1 /*- 2 * Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org> 3 * Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bus.h> 33 #include <sys/callout.h> 34 #include <sys/conf.h> 35 #include <sys/kernel.h> 36 #include <sys/kobj.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/mutex.h> 41 #include <sys/resource.h> 42 #include <sys/rman.h> 43 #include <sys/sysctl.h> 44 #include <sys/taskqueue.h> 45 46 #include <machine/bus.h> 47 #include <machine/resource.h> 48 #include <machine/stdarg.h> 49 50 #include <dev/mmc/bridge.h> 51 #include <dev/mmc/mmcreg.h> 52 #include <dev/mmc/mmcbrvar.h> 53 54 #include <dev/sdhci/sdhci.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_debug.h> 59 #include <cam/cam_sim.h> 60 #include <cam/cam_xpt_sim.h> 61 62 #include "mmcbr_if.h" 63 #include "sdhci_if.h" 64 65 #include "opt_mmccam.h" 66 67 SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD, 0, "sdhci driver"); 68 69 static int sdhci_debug = 0; 70 SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RWTUN, &sdhci_debug, 0, 71 "Debug level"); 72 u_int sdhci_quirk_clear = 0; 73 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_clear, CTLFLAG_RWTUN, &sdhci_quirk_clear, 74 0, "Mask of quirks to clear"); 75 u_int sdhci_quirk_set = 0; 76 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_set, CTLFLAG_RWTUN, &sdhci_quirk_set, 0, 77 "Mask of quirks to set"); 78 79 #define RD1(slot, off) SDHCI_READ_1((slot)->bus, (slot), (off)) 80 #define RD2(slot, off) SDHCI_READ_2((slot)->bus, (slot), (off)) 81 #define RD4(slot, off) SDHCI_READ_4((slot)->bus, (slot), (off)) 82 #define RD_MULTI_4(slot, off, ptr, count) \ 83 SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count)) 84 85 #define WR1(slot, off, val) SDHCI_WRITE_1((slot)->bus, (slot), (off), (val)) 86 #define WR2(slot, off, val) SDHCI_WRITE_2((slot)->bus, (slot), (off), (val)) 87 #define WR4(slot, off, val) SDHCI_WRITE_4((slot)->bus, (slot), (off), (val)) 88 #define WR_MULTI_4(slot, off, ptr, count) \ 89 SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count)) 90 91 static void sdhci_card_poll(void *arg); 92 static void sdhci_card_task(void *arg, int pending); 93 static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset); 94 static void sdhci_req_wakeup(struct mmc_request *req); 95 static void sdhci_retune(void *arg); 96 static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock); 97 static void sdhci_start(struct sdhci_slot *slot); 98 static void sdhci_start_data(struct sdhci_slot *slot, struct mmc_data *data); 99 100 #ifdef MMCCAM 101 /* CAM-related */ 102 int sdhci_cam_get_possible_host_clock(struct sdhci_slot *slot, int proposed_clock); 103 static int sdhci_cam_update_ios(struct sdhci_slot *slot); 104 static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb); 105 static void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb); 106 static void sdhci_cam_poll(struct cam_sim *sim); 107 static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb); 108 #endif 109 110 /* helper routines */ 111 static void sdhci_dumpregs(struct sdhci_slot *slot); 112 static int slot_printf(struct sdhci_slot *slot, const char * fmt, ...) 113 __printflike(2, 3); 114 static uint32_t sdhci_tuning_intmask(struct sdhci_slot *slot); 115 116 #define SDHCI_LOCK(_slot) mtx_lock(&(_slot)->mtx) 117 #define SDHCI_UNLOCK(_slot) mtx_unlock(&(_slot)->mtx) 118 #define SDHCI_LOCK_INIT(_slot) \ 119 mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF) 120 #define SDHCI_LOCK_DESTROY(_slot) mtx_destroy(&_slot->mtx); 121 #define SDHCI_ASSERT_LOCKED(_slot) mtx_assert(&_slot->mtx, MA_OWNED); 122 #define SDHCI_ASSERT_UNLOCKED(_slot) mtx_assert(&_slot->mtx, MA_NOTOWNED); 123 124 #define SDHCI_DEFAULT_MAX_FREQ 50 125 126 #define SDHCI_200_MAX_DIVIDER 256 127 #define SDHCI_300_MAX_DIVIDER 2046 128 129 #define SDHCI_CARD_PRESENT_TICKS (hz / 5) 130 #define SDHCI_INSERT_DELAY_TICKS (hz / 2) 131 132 /* 133 * Broadcom BCM577xx Controller Constants 134 */ 135 /* Maximum divider supported by the default clock source. */ 136 #define BCM577XX_DEFAULT_MAX_DIVIDER 256 137 /* Alternative clock's base frequency. */ 138 #define BCM577XX_ALT_CLOCK_BASE 63000000 139 140 #define BCM577XX_HOST_CONTROL 0x198 141 #define BCM577XX_CTRL_CLKSEL_MASK 0xFFFFCFFF 142 #define BCM577XX_CTRL_CLKSEL_SHIFT 12 143 #define BCM577XX_CTRL_CLKSEL_DEFAULT 0x0 144 #define BCM577XX_CTRL_CLKSEL_64MHZ 0x3 145 146 static void 147 sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 148 { 149 150 if (error != 0) { 151 printf("getaddr: error %d\n", error); 152 return; 153 } 154 *(bus_addr_t *)arg = segs[0].ds_addr; 155 } 156 157 static int 158 slot_printf(struct sdhci_slot *slot, const char * fmt, ...) 159 { 160 va_list ap; 161 int retval; 162 163 retval = printf("%s-slot%d: ", 164 device_get_nameunit(slot->bus), slot->num); 165 166 va_start(ap, fmt); 167 retval += vprintf(fmt, ap); 168 va_end(ap); 169 return (retval); 170 } 171 172 static void 173 sdhci_dumpregs(struct sdhci_slot *slot) 174 { 175 176 slot_printf(slot, 177 "============== REGISTER DUMP ==============\n"); 178 179 slot_printf(slot, "Sys addr: 0x%08x | Version: 0x%08x\n", 180 RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION)); 181 slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n", 182 RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT)); 183 slot_printf(slot, "Argument: 0x%08x | Trn mode: 0x%08x\n", 184 RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE)); 185 slot_printf(slot, "Present: 0x%08x | Host ctl: 0x%08x\n", 186 RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL)); 187 slot_printf(slot, "Power: 0x%08x | Blk gap: 0x%08x\n", 188 RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL)); 189 slot_printf(slot, "Wake-up: 0x%08x | Clock: 0x%08x\n", 190 RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL)); 191 slot_printf(slot, "Timeout: 0x%08x | Int stat: 0x%08x\n", 192 RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS)); 193 slot_printf(slot, "Int enab: 0x%08x | Sig enab: 0x%08x\n", 194 RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE)); 195 slot_printf(slot, "AC12 err: 0x%08x | Host ctl2:0x%08x\n", 196 RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2)); 197 slot_printf(slot, "Caps: 0x%08x | Caps2: 0x%08x\n", 198 RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2)); 199 slot_printf(slot, "Max curr: 0x%08x | ADMA err: 0x%08x\n", 200 RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR)); 201 slot_printf(slot, "ADMA addr:0x%08x | Slot int: 0x%08x\n", 202 RD4(slot, SDHCI_ADMA_ADDRESS_LO), RD2(slot, SDHCI_SLOT_INT_STATUS)); 203 204 slot_printf(slot, 205 "===========================================\n"); 206 } 207 208 static void 209 sdhci_reset(struct sdhci_slot *slot, uint8_t mask) 210 { 211 int timeout; 212 uint32_t clock; 213 214 if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) { 215 if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot)) 216 return; 217 } 218 219 /* Some controllers need this kick or reset won't work. */ 220 if ((mask & SDHCI_RESET_ALL) == 0 && 221 (slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) { 222 /* This is to force an update */ 223 clock = slot->clock; 224 slot->clock = 0; 225 sdhci_set_clock(slot, clock); 226 } 227 228 if (mask & SDHCI_RESET_ALL) { 229 slot->clock = 0; 230 slot->power = 0; 231 } 232 233 WR1(slot, SDHCI_SOFTWARE_RESET, mask); 234 235 if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) { 236 /* 237 * Resets on TI OMAPs and AM335x are incompatible with SDHCI 238 * specification. The reset bit has internal propagation delay, 239 * so a fast read after write returns 0 even if reset process is 240 * in progress. The workaround is to poll for 1 before polling 241 * for 0. In the worst case, if we miss seeing it asserted the 242 * time we spent waiting is enough to ensure the reset finishes. 243 */ 244 timeout = 10000; 245 while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) { 246 if (timeout <= 0) 247 break; 248 timeout--; 249 DELAY(1); 250 } 251 } 252 253 /* Wait max 100 ms */ 254 timeout = 10000; 255 /* Controller clears the bits when it's done */ 256 while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) { 257 if (timeout <= 0) { 258 slot_printf(slot, "Reset 0x%x never completed.\n", 259 mask); 260 sdhci_dumpregs(slot); 261 return; 262 } 263 timeout--; 264 DELAY(10); 265 } 266 } 267 268 static uint32_t 269 sdhci_tuning_intmask(struct sdhci_slot *slot) 270 { 271 uint32_t intmask; 272 273 intmask = 0; 274 if (slot->opt & SDHCI_TUNING_SUPPORTED) { 275 intmask |= SDHCI_INT_TUNEERR; 276 if (slot->retune_mode == SDHCI_RETUNE_MODE_2 || 277 slot->retune_mode == SDHCI_RETUNE_MODE_3) 278 intmask |= SDHCI_INT_RETUNE; 279 } 280 return (intmask); 281 } 282 283 static void 284 sdhci_init(struct sdhci_slot *slot) 285 { 286 287 sdhci_reset(slot, SDHCI_RESET_ALL); 288 289 /* Enable interrupts. */ 290 slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | 291 SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX | 292 SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT | 293 SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | 294 SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE | 295 SDHCI_INT_ACMD12ERR; 296 297 if (!(slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) && 298 !(slot->opt & SDHCI_NON_REMOVABLE)) { 299 slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT; 300 } 301 302 WR4(slot, SDHCI_INT_ENABLE, slot->intmask | sdhci_tuning_intmask(slot)); 303 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 304 } 305 306 static void 307 sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock) 308 { 309 uint32_t clk_base; 310 uint32_t clk_sel; 311 uint32_t res; 312 uint16_t clk; 313 uint16_t div; 314 int timeout; 315 316 if (clock == slot->clock) 317 return; 318 slot->clock = clock; 319 320 /* Turn off the clock. */ 321 clk = RD2(slot, SDHCI_CLOCK_CONTROL); 322 WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN); 323 /* If no clock requested - leave it so. */ 324 if (clock == 0) 325 return; 326 327 /* Determine the clock base frequency */ 328 clk_base = slot->max_clk; 329 if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) { 330 clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) & 331 BCM577XX_CTRL_CLKSEL_MASK; 332 333 /* 334 * Select clock source appropriate for the requested frequency. 