_ASSERT_LOCKED(_slot)	mtx_assert(&_slot->mtx, MA_OWNED);
150 #define	SDHCI_ASSERT_UNLOCKED(_slot)	mtx_assert(&_slot->mtx, MA_NOTOWNED);
151 
152 #define	SDHCI_DEFAULT_MAX_FREQ	50
153 
154 #define	SDHCI_200_MAX_DIVIDER	256
155 #define	SDHCI_300_MAX_DIVIDER	2046
156 
157 #define	SDHCI_CARD_PRESENT_TICKS	(hz / 5)
158 #define	SDHCI_INSERT_DELAY_TICKS	(hz / 2)
159 
160 /*
161  * Broadcom BCM577xx Controller Constants
162  */
163 /* Maximum divider supported by the default clock source. */
164 #define	BCM577XX_DEFAULT_MAX_DIVIDER	256
165 /* Alternative clock's base frequency. */
166 #define	BCM577XX_ALT_CLOCK_BASE		63000000
167 
168 #define	BCM577XX_HOST_CONTROL		0x198
169 #define	BCM577XX_CTRL_CLKSEL_MASK	0xFFFFCFFF
170 #define	BCM577XX_CTRL_CLKSEL_SHIFT	12
171 #define	BCM577XX_CTRL_CLKSEL_DEFAULT	0x0
172 #define	BCM577XX_CTRL_CLKSEL_64MHZ	0x3
173 
174 static void
175 sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
176 {
177 
178 	if (error != 0) {
179 		printf("getaddr: error %d\n", error);
180 		return;
181 	}
182 	*(bus_addr_t *)arg = segs[0].ds_addr;
183 }
184 
185 static int
186 slot_printf(const struct sdhci_slot *slot, const char * fmt, ...)
187 {
188 	char buf[128];
189 	va_list ap;
190 	int retval;
191 
192 	/*
193 	 * Make sure we print a single line all together rather than in two
194 	 * halves to avoid console gibberish bingo.
195 	 */
196 	va_start(ap, fmt);
197 	retval = vsnprintf(buf, sizeof(buf), fmt, ap);
198 	va_end(ap);
199 
200 	retval += printf("%s-slot%d: %s",
201 	    device_get_nameunit(slot->bus), slot->num, buf);
202 	return (retval);
203 }
204 
205 static void
206 sdhci_dumpregs(struct sdhci_slot *slot)
207 {
208 
209 	slot_printf(slot,
210 	    "============== REGISTER DUMP ==============\n");
211 
212 	slot_printf(slot, "Sys addr: 0x%08x | Version:  0x%08x\n",
213 	    RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION));
214 	slot_printf(slot, "Blk size: 0x%08x | Blk cnt:  0x%08x\n",
215 	    RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT));
216 	slot_printf(slot, "Argument: 0x%08x | Trn mode: 0x%08x\n",
217 	    RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE));
218 	slot_printf(slot, "Present:  0x%08x | Host ctl: 0x%08x\n",
219 	    RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL));
220 	slot_printf(slot, "Power:    0x%08x | Blk gap:  0x%08x\n",
221 	    RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL));
222 	slot_printf(slot, "Wake-up:  0x%08x | Clock:    0x%08x\n",
223 	    RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL));
224 	slot_printf(slot, "Timeout:  0x%08x | Int stat: 0x%08x\n",
225 	    RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS));
226 	slot_printf(slot, "Int enab: 0x%08x | Sig enab: 0x%08x\n",
227 	    RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE));
228 	slot_printf(slot, "AC12 err: 0x%08x | Host ctl2:0x%08x\n",
229 	    RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2));
230 	slot_printf(slot, "Caps:     0x%08x | Caps2:    0x%08x\n",
231 	    RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2));
232 	slot_printf(slot, "Max curr: 0x%08x | ADMA err: 0x%08x\n",
233 	    RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR));
234 	slot_printf(slot, "ADMA addr:0x%08x | Slot int: 0x%08x\n",
235 	    RD4(slot, SDHCI_ADMA_ADDRESS_LO), RD2(slot, SDHCI_SLOT_INT_STATUS));
236 
237 	slot_printf(slot,
238 	    "===========================================\n");
239 }
240 
241 static void
242 sdhci_reset(struct sdhci_slot *slot, uint8_t mask)
243 {
244 	int timeout;
245 	uint32_t clock;
246 
247 	if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
248 		if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot))
249 			return;
250 	}
251 
252 	/* Some controllers need this kick or reset won't work. */
253 	if ((mask & SDHCI_RESET_ALL) == 0 &&
254 	    (slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) {
255 		/* This is to force an update */
256 		clock = slot->clock;
257 		slot->clock = 0;
258 		sdhci_set_clock(slot, clock);
259 	}
260 
261 	if (mask & SDHCI_RESET_ALL) {
262 		slot->clock = 0;
263 		slot->power = 0;
264 	}
265 
266 	WR1(slot, SDHCI_SOFTWARE_RESET, mask);
267 
268 	if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) {
269 		/*
270 		 * Resets on TI OMAPs and AM335x are incompatible with SDHCI
271 		 * specification.  The reset bit has internal propagation delay,
272 		 * so a fast read after write returns 0 even if reset process is
273 		 * in progress.  The workaround is to poll for 1 before polling
274 		 * for 0.  In the worst case, if we miss seeing it asserted the
275 		 * time we spent waiting is enough to ensure the reset finishes.
276 		 */
277 		timeout = 10000;
278 		while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) {
279 			if (timeout <= 0)
280 				break;
281 			timeout--;
282 			DELAY(1);
283 		}
284 	}
285 
286 	/* Wait max 100 ms */
287 	timeout = 10000;
288 	/* Controller clears the bits when it's done */
289 	while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) {
290 		if (timeout <= 0) {
291 			slot_printf(slot, "Reset 0x%x never completed.\n",
292 			    mask);
293 			sdhci_dumpregs(slot);
294 			return;
295 		}
296 		timeout--;
297 		DELAY(10);
298 	}
299 }
300 
301 static uint32_t
302 sdhci_tuning_intmask(const struct sdhci_slot *slot)
303 {
304 	uint32_t intmask;
305 
306 	intmask = 0;
307 	if (slot->opt & SDHCI_TUNING_ENABLED) {
308 		intmask |= SDHCI_INT_TUNEERR;
309 		if (slot->retune_mode == SDHCI_RETUNE_MODE_2 ||
310 		    slot->retune_mode == SDHCI_RETUNE_MODE_3)
311 			intmask |= SDHCI_INT_RETUNE;
312 	}
313 	return (intmask);
314 }
315 
316 static void
317 sdhci_init(struct sdhci_slot *slot)
318 {
319 
320 	sdhci_reset(slot, SDHCI_RESET_ALL);
321 
322 	/* Enable interrupts. */
323 	slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
324 	    SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX |
325 	    SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT |
326 	    SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
327 	    SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE |
328 	    SDHCI_INT_ACMD12ERR;
329 
330 	if (!(slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) &&
331 	    !(slot->opt & SDHCI_NON_REMOVABLE)) {
332 		slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT;
333 	}
334 
335 	WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
336 	WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
337 }
338 
339 static void
340 sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock)
341 {
342 	uint32_t clk_base;
343 	uint32_t clk_sel;
344 	uint32_t res;
345 	uint16_t clk;
346 	uint16_t div;
347 	int timeout;
348 
349 	if (clock == slot->clock)
350 		return;
351 	slot->clock = clock;
352 
353 	/* Turn off the clock. */
354 	clk = RD2(slot, SDHCI_CLOCK_CONTROL);
355 	WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN);
356 	/* If no clock requested - leave it so. */
357 	if (clock == 0)
358 		return;
359 
360 	/* Determine the clock base frequency */
361 	clk_base = slot->max_clk;
362 	if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) {
363 		clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) &
364 		    BCM577XX_CTRL_CLKSEL_MASK;
365 
366 		/*
367 		 * Select clock source appropriate for the requested frequency.
368 		 */
369 		if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) {
370 			clk_base = BCM577XX_ALT_CLOCK_BASE;
371 			clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ <<
372 			    BCM577XX_CTRL_CLKSEL_SHIFT);
373 		} else {
374 			clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT <<
375 			    BCM577XX_CTRL_CLKSEL_SHIFT);
376 		}
377 
378 		WR2(slot, BCM577XX_HOST_CONTROL, clk_sel);
379 	}
380 
381 	/* Recalculate timeout clock frequency based on the new sd clock. */
382 	if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)
383 		slot->timeout_clk = slot->clock / 1000;
384 
385 	if (slot->version < SDHCI_SPEC_300) {
386 		/* Looking for highest freq <= clock. */
387 		res = clk_base;
388 		for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) {
389 			if (res <= clock)
390 				break;
391 			res >>= 1;
392 		}
393 		/* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */
394 		div >>= 1;
395 	} else {
396 		/* Version 3.0 divisors are multiples of two up to 1023 * 2 */
397 		if (clock >= clk_base)
398 			div = 0;
399 		else {
400 			for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) {
401 				if ((clk_base / div) <= clock)
402 					break;
403 			}
404 		}
405 		div >>= 1;
406 	}
407 
408 	if (bootverbose || sdhci_debug)
409 		slot_printf(slot, "Divider %d for freq %d (base %d)\n",
410 			div, clock, clk_base);
411 
412 	/* Now we have got divider, set it. */
413 	clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT;
414 	clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK)
415 		<< SDHCI_DIVIDER_HI_SHIFT;
416 
417 	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
418 	/* Enable clock. */
419 	clk |= SDHCI_CLOCK_INT_EN;
420 	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
421 	/* Wait up to 10 ms until it stabilize. */
422 	timeout = 10;
423 	while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL))
424 		& SDHCI_CLOCK_INT_STABLE)) {
425 		if (timeout == 0) {
426 			slot_printf(slot,
427 			    "Internal clock never stabilised.\n");
428 			sdhci_dumpregs(slot);
429 			return;
430 		}
431 		timeout--;
432 		DELAY(1000);
433 	}
434 	/* Pass clock signal to the bus. */
435 	clk |= SDHCI_CLOCK_CARD_EN;
436 	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
437 }
438 
439 static void
440 sdhci_set_power(struct sdhci_slot *slot, u_char power)
441 {
442 	int i;
443 	uint8_t pwr;
444 
445 	if (slot->power == power)
446 		return;
447 
448 	slot->power = power;
449 
450 	/* Turn off the power. */
451 	pwr = 0;
452 	WR1(slot, SDHCI_POWER_CONTROL, pwr);
453 	/* If power down requested - leave it so. */
454 	if (power == 0)
455 		return;
456 	/* Set voltage. */
457 	switch (1 << power) {
458 	case MMC_OCR_LOW_VOLTAGE:
459 		pwr |= SDHCI_POWER_180;
460 		break;
461 	case MMC_OCR_290_300:
462 	case MMC_OCR_300_310:
463 		pwr |= SDHCI_POWER_300;
464 		break;
465 	case MMC_OCR_320_330:
466 	case MMC_OCR_330_340:
467 		pwr |= SDHCI_POWER_330;
468 		break;
469 	}
470 	WR1(slot, SDHCI_POWER_CONTROL, pwr);
471 	/*
472 	 * Turn on VDD1 power.  Note that at least some Intel controllers can
473 	 * fail to enable bus power on the first try after transiting from D3
474 	 * to D0, so we give them up to 2 ms.