335 */ 336 if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) { 337 clk_base = BCM577XX_ALT_CLOCK_BASE; 338 clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ << 339 BCM577XX_CTRL_CLKSEL_SHIFT); 340 } else { 341 clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT << 342 BCM577XX_CTRL_CLKSEL_SHIFT); 343 } 344 345 WR2(slot, BCM577XX_HOST_CONTROL, clk_sel); 346 } 347 348 /* Recalculate timeout clock frequency based on the new sd clock. */ 349 if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) 350 slot->timeout_clk = slot->clock / 1000; 351 352 if (slot->version < SDHCI_SPEC_300) { 353 /* Looking for highest freq <= clock. */ 354 res = clk_base; 355 for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) { 356 if (res <= clock) 357 break; 358 res >>= 1; 359 } 360 /* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */ 361 div >>= 1; 362 } else { 363 /* Version 3.0 divisors are multiples of two up to 1023 * 2 */ 364 if (clock >= clk_base) 365 div = 0; 366 else { 367 for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) { 368 if ((clk_base / div) <= clock) 369 break; 370 } 371 } 372 div >>= 1; 373 } 374 375 if (bootverbose || sdhci_debug) 376 slot_printf(slot, "Divider %d for freq %d (base %d)\n", 377 div, clock, clk_base); 378 379 /* Now we have got divider, set it. */ 380 clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT; 381 clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK) 382 << SDHCI_DIVIDER_HI_SHIFT; 383 384 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 385 /* Enable clock. */ 386 clk |= SDHCI_CLOCK_INT_EN; 387 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 388 /* Wait up to 10 ms until it stabilize. */ 389 timeout = 10; 390 while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL)) 391 & SDHCI_CLOCK_INT_STABLE)) { 392 if (timeout == 0) { 393 slot_printf(slot, 394 "Internal clock never stabilised.\n"); 395 sdhci_dumpregs(slot); 396 return; 397 } 398 timeout--; 399 DELAY(1000); 400 } 401 /* Pass clock signal to the bus. */ 402 clk |= SDHCI_CLOCK_CARD_EN; 403 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 404 } 405 406 static void 407 sdhci_set_power(struct sdhci_slot *slot, u_char power) 408 { 409 int i; 410 uint8_t pwr; 411 412 if (slot->power == power) 413 return; 414 415 slot->power = power; 416 417 /* Turn off the power. */ 418 pwr = 0; 419 WR1(slot, SDHCI_POWER_CONTROL, pwr); 420 /* If power down requested - leave it so. */ 421 if (power == 0) 422 return; 423 /* Set voltage. */ 424 switch (1 << power) { 425 case MMC_OCR_LOW_VOLTAGE: 426 pwr |= SDHCI_POWER_180; 427 break; 428 case MMC_OCR_290_300: 429 case MMC_OCR_300_310: 430 pwr |= SDHCI_POWER_300; 431 break; 432 case MMC_OCR_320_330: 433 case MMC_OCR_330_340: 434 pwr |= SDHCI_POWER_330; 435 break; 436 } 437 WR1(slot, SDHCI_POWER_CONTROL, pwr); 438 /* 439 * Turn on VDD1 power. Note that at least some Intel controllers can 440 * fail to enable bus power on the first try after transiting from D3 441 * to D0, so we give them up to 2 ms. 442 */ 443 pwr |= SDHCI_POWER_ON; 444 for (i = 0; i < 20; i++) { 445 WR1(slot, SDHCI_POWER_CONTROL, pwr); 446 if (RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON) 447 break; 448 DELAY(100); 449 } 450 if (!(RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON)) 451 slot_printf(slot, "Bus power failed to enable"); 452 453 if (slot->quirks & SDHCI_QUIRK_INTEL_POWER_UP_RESET) { 454 WR1(slot, SDHCI_POWER_CONTROL, pwr | 0x10); 455 DELAY(10); 456 WR1(slot, SDHCI_POWER_CONTROL, pwr); 457 DELAY(300); 458 } 459 } 460 461 static void 462 sdhci_read_block_pio(struct sdhci_slot *slot) 463 { 464 uint32_t data; 465 char *buffer; 466 size_t left; 467 468 buffer = slot->curcmd->data->data; 469 buffer += slot->offset; 470 /* Transfer one block at a time. */ 471 left = min(512, slot->curcmd->data->len - slot->offset); 472 slot->offset += left; 473 474 /* If we are too fast, broken controllers return zeroes. */ 475 if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) 476 DELAY(10); 477 /* Handle unaligned and aligned buffer cases. */ 478 if ((intptr_t)buffer & 3) { 479 while (left > 3) { 480 data = RD4(slot, SDHCI_BUFFER); 481 buffer[0] = data; 482 buffer[1] = (data >> 8); 483 buffer[2] = (data >> 16); 484 buffer[3] = (data >> 24); 485 buffer += 4; 486 left -= 4; 487 } 488 } else { 489 RD_MULTI_4(slot, SDHCI_BUFFER, 490 (uint32_t *)buffer, left >> 2); 491 left &= 3; 492 } 493 /* Handle uneven size case. */ 494 if (left > 0) { 495 data = RD4(slot, SDHCI_BUFFER); 496 while (left > 0) { 497 *(buffer++) = data; 498 data >>= 8; 499 left--; 500 } 501 } 502 } 503 504 static void 505 sdhci_write_block_pio(struct sdhci_slot *slot) 506 { 507 uint32_t data = 0; 508 char *buffer; 509 size_t left; 510 511 buffer = slot->curcmd->data->data; 512 buffer += slot->offset; 513 /* Transfer one block at a time. */ 514 left = min(512, slot->curcmd->data->len - slot->offset); 515 slot->offset += left; 516 517 /* Handle unaligned and aligned buffer cases. */ 518 if ((intptr_t)buffer & 3) { 519 while (left > 3) { 520 data = buffer[0] + 521 (buffer[1] << 8) + 522 (buffer[2] << 16) + 523 (buffer[3] << 24); 524 left -= 4; 525 buffer += 4; 526 WR4(slot, SDHCI_BUFFER, data); 527 } 528 } else { 529 WR_MULTI_4(slot, SDHCI_BUFFER, 530 (uint32_t *)buffer, left >> 2); 531 left &= 3; 532 } 533 /* Handle uneven size case. */ 534 if (left > 0) { 535 while (left > 0) { 536 data <<= 8; 537 data += *(buffer++); 538 left--; 539 } 540 WR4(slot, SDHCI_BUFFER, data); 541 } 542 } 543 544 static void 545 sdhci_transfer_pio(struct sdhci_slot *slot) 546 { 547 548 /* Read as many blocks as possible. */ 549 if (slot->curcmd->data->flags & MMC_DATA_READ) { 550 while (RD4(slot, SDHCI_PRESENT_STATE) & 551 SDHCI_DATA_AVAILABLE) { 552 sdhci_read_block_pio(slot); 553 if (slot->offset >= slot->curcmd->data->len) 554 break; 555 } 556 } else { 557 while (RD4(slot, SDHCI_PRESENT_STATE) & 558 SDHCI_SPACE_AVAILABLE) { 559 sdhci_write_block_pio(slot); 560 if (slot->offset >= slot->curcmd->data->len) 561 break; 562 } 563 } 564 } 565 566 static void 567 sdhci_card_task(void *arg, int pending __unused) 568 { 569 struct sdhci_slot *slot = arg; 570 device_t d; 571 572 SDHCI_LOCK(slot); 573 if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) { 574 #ifdef MMCCAM 575 if (slot->card_present == 0) { 576 #else 577 if (slot->dev == NULL) { 578 #endif 579 /* If card is present - attach mmc bus. */ 580 if (bootverbose || sdhci_debug) 581 slot_printf(slot, "Card inserted\n"); 582 #ifdef MMCCAM 583 slot->card_present = 1; 584 union ccb *ccb; 585 uint32_t pathid; 586 pathid = cam_sim_path(slot->sim); 587 ccb = xpt_alloc_ccb_nowait(); 588 if (ccb == NULL) { 589 slot_printf(slot, "Unable to alloc CCB for rescan\n"); 590 SDHCI_UNLOCK(slot); 591 return; 592 } 593 594 /* 595 * We create a rescan request for BUS:0:0, since the card 596 * will be at lun 0. 597 */ 598 if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, 599 /* target */ 0, /* lun */ 0) != CAM_REQ_CMP) { 600 slot_printf(slot, "Unable to create path for rescan\n"); 601 SDHCI_UNLOCK(slot); 602 xpt_free_ccb(ccb); 603 return; 604 } 605 SDHCI_UNLOCK(slot); 606 xpt_rescan(ccb); 607 #else 608 d = slot->dev = device_add_child(slot->bus, "mmc", -1); 609 SDHCI_UNLOCK(slot); 610 if (d) { 611 device_set_ivars(d, slot); 612 (void)device_probe_and_attach(d); 613 } 614 #endif 615 } else 616 SDHCI_UNLOCK(slot); 617 } else { 618 #ifdef MMCCAM 619 if (slot->card_present == 1) { 620 #else 621 if (slot->dev != NULL) { 622 #endif 623 /* If no card present - detach mmc bus. */ 624 if (bootverbose || sdhci_debug) 625 slot_printf(slot, "Card removed\n"); 626 d = slot->dev; 627 slot->dev = NULL; 628 #ifdef MMCCAM 629 slot->card_present = 0; 630 union ccb *ccb; 631 uint32_t pathid; 632 pathid = cam_sim_path(slot->sim); 633 ccb = xpt_alloc_ccb_nowait(); 634 if (ccb == NULL) { 635 slot_printf(slot, "Unable to alloc CCB for rescan\n"); 636 SDHCI_UNLOCK(slot); 637 return; 638 } 639 640 /* 641 * We create a rescan request for BUS:0:0, since the card 642 * will be at lun 0. 643 */ 644 if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, 645 /* target */ 0, /* lun */ 0) != CAM_REQ_CMP) { 646 slot_printf(slot, "Unable to create path for rescan\n"); 647 SDHCI_UNLOCK(slot); 648 xpt_free_ccb(ccb); 649 return; 650 } 651 SDHCI_UNLOCK(slot); 652 xpt_rescan(ccb); 653 #else 654 slot->intmask &= ~sdhci_tuning_intmask(slot); 655 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 656 slot->opt &= ~SDHCI_TUNING_ENABLED; 657 SDHCI_UNLOCK(slot); 658 callout_drain(&slot->retune_callout); 659 device_delete_child(slot->bus, d); 660 #endif 661 } else 662 SDHCI_UNLOCK(slot); 663 } 664 } 665 666 static void 667 sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present) 668 { 669 bool was_present; 670 671 /* 672 * If there was no card and now there is one, schedule the task to 673 * create the child device after a short delay. The delay is to 674 * debounce the card insert (sometimes the card detect pin stabilizes 675 * before the other pins have made good contact). 676 * 677 * If there was a card present and now it's gone, immediately schedule 678 * the task to delete the child device. No debouncing -- gone is gone, 679 * because once power is removed, a full card re-init is needed, and 680 * that happens by deleting and recreating the child device. 681 */ 682 #ifdef MMCCAM 683 was_present = slot->card_present; 684 #else 685 was_present = slot->dev != NULL; 686 #endif 687 if (!was_present && is_present) { 688 taskqueue_enqueue_timeout(taskqueue_swi_giant, 689 &slot->card_delayed_task, -SDHCI_INSERT_DELAY_TICKS); 690 } else if (was_present && !is_present) { 691 taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task); 692 } 693 } 694 695 void 696 sdhci_handle_card_present(struct sdhci_slot *slot, bool is_present) 697 { 698 699 SDHCI_LOCK(slot); 700 sdhci_handle_card_present_locked(slot, is_present); 701 SDHCI_UNLOCK(slot); 702 } 703 704 static void 705 sdhci_card_poll(void *arg) 706 { 707 struct sdhci_slot *slot = arg; 708 709 sdhci_handle_card_present(slot, 710 SDHCI_GET_CARD_PRESENT(slot->bus, slot)); 711 callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS, 712 sdhci_card_poll, slot); 713 } 714 715 int 716 sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num) 717 { 718 kobjop_desc_t kobj_desc; 719 kobj_method_t *kobj_method; 720 uint32_t caps, caps2, freq, host_caps; 721 int err; 722 723 SDHCI_LOCK_INIT(slot); 724 725 slot->num = num; 726 slot->bus = dev; 727 728 /* Allocate DMA tag. */ 729 err = bus_dma_tag_create(bus_get_dma_tag(dev), 730 DMA_BLOCK_SIZE, 0, BUS_SPACE_MAXADDR_32BIT, 731 BUS_SPACE_MAXADDR, NULL, NULL, 732 DMA_BLOCK_SIZE, 1, DMA_BLOCK_SIZE, 733 BUS_DMA_ALLOCNOW, NULL, NULL, 734 &slot->dmatag); 735 if (err != 0) { 736 device_printf(dev, "Can't create DMA tag\n"); 737 SDHCI_LOCK_DESTROY(slot); 738 return (err); 739 } 740 /* Allocate DMA memory. */ 741 err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem, 742 BUS_DMA_NOWAIT, &slot->dmamap); 743 if (err != 0) { 744 device_printf(dev, "Can't alloc DMA memory\n"); 745 bus_dma_tag_destroy(slot->dmatag); 746 SDHCI_LOCK_DESTROY(slot); 747 return (err); 748 } 749 /* Map the memory. */ 750 err = bus_dmamap_load(slot->dmatag, slot->dmamap, 751 (void *)slot->dmamem, DMA_BLOCK_SIZE, 752 sdhci_getaddr, &slot->paddr, 0); 753 if (err != 0 || slot->paddr == 0) { 754 device_printf(dev, "Can't load DMA memory\n"); 755 bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); 756 bus_dma_tag_destroy(slot->dmatag); 757 SDHCI_LOCK_DESTROY(slot); 758 if (err) 759 return (err); 760 else 761 return (EFAULT); 762 } 763 764 slot->version = (RD2(slot, SDHCI_HOST_VERSION) 765 >> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK; 766 if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) { 767 caps = slot->caps; 768 caps2 = slot->caps2; 769 } else { 770 caps = RD4(slot, SDHCI_CAPABILITIES); 771 if (slot->version >= SDHCI_SPEC_300) 772 caps2 = RD4(slot, SDHCI_CAPABILITIES2); 773 else 774 caps2 = 0; 775 } 776 if (slot->version >= SDHCI_SPEC_300) { 777 if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE && 778 (caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) { 779 device_printf(dev, 780 "Driver doesn't support shared bus slots\n"); 781 bus_dmamap_unload(slot->dmatag, slot->dmamap); 782 bus_dmamem_free(slot->dmatag, slot->dmamem, 783 slot->dmamap); 784 bus_dma_tag_destroy(slot->dmatag); 785 SDHCI_LOCK_DESTROY(slot); 786 return (ENXIO); 787 } else if ((caps & SDHCI_SLOTTYPE_MASK) == 788 SDHCI_SLOTTYPE_EMBEDDED) { 789 slot->opt |= SDHCI_SLOT_EMBEDDED | SDHCI_NON_REMOVABLE; 790 } 791 } 792 /* Calculate base clock frequency. */ 793 if (slot->version >= SDHCI_SPEC_300) 794 freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >> 795 SDHCI_CLOCK_BASE_SHIFT; 796 else 797 freq = (caps & SDHCI_CLOCK_BASE_MASK) >> 798 SDHCI_CLOCK_BASE_SHIFT; 799 if (freq != 0) 800 slot->max_clk = freq * 1000000; 801 /* 802 * If the frequency wasn't in the capabilities and the hardware driver 803 * hasn't already set max_clk we're probably not going to work right 804 * with an assumption, so complain about it. 805 */ 806 if (slot->max_clk == 0) { 807 slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000; 808 device_printf(dev, "Hardware doesn't specify base clock " 809 "frequency, using %dMHz as default.\n", 810 SDHCI_DEFAULT_MAX_FREQ); 811 } 812 /* Calculate/set timeout clock frequency. */ 813 if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) { 814 slot->timeout_clk = slot->max_clk / 1000; 815 } else if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_1MHZ) { 816 slot->timeout_clk = 1000; 817 } else { 818 slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >> 819 SDHCI_TIMEOUT_CLK_SHIFT; 820 if (caps & SDHCI_TIMEOUT_CLK_UNIT) 821 slot->timeout_clk *= 1000; 822 } 823 /* 824 * If the frequency wasn't in the capabilities and the hardware driver 825 * hasn't already set timeout_clk we'll probably work okay using the 826 * max timeout, but still mention it. 827 */ 828 if (slot->timeout_clk == 0) { 829 device_printf(dev, "Hardware doesn't specify timeout clock " 830 "frequency, setting BROKEN_TIMEOUT quirk.\n"); 831 slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; 832 } 833 834 slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot); 835 slot->host.f_max = slot->max_clk; 836 slot->host.host_ocr = 0; 837 if (caps & SDHCI_CAN_VDD_330) 838 slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340; 839 if (caps & SDHCI_CAN_VDD_300) 840 slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310; 841 /* 1.8V VDD is not supposed to be used for removable cards. */ 842 if ((caps & SDHCI_CAN_VDD_180) && (slot->opt & SDHCI_SLOT_EMBEDDED)) 843 slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE; 844 if (slot->host.host_ocr == 0) { 845 device_printf(dev, "Hardware doesn't report any " 846 "support voltages.\n"); 847 } 848 849 host_caps = MMC_CAP_4_BIT_DATA; 850 if (caps & SDHCI_CAN_DO_8BITBUS) 851 host_caps |= MMC_CAP_8_BIT_DATA; 852 if (caps & SDHCI_CAN_DO_HISPD) 853 host_caps |= MMC_CAP_HSPEED; 854 if (slot->quirks & SDHCI_QUIRK_BOOT_NOACC) 855 host_caps |= MMC_CAP_BOOT_NOACC; 856 if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY) 857 host_caps |= MMC_CAP_WAIT_WHILE_BUSY; 858 859 /* Determine supported UHS-I and eMMC modes. */ 860 if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50)) 861 host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25; 862 if (caps2 & SDHCI_CAN_SDR104) { 863 host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50; 864 if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200)) 865 host_caps |= MMC_CAP_MMC_HS200; 866 } else if (caps2 & SDHCI_CAN_SDR50) 867 host_caps |= MMC_CAP_UHS_SDR50; 868 if (caps2 & SDHCI_CAN_DDR50 && 869 !(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50)) 870 host_caps |= MMC_CAP_UHS_DDR50; 871 if (slot->quirks & SDHCI_QUIRK_MMC_DDR52) 872 host_caps |= MMC_CAP_MMC_DDR52; 873 if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 && 874 caps2 & SDHCI_CAN_MMC_HS400) 875 host_caps |= MMC_CAP_MMC_HS400; 876 877 /* 878 * Disable UHS-I and eMMC modes if the set_uhs_timing method is the 879 * default NULL implementation. 880 */ 881 kobj_desc = &sdhci_set_uhs_timing_desc; 882 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 883 kobj_desc); 884 if (kobj_method == &kobj_desc->deflt) 885 host_caps &= ~(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 886 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | 887 MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400); 888 889 #define SDHCI_CAP_MODES_TUNING(caps2) \ 890 (((caps2) & SDHCI_TUNE_SDR50 ? MMC_CAP_UHS_SDR50 : 0) | \ 891 MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_HS200 | \ 892 MMC_CAP_MMC_HS400) 893 894 /* 895 * Disable UHS-I and eMMC modes that require (re-)tuning if either 896 * the tune or re-tune method is the default NULL implementation. 897 */ 898 kobj_desc = &mmcbr_tune_desc; 899 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 900 kobj_desc); 901 if (kobj_method == &kobj_desc->deflt) 902 goto no_tuning; 903 kobj_desc = &mmcbr_retune_desc; 904 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 905 kobj_desc); 906 if (kobj_method == &kobj_desc->deflt) { 907 no_tuning: 908 host_caps &= ~(SDHCI_CAP_MODES_TUNING(caps2)); 909 } 910 911 /* Allocate tuning structures and determine tuning parameters. */ 912 if (host_caps & SDHCI_CAP_MODES_TUNING(caps2)) { 913 slot->opt |= SDHCI_TUNING_SUPPORTED; 914 slot->tune_req = malloc(sizeof(*slot->tune_req), M_DEVBUF, 915 M_WAITOK); 916 slot->tune_cmd = malloc(sizeof(*slot->tune_cmd), M_DEVBUF, 917 M_WAITOK); 918 slot->tune_data = malloc(sizeof(*slot->tune_data), M_DEVBUF, 919 M_WAITOK); 920 if (caps2 & SDHCI_TUNE_SDR50) 921 slot->opt |= SDHCI_SDR50_NEEDS_TUNING; 922 slot->retune_mode = (caps2 & SDHCI_RETUNE_MODES_MASK) >> 923 SDHCI_RETUNE_MODES_SHIFT; 924 if (slot->retune_mode == SDHCI_RETUNE_MODE_1) { 925 slot->retune_count = (caps2 & SDHCI_RETUNE_CNT_MASK) >> 926 SDHCI_RETUNE_CNT_SHIFT; 927 if (slot->retune_count > 0xb) { 928 device_printf(dev, "Unknown re-tuning count " 929 "%x, using 1 sec\n", slot->retune_count); 930 slot->retune_count = 1; 931 } else if (slot->retune_count != 0) 932 slot->retune_count = 933 1 << (slot->retune_count - 1); 934 } 935 } 936 937 #undef SDHCI_CAP_MODES_TUNING 938 939 /* Determine supported VCCQ signaling levels. */ 940 host_caps |= MMC_CAP_SIGNALING_330; 941 if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 942 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | 943 MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 | 944 MMC_CAP_MMC_HS400_180)) 945 host_caps |= MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180; 946 947 /* 948 * Disable 1.2 V and 1.8 V signaling if the switch_vccq method is the 949 * default NULL implementation. Disable 1.2 V support if it's the 950 * generic SDHCI implementation. 951 */ 952 kobj_desc = &mmcbr_switch_vccq_desc; 953 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 954 kobj_desc); 955 if (kobj_method == &kobj_desc->deflt) 956 host_caps &= ~(MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180); 957 else if (kobj_method->func == (kobjop_t)sdhci_generic_switch_vccq) 958 host_caps &= ~MMC_CAP_SIGNALING_120; 959 960 /* Determine supported driver types (type B is always mandatory). */ 961 if (caps2 & SDHCI_CAN_DRIVE_TYPE_A) 962 host_caps |= MMC_CAP_DRIVER_TYPE_A; 963 if (caps2 & SDHCI_CAN_DRIVE_TYPE_C) 964 host_caps |= MMC_CAP_DRIVER_TYPE_C; 965 if (caps2 & SDHCI_CAN_DRIVE_TYPE_D) 966 host_caps |= MMC_CAP_DRIVER_TYPE_D; 967 slot->host.caps = host_caps; 968 969 /* Decide if we have usable DMA. */ 970 if (caps & SDHCI_CAN_DO_DMA) 971 slot->opt |= SDHCI_HAVE_DMA; 972 973 if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA) 974 slot->opt &= ~SDHCI_HAVE_DMA; 975 if (slot->quirks & SDHCI_QUIRK_FORCE_DMA) 976 slot->opt |= SDHCI_HAVE_DMA; 977 if (slot->quirks & SDHCI_QUIRK_ALL_SLOTS_NON_REMOVABLE) 978 slot->opt |= SDHCI_NON_REMOVABLE; 979 980 /* 981 * Use platform-provided transfer backend 982 * with PIO as a fallback mechanism 983 */ 984 if (slot->opt & SDHCI_PLATFORM_TRANSFER) 985 slot->opt &= ~SDHCI_HAVE_DMA; 986 987 if (bootverbose || sdhci_debug) { 988 slot_printf(slot, 989 "%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s %s\n", 990 slot->max_clk / 1000000, 991 (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "", 992 (host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" : 993 ((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"), 994 (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "", 995 (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "", 996 ((caps & SDHCI_CAN_VDD_180) && 997 (slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "", 998 (host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "", 999 (host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "", 1000 (host_caps & MMC_CAP_DRIVER_TYPE_A) ? "A" : "", 1001 (host_caps & MMC_CAP_DRIVER_TYPE_C) ? "C" : "", 1002 (host_caps & MMC_CAP_DRIVER_TYPE_D) ? "D" : "", 1003 (slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO", 1004 (slot->opt & SDHCI_SLOT_EMBEDDED) ? "embedded" : 1005 (slot->opt & SDHCI_NON_REMOVABLE) ? "non-removable" : 1006 "removable"); 1007 if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | 1008 MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) 1009 slot_printf(slot, "eMMC:%s%s%s%s\n", 1010 (host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "", 1011 (host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "", 1012 (host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "", 1013 ((host_caps & 1014 (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) == 1015 (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ? 