475 	 */
476 	pwr |= SDHCI_POWER_ON;
477 	for (i = 0; i < 20; i++) {
478 		WR1(slot, SDHCI_POWER_CONTROL, pwr);
479 		if (RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON)
480 			break;
481 		DELAY(100);
482 	}
483 	if (!(RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON))
484 		slot_printf(slot, "Bus power failed to enable\n");
485 
486 	if (slot->quirks & SDHCI_QUIRK_INTEL_POWER_UP_RESET) {
487 		WR1(slot, SDHCI_POWER_CONTROL, pwr | 0x10);
488 		DELAY(10);
489 		WR1(slot, SDHCI_POWER_CONTROL, pwr);
490 		DELAY(300);
491 	}
492 }
493 
494 static void
495 sdhci_read_block_pio(struct sdhci_slot *slot)
496 {
497 	uint32_t data;
498 	char *buffer;
499 	size_t left;
500 
501 	buffer = slot->curcmd->data->data;
502 	buffer += slot->offset;
503 	/* Transfer one block at a time. */
504 #ifdef MMCCAM
505 	if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE)
506 		left = min(slot->curcmd->data->block_size,
507 		    slot->curcmd->data->len - slot->offset);
508 	else
509 #endif
510 		left = min(512, slot->curcmd->data->len - slot->offset);
511 	slot->offset += left;
512 
513 	/* If we are too fast, broken controllers return zeroes. */
514 	if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS)
515 		DELAY(10);
516 	/* Handle unaligned and aligned buffer cases. */
517 	if ((intptr_t)buffer & 3) {
518 		while (left > 3) {
519 			data = RD4(slot, SDHCI_BUFFER);
520 			buffer[0] = data;
521 			buffer[1] = (data >> 8);
522 			buffer[2] = (data >> 16);
523 			buffer[3] = (data >> 24);
524 			buffer += 4;
525 			left -= 4;
526 		}
527 	} else {
528 		RD_MULTI_4(slot, SDHCI_BUFFER,
529 		    (uint32_t *)buffer, left >> 2);
530 		left &= 3;
531 	}
532 	/* Handle uneven size case. */
533 	if (left > 0) {
534 		data = RD4(slot, SDHCI_BUFFER);
535 		while (left > 0) {
536 			*(buffer++) = data;
537 			data >>= 8;
538 			left--;
539 		}
540 	}
541 }
542 
543 static void
544 sdhci_write_block_pio(struct sdhci_slot *slot)
545 {
546 	uint32_t data = 0;
547 	char *buffer;
548 	size_t left;
549 
550 	buffer = slot->curcmd->data->data;
551 	buffer += slot->offset;
552 	/* Transfer one block at a time. */
553 #ifdef MMCCAM
554 	if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE) {
555 		left = min(slot->curcmd->data->block_size,
556 		    slot->curcmd->data->len - slot->offset);
557 	} else
558 #endif
559 		left = min(512, slot->curcmd->data->len - slot->offset);
560 	slot->offset += left;
561 
562 	/* Handle unaligned and aligned buffer cases. */
563 	if ((intptr_t)buffer & 3) {
564 		while (left > 3) {
565 			data = buffer[0] +
566 			    (buffer[1] << 8) +
567 			    (buffer[2] << 16) +
568 			    (buffer[3] << 24);
569 			left -= 4;
570 			buffer += 4;
571 			WR4(slot, SDHCI_BUFFER, data);
572 		}
573 	} else {
574 		WR_MULTI_4(slot, SDHCI_BUFFER,
575 		    (uint32_t *)buffer, left >> 2);
576 		left &= 3;
577 	}
578 	/* Handle uneven size case. */
579 	if (left > 0) {
580 		while (left > 0) {
581 			data <<= 8;
582 			data += *(buffer++);
583 			left--;
584 		}
585 		WR4(slot, SDHCI_BUFFER, data);
586 	}
587 }
588 
589 static void
590 sdhci_transfer_pio(struct sdhci_slot *slot)
591 {
592 
593 	/* Read as many blocks as possible. */
594 	if (slot->curcmd->data->flags & MMC_DATA_READ) {
595 		while (RD4(slot, SDHCI_PRESENT_STATE) &
596 		    SDHCI_DATA_AVAILABLE) {
597 			sdhci_read_block_pio(slot);
598 			if (slot->offset >= slot->curcmd->data->len)
599 				break;
600 		}
601 	} else {
602 		while (RD4(slot, SDHCI_PRESENT_STATE) &
603 		    SDHCI_SPACE_AVAILABLE) {
604 			sdhci_write_block_pio(slot);
605 			if (slot->offset >= slot->curcmd->data->len)
606 				break;
607 		}
608 	}
609 }
610 
611 static void
612 sdhci_card_task(void *arg, int pending __unused)
613 {
614 	struct sdhci_slot *slot = arg;
615 	device_t d;
616 
617 	SDHCI_LOCK(slot);
618 	if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) {
619 #ifdef MMCCAM
620 		if (slot->card_present == 0) {
621 #else
622 		if (slot->dev == NULL) {
623 #endif
624 			/* If card is present - attach mmc bus. */
625 			if (bootverbose || sdhci_debug)
626 				slot_printf(slot, "Card inserted\n");
627 #ifdef MMCCAM
628 			slot->card_present = 1;
629 			union ccb *ccb;
630 			uint32_t pathid;
631 			pathid = cam_sim_path(slot->sim);
632 			ccb = xpt_alloc_ccb_nowait();
633 			if (ccb == NULL) {
634 				slot_printf(slot, "Unable to alloc CCB for rescan\n");
635 				SDHCI_UNLOCK(slot);
636 				return;
637 			}
638 
639 			/*
640 			 * We create a rescan request for BUS:0:0, since the card
641 			 * will be at lun 0.
642 			 */
643 			if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid,
644 					    /* target */ 0, /* lun */ 0) != CAM_REQ_CMP) {
645 				slot_printf(slot, "Unable to create path for rescan\n");
646 				SDHCI_UNLOCK(slot);
647 				xpt_free_ccb(ccb);
648 				return;
649 			}
650 			SDHCI_UNLOCK(slot);
651 			xpt_rescan(ccb);
652 #else
653 			d = slot->dev = device_add_child(slot->bus, "mmc", -1);
654 			SDHCI_UNLOCK(slot);
655 			if (d) {
656 				device_set_ivars(d, slot);
657 				(void)device_probe_and_attach(d);
658 			}
659 #endif
660 		} else
661 			SDHCI_UNLOCK(slot);
662 	} else {
663 #ifdef MMCCAM
664 		if (slot->card_present == 1) {
665 #else
666 		if (slot->dev != NULL) {
667 #endif
668 			/* If no card present - detach mmc bus. */
669 			if (bootverbose || sdhci_debug)
670 				slot_printf(slot, "Card removed\n");
671 			d = slot->dev;
672 			slot->dev = NULL;
673 #ifdef MMCCAM
674 			slot->card_present = 0;
675 			union ccb *ccb;
676 			uint32_t pathid;
677 			pathid = cam_sim_path(slot->sim);
678 			ccb = xpt_alloc_ccb_nowait();
679 			if (ccb == NULL) {
680 				slot_printf(slot, "Unable to alloc CCB for rescan\n");
681 				SDHCI_UNLOCK(slot);
682 				return;
683 			}
684 
685 			/*
686 			 * We create a rescan request for BUS:0:0, since the card
687 			 * will be at lun 0.
688 			 */
689 			if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid,
690 					    /* target */ 0, /* lun */ 0) != CAM_REQ_CMP) {
691 				slot_printf(slot, "Unable to create path for rescan\n");
692 				SDHCI_UNLOCK(slot);
693 				xpt_free_ccb(ccb);
694 				return;
695 			}
696 			SDHCI_UNLOCK(slot);
697 			xpt_rescan(ccb);
698 #else
699 			slot->intmask &= ~sdhci_tuning_intmask(slot);
700 			WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
701 			WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
702 			slot->opt &= ~SDHCI_TUNING_ENABLED;
703 			SDHCI_UNLOCK(slot);
704 			callout_drain(&slot->retune_callout);
705 			device_delete_child(slot->bus, d);
706 #endif
707 		} else
708 			SDHCI_UNLOCK(slot);
709 	}
710 }
711 
712 static void
713 sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present)
714 {
715 	bool was_present;
716 
717 	/*
718 	 * If there was no card and now there is one, schedule the task to
719 	 * create the child device after a short delay.  The delay is to
720 	 * debounce the card insert (sometimes the card detect pin stabilizes
721 	 * before the other pins have made good contact).
722 	 *
723 	 * If there was a card present and now it's gone, immediately schedule
724 	 * the task to delete the child device.  No debouncing -- gone is gone,
725 	 * because once power is removed, a full card re-init is needed, and
726 	 * that happens by deleting and recreating the child device.
727 	 */
728 #ifdef MMCCAM
729 	was_present = slot->card_present;
730 #else
731 	was_present = slot->dev != NULL;
732 #endif
733 	if (!was_present && is_present) {
734 		taskqueue_enqueue_timeout(taskqueue_swi_giant,
735 		    &slot->card_delayed_task, -SDHCI_INSERT_DELAY_TICKS);
736 	} else if (was_present && !is_present) {
737 		taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task);
738 	}
739 }
740 
741 void
742 sdhci_handle_card_present(struct sdhci_slot *slot, bool is_present)
743 {
744 
745 	SDHCI_LOCK(slot);
746 	sdhci_handle_card_present_locked(slot, is_present);
747 	SDHCI_UNLOCK(slot);
748 }
749 
750 static void
751 sdhci_card_poll(void *arg)
752 {
753 	struct sdhci_slot *slot = arg;
754 
755 	sdhci_handle_card_present(slot,
756 	    SDHCI_GET_CARD_PRESENT(slot->bus, slot));
757 	callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS,
758 	    sdhci_card_poll, slot);
759 }
760 
761 static int
762 sdhci_dma_alloc(struct sdhci_slot *slot)
763 {
764 	int err;
765 
766 	if (!(slot->quirks & SDHCI_QUIRK_BROKEN_SDMA_BOUNDARY)) {
767 		if (MAXPHYS <= 1024 * 4)
768 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_4K;
769 		else if (MAXPHYS <= 1024 * 8)
770 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_8K;
771 		else if (MAXPHYS <= 1024 * 16)
772 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_16K;
773 		else if (MAXPHYS <= 1024 * 32)
774 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_32K;
775 		else if (MAXPHYS <= 1024 * 64)
776 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_64K;
777 		else if (MAXPHYS <= 1024 * 128)
778 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_128K;
779 		else if (MAXPHYS <= 1024 * 256)
780 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_256K;
781 		else
782 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_512K;
783 	}
784 	slot->sdma_bbufsz = SDHCI_SDMA_BNDRY_TO_BBUFSZ(slot->sdma_boundary);
785 
786 	/*
787 	 * Allocate the DMA tag for an SDMA bounce buffer.
788 	 * Note that the SDHCI specification doesn't state any alignment
789 	 * constraint for the SDMA system address.  However, controllers
790 	 * typically ignore the SDMA boundary bits in SDHCI_DMA_ADDRESS when
791 	 * forming the actual address of data, requiring the SDMA buffer to
792 	 * be aligned to the SDMA boundary.
793 	 */
794 	err = bus_dma_tag_create(bus_get_dma_tag(slot->bus), slot->sdma_bbufsz,
795 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
796 	    slot->sdma_bbufsz, 1, slot->sdma_bbufsz, BUS_DMA_ALLOCNOW,
797 	    NULL, NULL, &slot->dmatag);
798 	if (err != 0) {
799 		slot_printf(slot, "Can't create DMA tag for SDMA\n");
800 		return (err);
801 	}
802 	/* Allocate DMA memory for the SDMA bounce buffer. */
803 	err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem,
804 	    BUS_DMA_NOWAIT, &slot->dmamap);
805 	if (err != 0) {
806 		slot_printf(slot, "Can't alloc DMA memory for SDMA\n");
807 		bus_dma_tag_destroy(slot->dmatag);
808 		return (err);
809 	}
810 	/* Map the memory of the SDMA bounce buffer. */
811 	err = bus_dmamap_load(slot->dmatag, slot->dmamap,
812 	    (void *)slot->dmamem, slot->sdma_bbufsz, sdhci_getaddr,
813 	    &slot->paddr, 0);
814 	if (err != 0 || slot->paddr == 0) {
815 		slot_printf(slot, "Can't load DMA memory for SDMA\n");
816 		bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
817 		bus_dma_tag_destroy(slot->dmatag);
818 		if (err)
819 			return (err);
820 		else
821 			return (EFAULT);
822 	}
823 
824 	return (0);
825 }
826 
827 static void
828 sdhci_dma_free(struct sdhci_slot *slot)
829 {
830 
831 	bus_dmamap_unload(slot->dmatag, slot->dmamap);
832 	bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
833 	bus_dma_tag_destroy(slot->dmatag);
834 }
835 
836 int
837 sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num)
838 {
839 	kobjop_desc_t kobj_desc;
840 	kobj_method_t *kobj_method;
841 	uint32_t caps, caps2, freq, host_caps;
842 	int err;
843 
844 	SDHCI_LOCK_INIT(slot);
845 
846 	slot->num = num;
847 	slot->bus = dev;
848 
849 	slot->version = (RD2(slot, SDHCI_HOST_VERSION)
850 		>> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK;
851 	if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) {
852 		caps = slot->caps;
853 		caps2 = slot->caps2;
854 	} else {
855 		caps = RD4(slot, SDHCI_CAPABILITIES);
856 		if (slot->version >= SDHCI_SPEC_300)
857 			caps2 = RD4(slot, SDHCI_CAPABILITIES2);
858 		else
859 			caps2 = 0;
860 	}
861 	if (slot->version >= SDHCI_SPEC_300) {
862 		if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE &&
863 		    (caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) {
864 			slot_printf(slot,
865 			    "Driver doesn't support shared bus slots\n");
866 			SDHCI_LOCK_DESTROY(slot);
867 			return (ENXIO);
868 		} else if ((caps & SDHCI_SLOTTYPE_MASK) ==
869 		    SDHCI_SLOTTYPE_EMBEDDED) {
870 			slot->opt |= SDHCI_SLOT_EMBEDDED | SDHCI_NON_REMOVABLE;
871 		}
872 	}
873 	/* Calculate base clock frequency. */
874 	if (slot->version >= SDHCI_SPEC_300)
875 		freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >>
876 		    SDHCI_CLOCK_BASE_SHIFT;
877 	else
878 		freq = (caps & SDHCI_CLOCK_BASE_MASK) >>
879 		    SDHCI_CLOCK_BASE_SHIFT;
880 	if (freq != 0)
881 		slot->max_clk = freq * 1000000;
882 	/*
883 	 * If the frequency wasn't in the capabilities and the hardware driver
884 	 * hasn't already set max_clk we're probably not going to work right
885 	 * with an assumption, so complain about it.