1016 " HS400ES" : ""); 1017 if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 1018 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104)) 1019 slot_printf(slot, "UHS-I:%s%s%s%s%s\n", 1020 (host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "", 1021 (host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "", 1022 (host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "", 1023 (host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "", 1024 (host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : ""); 1025 if (slot->opt & SDHCI_TUNING_SUPPORTED) 1026 slot_printf(slot, "Re-tuning count %d secs, mode %d\n", 1027 slot->retune_count, slot->retune_mode + 1); 1028 sdhci_dumpregs(slot); 1029 } 1030 1031 slot->timeout = 10; 1032 SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus), 1033 SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO, 1034 "timeout", CTLFLAG_RW, &slot->timeout, 0, 1035 "Maximum timeout for SDHCI transfers (in secs)"); 1036 TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot); 1037 TIMEOUT_TASK_INIT(taskqueue_swi_giant, &slot->card_delayed_task, 0, 1038 sdhci_card_task, slot); 1039 callout_init(&slot->card_poll_callout, 1); 1040 callout_init_mtx(&slot->timeout_callout, &slot->mtx, 0); 1041 callout_init_mtx(&slot->retune_callout, &slot->mtx, 0); 1042 1043 if ((slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) && 1044 !(slot->opt & SDHCI_NON_REMOVABLE)) { 1045 callout_reset(&slot->card_poll_callout, 1046 SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot); 1047 } 1048 1049 sdhci_init(slot); 1050 1051 return (0); 1052 } 1053 1054 void 1055 sdhci_start_slot(struct sdhci_slot *slot) 1056 { 1057 1058 sdhci_card_task(slot, 0); 1059 } 1060 1061 int 1062 sdhci_cleanup_slot(struct sdhci_slot *slot) 1063 { 1064 device_t d; 1065 1066 callout_drain(&slot->timeout_callout); 1067 callout_drain(&slot->card_poll_callout); 1068 callout_drain(&slot->retune_callout); 1069 taskqueue_drain(taskqueue_swi_giant, &slot->card_task); 1070 taskqueue_drain_timeout(taskqueue_swi_giant, &slot->card_delayed_task); 1071 1072 SDHCI_LOCK(slot); 1073 d = slot->dev; 1074 slot->dev = NULL; 1075 SDHCI_UNLOCK(slot); 1076 if (d != NULL) 1077 device_delete_child(slot->bus, d); 1078 1079 SDHCI_LOCK(slot); 1080 sdhci_reset(slot, SDHCI_RESET_ALL); 1081 SDHCI_UNLOCK(slot); 1082 bus_dmamap_unload(slot->dmatag, slot->dmamap); 1083 bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); 1084 bus_dma_tag_destroy(slot->dmatag); 1085 if (slot->opt & SDHCI_TUNING_SUPPORTED) { 1086 free(slot->tune_req, M_DEVBUF); 1087 free(slot->tune_cmd, M_DEVBUF); 1088 free(slot->tune_data, M_DEVBUF); 1089 } 1090 1091 SDHCI_LOCK_DESTROY(slot); 1092 1093 return (0); 1094 } 1095 1096 int 1097 sdhci_generic_suspend(struct sdhci_slot *slot) 1098 { 1099 1100 /* 1101 * We expect the MMC layer to issue initial tuning after resume. 1102 * Otherwise, we'd need to indicate re-tuning including circuit reset 1103 * being required at least for re-tuning modes 1 and 2 ourselves. 1104 */ 1105 callout_drain(&slot->retune_callout); 1106 SDHCI_LOCK(slot); 1107 slot->opt &= ~SDHCI_TUNING_ENABLED; 1108 sdhci_reset(slot, SDHCI_RESET_ALL); 1109 SDHCI_UNLOCK(slot); 1110 1111 return (0); 1112 } 1113 1114 int 1115 sdhci_generic_resume(struct sdhci_slot *slot) 1116 { 1117 1118 SDHCI_LOCK(slot); 1119 sdhci_init(slot); 1120 SDHCI_UNLOCK(slot); 1121 1122 return (0); 1123 } 1124 1125 uint32_t 1126 sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot) 1127 { 1128 1129 if (slot->version >= SDHCI_SPEC_300) 1130 return (slot->max_clk / SDHCI_300_MAX_DIVIDER); 1131 else 1132 return (slot->max_clk / SDHCI_200_MAX_DIVIDER); 1133 } 1134 1135 bool 1136 sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot) 1137 { 1138 1139 if (slot->opt & SDHCI_NON_REMOVABLE) 1140 return true; 1141 1142 return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT); 1143 } 1144 1145 void 1146 sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot) 1147 { 1148 struct mmc_ios *ios; 1149 uint16_t hostctrl2; 1150 1151 if (slot->version < SDHCI_SPEC_300) 1152 return; 1153 1154 SDHCI_ASSERT_LOCKED(slot); 1155 ios = &slot->host.ios; 1156 sdhci_set_clock(slot, 0); 1157 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1158 hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK; 1159 if (ios->clock > SD_SDR50_MAX) { 1160 if (ios->timing == bus_timing_mmc_hs400 || 1161 ios->timing == bus_timing_mmc_hs400es) 1162 hostctrl2 |= SDHCI_CTRL2_MMC_HS400; 1163 else 1164 hostctrl2 |= SDHCI_CTRL2_UHS_SDR104; 1165 } 1166 else if (ios->clock > SD_SDR25_MAX) 1167 hostctrl2 |= SDHCI_CTRL2_UHS_SDR50; 1168 else if (ios->clock > SD_SDR12_MAX) { 1169 if (ios->timing == bus_timing_uhs_ddr50 || 1170 ios->timing == bus_timing_mmc_ddr52) 1171 hostctrl2 |= SDHCI_CTRL2_UHS_DDR50; 1172 else 1173 hostctrl2 |= SDHCI_CTRL2_UHS_SDR25; 1174 } else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY) 1175 hostctrl2 |= SDHCI_CTRL2_UHS_SDR12; 1176 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1177 sdhci_set_clock(slot, ios->clock); 1178 } 1179 1180 int 1181 sdhci_generic_update_ios(device_t brdev, device_t reqdev) 1182 { 1183 struct sdhci_slot *slot = device_get_ivars(reqdev); 1184 struct mmc_ios *ios = &slot->host.ios; 1185 1186 SDHCI_LOCK(slot); 1187 /* Do full reset on bus power down to clear from any state. */ 1188 if (ios->power_mode == power_off) { 1189 WR4(slot, SDHCI_SIGNAL_ENABLE, 0); 1190 sdhci_init(slot); 1191 } 1192 /* Configure the bus. */ 1193 sdhci_set_clock(slot, ios->clock); 1194 sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd); 1195 if (ios->bus_width == bus_width_8) { 1196 slot->hostctrl |= SDHCI_CTRL_8BITBUS; 1197 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 1198 } else if (ios->bus_width == bus_width_4) { 1199 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 1200 slot->hostctrl |= SDHCI_CTRL_4BITBUS; 1201 } else if (ios->bus_width == bus_width_1) { 1202 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 1203 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 1204 } else { 1205 panic("Invalid bus width: %d", ios->bus_width); 1206 } 1207 if (ios->clock > SD_SDR12_MAX && 1208 !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT)) 1209 slot->hostctrl |= SDHCI_CTRL_HISPD; 1210 else 1211 slot->hostctrl &= ~SDHCI_CTRL_HISPD; 1212 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); 1213 SDHCI_SET_UHS_TIMING(brdev, slot); 1214 /* Some controllers like reset after bus changes. */ 1215 if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS) 1216 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1217 1218 SDHCI_UNLOCK(slot); 1219 return (0); 1220 } 1221 1222 int 1223 sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev) 1224 { 1225 struct sdhci_slot *slot = device_get_ivars(reqdev); 1226 enum mmc_vccq vccq; 1227 int err; 1228 uint16_t hostctrl2; 1229 1230 if (slot->version < SDHCI_SPEC_300) 1231 return (0); 1232 1233 err = 0; 1234 vccq = slot->host.ios.vccq; 1235 SDHCI_LOCK(slot); 1236 sdhci_set_clock(slot, 0); 1237 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1238 switch (vccq) { 1239 case vccq_330: 1240 if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE)) 1241 goto done; 1242 hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE; 1243 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1244 DELAY(5000); 1245 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1246 if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE)) 1247 goto done; 1248 err = EAGAIN; 1249 break; 1250 case vccq_180: 1251 if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) { 1252 err = EINVAL; 1253 goto done; 1254 } 1255 if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE) 1256 goto done; 1257 hostctrl2 |= SDHCI_CTRL2_S18_ENABLE; 1258 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1259 DELAY(5000); 1260 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1261 if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE) 1262 goto done; 1263 err = EAGAIN; 1264 break; 1265 default: 1266 slot_printf(slot, 1267 "Attempt to set unsupported signaling voltage\n"); 1268 err = EINVAL; 1269 break; 1270 } 1271 done: 1272 sdhci_set_clock(slot, slot->host.ios.clock); 1273 SDHCI_UNLOCK(slot); 1274 return (err); 1275 } 1276 1277 int 1278 sdhci_generic_tune(device_t brdev __unused, device_t reqdev, bool hs400) 1279 { 1280 struct sdhci_slot *slot = device_get_ivars(reqdev); 1281 struct mmc_ios *ios = &slot->host.ios; 1282 struct mmc_command *tune_cmd; 1283 struct mmc_data *tune_data; 1284 uint32_t opcode; 1285 int err; 1286 1287 if (!(slot->opt & SDHCI_TUNING_SUPPORTED)) 1288 return (0); 1289 1290 slot->retune_ticks = slot->retune_count * hz; 1291 opcode = MMC_SEND_TUNING_BLOCK; 1292 SDHCI_LOCK(slot); 1293 switch (ios->timing) { 1294 case bus_timing_mmc_hs400: 1295 slot_printf(slot, "HS400 must be tuned in HS200 mode\n"); 1296 SDHCI_UNLOCK(slot); 1297 return (EINVAL); 1298 case bus_timing_mmc_hs200: 1299 /* 1300 * In HS400 mode, controllers use the data strobe line to 1301 * latch data from the devices so periodic re-tuning isn't 1302 * expected to be required. 1303 */ 1304 if (hs400) 1305 slot->retune_ticks = 0; 1306 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1307 break; 1308 case bus_timing_uhs_ddr50: 1309 case bus_timing_uhs_sdr104: 1310 break; 1311 case bus_timing_uhs_sdr50: 1312 if (slot->opt & SDHCI_SDR50_NEEDS_TUNING) 1313 break; 1314 /* FALLTHROUGH */ 1315 default: 1316 SDHCI_UNLOCK(slot); 1317 return (0); 1318 } 1319 1320 tune_cmd = slot->tune_cmd; 1321 memset(tune_cmd, 0, sizeof(*tune_cmd)); 1322 tune_cmd->opcode = opcode; 1323 tune_cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1324 tune_data = tune_cmd->data = slot->tune_data; 1325 memset(tune_data, 0, sizeof(*tune_data)); 1326 tune_data->len = (opcode == MMC_SEND_TUNING_BLOCK_HS200 && 1327 ios->bus_width == bus_width_8) ? MMC_TUNING_LEN_HS200 : 1328 MMC_TUNING_LEN; 1329 tune_data->flags = MMC_DATA_READ; 1330 tune_data->mrq = tune_cmd->mrq = slot->tune_req; 1331 1332 slot->opt &= ~SDHCI_TUNING_ENABLED; 1333 err = sdhci_exec_tuning(slot, true); 1334 if (err == 0) { 1335 slot->opt |= SDHCI_TUNING_ENABLED; 1336 slot->intmask |= sdhci_tuning_intmask(slot); 1337 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 1338 if (slot->retune_ticks) { 1339 callout_reset(&slot->retune_callout, slot->retune_ticks, 1340 sdhci_retune, slot); 1341 } 1342 } 1343 SDHCI_UNLOCK(slot); 1344 return (err); 1345 } 1346 1347 int 1348 sdhci_generic_retune(device_t brdev __unused, device_t reqdev, bool reset) 1349 { 1350 struct sdhci_slot *slot = device_get_ivars(reqdev); 1351 int err; 1352 1353 if (!(slot->opt & SDHCI_TUNING_ENABLED)) 1354 return (0); 1355 1356 /* HS400 must be tuned in HS200 mode. */ 1357 if (slot->host.ios.timing == bus_timing_mmc_hs400) 1358 return (EINVAL); 1359 1360 SDHCI_LOCK(slot); 1361 err = sdhci_exec_tuning(slot, reset); 1362 /* 1363 * There are two ways sdhci_exec_tuning() can fail: 1364 * EBUSY should not actually happen when requests are only issued 1365 * with the host properly acquired, and 1366 * EIO re-tuning failed (but it did work initially). 1367 * 1368 * In both cases, we should retry at later point if periodic re-tuning 1369 * is enabled. Note that due to slot->retune_req not being cleared in 1370 * these failure cases, the MMC layer should trigger another attempt at 1371 * re-tuning with the next request anyway, though. 1372 */ 1373 if (slot->retune_ticks) { 1374 callout_reset(&slot->retune_callout, slot->retune_ticks, 1375 sdhci_retune, slot); 1376 } 1377 SDHCI_UNLOCK(slot); 1378 return (err); 1379 } 1380 1381 static int 1382 sdhci_exec_tuning(struct sdhci_slot *slot, bool reset) 1383 { 1384 struct mmc_request *tune_req; 1385 struct mmc_command *tune_cmd; 1386 int i; 1387 uint32_t intmask; 1388 uint16_t hostctrl2; 1389 u_char opt; 1390 1391 SDHCI_ASSERT_LOCKED(slot); 1392 if (slot->req != NULL) 1393 return (EBUSY); 1394 1395 /* Tuning doesn't work with DMA enabled. */ 1396 opt = slot->opt; 1397 slot->opt = opt & ~SDHCI_HAVE_DMA; 1398 1399 /* 1400 * Ensure that as documented, SDHCI_INT_DATA_AVAIL is the only 1401 * kind of interrupt we receive in response to a tuning request. 1402 */ 1403 intmask = slot->intmask; 1404 slot->intmask = SDHCI_INT_DATA_AVAIL; 1405 WR4(slot, SDHCI_SIGNAL_ENABLE, SDHCI_INT_DATA_AVAIL); 1406 1407 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1408 if (reset) 1409 hostctrl2 &= ~SDHCI_CTRL2_SAMPLING_CLOCK; 1410 else 1411 hostctrl2 |= SDHCI_CTRL2_SAMPLING_CLOCK; 1412 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 | SDHCI_CTRL2_EXEC_TUNING); 1413 1414 tune_req = slot->tune_req; 1415 tune_cmd = slot->tune_cmd; 1416 for (i = 0; i < MMC_TUNING_MAX; i++) { 1417 memset(tune_req, 0, sizeof(*tune_req)); 1418 tune_req->cmd = tune_cmd; 1419 tune_req->done = sdhci_req_wakeup; 1420 tune_req->done_data = slot; 1421 slot->req = tune_req; 1422 slot->flags = 0; 1423 sdhci_start(slot); 1424 while (!(tune_req->flags & MMC_REQ_DONE)) 1425 msleep(tune_req, &slot->mtx, 0, "sdhciet", 0); 1426 if (!(tune_req->flags & MMC_TUNE_DONE)) 1427 break; 1428 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1429 if (!(hostctrl2 & SDHCI_CTRL2_EXEC_TUNING)) 1430 break; 1431 if (tune_cmd->opcode == MMC_SEND_TUNING_BLOCK) 1432 DELAY(1000); 1433 } 1434 1435 slot->opt = opt; 1436 slot->intmask = intmask; 1437 WR4(slot, SDHCI_SIGNAL_ENABLE, intmask); 1438 1439 if ((hostctrl2 & (SDHCI_CTRL2_EXEC_TUNING | 1440 SDHCI_CTRL2_SAMPLING_CLOCK)) == SDHCI_CTRL2_SAMPLING_CLOCK) { 1441 slot->retune_req = 0; 1442 return (0); 1443 } 1444 1445 slot_printf(slot, "Tuning failed, using fixed sampling clock\n"); 1446 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 & ~(SDHCI_CTRL2_EXEC_TUNING | 1447 SDHCI_CTRL2_SAMPLING_CLOCK)); 1448 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1449 return (EIO); 1450 } 1451 1452 static void 1453 sdhci_retune(void *arg) 1454 { 1455 struct sdhci_slot *slot = arg; 1456 1457 slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED; 1458 } 1459 1460 #ifdef MMCCAM 1461 static void 1462 sdhci_req_done(struct sdhci_slot *slot) 1463 { 1464 union ccb *ccb; 1465 1466 if (__predict_false(sdhci_debug > 1)) 1467 slot_printf(slot, "%s\n", __func__); 1468 if (slot->ccb != NULL && slot->curcmd != NULL) { 1469 callout_stop(&slot->timeout_callout); 1470 ccb = slot->ccb; 1471 slot->ccb = NULL; 1472 slot->curcmd = NULL; 1473 1474 /* Tell CAM the request is finished */ 1475 struct ccb_mmcio *mmcio; 1476 mmcio = &ccb->mmcio; 1477 1478 ccb->ccb_h.status = 1479 (mmcio->cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR); 1480 xpt_done(ccb); 1481 } 1482 } 1483 #else 1484 static void 1485 sdhci_req_done(struct sdhci_slot *slot) 1486 { 1487 struct mmc_request *req; 1488 1489 if (slot->req != NULL && slot->curcmd != NULL) { 1490 callout_stop(&slot->timeout_callout); 1491 req = slot->req; 1492 slot->req = NULL; 1493 slot->curcmd = NULL; 1494 req->done(req); 1495 } 1496 } 1497 #endif 1498 1499 static void 1500 sdhci_req_wakeup(struct mmc_request *req) 1501 { 1502 struct sdhci_slot *slot; 1503 1504 slot = req->done_data; 1505 req->flags |= MMC_REQ_DONE; 1506 wakeup(req); 1507 } 1508 1509 static void 1510 sdhci_timeout(void *arg) 1511 { 1512 struct sdhci_slot *slot = arg; 1513 1514 if (slot->curcmd != NULL) { 1515 slot_printf(slot, "Controller timeout\n"); 1516 sdhci_dumpregs(slot); 1517 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1518 slot->curcmd->error = MMC_ERR_TIMEOUT; 1519 sdhci_req_done(slot); 1520 } else { 1521 slot_printf(slot, "Spurious timeout - no active command\n"); 1522 } 1523 } 1524 1525 static void 1526 sdhci_set_transfer_mode(struct sdhci_slot *slot, struct mmc_data *data) 1527 { 1528 uint16_t mode; 1529 1530 if (data == NULL) 1531 return; 1532 1533 mode = SDHCI_TRNS_BLK_CNT_EN; 1534 if (data->len > 512) 1535 mode |= SDHCI_TRNS_MULTI; 1536 if (data->flags & MMC_DATA_READ) 1537 mode |= SDHCI_TRNS_READ; 1538 #ifdef MMCCAM 1539 struct ccb_mmcio *mmcio; 1540 mmcio = &slot->ccb->mmcio; 1541 if (mmcio->stop.opcode == MMC_STOP_TRANSMISSION 1542 && !(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) 1543 mode |= SDHCI_TRNS_ACMD12; 1544 #else 1545 if (slot->req->stop && !(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) 1546 mode |= SDHCI_TRNS_ACMD12; 1547 #endif 1548 if (slot->flags & SDHCI_USE_DMA) 1549 mode |= SDHCI_TRNS_DMA; 1550 1551 WR2(slot, SDHCI_TRANSFER_MODE, mode); 1552 } 1553 1554 static void 1555 sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd) 1556 { 1557 int flags, timeout; 1558 uint32_t mask; 1559 1560 slot->curcmd = cmd; 1561 slot->cmd_done = 0; 1562 1563 cmd->error = MMC_ERR_NONE; 1564 1565 /* This flags combination is not supported by controller. */ 1566 if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) { 1567 slot_printf(slot, "Unsupported response type!\n"); 1568 cmd->error = MMC_ERR_FAILED; 1569 sdhci_req_done(slot); 1570 return; 1571 } 1572 1573 /* 1574 * Do not issue command if there is no card, clock or power. 1575 * Controller will not detect timeout without clock active. 1576 */ 1577 if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) || 1578 slot->power == 0 || 1579 slot->clock == 0) { 1580 slot_printf(slot, 1581 "Cannot issue a command (power=%d clock=%d)", 1582 slot->power, slot->clock); 1583 cmd->error = MMC_ERR_FAILED; 1584 sdhci_req_done(slot); 1585 return; 1586 } 1587 /* Always wait for free CMD bus. */ 1588 mask = SDHCI_CMD_INHIBIT; 1589 /* Wait for free DAT if we have data or busy signal. */ 1590 if (cmd->data != NULL || (cmd->flags & MMC_RSP_BUSY)) 1591 mask |= SDHCI_DAT_INHIBIT; 1592 /* 1593 * We shouldn't wait for DAT for stop commands or CMD19/CMD21. Note 1594 * that these latter are also special in that SDHCI_CMD_DATA should 1595 * be set below but no actual data is ever read from the controller. 1596 */ 1597 #ifdef MMCCAM 1598 if (cmd == &slot->ccb->mmcio.stop || 1599 #else 1600 if (cmd == slot->req->stop || 1601 #endif 1602 __predict_false(cmd->opcode == MMC_SEND_TUNING_BLOCK || 1603 cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)) 1604 mask &= ~SDHCI_DAT_INHIBIT; 1605 /* 1606 * Wait for bus no more then 250 ms. Typically there will be no wait 1607 * here at all, but when writing a crash dump we may be bypassing the 1608 * host platform's interrupt handler, and in some cases that handler 1609 * may be working around hardware quirks such as not respecting r1b 1610 * busy indications. In those cases, this wait-loop serves the purpose 1611 * of waiting for the prior command and data transfers to be done, and 1612 * SD cards are allowed to take up to 250ms for write and erase ops. 1613 * (It's usually more like 20-30ms in the real world.) 1614 */ 1615 timeout = 250; 1616 while (mask & RD4(slot, SDHCI_PRESENT_STATE)) { 1617 if (timeout == 0) { 1618 slot_printf(slot, "Controller never released " 1619 "inhibit bit(s).\n"); 1620 sdhci_dumpregs(slot); 1621 cmd->error = MMC_ERR_FAILED; 1622 sdhci_req_done(slot); 1623 return; 1624 } 1625 timeout--; 1626 DELAY(1000); 1627 } 1628 1629 /* Prepare command flags. */ 1630 if (!(cmd->flags & MMC_RSP_PRESENT)) 1631 flags = SDHCI_CMD_RESP_NONE; 1632 else if (cmd->flags & MMC_RSP_136) 1633 flags = SDHCI_CMD_RESP_LONG; 1634 else if (cmd->flags & MMC_RSP_BUSY) 1635 flags = SDHCI_CMD_RESP_SHORT_BUSY; 1636 else 1637 flags = SDHCI_CMD_RESP_SHORT; 1638 if (cmd->flags & MMC_RSP_CRC) 1639 flags |= SDHCI_CMD_CRC; 1640 if (cmd->flags & MMC_RSP_OPCODE) 1641 flags |= SDHCI_CMD_INDEX; 1642 if (cmd->data != NULL) 1643 flags |= SDHCI_CMD_DATA; 1644 if (cmd->opcode == MMC_STOP_TRANSMISSION) 1645 flags |= SDHCI_CMD_TYPE_ABORT; 1646 /* Prepare data. */ 1647 sdhci_start_data(slot, cmd->data); 1648 /* 1649 * Interrupt aggregation: To reduce total number of interrupts 1650 * group response interrupt with data interrupt when possible. 1651 * If there going to be data interrupt, mask response one. 1652 */ 1653 if (slot->data_done == 0) { 1654 WR4(slot, SDHCI_SIGNAL_ENABLE, 1655 slot->intmask &= ~SDHCI_INT_RESPONSE); 1656 } 1657 /* Set command argument. */ 1658 WR4(slot, SDHCI_ARGUMENT, cmd->arg); 1659 /* Set data transfer mode. */ 1660 sdhci_set_transfer_mode(slot, cmd->data); 1661 if (__predict_false(sdhci_debug > 1)) 1662 slot_printf(slot, "Starting command!