886 	 */
887 	if (slot->max_clk == 0) {
888 		slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000;
889 		slot_printf(slot, "Hardware doesn't specify base clock "
890 		    "frequency, using %dMHz as default.\n",
891 		    SDHCI_DEFAULT_MAX_FREQ);
892 	}
893 	/* Calculate/set timeout clock frequency. */
894 	if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) {
895 		slot->timeout_clk = slot->max_clk / 1000;
896 	} else if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_1MHZ) {
897 		slot->timeout_clk = 1000;
898 	} else {
899 		slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >>
900 		    SDHCI_TIMEOUT_CLK_SHIFT;
901 		if (caps & SDHCI_TIMEOUT_CLK_UNIT)
902 			slot->timeout_clk *= 1000;
903 	}
904 	/*
905 	 * If the frequency wasn't in the capabilities and the hardware driver
906 	 * hasn't already set timeout_clk we'll probably work okay using the
907 	 * max timeout, but still mention it.
908 	 */
909 	if (slot->timeout_clk == 0) {
910 		slot_printf(slot, "Hardware doesn't specify timeout clock "
911 		    "frequency, setting BROKEN_TIMEOUT quirk.\n");
912 		slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
913 	}
914 
915 	slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot);
916 	slot->host.f_max = slot->max_clk;
917 	slot->host.host_ocr = 0;
918 	if (caps & SDHCI_CAN_VDD_330)
919 	    slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340;
920 	if (caps & SDHCI_CAN_VDD_300)
921 	    slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310;
922 	/*
923 	 * 1.8V VDD is not supposed to be used for removable cards.  Hardware
924 	 * prior to v3.0 had no way to indicate embedded slots, but did
925 	 * sometimes support 1.8v for non-removable devices.
926 	 */
927 	if ((caps & SDHCI_CAN_VDD_180) && (slot->version < SDHCI_SPEC_300 ||
928 	    (slot->opt & SDHCI_SLOT_EMBEDDED)))
929 	    slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE;
930 	if (slot->host.host_ocr == 0) {
931 		slot_printf(slot, "Hardware doesn't report any "
932 		    "support voltages.\n");
933 	}
934 
935 	host_caps = MMC_CAP_4_BIT_DATA;
936 	if (caps & SDHCI_CAN_DO_8BITBUS)
937 		host_caps |= MMC_CAP_8_BIT_DATA;
938 	if (caps & SDHCI_CAN_DO_HISPD)
939 		host_caps |= MMC_CAP_HSPEED;
940 	if (slot->quirks & SDHCI_QUIRK_BOOT_NOACC)
941 		host_caps |= MMC_CAP_BOOT_NOACC;
942 	if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY)
943 		host_caps |= MMC_CAP_WAIT_WHILE_BUSY;
944 
945 	/* Determine supported UHS-I and eMMC modes. */
946 	if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50))
947 		host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
948 	if (caps2 & SDHCI_CAN_SDR104) {
949 		host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
950 		if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200))
951 			host_caps |= MMC_CAP_MMC_HS200;
952 	} else if (caps2 & SDHCI_CAN_SDR50)
953 		host_caps |= MMC_CAP_UHS_SDR50;
954 	if (caps2 & SDHCI_CAN_DDR50 &&
955 	    !(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50))
956 		host_caps |= MMC_CAP_UHS_DDR50;
957 	if (slot->quirks & SDHCI_QUIRK_MMC_DDR52)
958 		host_caps |= MMC_CAP_MMC_DDR52;
959 	if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 &&
960 	    caps2 & SDHCI_CAN_MMC_HS400)
961 		host_caps |= MMC_CAP_MMC_HS400;
962 	if (slot->quirks & SDHCI_QUIRK_MMC_HS400_IF_CAN_SDR104 &&
963 	    caps2 & SDHCI_CAN_SDR104)
964 		host_caps |= MMC_CAP_MMC_HS400;
965 
966 	/*
967 	 * Disable UHS-I and eMMC modes if the set_uhs_timing method is the
968 	 * default NULL implementation.
969 	 */
970 	kobj_desc = &sdhci_set_uhs_timing_desc;
971 	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
972 	    kobj_desc);
973 	if (kobj_method == &kobj_desc->deflt)
974 		host_caps &= ~(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
975 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 |
976 		    MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400);
977 
978 #define	SDHCI_CAP_MODES_TUNING(caps2)					\
979     (((caps2) & SDHCI_TUNE_SDR50 ? MMC_CAP_UHS_SDR50 : 0) |		\
980     MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_HS200 |	\
981     MMC_CAP_MMC_HS400)
982 
983 	/*
984 	 * Disable UHS-I and eMMC modes that require (re-)tuning if either
985 	 * the tune or re-tune method is the default NULL implementation.
986 	 */
987 	kobj_desc = &mmcbr_tune_desc;
988 	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
989 	    kobj_desc);
990 	if (kobj_method == &kobj_desc->deflt)
991 		goto no_tuning;
992 	kobj_desc = &mmcbr_retune_desc;
993 	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
994 	    kobj_desc);
995 	if (kobj_method == &kobj_desc->deflt) {
996 no_tuning:
997 		host_caps &= ~(SDHCI_CAP_MODES_TUNING(caps2));
998 	}
999 
1000 	/* Allocate tuning structures and determine tuning parameters. */
1001 	if (host_caps & SDHCI_CAP_MODES_TUNING(caps2)) {
1002 		slot->opt |= SDHCI_TUNING_SUPPORTED;
1003 		slot->tune_req = malloc(sizeof(*slot->tune_req), M_DEVBUF,
1004 		    M_WAITOK);
1005 		slot->tune_cmd = malloc(sizeof(*slot->tune_cmd), M_DEVBUF,
1006 		    M_WAITOK);
1007 		slot->tune_data = malloc(sizeof(*slot->tune_data), M_DEVBUF,
1008 		    M_WAITOK);
1009 		if (caps2 & SDHCI_TUNE_SDR50)
1010 			slot->opt |= SDHCI_SDR50_NEEDS_TUNING;
1011 		slot->retune_mode = (caps2 & SDHCI_RETUNE_MODES_MASK) >>
1012 		    SDHCI_RETUNE_MODES_SHIFT;
1013 		if (slot->retune_mode == SDHCI_RETUNE_MODE_1) {
1014 			slot->retune_count = (caps2 & SDHCI_RETUNE_CNT_MASK) >>
1015 			    SDHCI_RETUNE_CNT_SHIFT;
1016 			if (slot->retune_count > 0xb) {
1017 				slot_printf(slot, "Unknown re-tuning count "
1018 				    "%x, using 1 sec\n", slot->retune_count);
1019 				slot->retune_count = 1;
1020 			} else if (slot->retune_count != 0)
1021 				slot->retune_count =
1022 				    1 << (slot->retune_count - 1);
1023 		}
1024 	}
1025 
1026 #undef SDHCI_CAP_MODES_TUNING
1027 
1028 	/* Determine supported VCCQ signaling levels. */
1029 	host_caps |= MMC_CAP_SIGNALING_330;
1030 	if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
1031 	    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 |
1032 	    MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 |
1033 	    MMC_CAP_MMC_HS400_180))
1034 		host_caps |= MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180;
1035 
1036 	/*
1037 	 * Disable 1.2 V and 1.8 V signaling if the switch_vccq method is the
1038 	 * default NULL implementation.  Disable 1.2 V support if it's the
1039 	 * generic SDHCI implementation.
1040 	 */
1041 	kobj_desc = &mmcbr_switch_vccq_desc;
1042 	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
1043 	    kobj_desc);
1044 	if (kobj_method == &kobj_desc->deflt)
1045 		host_caps &= ~(MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180);
1046 	else if (kobj_method->func == (kobjop_t)sdhci_generic_switch_vccq)
1047 		host_caps &= ~MMC_CAP_SIGNALING_120;
1048 
1049 	/* Determine supported driver types (type B is always mandatory). */
1050 	if (caps2 & SDHCI_CAN_DRIVE_TYPE_A)
1051 		host_caps |= MMC_CAP_DRIVER_TYPE_A;
1052 	if (caps2 & SDHCI_CAN_DRIVE_TYPE_C)
1053 		host_caps |= MMC_CAP_DRIVER_TYPE_C;
1054 	if (caps2 & SDHCI_CAN_DRIVE_TYPE_D)
1055 		host_caps |= MMC_CAP_DRIVER_TYPE_D;
1056 	slot->host.caps = host_caps;
1057 
1058 	/* Decide if we have usable DMA. */
1059 	if (caps & SDHCI_CAN_DO_DMA)
1060 		slot->opt |= SDHCI_HAVE_DMA;
1061 
1062 	if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA)
1063 		slot->opt &= ~SDHCI_HAVE_DMA;
1064 	if (slot->quirks & SDHCI_QUIRK_FORCE_DMA)
1065 		slot->opt |= SDHCI_HAVE_DMA;
1066 	if (slot->quirks & SDHCI_QUIRK_ALL_SLOTS_NON_REMOVABLE)
1067 		slot->opt |= SDHCI_NON_REMOVABLE;
1068 
1069 	/*
1070 	 * Use platform-provided transfer backend
1071 	 * with PIO as a fallback mechanism
1072 	 */
1073 	if (slot->opt & SDHCI_PLATFORM_TRANSFER)
1074 		slot->opt &= ~SDHCI_HAVE_DMA;
1075 
1076 	if (slot->opt & SDHCI_HAVE_DMA) {
1077 		err = sdhci_dma_alloc(slot);
1078 		if (err != 0) {
1079 			if (slot->opt & SDHCI_TUNING_SUPPORTED) {
1080 				free(slot->tune_req, M_DEVBUF);
1081 				free(slot->tune_cmd, M_DEVBUF);
1082 				free(slot->tune_data, M_DEVBUF);
1083 			}
1084 			SDHCI_LOCK_DESTROY(slot);
1085 			return (err);
1086 		}
1087 	}
1088 
1089 	if (bootverbose || sdhci_debug) {
1090 		slot_printf(slot,
1091 		    "%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s %s\n",
1092 		    slot->max_clk / 1000000,
1093 		    (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "",
1094 		    (host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" :
1095 			((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"),
1096 		    (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "",
1097 		    (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "",
1098 		    ((caps & SDHCI_CAN_VDD_180) &&
1099 		    (slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "",
1100 		    (host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "",
1101 		    (host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "",
1102 		    (host_caps & MMC_CAP_DRIVER_TYPE_A) ? "A" : "",
1103 		    (host_caps & MMC_CAP_DRIVER_TYPE_C) ? "C" : "",
1104 		    (host_caps & MMC_CAP_DRIVER_TYPE_D) ? "D" : "",
1105 		    (slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO",
1106 		    (slot->opt & SDHCI_SLOT_EMBEDDED) ? "embedded" :
1107 		    (slot->opt & SDHCI_NON_REMOVABLE) ? "non-removable" :
1108 		    "removable");
1109 		if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 |
1110 		    MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE))
1111 			slot_printf(slot, "eMMC:%s%s%s%s\n",
1112 			    (host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "",
1113 			    (host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "",
1114 			    (host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "",
1115 			    ((host_caps &
1116 			    (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ==
1117 			    (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ?
1118 			    " HS400ES" : "");
1119 		if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
1120 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104))
1121 			slot_printf(slot, "UHS-I:%s%s%s%s%s\n",
1122 			    (host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "",
1123 			    (host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "",
1124 			    (host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "",
1125 			    (host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "",
1126 			    (host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : "");
1127 		if (slot->opt & SDHCI_TUNING_SUPPORTED)
1128 			slot_printf(slot, "Re-tuning count %d secs, mode %d\n",
1129 			    slot->retune_count, slot->retune_mode + 1);
1130 		sdhci_dumpregs(slot);
1131 	}
1132 
1133 	slot->timeout = 10;
1134 	SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus),
1135 	    SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO,
1136 	    "timeout", CTLFLAG_RWTUN, &slot->timeout, 0,
1137 	    "Maximum timeout for SDHCI transfers (in secs)");
1138 	TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot);
1139 	TIMEOUT_TASK_INIT(taskqueue_swi_giant, &slot->card_delayed_task, 0,
1140 		sdhci_card_task, slot);
1141 	callout_init(&slot->card_poll_callout, 1);
1142 	callout_init_mtx(&slot->timeout_callout, &slot->mtx, 0);
1143 	callout_init_mtx(&slot->retune_callout, &slot->mtx, 0);
1144 
1145 	if ((slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) &&
1146 	    !(slot->opt & SDHCI_NON_REMOVABLE)) {
1147 		callout_reset(&slot->card_poll_callout,
1148 		    SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot);
1149 	}
1150 
1151 	sdhci_init(slot);
1152 
1153 	return (0);
1154 }
1155 
1156 #ifndef MMCCAM
1157 void
1158 sdhci_start_slot(struct sdhci_slot *slot)
1159 {
1160 
1161 	sdhci_card_task(slot, 0);
1162 }
1163 #endif
1164 
1165 int
1166 sdhci_cleanup_slot(struct sdhci_slot *slot)
1167 {
1168 	device_t d;
1169 
1170 	callout_drain(&slot->timeout_callout);
1171 	callout_drain(&slot->card_poll_callout);
1172 	callout_drain(&slot->retune_callout);
1173 	taskqueue_drain(taskqueue_swi_giant, &slot->card_task);
1174 	taskqueue_drain_timeout(taskqueue_swi_giant, &slot->card_delayed_task);
1175 
1176 	SDHCI_LOCK(slot);
1177 	d = slot->dev;
1178 	slot->dev = NULL;
1179 	SDHCI_UNLOCK(slot);
1180 	if (d != NULL)
1181 		device_delete_child(slot->bus, d);
1182 
1183 	SDHCI_LOCK(slot);
1184 	sdhci_reset(slot, SDHCI_RESET_ALL);
1185 	SDHCI_UNLOCK(slot);
1186 	if (slot->opt & SDHCI_HAVE_DMA)
1187 		sdhci_dma_free(slot);
1188 	if (slot->opt & SDHCI_TUNING_SUPPORTED) {
1189 		free(slot->tune_req, M_DEVBUF);
1190 		free(slot->tune_cmd, M_DEVBUF);
1191 		free(slot->tune_data, M_DEVBUF);
1192 	}
1193 
1194 	SDHCI_LOCK_DESTROY(slot);
1195 
1196 	return (0);
1197 }
1198 
1199 int
1200 sdhci_generic_suspend(struct sdhci_slot *slot)
1201 {
1202 
1203 	/*
1204 	 * We expect the MMC layer to issue initial tuning after resume.
1205 	 * Otherwise, we'd need to indicate re-tuning including circuit reset
1206 	 * being required at least for re-tuning modes 1 and 2 ourselves.
1207 	 */
1208 	callout_drain(&slot->retune_callout);
1209 	SDHCI_LOCK(slot);
1210 	slot->opt &= ~SDHCI_TUNING_ENABLED;
1211 	sdhci_reset(slot, SDHCI_RESET_ALL);
1212 	SDHCI_UNLOCK(slot);
1213 
1214 	return (0);
1215 }
1216 
1217 int
1218 sdhci_generic_resume(struct sdhci_slot *slot)
1219 {
1220 
1221 	SDHCI_LOCK(slot);
1222 	sdhci_init(slot);
1223 	SDHCI_UNLOCK(slot);
1224 
1225 	return (0);
1226 }
1227 
1228 uint32_t
1229 sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot)
1230 {
1231 
1232 	if (slot->version >= SDHCI_SPEC_300)
1233 		return (slot->max_clk / SDHCI_300_MAX_DIVIDER);
1234 	else
1235 		return (slot->max_clk / SDHCI_200_MAX_DIVIDER);
1236 }
1237 
1238 bool
1239 sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot)
1240 {
1241 
1242 	if (slot->opt & SDHCI_NON_REMOVABLE)
1243 		return true;
1244 
1245 	return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
1246 }
1247 
1248 void
1249 sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot)
1250 {
1251 	const struct mmc_ios *ios;
1252 	uint16_t hostctrl2;
1253 
1254 	if (slot->version < SDHCI_SPEC_300)
1255 		return;
1256 
1257 	SDHCI_ASSERT_LOCKED(slot);
1258 	ios = &slot->host.ios;
1259 	sdhci_set_clock(slot, 0);
1260 	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1261 	hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK;
1262 	if (ios->clock > SD_SDR50_MAX) {
1263 		if (ios->timing == bus_timing_mmc_hs400 ||
1264 		    ios->timing == bus_timing_mmc_hs400es)
1265 			hostctrl2 |= SDHCI_CTRL2_MMC_HS400;
1266 		else
1267 			hostctrl2 |= SDHCI_CTRL2_UHS_SDR104;
1268 	}
1269 	else if (ios->clock > SD_SDR25_MAX)
1270 		hostctrl2 |= SDHCI_CTRL2_UHS_SDR50;
1271 	else if (ios->clock > SD_SDR12_MAX) {
1272 		if (ios->timing == bus_timing_uhs_ddr50 ||
1273 		    ios->timing == bus_timing_mmc_ddr52)
1274 			hostctrl2 |= SDHCI_CTRL2_UHS_DDR50;
1275 		else
1276 			hostctrl2 |= SDHCI_CTRL2_UHS_SDR25;
1277 	} else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY)
1278 		hostctrl2 |= SDHCI_CTRL2_UHS_SDR12;
1279 	WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1280 	sdhci_set_clock(slot, ios->clock);
1281 }
1282 
1283 int
1284 sdhci_generic_update_ios(device_t brdev, device_t reqdev)
1285 {
1286 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1287 	struct mmc_ios *ios = &slot->host.ios;
1288 
1289 	SDHCI_LOCK(slot);
1290 	/* Do full reset on bus power down to clear from any state. */
1291 	if (ios->power_mode == power_off) {
1292 		WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
1293 		sdhci_init(slot);
1294 	}
1295 	/* Configure the bus. */
1296 	sdhci_set_clock(slot, ios->clock);
1297 	sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
1298 	if (ios->bus_width == bus_width_8) {
1299 		slot->hostctrl |= SDHCI_CTRL_8BITBUS;
1300 		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
1301 	} else if (ios->bus_width == bus_width_4) {
1302 		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
1303 		slot->hostctrl |= SDHCI_CTRL_4BITBUS;
1304 	} else if (ios->bus_width == bus_width_1) {
1305 		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
1306 		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
1307 	} else {
1308 		panic("Invalid bus width: %d", ios->bus_width);
1309 	}
1310 	if (ios->clock > SD_SDR12_MAX &&
1311 	    !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
1312 		slot->hostctrl |= SDHCI_CTRL_HISPD;
1313 	else
1314 		slot->hostctrl &= ~SDHCI_CTRL_HISPD;
1315 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
1316 	SDHCI_SET_UHS_TIMING(brdev, slot);
1317 	/* Some controllers like reset after bus changes. */
1318 	if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
1319 		sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1320 
1321 	SDHCI_UNLOCK(slot);
1322 	return (0);
1323 }
1324 
1325 int
1326 sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev)
1327 {
1328 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1329 	enum mmc_vccq vccq;
1330 	int err;
1331 	uint16_t hostctrl2;
1332 
1333 	if (slot->version < SDHCI_SPEC_300)
1334 		return (0);
1335 
1336 	err = 0;
1337 	vccq = slot->host.ios.vccq;
1338 	SDHCI_LOCK(slot);
1339 	sdhci_set_clock(slot, 0);
1340 	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1341 	switch (vccq) {
1342 	case vccq_330:
1343 		if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
1344 			goto done;
1345 		hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE;
1346 		WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1347 		DELAY(5000);
1348 		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1349 		if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
1350 			goto done;
1351 		err = EAGAIN;
1352 		break;
1353 	case vccq_180:
1354 		if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) {
1355 			err = EINVAL;
1356 			goto done;
1357 		}
1358 		if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
1359 			goto done;
1360 		hostctrl2 |= SDHCI_CTRL2_S18_ENABLE;
1361 		WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1362 		DELAY(5000);
1363 		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1364 		if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
1365 			goto done;
1366 		err = EAGAIN;
1367 		break;
1368 	default:
1369 		slot_printf(slot,
1370 		    "Attempt to set unsupported signaling voltage\n");
1371 		err = EINVAL;
1372 		break;
1373 	}
1374 done:
1375 	sdhci_set_clock(slot, slot->host.ios.clock);
1376 	SDHCI_UNLOCK(slot);
1377 	return (err);
1378 }
1379 
1380 int
1381 sdhci_generic_tune(device_t brdev __unused, device_t reqdev, bool hs400)
1382 {
1383 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1384 	const struct mmc_ios *ios = &slot->host.ios;
1385 	struct mmc_command *tune_cmd;
1386 	struct mmc_data *tune_data;
1387 	uint32_t opcode;
1388 	int err;
1389 
1390 	if (!(slot->opt & SDHCI_TUNING_SUPPORTED))
1391 		return (0);
1392 
1393 	slot->retune_ticks = slot->retune_count * hz;
1394 	opcode = MMC_SEND_TUNING_BLOCK;
1395 	SDHCI_LOCK(slot);
1396 	switch (ios->timing) {
1397 	case bus_timing_mmc_hs400:
1398 		slot_printf(slot, "HS400 must be tuned in HS200 mode\n");
1399 		SDHCI_UNLOCK(slot);
1400 		return (EINVAL);
1401 	case bus_timing_mmc_hs200:
1402 		/*
1403 		 * In HS400 mode, controllers use the data strobe line to
1404 		 * latch data from the devices so periodic re-tuning isn't
1405 		 * expected to be required.
1406 		 */
1407 		if (hs400)
1408 			slot->retune_ticks = 0;
1409 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1410 		break;
1411 	case bus_timing_uhs_ddr50:
1412 	case bus_timing_uhs_sdr104:
1413 		break;
1414 	case bus_timing_uhs_sdr50:
1415 		if (slot->opt & SDHCI_SDR50_NEEDS_TUNING)
1416 			break;
1417 		/* FALLTHROUGH */
1418 	default:
1419 		SDHCI_UNLOCK(slot);
1420 		return (0);
1421 	}
1422 
1423 	tune_cmd = slot->tune_cmd;
1424 	memset(tune_cmd, 0, sizeof(*tune_cmd));
1425 	tune_cmd->opcode = opcode;
1426 	tune_cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1427 	tune_data = tune_cmd->data = slot->tune_data;
1428 	memset(tune_data, 0, sizeof(*tune_data));
1429 	tune_data->len = (opcode == MMC_SEND_TUNING_BLOCK_HS200 &&
1430 	    ios->bus_width == bus_width_8) ? MMC_TUNING_LEN_HS200 :
1431 	    MMC_TUNING_LEN;
1432 	tune_data->flags = MMC_DATA_READ;
1433 	tune_data->mrq = tune_cmd->mrq = slot->tune_req;
1434 
1435 	slot->opt &= ~SDHCI_TUNING_ENABLED;
1436 	err = sdhci_exec_tuning(slot, true);
1437 	if (err == 0) {
1438 		slot->opt |= SDHCI_TUNING_ENABLED;
1439 		slot->intmask |= sdhci_tuning_intmask(slot);
1440 		WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
1441 		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
1442 		if (slot->retune_ticks) {
1443 			callout_reset(&slot->retune_callout, slot->retune_ticks,
1444 			    sdhci_retune, slot);
1445 		}
1446 	}
1447 	SDHCI_UNLOCK(slot);
1448 	return (err);
1449 }
1450 
1451 int
1452 sdhci_generic_retune(device_t brdev __unused, device_t reqdev, bool reset)
1453 {
1454 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1455 	int err;
1456 
1457 	if (!(slot->opt & SDHCI_TUNING_ENABLED))
1458 		return (0);
1459 
1460 	/* HS400 must be tuned in HS200 mode. */
1461 	if (slot->host.ios.timing == bus_timing_mmc_hs400)
1462 		return (EINVAL);
1463 
1464 	SDHCI_LOCK(slot);
1465 	err = sdhci_exec_tuning(slot, reset);
1466 	/*
1467 	 * There are two ways sdhci_exec_tuning() can fail:
1468 	 * EBUSY should not actually happen when requests are only issued
1469 	 *	 with the host properly acquired, and
1470 	 * EIO   re-tuning failed (but it did work initially).
1471 	 *
1472 	 * In both cases, we should retry at later point if periodic re-tuning
1473 	 * is enabled.  Note that due to slot->retune_req not being cleared in
1474 	 * these failure cases, the MMC layer should trigger another attempt at
1475 	 * re-tuning with the next request anyway, though.
1476 	 */
1477 	if (slot->retune_ticks) {
1478 		callout_reset(&slot->retune_callout, slot->retune_ticks,
1479 		    sdhci_retune, slot);
1480 	}
1481 	SDHCI_UNLOCK(slot);
1482 	return (err);
1483 }
1484 
1485 static int
1486 sdhci_exec_tuning(struct sdhci_slot *slot, bool reset)
1487 {
1488 	struct mmc_request *tune_req;
1489 	struct mmc_command *tune_cmd;
1490 	int i;
1491 	uint32_t intmask;
1492 	uint16_t hostctrl2;
1493 	u_char opt;
1494 
1495 	SDHCI_ASSERT_LOCKED(slot);
1496 	if (slot->req != NULL)
1497 		return (EBUSY);
1498 
1499 	/* Tuning doesn't work with DMA enabled. */
1500 	opt = slot->opt;
1501 	slot->opt = opt & ~SDHCI_HAVE_DMA;
1502 
1503 	/*
1504 	 * Ensure that as documented, SDHCI_INT_DATA_AVAIL is the only
1505 	 * kind of interrupt we receive in response to a tuning request.