\n"); 1663 /* Start command. */ 1664 WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff)); 1665 /* Start timeout callout. */ 1666 callout_reset(&slot->timeout_callout, slot->timeout * hz, 1667 sdhci_timeout, slot); 1668 } 1669 1670 static void 1671 sdhci_finish_command(struct sdhci_slot *slot) 1672 { 1673 int i; 1674 uint32_t val; 1675 uint8_t extra; 1676 1677 if (__predict_false(sdhci_debug > 1)) 1678 slot_printf(slot, "%s: called, err %d flags %d\n", 1679 __func__, slot->curcmd->error, slot->curcmd->flags); 1680 slot->cmd_done = 1; 1681 /* 1682 * Interrupt aggregation: Restore command interrupt. 1683 * Main restore point for the case when command interrupt 1684 * happened first. 1685 */ 1686 if (__predict_true(slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK && 1687 slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK_HS200)) 1688 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |= 1689 SDHCI_INT_RESPONSE); 1690 /* In case of error - reset host and return. */ 1691 if (slot->curcmd->error) { 1692 if (slot->curcmd->error == MMC_ERR_BADCRC) 1693 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 1694 sdhci_reset(slot, SDHCI_RESET_CMD); 1695 sdhci_reset(slot, SDHCI_RESET_DATA); 1696 sdhci_start(slot); 1697 return; 1698 } 1699 /* If command has response - fetch it. */ 1700 if (slot->curcmd->flags & MMC_RSP_PRESENT) { 1701 if (slot->curcmd->flags & MMC_RSP_136) { 1702 /* CRC is stripped so we need one byte shift. */ 1703 extra = 0; 1704 for (i = 0; i < 4; i++) { 1705 val = RD4(slot, SDHCI_RESPONSE + i * 4); 1706 if (slot->quirks & 1707 SDHCI_QUIRK_DONT_SHIFT_RESPONSE) 1708 slot->curcmd->resp[3 - i] = val; 1709 else { 1710 slot->curcmd->resp[3 - i] = 1711 (val << 8) | extra; 1712 extra = val >> 24; 1713 } 1714 } 1715 } else 1716 slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE); 1717 } 1718 if (__predict_false(sdhci_debug > 1)) 1719 printf("Resp: %02x %02x %02x %02x\n", 1720 slot->curcmd->resp[0], slot->curcmd->resp[1], 1721 slot->curcmd->resp[2], slot->curcmd->resp[3]); 1722 1723 /* If data ready - finish. */ 1724 if (slot->data_done) 1725 sdhci_start(slot); 1726 } 1727 1728 static void 1729 sdhci_start_data(struct sdhci_slot *slot, struct mmc_data *data) 1730 { 1731 uint32_t target_timeout, current_timeout; 1732 uint8_t div; 1733 1734 if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { 1735 slot->data_done = 1; 1736 return; 1737 } 1738 1739 slot->data_done = 0; 1740 1741 /* Calculate and set data timeout.*/ 1742 /* XXX: We should have this from mmc layer, now assume 1 sec. */ 1743 if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) { 1744 div = 0xE; 1745 } else { 1746 target_timeout = 1000000; 1747 div = 0; 1748 current_timeout = (1 << 13) * 1000 / slot->timeout_clk; 1749 while (current_timeout < target_timeout && div < 0xE) { 1750 ++div; 1751 current_timeout <<= 1; 1752 } 1753 /* Compensate for an off-by-one error in the CaFe chip.*/ 1754 if (div < 0xE && 1755 (slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) { 1756 ++div; 1757 } 1758 } 1759 WR1(slot, SDHCI_TIMEOUT_CONTROL, div); 1760 1761 if (data == NULL) 1762 return; 1763 1764 /* Use DMA if possible. */ 1765 if ((slot->opt & SDHCI_HAVE_DMA)) 1766 slot->flags |= SDHCI_USE_DMA; 1767 /* If data is small, broken DMA may return zeroes instead of data, */ 1768 if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) && 1769 (data->len <= 512)) 1770 slot->flags &= ~SDHCI_USE_DMA; 1771 /* Some controllers require even block sizes. */ 1772 if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) && 1773 ((data->len) & 0x3)) 1774 slot->flags &= ~SDHCI_USE_DMA; 1775 /* Load DMA buffer. */ 1776 if (slot->flags & SDHCI_USE_DMA) { 1777 if (data->flags & MMC_DATA_READ) 1778 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1779 BUS_DMASYNC_PREREAD); 1780 else { 1781 memcpy(slot->dmamem, data->data, 1782 (data->len < DMA_BLOCK_SIZE) ? 1783 data->len : DMA_BLOCK_SIZE); 1784 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1785 BUS_DMASYNC_PREWRITE); 1786 } 1787 WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); 1788 /* Interrupt aggregation: Mask border interrupt 1789 * for the last page and unmask else. */ 1790 if (data->len == DMA_BLOCK_SIZE) 1791 slot->intmask &= ~SDHCI_INT_DMA_END; 1792 else 1793 slot->intmask |= SDHCI_INT_DMA_END; 1794 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 1795 } 1796 /* Current data offset for both PIO and DMA. */ 1797 slot->offset = 0; 1798 /* Set block size and request IRQ on 4K border. */ 1799 WR2(slot, SDHCI_BLOCK_SIZE, SDHCI_MAKE_BLKSZ(DMA_BOUNDARY, 1800 (data->len < 512) ? data->len : 512)); 1801 /* Set block count. */ 1802 WR2(slot, SDHCI_BLOCK_COUNT, (data->len + 511) / 512); 1803 1804 if (__predict_false(sdhci_debug > 1)) 1805 slot_printf(slot, "Block size: %02x, count %lu\n", 1806 (unsigned int)SDHCI_MAKE_BLKSZ(DMA_BOUNDARY, (data->len < 512) ? data->len : 512), 1807 (unsigned long)(data->len + 511) / 512); 1808 } 1809 1810 void 1811 sdhci_finish_data(struct sdhci_slot *slot) 1812 { 1813 struct mmc_data *data = slot->curcmd->data; 1814 size_t left; 1815 1816 /* Interrupt aggregation: Restore command interrupt. 1817 * Auxiliary restore point for the case when data interrupt 1818 * happened first. */ 1819 if (!slot->cmd_done) { 1820 WR4(slot, SDHCI_SIGNAL_ENABLE, 1821 slot->intmask |= SDHCI_INT_RESPONSE); 1822 } 1823 /* Unload rest of data from DMA buffer. */ 1824 if (!slot->data_done && (slot->flags & SDHCI_USE_DMA) && 1825 slot->curcmd->data != NULL) { 1826 if (data->flags & MMC_DATA_READ) { 1827 left = data->len - slot->offset; 1828 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1829 BUS_DMASYNC_POSTREAD); 1830 memcpy((u_char*)data->data + slot->offset, slot->dmamem, 1831 (left < DMA_BLOCK_SIZE) ? left : DMA_BLOCK_SIZE); 1832 } else 1833 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1834 BUS_DMASYNC_POSTWRITE); 1835 } 1836 slot->data_done = 1; 1837 /* If there was error - reset the host. */ 1838 if (slot->curcmd->error) { 1839 if (slot->curcmd->error == MMC_ERR_BADCRC) 1840 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 1841 sdhci_reset(slot, SDHCI_RESET_CMD); 1842 sdhci_reset(slot, SDHCI_RESET_DATA); 1843 sdhci_start(slot); 1844 return; 1845 } 1846 /* If we already have command response - finish. */ 1847 if (slot->cmd_done) 1848 sdhci_start(slot); 1849 } 1850 1851 #ifdef MMCCAM 1852 static void 1853 sdhci_start(struct sdhci_slot *slot) 1854 { 1855 union ccb *ccb; 1856 1857 ccb = slot->ccb; 1858 if (ccb == NULL) 1859 return; 1860 1861 struct ccb_mmcio *mmcio; 1862 mmcio = &ccb->mmcio; 1863 1864 if (!(slot->flags & CMD_STARTED)) { 1865 slot->flags |= CMD_STARTED; 1866 sdhci_start_command(slot, &mmcio->cmd); 1867 return; 1868 } 1869 1870 /* 1871 * Old stack doesn't use this! 1872 * Enabling this code causes significant performance degradation 1873 * and IRQ storms on BBB, Wandboard behaves fine. 1874 * Not using this code does no harm... 1875 if (!(slot->flags & STOP_STARTED) && mmcio->stop.opcode != 0) { 1876 slot->flags |= STOP_STARTED; 1877 sdhci_start_command(slot, &mmcio->stop); 1878 return; 1879 } 1880 */ 1881 if (__predict_false(sdhci_debug > 1)) 1882 slot_printf(slot, "result: %d\n", mmcio->cmd.error); 1883 if (mmcio->cmd.error == 0 && 1884 (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) { 1885 sdhci_reset(slot, SDHCI_RESET_CMD); 1886 sdhci_reset(slot, SDHCI_RESET_DATA); 1887 } 1888 1889 sdhci_req_done(slot); 1890 } 1891 #else 1892 static void 1893 sdhci_start(struct sdhci_slot *slot) 1894 { 1895 struct mmc_request *req; 1896 1897 req = slot->req; 1898 if (req == NULL) 1899 return; 1900 1901 if (!(slot->flags & CMD_STARTED)) { 1902 slot->flags |= CMD_STARTED; 1903 sdhci_start_command(slot, req->cmd); 1904 return; 1905 } 1906 if ((slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP) && 1907 !(slot->flags & STOP_STARTED) && req->stop) { 1908 slot->flags |= STOP_STARTED; 1909 sdhci_start_command(slot, req->stop); 1910 return; 1911 } 1912 if (__predict_false(sdhci_debug > 1)) 1913 slot_printf(slot, "result: %d\n", req->cmd->error); 1914 if (!req->cmd->error && 1915 ((slot->curcmd == req->stop && 1916 (slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) || 1917 (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) { 1918 sdhci_reset(slot, SDHCI_RESET_CMD); 1919 sdhci_reset(slot, SDHCI_RESET_DATA); 1920 } 1921 1922 sdhci_req_done(slot); 1923 } 1924 #endif 1925 1926 int 1927 sdhci_generic_request(device_t brdev __unused, device_t reqdev, 1928 struct mmc_request *req) 1929 { 1930 struct sdhci_slot *slot = device_get_ivars(reqdev); 1931 1932 SDHCI_LOCK(slot); 1933 if (slot->req != NULL) { 1934 SDHCI_UNLOCK(slot); 1935 return (EBUSY); 1936 } 1937 if (__predict_false(sdhci_debug > 1)) { 1938 slot_printf(slot, 1939 "CMD%u arg %#x flags %#x dlen %u dflags %#x\n", 1940 req->cmd->opcode, req->cmd->arg, req->cmd->flags, 1941 (req->cmd->data)?(u_int)req->cmd->data->len:0, 1942 (req->cmd->data)?req->cmd->data->flags:0); 1943 } 1944 slot->req = req; 1945 slot->flags = 0; 1946 sdhci_start(slot); 1947 SDHCI_UNLOCK(slot); 1948 if (dumping) { 1949 while (slot->req != NULL) { 1950 sdhci_generic_intr(slot); 1951 DELAY(10); 1952 } 1953 } 1954 return (0); 1955 } 1956 1957 int 1958 sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev) 1959 { 1960 struct sdhci_slot *slot = device_get_ivars(reqdev); 1961 uint32_t val; 1962 1963 SDHCI_LOCK(slot); 1964 val = RD4(slot, SDHCI_PRESENT_STATE); 1965 SDHCI_UNLOCK(slot); 1966 return (!(val & SDHCI_WRITE_PROTECT)); 1967 } 1968 1969 int 1970 sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev) 1971 { 1972 struct sdhci_slot *slot = device_get_ivars(reqdev); 1973 int err = 0; 1974 1975 SDHCI_LOCK(slot); 1976 while (slot->bus_busy) 1977 msleep(slot, &slot->mtx, 0, "sdhciah", 0); 1978 slot->bus_busy++; 1979 /* Activate led. */ 1980 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED); 1981 SDHCI_UNLOCK(slot); 1982 return (err); 1983 } 1984 1985 int 1986 sdhci_generic_release_host(device_t brdev __unused, device_t reqdev) 1987 { 1988 struct sdhci_slot *slot = device_get_ivars(reqdev); 1989 1990 SDHCI_LOCK(slot); 1991 /* Deactivate led. */ 1992 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED); 1993 slot->bus_busy--; 1994 SDHCI_UNLOCK(slot); 1995 wakeup(slot); 1996 return (0); 1997 } 1998 1999 static void 2000 sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask) 2001 { 2002 2003 if (!slot->curcmd) { 2004 slot_printf(slot, "Got command interrupt 0x%08x, but " 2005 "there is no active command.