1506 	 */
1507 	intmask = slot->intmask;
1508 	slot->intmask = SDHCI_INT_DATA_AVAIL;
1509 	WR4(slot, SDHCI_INT_ENABLE, SDHCI_INT_DATA_AVAIL);
1510 	WR4(slot, SDHCI_SIGNAL_ENABLE, SDHCI_INT_DATA_AVAIL);
1511 
1512 	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1513 	if (reset)
1514 		hostctrl2 &= ~SDHCI_CTRL2_SAMPLING_CLOCK;
1515 	else
1516 		hostctrl2 |= SDHCI_CTRL2_SAMPLING_CLOCK;
1517 	WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 | SDHCI_CTRL2_EXEC_TUNING);
1518 
1519 	tune_req = slot->tune_req;
1520 	tune_cmd = slot->tune_cmd;
1521 	for (i = 0; i < MMC_TUNING_MAX; i++) {
1522 		memset(tune_req, 0, sizeof(*tune_req));
1523 		tune_req->cmd = tune_cmd;
1524 		tune_req->done = sdhci_req_wakeup;
1525 		tune_req->done_data = slot;
1526 		slot->req = tune_req;
1527 		slot->flags = 0;
1528 		sdhci_start(slot);
1529 		while (!(tune_req->flags & MMC_REQ_DONE))
1530 			msleep(tune_req, &slot->mtx, 0, "sdhciet", 0);
1531 		if (!(tune_req->flags & MMC_TUNE_DONE))
1532 			break;
1533 		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1534 		if (!(hostctrl2 & SDHCI_CTRL2_EXEC_TUNING))
1535 			break;
1536 		if (tune_cmd->opcode == MMC_SEND_TUNING_BLOCK)
1537 			DELAY(1000);
1538 	}
1539 
1540 	/*
1541 	 * Restore DMA usage and interrupts.
1542 	 * Note that the interrupt aggregation code might have cleared
1543 	 * SDHCI_INT_DMA_END and/or SDHCI_INT_RESPONSE in slot->intmask
1544 	 * and SDHCI_SIGNAL_ENABLE respectively so ensure SDHCI_INT_ENABLE
1545 	 * doesn't lose these.
1546 	 */
1547 	slot->opt = opt;
1548 	slot->intmask = intmask;
1549 	WR4(slot, SDHCI_INT_ENABLE, intmask | SDHCI_INT_DMA_END |
1550 	    SDHCI_INT_RESPONSE);
1551 	WR4(slot, SDHCI_SIGNAL_ENABLE, intmask);
1552 
1553 	if ((hostctrl2 & (SDHCI_CTRL2_EXEC_TUNING |
1554 	    SDHCI_CTRL2_SAMPLING_CLOCK)) == SDHCI_CTRL2_SAMPLING_CLOCK) {
1555 		slot->retune_req = 0;
1556 		return (0);
1557 	}
1558 
1559 	slot_printf(slot, "Tuning failed, using fixed sampling clock\n");
1560 	WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 & ~(SDHCI_CTRL2_EXEC_TUNING |
1561 	    SDHCI_CTRL2_SAMPLING_CLOCK));
1562 	sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1563 	return (EIO);
1564 }
1565 
1566 static void
1567 sdhci_retune(void *arg)
1568 {
1569 	struct sdhci_slot *slot = arg;
1570 
1571 	slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED;
1572 }
1573 
1574 #ifdef MMCCAM
1575 static void
1576 sdhci_req_done(struct sdhci_slot *slot)
1577 {
1578 	union ccb *ccb;
1579 
1580 	if (__predict_false(sdhci_debug > 1))
1581 		slot_printf(slot, "%s\n", __func__);
1582 	if (slot->ccb != NULL && slot->curcmd != NULL) {
1583 		callout_stop(&slot->timeout_callout);
1584 		ccb = slot->ccb;
1585 		slot->ccb = NULL;
1586 		slot->curcmd = NULL;
1587 
1588 		/* Tell CAM the request is finished */
1589 		struct ccb_mmcio *mmcio;
1590 		mmcio = &ccb->mmcio;
1591 
1592 		ccb->ccb_h.status =
1593 		    (mmcio->cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR);
1594 		xpt_done(ccb);
1595 	}
1596 }
1597 #else
1598 static void
1599 sdhci_req_done(struct sdhci_slot *slot)
1600 {
1601 	struct mmc_request *req;
1602 
1603 	if (slot->req != NULL && slot->curcmd != NULL) {
1604 		callout_stop(&slot->timeout_callout);
1605 		req = slot->req;
1606 		slot->req = NULL;
1607 		slot->curcmd = NULL;
1608 		req->done(req);
1609 	}
1610 }
1611 #endif
1612 
1613 static void
1614 sdhci_req_wakeup(struct mmc_request *req)
1615 {
1616 	struct sdhci_slot *slot;
1617 
1618 	slot = req->done_data;
1619 	req->flags |= MMC_REQ_DONE;
1620 	wakeup(req);
1621 }
1622 
1623 static void
1624 sdhci_timeout(void *arg)
1625 {
1626 	struct sdhci_slot *slot = arg;
1627 
1628 	if (slot->curcmd != NULL) {
1629 		slot_printf(slot, "Controller timeout\n");
1630 		sdhci_dumpregs(slot);
1631 		sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1632 		slot->curcmd->error = MMC_ERR_TIMEOUT;
1633 		sdhci_req_done(slot);
1634 	} else {
1635 		slot_printf(slot, "Spurious timeout - no active command\n");
1636 	}
1637 }
1638 
1639 static void
1640 sdhci_set_transfer_mode(struct sdhci_slot *slot, const struct mmc_data *data)
1641 {
1642 	uint16_t mode;
1643 
1644 	if (data == NULL)
1645 		return;
1646 
1647 	mode = SDHCI_TRNS_BLK_CNT_EN;
1648 	if (data->len > 512 || data->block_count > 1) {
1649 		mode |= SDHCI_TRNS_MULTI;
1650 		if (data->block_count == 0 && __predict_true(
1651 #ifdef MMCCAM
1652 		    slot->ccb->mmcio.stop.opcode == MMC_STOP_TRANSMISSION &&
1653 #else
1654 		    slot->req->stop != NULL &&
1655 #endif
1656 		    !(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)))
1657 			mode |= SDHCI_TRNS_ACMD12;
1658 	}
1659 	if (data->flags & MMC_DATA_READ)
1660 		mode |= SDHCI_TRNS_READ;
1661 	if (slot->flags & SDHCI_USE_DMA)
1662 		mode |= SDHCI_TRNS_DMA;
1663 
1664 	WR2(slot, SDHCI_TRANSFER_MODE, mode);
1665 }
1666 
1667 static void
1668 sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd)
1669 {
1670 	int flags, timeout;
1671 	uint32_t mask;
1672 
1673 	slot->curcmd = cmd;
1674 	slot->cmd_done = 0;
1675 
1676 	cmd->error = MMC_ERR_NONE;
1677 
1678 	/* This flags combination is not supported by controller. */
1679 	if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
1680 		slot_printf(slot, "Unsupported response type!\n");
1681 		cmd->error = MMC_ERR_FAILED;
1682 		sdhci_req_done(slot);
1683 		return;
1684 	}
1685 
1686 	/*
1687 	 * Do not issue command if there is no card, clock or power.
1688 	 * Controller will not detect timeout without clock active.
1689 	 */
1690 	if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) ||
1691 	    slot->power == 0 ||
1692 	    slot->clock == 0) {
1693 		slot_printf(slot,
1694 			    "Cannot issue a command (power=%d clock=%d)",
1695 			    slot->power, slot->clock);
1696 		cmd->error = MMC_ERR_FAILED;
1697 		sdhci_req_done(slot);
1698 		return;
1699 	}
1700 	/* Always wait for free CMD bus. */
1701 	mask = SDHCI_CMD_INHIBIT;
1702 	/* Wait for free DAT if we have data or busy signal. */
1703 	if (cmd->data != NULL || (cmd->flags & MMC_RSP_BUSY))
1704 		mask |= SDHCI_DAT_INHIBIT;
1705 	/*
1706 	 * We shouldn't wait for DAT for stop commands or CMD19/CMD21.  Note
1707 	 * that these latter are also special in that SDHCI_CMD_DATA should
1708 	 * be set below but no actual data is ever read from the controller.
1709 	*/
1710 #ifdef MMCCAM
1711 	if (cmd == &slot->ccb->mmcio.stop ||
1712 #else
1713 	if (cmd == slot->req->stop ||
1714 #endif
1715 	    __predict_false(cmd->opcode == MMC_SEND_TUNING_BLOCK ||
1716 	    cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))
1717 		mask &= ~SDHCI_DAT_INHIBIT;
1718 	/*
1719 	 *  Wait for bus no more then 250 ms.  Typically there will be no wait
1720 	 *  here at all, but when writing a crash dump we may be bypassing the
1721 	 *  host platform's interrupt handler, and in some cases that handler
1722 	 *  may be working around hardware quirks such as not respecting r1b
1723 	 *  busy indications.  In those cases, this wait-loop serves the purpose
1724 	 *  of waiting for the prior command and data transfers to be done, and
1725 	 *  SD cards are allowed to take up to 250ms for write and erase ops.
1726 	 *  (It's usually more like 20-30ms in the real world.)
1727 	 */
1728 	timeout = 250;
1729 	while (mask & RD4(slot, SDHCI_PRESENT_STATE)) {
1730 		if (timeout == 0) {
1731 			slot_printf(slot, "Controller never released "
1732 			    "inhibit bit(s).\n");
1733 			sdhci_dumpregs(slot);
1734 			cmd->error = MMC_ERR_FAILED;
1735 			sdhci_req_done(slot);
1736 			return;
1737 		}
1738 		timeout--;
1739 		DELAY(1000);
1740 	}
1741 
1742 	/* Prepare command flags. */
1743 	if (!(cmd->flags & MMC_RSP_PRESENT))
1744 		flags = SDHCI_CMD_RESP_NONE;
1745 	else if (cmd->flags & MMC_RSP_136)
1746 		flags = SDHCI_CMD_RESP_LONG;
1747 	else if (cmd->flags & MMC_RSP_BUSY)
1748 		flags = SDHCI_CMD_RESP_SHORT_BUSY;
1749 	else
1750 		flags = SDHCI_CMD_RESP_SHORT;
1751 	if (cmd->flags & MMC_RSP_CRC)
1752 		flags |= SDHCI_CMD_CRC;
1753 	if (cmd->flags & MMC_RSP_OPCODE)
1754 		flags |= SDHCI_CMD_INDEX;
1755 	if (cmd->data != NULL)
1756 		flags |= SDHCI_CMD_DATA;
1757 	if (cmd->opcode == MMC_STOP_TRANSMISSION)
1758 		flags |= SDHCI_CMD_TYPE_ABORT;
1759 	/* Prepare data. */
1760 	sdhci_start_data(slot, cmd->data);
1761 	/*
1762 	 * Interrupt aggregation: To reduce total number of interrupts
1763 	 * group response interrupt with data interrupt when possible.
1764 	 * If there going to be data interrupt, mask response one.
1765 	 */
1766 	if (slot->data_done == 0) {
1767 		WR4(slot, SDHCI_SIGNAL_ENABLE,
1768 		    slot->intmask &= ~SDHCI_INT_RESPONSE);
1769 	}
1770 	/* Set command argument. */
1771 	WR4(slot, SDHCI_ARGUMENT, cmd->arg);
1772 	/* Set data transfer mode. */
1773 	sdhci_set_transfer_mode(slot, cmd->data);
1774 	if (__predict_false(sdhci_debug > 1))
1775 		slot_printf(slot, "Starting command opcode %#04x flags %#04x\n",
1776 		    cmd->opcode, flags);
1777 
1778 	/* Start command. */
1779 	WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff));
1780 	/* Start timeout callout. */
1781 	callout_reset(&slot->timeout_callout, slot->timeout * hz,
1782 	    sdhci_timeout, slot);
1783 }
1784 
1785 static void
1786 sdhci_finish_command(struct sdhci_slot *slot)
1787 {
1788 	int i;
1789 	uint32_t val;
1790 	uint8_t extra;
1791 
1792 	if (__predict_false(sdhci_debug > 1))
1793 		slot_printf(slot, "%s: called, err %d flags %#04x\n",
1794 		    __func__, slot->curcmd->error, slot->curcmd->flags);
1795 	slot->cmd_done = 1;
1796 	/*
1797 	 * Interrupt aggregation: Restore command interrupt.
1798 	 * Main restore point for the case when command interrupt
1799 	 * happened first.
1800 	 */
1801 	if (__predict_true(slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK &&
1802 	    slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK_HS200))
1803 		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |=
1804 		    SDHCI_INT_RESPONSE);
1805 	/* In case of error - reset host and return. */
1806 	if (slot->curcmd->error) {
1807 		if (slot->curcmd->error == MMC_ERR_BADCRC)
1808 			slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
1809 		sdhci_reset(slot, SDHCI_RESET_CMD);
1810 		sdhci_reset(slot, SDHCI_RESET_DATA);
1811 		sdhci_start(slot);
1812 		return;
1813 	}
1814 	/* If command has response - fetch it. */
1815 	if (slot->curcmd->flags & MMC_RSP_PRESENT) {
1816 		if (slot->curcmd->flags & MMC_RSP_136) {
1817 			/* CRC is stripped so we need one byte shift. */
1818 			extra = 0;
1819 			for (i = 0; i < 4; i++) {
1820 				val = RD4(slot, SDHCI_RESPONSE + i * 4);
1821 				if (slot->quirks &
1822 				    SDHCI_QUIRK_DONT_SHIFT_RESPONSE)
1823 					slot->curcmd->resp[3 - i] = val;
1824 				else {
1825 					slot->curcmd->resp[3 - i] =
1826 					    (val << 8) | extra;
1827 					extra = val >> 24;
1828 				}
1829 			}
1830 		} else
1831 			slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE);
1832 	}
1833 	if (__predict_false(sdhci_debug > 1))
1834 		slot_printf(slot, "Resp: %#04x %#04x %#04x %#04x\n",
1835 		    slot->curcmd->resp[0], slot->curcmd->resp[1],
1836 		    slot->curcmd->resp[2], slot->curcmd->resp[3]);
1837 
1838 	/* If data ready - finish. */
1839 	if (slot->data_done)
1840 		sdhci_start(slot);
1841 }
1842 
1843 static void
1844 sdhci_start_data(struct sdhci_slot *slot, const struct mmc_data *data)
1845 {
1846 	uint32_t blkcnt, blksz, current_timeout, sdma_bbufsz, target_timeout;
1847 	uint8_t div;
1848 
1849 	if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
1850 		slot->data_done = 1;
1851 		return;
1852 	}
1853 
1854 	slot->data_done = 0;
1855 
1856 	/* Calculate and set data timeout.*/
1857 	/* XXX: We should have this from mmc layer, now assume 1 sec. */
1858 	if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) {
1859 		div = 0xE;
1860 	} else {
1861 		target_timeout = 1000000;
1862 		div = 0;
1863 		current_timeout = (1 << 13) * 1000 / slot->timeout_clk;
1864 		while (current_timeout < target_timeout && div < 0xE) {
1865 			++div;
1866 			current_timeout <<= 1;
1867 		}
1868 		/* Compensate for an off-by-one error in the CaFe chip.*/
1869 		if (div < 0xE &&
1870 		    (slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) {
1871 			++div;
1872 		}
1873 	}
1874 	WR1(slot, SDHCI_TIMEOUT_CONTROL, div);
1875 
1876 	if (data == NULL)
1877 		return;
1878 
1879 	/* Use DMA if possible. */
1880 	if ((slot->opt & SDHCI_HAVE_DMA))
1881 		slot->flags |= SDHCI_USE_DMA;
1882 	/* If data is small, broken DMA may return zeroes instead of data. */
1883 	if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) &&
1884 	    (data->len <= 512))
1885 		slot->flags &= ~SDHCI_USE_DMA;
1886 	/* Some controllers require even block sizes. */
1887 	if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) &&
1888 	    ((data->len) & 0x3))
1889 		slot->flags &= ~SDHCI_USE_DMA;
1890 	/* Load DMA buffer. */
1891 	if (slot->flags & SDHCI_USE_DMA) {
1892 		sdma_bbufsz = slot->sdma_bbufsz;
1893 		if (data->flags & MMC_DATA_READ)
1894 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
1895 			    BUS_DMASYNC_PREREAD);
1896 		else {
1897 			memcpy(slot->dmamem, data->data, ulmin(data->len,
1898 			    sdma_bbufsz));
1899 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
1900 			    BUS_DMASYNC_PREWRITE);
1901 		}
1902 		WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
1903 		/*
1904 		 * Interrupt aggregation: Mask border interrupt for the last
1905 		 * bounce buffer and unmask otherwise.
1906 		 */
1907 		if (data->len == sdma_bbufsz)
1908 			slot->intmask &= ~SDHCI_INT_DMA_END;
1909 		else
1910 			slot->intmask |= SDHCI_INT_DMA_END;
1911 		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
1912 	}
1913 	/* Current data offset for both PIO and DMA. */
1914 	slot->offset = 0;
1915 #ifdef MMCCAM
1916 	if (data->flags & MMC_DATA_BLOCK_SIZE) {
1917 		/* Set block size and request border interrupts on the SDMA boundary. */
1918 		blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, data->block_size);
1919 		blkcnt = data->block_count;
1920 		if (__predict_false(sdhci_debug > 0))
1921 			slot_printf(slot, "SDIO Custom block params: blksz: "
1922 			    "%#10x, blk cnt: %#10x\n", blksz, blkcnt);
1923 	} else
1924 #endif
1925 	{
1926 		/* Set block size and request border interrupts on the SDMA boundary. */
1927 		blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, ulmin(data->len, 512));
1928 		blkcnt = howmany(data->len, 512);
1929 	}
1930 
1931 	WR2(slot, SDHCI_BLOCK_SIZE, blksz);
1932 	WR2(slot, SDHCI_BLOCK_COUNT, blkcnt);
1933 	if (__predict_false(sdhci_debug > 1))
1934 		slot_printf(slot, "Blk size: 0x%08x | Blk cnt:  0x%08x\n",
1935 		    blksz, blkcnt);
1936 }
1937 
1938 void
1939 sdhci_finish_data(struct sdhci_slot *slot)
1940 {
1941 	struct mmc_data *data = slot->curcmd->data;
1942 	size_t left;
1943 
1944 	/* Interrupt aggregation: Restore command interrupt.
1945 	 * Auxiliary restore point for the case when data interrupt
1946 	 * happened first. */
1947 	if (!slot->cmd_done) {
1948 		WR4(slot, SDHCI_SIGNAL_ENABLE,
1949 		    slot->intmask |= SDHCI_INT_RESPONSE);
1950 	}
1951 	/* Unload rest of data from DMA buffer. */
1952 	if (!slot->data_done && (slot->flags & SDHCI_USE_DMA) &&
1953 	    slot->curcmd->data != NULL) {
1954 		if (data->flags & MMC_DATA_READ) {
1955 			left = data->len - slot->offset;
1956 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
1957 			    BUS_DMASYNC_POSTREAD);
1958 			memcpy((u_char*)data->data + slot->offset, slot->dmamem,
1959 			    ulmin(left, slot->sdma_bbufsz));
1960 		} else
1961 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
1962 			    BUS_DMASYNC_POSTWRITE);
1963 	}
1964 	slot->data_done = 1;
1965 	/* If there was error - reset the host. */
1966 	if (slot->curcmd->error) {
1967 		if (slot->curcmd->error == MMC_ERR_BADCRC)
1968 			slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
1969 		sdhci_reset(slot, SDHCI_RESET_CMD);
1970 		sdhci_reset(slot, SDHCI_RESET_DATA);
1971 		sdhci_start(slot);
1972 		return;
1973 	}
1974 	/* If we already have command response - finish. */
1975 	if (slot->cmd_done)
1976 		sdhci_start(slot);
1977 }
1978 
1979 #ifdef MMCCAM
1980 static void
1981 sdhci_start(struct sdhci_slot *slot)
1982 {
1983 	union ccb *ccb;
1984 	struct ccb_mmcio *mmcio;
1985 
1986 	ccb = slot->ccb;
1987 	if (ccb == NULL)
1988 		return;
1989 
1990 	mmcio = &ccb->mmcio;
1991 	if (!(slot->flags & CMD_STARTED)) {
1992 		slot->flags |= CMD_STARTED;
1993 		sdhci_start_command(slot, &mmcio->cmd);
1994 		return;
1995 	}
1996 
1997 	/*
1998 	 * Old stack doesn't use this!
1999 	 * Enabling this code causes significant performance degradation
2000 	 * and IRQ storms on BBB, Wandboard behaves fine.
2001 	 * Not using this code does no harm...
2002 	if (!(slot->flags & STOP_STARTED) && mmcio->stop.opcode != 0) {
2003 		slot->flags |= STOP_STARTED;
2004 		sdhci_start_command(slot, &mmcio->stop);
2005 		return;
2006 	}
2007 	*/
2008 	if (__predict_false(sdhci_debug > 1))
2009 		slot_printf(slot, "result: %d\n", mmcio->cmd.error);
2010 	if (mmcio->cmd.error == 0 &&
2011 	    (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) {
2012 		sdhci_reset(slot, SDHCI_RESET_CMD);
2013 		sdhci_reset(slot, SDHCI_RESET_DATA);
2014 	}
2015 
2016 	sdhci_req_done(slot);
2017 }
2018 #else
2019 static void
2020 sdhci_start(struct sdhci_slot *slot)
2021 {
2022 	const struct mmc_request *req;
2023 
2024 	req = slot->req;
2025 	if (req == NULL)
2026 		return;
2027 
2028 	if (!(slot->flags & CMD_STARTED)) {
2029 		slot->flags |= CMD_STARTED;
2030 		sdhci_start_command(slot, req->cmd);
2031 		return;
2032 	}
2033 	if ((slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP) &&
2034 	    !(slot->flags & STOP_STARTED) && req->stop) {
2035 		slot->flags |= STOP_STARTED;
2036 		sdhci_start_command(slot, req->stop);
2037 		return;
2038 	}
2039 	if (__predict_false(sdhci_debug > 1))
2040 		slot_printf(slot, "result: %d\n", req->cmd->error);
2041 	if (!req->cmd->error &&
2042 	    ((slot->curcmd == req->stop &&
2043 	     (slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) ||
2044 	     (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) {
2045 		sdhci_reset(slot, SDHCI_RESET_CMD);
2046 		sdhci_reset(slot, SDHCI_RESET_DATA);
2047 	}
2048 
2049 	sdhci_req_done(slot);
2050 }
2051 #endif
2052 
2053 int
2054 sdhci_generic_request(device_t brdev __unused, device_t reqdev,
2055     struct mmc_request *req)
2056 {
2057 	struct sdhci_slot *slot = device_get_ivars(reqdev);
2058 
2059 	SDHCI_LOCK(slot);
2060 	if (slot->req != NULL) {
2061 		SDHCI_UNLOCK(slot);
2062 		return (EBUSY);
2063 	}
2064 	if (__predict_false(sdhci_debug > 1)) {
2065 		slot_printf(slot,
2066 		    "CMD%u arg %#x flags %#x dlen %u dflags %#x\n",
2067 		    req->cmd->opcode, req->cmd->arg, req->cmd->flags,
2068 		    (req->cmd->data)?(u_int)req->cmd->data->len:0,
2069 		    (req->cmd->data)?req->cmd->data->flags:0);
2070 	}
2071 	slot->req = req;
2072 	slot->flags = 0;
2073 	sdhci_start(slot);
2074 	SDHCI_UNLOCK(slot);
2075 	if (dumping) {
2076 		while (slot->req != NULL) {
2077 			sdhci_generic_intr(slot);
2078 			DELAY(10);
2079 		}
2080 	}
2081 	return (0);
2082 }
2083 
2084 int
2085 sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev)
2086 {
2087 	struct sdhci_slot *slot = device_get_ivars(reqdev);
2088 	uint32_t val;
2089 
2090 	SDHCI_LOCK(slot);
2091 	val = RD4(slot, SDHCI_PRESENT_STATE);
2092 	SDHCI_UNLOCK(slot);
2093 	return (!(val & SDHCI_WRITE_PROTECT));
2094 }
2095 
2096 int
2097 sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev)
2098 {
2099 	struct sdhci_slot *slot = device_get_ivars(reqdev);
2100 	int err = 0;
2101 
2102 	SDHCI_LOCK(slot);
2103 	while (slot->bus_busy)
2104 		msleep(slot, &slot->mtx, 0, "sdhciah", 0);
2105 	slot->bus_busy++;
2106 	/* Activate led. */
2107 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED);
2108 	SDHCI_UNLOCK(slot);
2109 	return (err);
2110 }
2111 
2112 int
2113 sdhci_generic_release_host(device_t brdev __unused, device_t reqdev)
2114 {
2115 	struct sdhci_slot *slot = device_get_ivars(reqdev);
2116 
2117 	SDHCI_LOCK(slot);
2118 	/* Deactivate led. */
2119 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED);
2120 	slot->bus_busy--;
2121 	SDHCI_UNLOCK(slot);
2122 	wakeup(slot);
2123 	return (0);
2124 }
2125 
2126 static void
2127 sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask)
2128 {
2129 
2130 	if (!slot->curcmd) {
2131 		slot_printf(slot, "Got command interrupt 0x%08x, but "
2132 		    "there is no active command.\n", intmask);
2133 		sdhci_dumpregs(slot);
2134 		return;
2135 	}
2136 	if (intmask & SDHCI_INT_TIMEOUT)
2137 		slot->curcmd->error = MMC_ERR_TIMEOUT;
2138 	else if (intmask & SDHCI_INT_CRC)
2139 		slot->curcmd->error = MMC_ERR_BADCRC;
2140 	else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX))
2141 		slot->curcmd->error = MMC_ERR_FIFO;
2142 
2143 	sdhci_finish_command(slot);
2144 }
2145 
2146 static void
2147 sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask)
2148 {
2149 	struct mmc_data *data;
2150 	size_t left;
2151 	uint32_t sdma_bbufsz;
2152 
2153 	if (!slot->curcmd) {
2154 		slot_printf(slot, "Got data interrupt 0x%08x, but "
2155 		    "there is no active command.\n", intmask);
2156 		sdhci_dumpregs(slot);
2157 		return;
2158 	}
2159 	if (slot->curcmd->data == NULL &&
2160 	    (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
2161 		slot_printf(slot, "Got data interrupt 0x%08x, but "
2162 		    "there is no active data operation.\n",
2163 		    intmask);
2164 		sdhci_dumpregs(slot);
2165 		return;
2166 	}
2167 	if (intmask & SDHCI_INT_DATA_TIMEOUT)
2168 		slot->curcmd->error = MMC_ERR_TIMEOUT;
2169 	else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT))
2170 		slot->curcmd->error = MMC_ERR_BADCRC;
2171 	if (slot->curcmd->data == NULL &&
2172 	    (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
2173 	    SDHCI_INT_DMA_END))) {
2174 		slot_printf(slot, "Got data interrupt 0x%08x, but "
2175 		    "there is busy-only command.\n", intmask);
2176 		sdhci_dumpregs(slot);
2177 		slot->curcmd->error = MMC_ERR_INVALID;
2178 	}
2179 	if (slot->curcmd->error) {
2180 		/* No need to continue after any error. */
2181 		goto done;
2182 	}
2183 
2184 	/* Handle tuning completion interrupt. */
2185 	if (__predict_false((intmask & SDHCI_INT_DATA_AVAIL) &&
2186 	    (slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK ||
2187 	    slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))) {
2188 		slot->req->flags |= MMC_TUNE_DONE;
2189 		sdhci_finish_command(slot);
2190 		sdhci_finish_data(slot);
2191 		return;
2192 	}
2193 	/* Handle PIO interrupt. */
2194 	if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) {
2195 		if ((slot->opt & SDHCI_PLATFORM_TRANSFER) &&
2196 		    SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) {
2197 			SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot,
2198 			    &intmask);
2199 			slot->flags |= PLATFORM_DATA_STARTED;
2200 		} else
2201 			sdhci_transfer_pio(slot);
2202 	}
2203 	/* Handle DMA border. */
2204 	if (intmask & SDHCI_INT_DMA_END) {
2205 		data = slot->curcmd->data;
2206 		sdma_bbufsz = slot->sdma_bbufsz;
2207 
2208 		/* Unload DMA buffer ... */
2209 		left = data->len - slot->offset;
2210 		if (data->flags & MMC_DATA_READ) {
2211 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2212 			    BUS_DMASYNC_POSTREAD);
2213 			memcpy((u_char*)data->data + slot->offset, slot->dmamem,
2214 			    ulmin(left, sdma_bbufsz));
2215 		} else {
2216 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2217 			    BUS_DMASYNC_POSTWRITE);
2218 		}
2219 		/* ... and reload it again. */
2220 		slot->offset += sdma_bbufsz;
2221 		left = data->len - slot->offset;
2222 		if (data->flags & MMC_DATA_READ) {
2223 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2224 			    BUS_DMASYNC_PREREAD);
2225 		} else {
2226 			memcpy(slot->dmamem, (u_char*)data->data + slot->offset,
2227 			    ulmin(left, sdma_bbufsz));
2228 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2229 			    BUS_DMASYNC_PREWRITE);
2230 		}
2231 		/*
2232 		 * Interrupt aggregation: Mask border interrupt for the last
2233 		 * bounce buffer.