\n", intmask); 2006 sdhci_dumpregs(slot); 2007 return; 2008 } 2009 if (intmask & SDHCI_INT_TIMEOUT) 2010 slot->curcmd->error = MMC_ERR_TIMEOUT; 2011 else if (intmask & SDHCI_INT_CRC) 2012 slot->curcmd->error = MMC_ERR_BADCRC; 2013 else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) 2014 slot->curcmd->error = MMC_ERR_FIFO; 2015 2016 sdhci_finish_command(slot); 2017 } 2018 2019 static void 2020 sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask) 2021 { 2022 struct mmc_data *data; 2023 size_t left; 2024 2025 if (!slot->curcmd) { 2026 slot_printf(slot, "Got data interrupt 0x%08x, but " 2027 "there is no active command.\n", intmask); 2028 sdhci_dumpregs(slot); 2029 return; 2030 } 2031 if (slot->curcmd->data == NULL && 2032 (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { 2033 slot_printf(slot, "Got data interrupt 0x%08x, but " 2034 "there is no active data operation.\n", 2035 intmask); 2036 sdhci_dumpregs(slot); 2037 return; 2038 } 2039 if (intmask & SDHCI_INT_DATA_TIMEOUT) 2040 slot->curcmd->error = MMC_ERR_TIMEOUT; 2041 else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT)) 2042 slot->curcmd->error = MMC_ERR_BADCRC; 2043 if (slot->curcmd->data == NULL && 2044 (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | 2045 SDHCI_INT_DMA_END))) { 2046 slot_printf(slot, "Got data interrupt 0x%08x, but " 2047 "there is busy-only command.\n", intmask); 2048 sdhci_dumpregs(slot); 2049 slot->curcmd->error = MMC_ERR_INVALID; 2050 } 2051 if (slot->curcmd->error) { 2052 /* No need to continue after any error. */ 2053 goto done; 2054 } 2055 2056 /* Handle tuning completion interrupt. */ 2057 if (__predict_false((intmask & SDHCI_INT_DATA_AVAIL) && 2058 (slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK || 2059 slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))) { 2060 slot->req->flags |= MMC_TUNE_DONE; 2061 sdhci_finish_command(slot); 2062 sdhci_finish_data(slot); 2063 return; 2064 } 2065 /* Handle PIO interrupt. */ 2066 if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) { 2067 if ((slot->opt & SDHCI_PLATFORM_TRANSFER) && 2068 SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) { 2069 SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot, 2070 &intmask); 2071 slot->flags |= PLATFORM_DATA_STARTED; 2072 } else 2073 sdhci_transfer_pio(slot); 2074 } 2075 /* Handle DMA border. */ 2076 if (intmask & SDHCI_INT_DMA_END) { 2077 data = slot->curcmd->data; 2078 2079 /* Unload DMA buffer ... */ 2080 left = data->len - slot->offset; 2081 if (data->flags & MMC_DATA_READ) { 2082 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2083 BUS_DMASYNC_POSTREAD); 2084 memcpy((u_char*)data->data + slot->offset, slot->dmamem, 2085 (left < DMA_BLOCK_SIZE) ? left : DMA_BLOCK_SIZE); 2086 } else { 2087 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2088 BUS_DMASYNC_POSTWRITE); 2089 } 2090 /* ... and reload it again. */ 2091 slot->offset += DMA_BLOCK_SIZE; 2092 left = data->len - slot->offset; 2093 if (data->flags & MMC_DATA_READ) { 2094 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2095 BUS_DMASYNC_PREREAD); 2096 } else { 2097 memcpy(slot->dmamem, (u_char*)data->data + slot->offset, 2098 (left < DMA_BLOCK_SIZE)? left : DMA_BLOCK_SIZE); 2099 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2100 BUS_DMASYNC_PREWRITE); 2101 } 2102 /* Interrupt aggregation: Mask border interrupt 2103 * for the last page. */ 2104 if (left == DMA_BLOCK_SIZE) { 2105 slot->intmask &= ~SDHCI_INT_DMA_END; 2106 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 2107 } 2108 /* Restart DMA. */ 2109 WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); 2110 } 2111 /* We have got all data. */ 2112 if (intmask & SDHCI_INT_DATA_END) { 2113 if (slot->flags & PLATFORM_DATA_STARTED) { 2114 slot->flags &= ~PLATFORM_DATA_STARTED; 2115 SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot); 2116 } else 2117 sdhci_finish_data(slot); 2118 } 2119 done: 2120 if (slot->curcmd != NULL && slot->curcmd->error != 0) { 2121 if (slot->flags & PLATFORM_DATA_STARTED) { 2122 slot->flags &= ~PLATFORM_DATA_STARTED; 2123 SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot); 2124 } else 2125 sdhci_finish_data(slot); 2126 } 2127 } 2128 2129 static void 2130 sdhci_acmd_irq(struct sdhci_slot *slot) 2131 { 2132 uint16_t err; 2133 2134 err = RD4(slot, SDHCI_ACMD12_ERR); 2135 if (!slot->curcmd) { 2136 slot_printf(slot, "Got AutoCMD12 error 0x%04x, but " 2137 "there is no active command.\n", err); 2138 sdhci_dumpregs(slot); 2139 return; 2140 } 2141 slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", err); 2142 sdhci_reset(slot, SDHCI_RESET_CMD); 2143 } 2144 2145 void 2146 sdhci_generic_intr(struct sdhci_slot *slot) 2147 { 2148 uint32_t intmask, present; 2149 2150 SDHCI_LOCK(slot); 2151 /* Read slot interrupt status. */ 2152 intmask = RD4(slot, SDHCI_INT_STATUS); 2153 if (intmask == 0 || intmask == 0xffffffff) { 2154 SDHCI_UNLOCK(slot); 2155 return; 2156 } 2157 if (__predict_false(sdhci_debug > 2)) 2158 slot_printf(slot, "Interrupt %#x\n", intmask); 2159 2160 /* Handle tuning error interrupt. */ 2161 if (__predict_false(intmask & SDHCI_INT_TUNEERR)) { 2162 slot_printf(slot, "Tuning error indicated\n"); 2163 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 2164 if (slot->curcmd) { 2165 slot->curcmd->error = MMC_ERR_BADCRC; 2166 sdhci_finish_command(slot); 2167 } 2168 } 2169 /* Handle re-tuning interrupt. */ 2170 if (__predict_false(intmask & SDHCI_INT_RETUNE)) 2171 slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED; 2172 /* Handle card presence interrupts. */ 2173 if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { 2174 present = (intmask & SDHCI_INT_CARD_INSERT) != 0; 2175 slot->intmask &= 2176 ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE); 2177 slot->intmask |= present ? SDHCI_INT_CARD_REMOVE : 2178 SDHCI_INT_CARD_INSERT; 2179 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 2180 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 2181 WR4(slot, SDHCI_INT_STATUS, intmask & 2182 (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)); 2183 sdhci_handle_card_present_locked(slot, present); 2184 } 2185 /* Handle command interrupts. */ 2186 if (intmask & SDHCI_INT_CMD_MASK) { 2187 WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK); 2188 sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK); 2189 } 2190 /* Handle data interrupts. */ 2191 if (intmask & SDHCI_INT_DATA_MASK) { 2192 WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK); 2193 /* Don't call data_irq in case of errored command. */ 2194 if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0) 2195 sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK); 2196 } 2197 /* Handle AutoCMD12 error interrupt. */ 2198 if (intmask & SDHCI_INT_ACMD12ERR) { 2199 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR); 2200 sdhci_acmd_irq(slot); 2201 } 2202 /* Handle bus power interrupt. */ 2203 if (intmask & SDHCI_INT_BUS_POWER) { 2204 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER); 2205 slot_printf(slot, "Card is consuming too much power!\n"); 2206 } 2207 intmask &= ~(SDHCI_INT_ERROR | SDHCI_INT_TUNEERR | SDHCI_INT_RETUNE | 2208 SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK | 2209 SDHCI_INT_DATA_MASK | SDHCI_INT_ACMD12ERR | SDHCI_INT_BUS_POWER); 2210 /* The rest is unknown. */ 2211 if (intmask) { 2212 WR4(slot, SDHCI_INT_STATUS, intmask); 2213 slot_printf(slot, "Unexpected interrupt 0x%08x.\n", 2214 intmask); 2215 sdhci_dumpregs(slot); 2216 } 2217 2218 SDHCI_UNLOCK(slot); 2219 } 2220 2221 int 2222 sdhci_generic_read_ivar(device_t bus, device_t child, int which, 2223 uintptr_t *result) 2224 { 2225 struct sdhci_slot *slot = device_get_ivars(child); 2226 2227 switch (which) { 2228 default: 2229 return (EINVAL); 2230 case MMCBR_IVAR_BUS_MODE: 2231 *result = slot->host.ios.bus_mode; 2232 break; 2233 case MMCBR_IVAR_BUS_WIDTH: 2234 *result = slot->host.ios.bus_width; 2235 break; 2236 case MMCBR_IVAR_CHIP_SELECT: 2237 *result = slot->host.ios.chip_select; 2238 break; 2239 case MMCBR_IVAR_CLOCK: 2240 *result = slot->host.ios.clock; 2241 break; 2242 case MMCBR_IVAR_F_MIN: 2243 *result = slot->host.f_min; 2244 break; 2245 case MMCBR_IVAR_F_MAX: 2246 *result = slot->host.f_max; 2247 break; 2248 case MMCBR_IVAR_HOST_OCR: 2249 *result = slot->host.host_ocr; 2250 break; 2251 case MMCBR_IVAR_MODE: 2252 *result = slot->host.mode; 2253 break; 2254 case MMCBR_IVAR_OCR: 2255 *result = slot->host.ocr; 2256 break; 2257 case MMCBR_IVAR_POWER_MODE: 2258 *result = slot->host.ios.power_mode; 2259 break; 2260 case MMCBR_IVAR_VDD: 2261 *result = slot->host.ios.vdd; 2262 break; 2263 case MMCBR_IVAR_RETUNE_REQ: 2264 if (slot->opt & SDHCI_TUNING_ENABLED) { 2265 if (slot->retune_req & SDHCI_RETUNE_REQ_RESET) { 2266 *result = retune_req_reset; 2267 break; 2268 } 2269 if (slot->retune_req & SDHCI_RETUNE_REQ_NEEDED) { 2270 *result = retune_req_normal; 2271 break; 2272 } 2273 } 2274 *result = retune_req_none; 2275 break; 2276 case MMCBR_IVAR_VCCQ: 2277 *result = slot->host.ios.vccq; 2278 break; 2279 case MMCBR_IVAR_CAPS: 2280 *result = slot->host.caps; 2281 break; 2282 case MMCBR_IVAR_TIMING: 2283 *result = slot->host.ios.timing; 2284 break; 2285 case MMCBR_IVAR_MAX_DATA: 2286 /* 2287 * Re-tuning modes 1 and 2 restrict the maximum data length 2288 * per read/write command to 4 MiB. 2289 */ 2290 if (slot->opt & SDHCI_TUNING_ENABLED && 2291 (slot->retune_mode == SDHCI_RETUNE_MODE_1 || 2292 slot->retune_mode == SDHCI_RETUNE_MODE_2)) { 2293 *result = 4 * 1024 * 1024 / MMC_SECTOR_SIZE; 2294 break; 2295 } 2296 *result = 65535; 2297 break; 2298 case MMCBR_IVAR_MAX_BUSY_TIMEOUT: 2299 /* 2300 * Currently, sdhci_start_data() hardcodes 1 s for all CMDs. 2301 */ 2302 *result = 1000000; 2303 break; 2304 } 2305 return (0); 2306 } 2307 2308 int 2309 sdhci_generic_write_ivar(device_t bus, device_t child, int which, 2310 uintptr_t value) 2311 { 2312 struct sdhci_slot *slot = device_get_ivars(child); 2313 uint32_t clock, max_clock; 2314 int i; 2315 2316 if (sdhci_debug > 1) 2317 slot_printf(slot, "%s: var=%d\n", __func__, which); 2318 switch (which) { 2319 default: 2320 return (EINVAL); 2321 case MMCBR_IVAR_BUS_MODE: 2322 slot->host.ios.bus_mode = value; 2323 break; 2324 case MMCBR_IVAR_BUS_WIDTH: 2325 slot->host.ios.bus_width = value; 2326 break; 2327 case MMCBR_IVAR_CHIP_SELECT: 2328 slot->host.ios.chip_select = value; 2329 