2234 		 */
2235 		if (left == sdma_bbufsz) {
2236 			slot->intmask &= ~SDHCI_INT_DMA_END;
2237 			WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
2238 		}
2239 		/* Restart DMA. */
2240 		WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
2241 	}
2242 	/* We have got all data. */
2243 	if (intmask & SDHCI_INT_DATA_END) {
2244 		if (slot->flags & PLATFORM_DATA_STARTED) {
2245 			slot->flags &= ~PLATFORM_DATA_STARTED;
2246 			SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
2247 		} else
2248 			sdhci_finish_data(slot);
2249 	}
2250 done:
2251 	if (slot->curcmd != NULL && slot->curcmd->error != 0) {
2252 		if (slot->flags & PLATFORM_DATA_STARTED) {
2253 			slot->flags &= ~PLATFORM_DATA_STARTED;
2254 			SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
2255 		} else
2256 			sdhci_finish_data(slot);
2257 	}
2258 }
2259 
2260 static void
2261 sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err)
2262 {
2263 
2264 	if (!slot->curcmd) {
2265 		slot_printf(slot, "Got AutoCMD12 error 0x%04x, but "
2266 		    "there is no active command.\n", acmd_err);
2267 		sdhci_dumpregs(slot);
2268 		return;
2269 	}
2270 	slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", acmd_err);
2271 	sdhci_reset(slot, SDHCI_RESET_CMD);
2272 }
2273 
2274 void
2275 sdhci_generic_intr(struct sdhci_slot *slot)
2276 {
2277 	uint32_t intmask, present;
2278 	uint16_t val16;
2279 
2280 	SDHCI_LOCK(slot);
2281 	/* Read slot interrupt status. */
2282 	intmask = RD4(slot, SDHCI_INT_STATUS);
2283 	if (intmask == 0 || intmask == 0xffffffff) {
2284 		SDHCI_UNLOCK(slot);
2285 		return;
2286 	}
2287 	if (__predict_false(sdhci_debug > 2))
2288 		slot_printf(slot, "Interrupt %#x\n", intmask);
2289 
2290 	/* Handle tuning error interrupt. */
2291 	if (__predict_false(intmask & SDHCI_INT_TUNEERR)) {
2292 		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_TUNEERR);
2293 		slot_printf(slot, "Tuning error indicated\n");
2294 		slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
2295 		if (slot->curcmd) {
2296 			slot->curcmd->error = MMC_ERR_BADCRC;
2297 			sdhci_finish_command(slot);
2298 		}
2299 	}
2300 	/* Handle re-tuning interrupt. */
2301 	if (__predict_false(intmask & SDHCI_INT_RETUNE))
2302 		slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED;
2303 	/* Handle card presence interrupts. */
2304 	if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
2305 		present = (intmask & SDHCI_INT_CARD_INSERT) != 0;
2306 		slot->intmask &=
2307 		    ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
2308 		slot->intmask |= present ? SDHCI_INT_CARD_REMOVE :
2309 		    SDHCI_INT_CARD_INSERT;
2310 		WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
2311 		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
2312 		WR4(slot, SDHCI_INT_STATUS, intmask &
2313 		    (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE));
2314 		sdhci_handle_card_present_locked(slot, present);
2315 	}
2316 	/* Handle command interrupts. */
2317 	if (intmask & SDHCI_INT_CMD_MASK) {
2318 		WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK);
2319 		sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK);
2320 	}
2321 	/* Handle data interrupts. */
2322 	if (intmask & SDHCI_INT_DATA_MASK) {
2323 		WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK);
2324 		/* Don't call data_irq in case of errored command. */
2325 		if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0)
2326 			sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK);
2327 	}
2328 	/* Handle AutoCMD12 error interrupt. */
2329 	if (intmask & SDHCI_INT_ACMD12ERR) {
2330 		/* Clearing SDHCI_INT_ACMD12ERR may clear SDHCI_ACMD12_ERR. */
2331 		val16 = RD2(slot, SDHCI_ACMD12_ERR);
2332 		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR);
2333 		sdhci_acmd_irq(slot, val16);
2334 	}
2335 	/* Handle bus power interrupt. */
2336 	if (intmask & SDHCI_INT_BUS_POWER) {
2337 		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER);
2338 		slot_printf(slot, "Card is consuming too much power!\n");
2339 	}
2340 	intmask &= ~(SDHCI_INT_ERROR | SDHCI_INT_TUNEERR | SDHCI_INT_RETUNE |
2341 	    SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK |
2342 	    SDHCI_INT_DATA_MASK | SDHCI_INT_ACMD12ERR | SDHCI_INT_BUS_POWER);
2343 	/* The rest is unknown. */
2344 	if (intmask) {
2345 		WR4(slot, SDHCI_INT_STATUS, intmask);
2346 		slot_printf(slot, "Unexpected interrupt 0x%08x.\n",
2347 		    intmask);
2348 		sdhci_dumpregs(slot);
2349 	}
2350 
2351 	SDHCI_UNLOCK(slot);
2352 }
2353 
2354 int
2355 sdhci_generic_read_ivar(device_t bus, device_t child, int which,
2356     uintptr_t *result)
2357 {
2358 	const struct sdhci_slot *slot = device_get_ivars(child);
2359 
2360 	switch (which) {
2361 	default:
2362 		return (EINVAL);
2363 	case MMCBR_IVAR_BUS_MODE:
2364 		*result = slot->host.ios.bus_mode;
2365 		break;
2366 	case MMCBR_IVAR_BUS_WIDTH:
2367 		*result = slot->host.ios.bus_width;
2368 		break;
2369 	case MMCBR_IVAR_CHIP_SELECT:
2370 		*result = slot->host.ios.chip_select;
2371 		break;
2372 	case MMCBR_IVAR_CLOCK:
2373 		*result = slot->host.ios.clock;
2374 		break;
2375 	case MMCBR_IVAR_F_MIN:
2376 		*result = slot->host.f_min;
2377 		break;
2378 	case MMCBR_IVAR_F_MAX:
2379 		*result = slot->host.f_max;
2380 		break;
2381 	case MMCBR_IVAR_HOST_OCR:
2382 		*result = slot->host.host_ocr;
2383 		break;
2384 	case MMCBR_IVAR_MODE:
2385 		*result = slot->host.mode;
2386 		break;
2387 	case MMCBR_IVAR_OCR:
2388 		*result = slot->host.ocr;
2389 		break;
2390 	case MMCBR_IVAR_POWER_MODE:
2391 		*result = slot->host.ios.power_mode;
2392 		break;
2393 	case MMCBR_IVAR_VDD:
2394 		*result = slot->host.ios.vdd;
2395 		break;
2396 	case MMCBR_IVAR_RETUNE_REQ:
2397 		if (slot->opt & SDHCI_TUNING_ENABLED) {
2398 			if (slot->retune_req & SDHCI_RETUNE_REQ_RESET) {
2399 				*result = retune_req_reset;
2400 				break;
2401 			}
2402 			if (slot->retune_req & SDHCI_RETUNE_REQ_NEEDED) {
2403 				*result = retune_req_normal;
2404 				break;
2405 			}
2406 		}
2407 		*result = retune_req_none;
2408 		break;
2409 	case MMCBR_IVAR_VCCQ:
2410 		*result = slot->host.ios.vccq;
2411 		break;
2412 	case MMCBR_IVAR_CAPS:
2413 		*result = slot->host.caps;
2414 		break;
2415 	case MMCBR_IVAR_TIMING:
2416 		*result = slot->host.ios.timing;
2417 		break;
2418 	case MMCBR_IVAR_MAX_DATA:
2419 		/*
2420 		 * Re-tuning modes 1 and 2 restrict the maximum data length
2421 		 * per read/write command to 4 MiB.
2422 		 */
2423 		if (slot->opt & SDHCI_TUNING_ENABLED &&
2424 		    (slot->retune_mode == SDHCI_RETUNE_MODE_1 ||
2425 		    slot->retune_mode == SDHCI_RETUNE_MODE_2)) {
2426 			*result = 4 * 1024 * 1024 / MMC_SECTOR_SIZE;
2427 			break;
2428 		}
2429 		*result = 65535;
2430 		break;
2431 	case MMCBR_IVAR_MAX_BUSY_TIMEOUT:
2432 		/*
2433 		 * Currently, sdhci_start_data() hardcodes 1 s for all CMDs.