break; 2330 case MMCBR_IVAR_CLOCK: 2331 if (value > 0) { 2332 max_clock = slot->max_clk; 2333 clock = max_clock; 2334 2335 if (slot->version < SDHCI_SPEC_300) { 2336 for (i = 0; i < SDHCI_200_MAX_DIVIDER; 2337 i <<= 1) { 2338 if (clock <= value) 2339 break; 2340 clock >>= 1; 2341 } 2342 } else { 2343 for (i = 0; i < SDHCI_300_MAX_DIVIDER; 2344 i += 2) { 2345 if (clock <= value) 2346 break; 2347 clock = max_clock / (i + 2); 2348 } 2349 } 2350 2351 slot->host.ios.clock = clock; 2352 } else 2353 slot->host.ios.clock = 0; 2354 break; 2355 case MMCBR_IVAR_MODE: 2356 slot->host.mode = value; 2357 break; 2358 case MMCBR_IVAR_OCR: 2359 slot->host.ocr = value; 2360 break; 2361 case MMCBR_IVAR_POWER_MODE: 2362 slot->host.ios.power_mode = value; 2363 break; 2364 case MMCBR_IVAR_VDD: 2365 slot->host.ios.vdd = value; 2366 break; 2367 case MMCBR_IVAR_VCCQ: 2368 slot->host.ios.vccq = value; 2369 break; 2370 case MMCBR_IVAR_TIMING: 2371 slot->host.ios.timing = value; 2372 break; 2373 case MMCBR_IVAR_CAPS: 2374 case MMCBR_IVAR_HOST_OCR: 2375 case MMCBR_IVAR_F_MIN: 2376 case MMCBR_IVAR_F_MAX: 2377 case MMCBR_IVAR_MAX_DATA: 2378 case MMCBR_IVAR_RETUNE_REQ: 2379 return (EINVAL); 2380 } 2381 return (0); 2382 } 2383 2384 #ifdef MMCCAM 2385 void 2386 sdhci_cam_start_slot(struct sdhci_slot *slot) 2387 { 2388 if ((slot->devq = cam_simq_alloc(1)) == NULL) { 2389 goto fail; 2390 } 2391 2392 mtx_init(&slot->sim_mtx, "sdhcisim", NULL, MTX_DEF); 2393 slot->sim = cam_sim_alloc(sdhci_cam_action, sdhci_cam_poll, 2394 "sdhci_slot", slot, device_get_unit(slot->bus), 2395 &slot->sim_mtx, 1, 1, slot->devq); 2396 2397 if (slot->sim == NULL) { 2398 cam_simq_free(slot->devq); 2399 slot_printf(slot, "cannot allocate CAM SIM\n"); 2400 goto fail; 2401 } 2402 2403 mtx_lock(&slot->sim_mtx); 2404 if (xpt_bus_register(slot->sim, slot->bus, 0) != 0) { 2405 slot_printf(slot, 2406 "cannot register SCSI pass-through bus\n"); 2407 cam_sim_free(slot->sim, FALSE); 2408 cam_simq_free(slot->devq); 2409 mtx_unlock(&slot->sim_mtx); 2410 goto fail; 2411 } 2412 2413 mtx_unlock(&slot->sim_mtx); 2414 /* End CAM-specific init */ 2415 slot->card_present = 0; 2416 sdhci_card_task(slot, 0); 2417 return; 2418 2419 fail: 2420 if (slot->sim != NULL) { 2421 mtx_lock(&slot->sim_mtx); 2422 xpt_bus_deregister(cam_sim_path(slot->sim)); 2423 cam_sim_free(slot->sim, FALSE); 2424 mtx_unlock(&slot->sim_mtx); 2425 } 2426 2427 if (slot->devq != NULL) 2428 cam_simq_free(slot->devq); 2429 } 2430 2431 static void 2432 sdhci_cam_handle_mmcio(struct cam_sim *sim, union ccb *ccb) 2433 { 2434 struct sdhci_slot *slot; 2435 2436 slot = cam_sim_softc(sim); 2437 2438 sdhci_cam_request(slot, ccb); 2439 } 2440 2441 void 2442 sdhci_cam_action(struct cam_sim *sim, union ccb *ccb) 2443 { 2444 struct sdhci_slot *slot; 2445 2446 slot = cam_sim_softc(sim); 2447 if (slot == NULL) { 2448 ccb->ccb_h.status = CAM_SEL_TIMEOUT; 2449 xpt_done(ccb); 2450 return; 2451 } 2452 2453 mtx_assert(&slot->sim_mtx, MA_OWNED); 2454 2455 switch (ccb->ccb_h.func_code) { 2456 case XPT_PATH_INQ: 2457 { 2458 struct ccb_pathinq *cpi; 2459 2460 cpi = &ccb->cpi; 2461 cpi->version_num = 1; 2462 cpi->hba_inquiry = 0; 2463 cpi->target_sprt = 0; 2464 cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN; 2465 cpi->hba_eng_cnt = 0; 2466 cpi->max_target = 0; 2467 cpi->max_lun = 0; 2468 cpi->initiator_id = 1; 2469 cpi->maxio = MAXPHYS; 2470 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 2471 strncpy(cpi->hba_vid, "Deglitch Networks", HBA_IDLEN); 2472 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 2473 cpi->unit_number = cam_sim_unit(sim); 2474 cpi->bus_id = cam_sim_bus(sim); 2475 cpi->base_transfer_speed = 100; /* XXX WTF? */ 2476 cpi->protocol = PROTO_MMCSD; 2477 cpi->protocol_version = SCSI_REV_0; 2478 cpi->transport = XPORT_MMCSD; 2479 cpi->transport_version = 0; 2480 2481 cpi->ccb_h.status = CAM_REQ_CMP; 2482 break; 2483 } 2484 case XPT_GET_TRAN_SETTINGS: 2485 { 2486 struct ccb_trans_settings *cts = &ccb->cts; 2487 2488 if (sdhci_debug > 1) 2489 slot_printf(slot, "Got XPT_GET_TRAN_SETTINGS\n"); 2490 2491 cts->protocol = PROTO_MMCSD; 2492 cts->protocol_version = 1; 2493 cts->transport = XPORT_MMCSD; 2494 cts->transport_version = 1; 2495 cts->xport_specific.valid = 0; 2496 cts->proto_specific.mmc.host_ocr = slot->host.host_ocr; 2497 cts->proto_specific.mmc.host_f_min = slot->host.f_min; 2498 cts->proto_specific.mmc.host_f_max = slot->host.f_max; 2499 cts->proto_specific.mmc.host_caps = slot->host.caps; 2500 memcpy(&cts->proto_specific.mmc.ios, &slot->host.ios, sizeof(struct mmc_ios)); 2501 ccb->ccb_h.status = CAM_REQ_CMP; 2502 break; 2503 } 2504 case XPT_SET_TRAN_SETTINGS: 2505 { 2506 if (sdhci_debug > 1) 2507 slot_printf(slot, "Got XPT_SET_TRAN_SETTINGS\n"); 2508 sdhci_cam_settran_settings(slot, ccb); 2509 ccb->ccb_h.status = CAM_REQ_CMP; 2510 break; 2511 } 2512 case XPT_RESET_BUS: 2513 if (sdhci_debug > 1) 2514 slot_printf(slot, "Got XPT_RESET_BUS, ACK it...\n"); 2515 ccb->ccb_h.status = CAM_REQ_CMP; 2516 break; 2517 case XPT_MMC_IO: 2518 /* 2519 * Here is the HW-dependent part of 2520 * sending the command to the underlying h/w 2521 * At some point in the future an interrupt comes. 2522 * Then the request will be marked as completed. 2523 */ 2524 if (__predict_false(sdhci_debug > 1)) 2525 slot_printf(slot, "Got XPT_MMC_IO\n"); 2526 ccb->ccb_h.status = CAM_REQ_INPROG; 2527 2528 sdhci_cam_handle_mmcio(sim, ccb); 2529 return; 2530 /* NOTREACHED */ 2531 break; 2532 default: 2533 ccb->ccb_h.status = CAM_REQ_INVALID; 2534 break; 2535 } 2536 xpt_done(ccb); 2537 return; 2538 } 2539 2540 void 2541 sdhci_cam_poll(struct cam_sim *sim) 2542 { 2543 return; 2544 } 2545 2546 int sdhci_cam_get_possible_host_clock(struct sdhci_slot *slot, int proposed_clock) { 2547 int max_clock, clock, i; 2548 2549 if (proposed_clock == 0) 2550 return 0; 2551 max_clock = slot->max_clk; 2552 clock = max_clock; 2553 2554 if (slot->version < SDHCI_SPEC_300) { 2555 for (i = 0; i < SDHCI_200_MAX_DIVIDER; 2556 i <<= 1) { 2557 if (clock <= proposed_clock) 2558 break; 2559 clock >>= 1; 2560 } 2561 } else { 2562 for (i = 0; i < SDHCI_300_MAX_DIVIDER; 2563 i += 2) { 2564 if (clock <= proposed_clock) 2565 break; 2566 clock = max_clock / (i + 2); 2567 } 2568 } 2569 return clock; 2570 } 2571 2572 int 2573 sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb) 2574 { 2575 struct mmc_ios *ios; 2576 struct mmc_ios *new_ios; 2577 struct ccb_trans_settings_mmc *cts; 2578 2579 ios = &slot->host.ios; 2580 2581 cts = &ccb->cts.proto_specific.mmc; 2582 new_ios = &cts->ios; 2583 2584 /* Update only requested fields */ 2585 if (cts->ios_valid & MMC_CLK) { 2586 ios->clock = sdhci_cam_get_possible_host_clock(slot, new_ios->clock); 2587 slot_printf(slot, "Clock => %d\n", ios->clock); 2588 } 2589 if (cts->ios_valid & MMC_VDD) { 2590 ios->vdd = new_ios->vdd; 2591 slot_printf(slot, "VDD => %d\n", ios->vdd); 2592 } 2593 if (cts->ios_valid & MMC_CS) { 2594 ios->chip_select = new_ios->chip_select; 2595 slot_printf(slot, "CS => %d\n", ios->chip_select); 2596 } 2597 if (cts->ios_valid & MMC_BW) { 2598 ios->bus_width = new_ios->bus_width; 2599 slot_printf(slot, "Bus width => %d\n", ios->bus_width); 2600 } 2601 if (cts->ios_valid & MMC_PM) { 2602 ios->power_mode = new_ios->power_mode; 2603 slot_printf(slot, "Power mode => %d\n", ios->power_mode); 2604 } 2605 if (cts->ios_valid & MMC_BT) { 2606 ios->timing = new_ios->timing; 2607 slot_printf(slot, "Timing => %d\n", ios->timing); 2608 } 2609 if (cts->ios_valid & MMC_BM) { 2610 ios->bus_mode = new_ios->bus_mode; 2611 slot_printf(slot, "Bus mode => %d\n", ios->bus_mode); 2612 } 2613 2614 /* XXX Provide a way to call a chip-specific IOS update, required for TI */ 2615 return (sdhci_cam_update_ios(slot)); 2616 } 2617 2618 int 2619 sdhci_cam_update_ios(struct sdhci_slot *slot) 2620 { 2621 struct mmc_ios *ios = &slot->host.ios; 2622 2623 slot_printf(slot, "%s: power_mode=%d, clk=%d, bus_width=%d, timing=%d\n", 2624 __func__, ios->power_mode, ios->clock, ios->bus_width, ios->timing); 2625 SDHCI_LOCK(slot); 2626 /* Do full reset on bus power down to clear from any state. */ 2627 if (ios->power_mode == power_off) { 2628 WR4(slot, SDHCI_SIGNAL_ENABLE, 0); 2629 sdhci_init(slot); 2630 } 2631 /* Configure the bus. */ 2632 sdhci_set_clock(slot, ios->clock); 2633 sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd); 2634 if (ios->bus_width == bus_width_8) { 2635 slot->hostctrl |= SDHCI_CTRL_8BITBUS; 2636 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 2637 } else if (ios->bus_width == bus_width_4) { 2638 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 2639 slot->hostctrl |= SDHCI_CTRL_4BITBUS; 2640 } else if (ios->bus_width == bus_width_1) { 2641 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 2642 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 2643 } else { 2644 panic("Invalid bus width: %d", ios->bus_width); 2645 } 2646 if (ios->timing == bus_timing_hs && 2647 !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT)) 2648 slot->hostctrl |= SDHCI_CTRL_HISPD; 2649 else 2650 slot->hostctrl &= ~SDHCI_CTRL_HISPD; 2651 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); 2652 /* Some controllers like reset after bus changes. */ 2653 if(slot->quirks & SDHCI_QUIRK_RESET_ON_IOS) 2654 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 2655 2656 SDHCI_UNLOCK(slot); 2657 return (0); 2658 } 2659 2660 int 2661 sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb) 2662 { 2663 struct ccb_mmcio *mmcio; 2664 2665 mmcio = &ccb->mmcio; 2666 2667 SDHCI_LOCK(slot); 2668 /* if (slot->req != NULL) { 2669 SDHCI_UNLOCK(slot); 2670 return (EBUSY); 2671 } 2672 */ 2673 if (__predict_false(sdhci_debug > 1)) { 2674 slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x\n", 2675 mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags, 2676 mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0, 2677 mmcio->cmd.data != NULL ? mmcio->cmd.data->flags: 0); 2678 } 2679 if (mmcio->cmd.data != NULL) { 2680 if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0) 2681 panic("data->len = %d, data->flags = %d -- something is b0rked", 2682 (int)mmcio->cmd.data->len, mmcio->cmd.data->flags); 2683 } 2684 slot->ccb = ccb; 2685 slot->flags = 0; 2686 sdhci_start(slot); 2687 SDHCI_UNLOCK(slot); 2688 if (dumping) { 2689 while (slot->ccb != NULL) { 2690 sdhci_generic_intr(slot); 2691 DELAY(10); 2692 } 2693 } 2694 return (0); 2695 } 2696 #endif /* MMCCAM */ 2697 2698 MODULE_VERSION(sdhci, 1); 2699