2434 		 */
2435 		*result = 1000000;
2436 		break;
2437 	}
2438 	return (0);
2439 }
2440 
2441 int
2442 sdhci_generic_write_ivar(device_t bus, device_t child, int which,
2443     uintptr_t value)
2444 {
2445 	struct sdhci_slot *slot = device_get_ivars(child);
2446 	uint32_t clock, max_clock;
2447 	int i;
2448 
2449 	if (sdhci_debug > 1)
2450 		slot_printf(slot, "%s: var=%d\n", __func__, which);
2451 	switch (which) {
2452 	default:
2453 		return (EINVAL);
2454 	case MMCBR_IVAR_BUS_MODE:
2455 		slot->host.ios.bus_mode = value;
2456 		break;
2457 	case MMCBR_IVAR_BUS_WIDTH:
2458 		slot->host.ios.bus_width = value;
2459 		break;
2460 	case MMCBR_IVAR_CHIP_SELECT:
2461 		slot->host.ios.chip_select = value;
2462 		break;
2463 	case MMCBR_IVAR_CLOCK:
2464 		if (value > 0) {
2465 			max_clock = slot->max_clk;
2466 			clock = max_clock;
2467 
2468 			if (slot->version < SDHCI_SPEC_300) {
2469 				for (i = 0; i < SDHCI_200_MAX_DIVIDER;
2470 				    i <<= 1) {
2471 					if (clock <= value)
2472 						break;
2473 					clock >>= 1;
2474 				}
2475 			} else {
2476 				for (i = 0; i < SDHCI_300_MAX_DIVIDER;
2477 				    i += 2) {
2478 					if (clock <= value)
2479 						break;
2480 					clock = max_clock / (i + 2);
2481 				}
2482 			}
2483 
2484 			slot->host.ios.clock = clock;
2485 		} else
2486 			slot->host.ios.clock = 0;
2487 		break;
2488 	case MMCBR_IVAR_MODE:
2489 		slot->host.mode = value;
2490 		break;
2491 	case MMCBR_IVAR_OCR:
2492 		slot->host.ocr = value;
2493 		break;
2494 	case MMCBR_IVAR_POWER_MODE:
2495 		slot->host.ios.power_mode = value;
2496 		break;
2497 	case MMCBR_IVAR_VDD:
2498 		slot->host.ios.vdd = value;
2499 		break;
2500 	case MMCBR_IVAR_VCCQ:
2501 		slot->host.ios.vccq = value;
2502 		break;
2503 	case MMCBR_IVAR_TIMING:
2504 		slot->host.ios.timing = value;
2505 		break;
2506 	case MMCBR_IVAR_CAPS:
2507 	case MMCBR_IVAR_HOST_OCR:
2508 	case MMCBR_IVAR_F_MIN:
2509 	case MMCBR_IVAR_F_MAX:
2510 	case MMCBR_IVAR_MAX_DATA:
2511 	case MMCBR_IVAR_RETUNE_REQ:
2512 		return (EINVAL);
2513 	}
2514 	return (0);
2515 }
2516 
2517 #ifdef MMCCAM
2518 void
2519 sdhci_start_slot(struct sdhci_slot *slot)
2520 {
2521 
2522 	if ((slot->devq = cam_simq_alloc(1)) == NULL)
2523 		goto fail;
2524 
2525 	mtx_init(&slot->sim_mtx, "sdhcisim", NULL, MTX_DEF);
2526 	slot->sim = cam_sim_alloc_dev(sdhci_cam_action, sdhci_cam_poll,
2527 	    "sdhci_slot", slot, slot->bus,
2528 	    &slot->sim_mtx, 1, 1, slot->devq);
2529 
2530 	if (slot->sim == NULL) {
2531 		cam_simq_free(slot->devq);
2532 		slot_printf(slot, "cannot allocate CAM SIM\n");
2533 		goto fail;
2534 	}
2535 
2536 	mtx_lock(&slot->sim_mtx);
2537 	if (xpt_bus_register(slot->sim, slot->bus, 0) != 0) {
2538 		slot_printf(slot, "cannot register SCSI pass-through bus\n");
2539 		cam_sim_free(slot->sim, FALSE);
2540 		cam_simq_free(slot->devq);
2541 		mtx_unlock(&slot->sim_mtx);
2542 		goto fail;
2543 	}
2544 	mtx_unlock(&slot->sim_mtx);
2545 
2546 	/* End CAM-specific init */
2547 	slot->card_present = 0;
2548 	sdhci_card_task(slot, 0);
2549 	return;
2550 
2551 fail:
2552 	if (slot->sim != NULL) {
2553 		mtx_lock(&slot->sim_mtx);
2554 		xpt_bus_deregister(cam_sim_path(slot->sim));
2555 		cam_sim_free(slot->sim, FALSE);
2556 		mtx_unlock(&slot->sim_mtx);
2557 	}
2558 
2559 	if (slot->devq != NULL)
2560 		cam_simq_free(slot->devq);
2561 }
2562 
2563 void
2564 sdhci_cam_action(struct cam_sim *sim, union ccb *ccb)
2565 {
2566 	struct sdhci_slot *slot;
2567 
2568 	slot = cam_sim_softc(sim);
2569 	if (slot == NULL) {
2570 		ccb->ccb_h.status = CAM_SEL_TIMEOUT;
2571 		xpt_done(ccb);
2572 		return;
2573 	}
2574 
2575 	mtx_assert(&slot->sim_mtx, MA_OWNED);
2576 
2577 	switch (ccb->ccb_h.func_code) {
2578 	case XPT_PATH_INQ:
2579 		mmc_path_inq(&ccb->cpi, "Deglitch Networks", sim, MAXPHYS);
2580 		break;
2581 
2582 	case XPT_GET_TRAN_SETTINGS:
2583 	{
2584 		struct ccb_trans_settings *cts = &ccb->cts;
2585 		uint32_t max_data;
2586 
2587 		if (sdhci_debug > 1)
2588 			slot_printf(slot, "Got XPT_GET_TRAN_SETTINGS\n");
2589 
2590 		cts->protocol = PROTO_MMCSD;
2591 		cts->protocol_version = 1;
2592 		cts->transport = XPORT_MMCSD;
2593 		cts->transport_version = 1;
2594 		cts->xport_specific.valid = 0;
2595 		cts->proto_specific.mmc.host_ocr = slot->host.host_ocr;
2596 		cts->proto_specific.mmc.host_f_min = slot->host.f_min;
2597 		cts->proto_specific.mmc.host_f_max = slot->host.f_max;
2598 		cts->proto_specific.mmc.host_caps = slot->host.caps;
2599 		/*
2600 		 * Re-tuning modes 1 and 2 restrict the maximum data length
2601 		 * per read/write command to 4 MiB.
2602 		 */
2603 		if (slot->opt & SDHCI_TUNING_ENABLED &&
2604 		    (slot->retune_mode == SDHCI_RETUNE_MODE_1 ||
2605 		    slot->retune_mode == SDHCI_RETUNE_MODE_2)) {
2606 			max_data = 4 * 1024 * 1024 / MMC_SECTOR_SIZE;
2607 		} else {
2608 			max_data = 65535;
2609 		}
2610 		cts->proto_specific.mmc.host_max_data = max_data;
2611 
2612 		memcpy(&cts->proto_specific.mmc.ios, &slot->host.ios, sizeof(struct mmc_ios));
2613 		ccb->ccb_h.status = CAM_REQ_CMP;
2614 		break;
2615 	}
2616 	case XPT_SET_TRAN_SETTINGS:
2617 		if (sdhci_debug > 1)
2618 			slot_printf(slot, "Got XPT_SET_TRAN_SETTINGS\n");
2619 		sdhci_cam_settran_settings(slot, ccb);
2620 		ccb->ccb_h.status = CAM_REQ_CMP;
2621 		break;
2622 	case XPT_RESET_BUS:
2623 		if (sdhci_debug > 1)
2624 			slot_printf(slot, "Got XPT_RESET_BUS, ACK it...\n");
2625 		ccb->ccb_h.status = CAM_REQ_CMP;
2626 		break;
2627 	case XPT_MMC_IO:
2628 		/*
2629 		 * Here is the HW-dependent part of
2630 		 * sending the command to the underlying h/w
2631 		 * At some point in the future an interrupt comes.
2632 		 * Then the request will be marked as completed.
2633 		 */
2634 		if (__predict_false(sdhci_debug > 1))
2635 			slot_printf(slot, "Got XPT_MMC_IO\n");
2636 		ccb->ccb_h.status = CAM_REQ_INPROG;
2637 
2638 		sdhci_cam_request(cam_sim_softc(sim), ccb);
2639 		return;
2640 	default:
2641 		ccb->ccb_h.status = CAM_REQ_INVALID;
2642 		break;
2643 	}
2644 	xpt_done(ccb);
2645 	return;
2646 }
2647 
2648 void
2649 sdhci_cam_poll(struct cam_sim *sim)
2650 {
2651 	return;
2652 }
2653 
2654 static int
2655 sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot,
2656     int proposed_clock)
2657 {
2658 	int max_clock, clock, i;
2659 
2660 	if (proposed_clock == 0)
2661 		return 0;
2662 	max_clock = slot->max_clk;
2663 	clock = max_clock;
2664 
2665 	if (slot->version < SDHCI_SPEC_300) {
2666 		for (i = 0; i < SDHCI_200_MAX_DIVIDER; i <<= 1) {
2667 			if (clock <= proposed_clock)
2668 				break;
2669 			clock >>= 1;
2670 		}
2671 	} else {
2672 		for (i = 0; i < SDHCI_300_MAX_DIVIDER; i += 2) {
2673 			if (clock <= proposed_clock)
2674 				break;
2675 			clock = max_clock / (i + 2);
2676 		}
2677 	}
2678 	return clock;
2679 }
2680 
2681 static int
2682 sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb)
2683 {
2684 	struct mmc_ios *ios;
2685 	const struct mmc_ios *new_ios;
2686 	const struct ccb_trans_settings_mmc *cts;
2687 
2688 	ios = &slot->host.ios;
2689 	cts = &ccb->cts.proto_specific.mmc;
2690 	new_ios = &cts->ios;
2691 
2692 	/* Update only requested fields */
2693 	if (cts->ios_valid & MMC_CLK) {
2694 		ios->clock = sdhci_cam_get_possible_host_clock(slot, new_ios->clock);
2695 		slot_printf(slot, "Clock => %d\n", ios->clock);
2696 	}
2697 	if (cts->ios_valid & MMC_VDD) {
2698 		ios->vdd = new_ios->vdd;
2699 		slot_printf(slot, "VDD => %d\n", ios->vdd);
2700 	}
2701 	if (cts->ios_valid & MMC_CS) {
2702 		ios->chip_select = new_ios->chip_select;
2703 		slot_printf(slot, "CS => %d\n", ios->chip_select);
2704 	}
2705 	if (cts->ios_valid & MMC_BW) {
2706 		ios->bus_width = new_ios->bus_width;
2707 		slot_printf(slot, "Bus width => %d\n", ios->bus_width);
2708 	}
2709 	if (cts->ios_valid & MMC_PM) {
2710 		ios->power_mode = new_ios->power_mode;
2711 		slot_printf(slot, "Power mode => %d\n", ios->power_mode);
2712 	}
2713 	if (cts->ios_valid & MMC_BT) {
2714 		ios->timing = new_ios->timing;
2715 		slot_printf(slot, "Timing => %d\n", ios->timing);
2716 	}
2717 	if (cts->ios_valid & MMC_BM) {
2718 		ios->bus_mode = new_ios->bus_mode;
2719 		slot_printf(slot, "Bus mode => %d\n", ios->bus_mode);
2720 	}
2721 
2722 	/* XXX Provide a way to call a chip-specific IOS update, required for TI */
2723 	return (sdhci_cam_update_ios(slot));
2724 }
2725 
2726 static int
2727 sdhci_cam_update_ios(struct sdhci_slot *slot)
2728 {
2729 	struct mmc_ios *ios = &slot->host.ios;
2730 
2731 	slot_printf(slot, "%s: power_mode=%d, clk=%d, bus_width=%d, timing=%d\n",
2732 		    __func__, ios->power_mode, ios->clock, ios->bus_width, ios->timing);
2733 	SDHCI_LOCK(slot);
2734 	/* Do full reset on bus power down to clear from any state. */
2735 	if (ios->power_mode == power_off) {
2736 		WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
2737 		sdhci_init(slot);
2738 	}
2739 	/* Configure the bus. */
2740 	sdhci_set_clock(slot, ios->clock);
2741 	sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
2742 	if (ios->bus_width == bus_width_8) {
2743 		slot->hostctrl |= SDHCI_CTRL_8BITBUS;
2744 		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
2745 	} else if (ios->bus_width == bus_width_4) {
2746 		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
2747 		slot->hostctrl |= SDHCI_CTRL_4BITBUS;
2748 	} else if (ios->bus_width == bus_width_1) {
2749 		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
2750 		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
2751 	} else {
2752 		panic("Invalid bus width: %d", ios->bus_width);
2753 	}
2754 	if (ios->timing == bus_timing_hs &&
2755 	    !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
2756 		slot->hostctrl |= SDHCI_CTRL_HISPD;
2757 	else
2758 		slot->hostctrl &= ~SDHCI_CTRL_HISPD;
2759 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
2760 	/* Some controllers like reset after bus changes. */
2761 	if(slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
2762 		sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
2763 
2764 	SDHCI_UNLOCK(slot);
2765 	return (0);
2766 }
2767 
2768 static int
2769 sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb)
2770 {
2771 	const struct ccb_mmcio *mmcio;
2772 
2773 	mmcio = &ccb->mmcio;
2774 
2775 	SDHCI_LOCK(slot);
2776 /*	if (slot->req != NULL) {
2777 		SDHCI_UNLOCK(slot);
2778 		return (EBUSY);
2779 	}
2780 */
2781 	if (__predict_false(sdhci_debug > 1)) {
2782 		slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x "
2783 		    "blksz=%zu blkcnt=%zu\n",
2784 		    mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags,
2785 		    mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0,
2786 		    mmcio->cmd.data != NULL ? mmcio->cmd.data->flags : 0,
2787 		    mmcio->cmd.data != NULL ? mmcio->cmd.data->block_size : 0,
2788 		    mmcio->cmd.data != NULL ? mmcio->cmd.data->block_count : 0);
2789 	}
2790 	if (mmcio->cmd.data != NULL) {
2791 		if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0)
2792 			panic("data->len = %d, data->flags = %d -- something is b0rked",
2793 			    (int)mmcio->cmd.data->len, mmcio->cmd.data->flags);
2794 	}
2795 	slot->ccb = ccb;
2796 	slot->flags = 0;
2797 	sdhci_start(slot);
2798 	SDHCI_UNLOCK(slot);
2799 	if (dumping) {
2800 		while (slot->ccb != NULL) {
2801 			sdhci_generic_intr(slot);
2802 			DELAY(10);
2803 		}
2804 	}
2805 	return (0);
2806 }
2807 #endif /* MMCCAM */
2808 
2809 MODULE_VERSION(sdhci, SDHCI_VERSION);
2810