1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org> 5 * Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/callout.h> 36 #include <sys/conf.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/libkern.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/mutex.h> 44 #include <sys/resource.h> 45 #include <sys/rman.h> 46 #include <sys/sysctl.h> 47 #include <sys/taskqueue.h> 48 49 #include <machine/bus.h> 50 #include <machine/resource.h> 51 #include <machine/stdarg.h> 52 53 #include <dev/mmc/bridge.h> 54 #include <dev/mmc/mmcreg.h> 55 #include <dev/mmc/mmcbrvar.h> 56 57 #include <dev/sdhci/sdhci.h> 58 59 #include <cam/cam.h> 60 #include <cam/cam_ccb.h> 61 #include <cam/cam_debug.h> 62 #include <cam/cam_sim.h> 63 #include <cam/cam_xpt_sim.h> 64 65 #include "mmcbr_if.h" 66 #include "sdhci_if.h" 67 68 #include "opt_mmccam.h" 69 70 SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 71 "sdhci driver"); 72 73 static int sdhci_debug = 0; 74 SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RWTUN, &sdhci_debug, 0, 75 "Debug level"); 76 u_int sdhci_quirk_clear = 0; 77 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_clear, CTLFLAG_RWTUN, &sdhci_quirk_clear, 78 0, "Mask of quirks to clear"); 79 u_int sdhci_quirk_set = 0; 80 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_set, CTLFLAG_RWTUN, &sdhci_quirk_set, 0, 81 "Mask of quirks to set"); 82 83 #define RD1(slot, off) SDHCI_READ_1((slot)->bus, (slot), (off)) 84 #define RD2(slot, off) SDHCI_READ_2((slot)->bus, (slot), (off)) 85 #define RD4(slot, off) SDHCI_READ_4((slot)->bus, (slot), (off)) 86 #define RD_MULTI_4(slot, off, ptr, count) \ 87 SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count)) 88 89 #define WR1(slot, off, val) SDHCI_WRITE_1((slot)->bus, (slot), (off), (val)) 90 #define WR2(slot, off, val) SDHCI_WRITE_2((slot)->bus, (slot), (off), (val)) 91 #define WR4(slot, off, val) SDHCI_WRITE_4((slot)->bus, (slot), (off), (val)) 92 #define WR_MULTI_4(slot, off, ptr, count) \ 93 SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count)) 94 95 static void sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err); 96 static void sdhci_card_poll(void *arg); 97 static void sdhci_card_task(void *arg, int pending); 98 static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask); 99 static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask); 100 static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset); 101 static void sdhci_handle_card_present_locked(struct sdhci_slot *slot, 102 bool is_present); 103 static void sdhci_finish_command(struct sdhci_slot *slot); 104 static void sdhci_init(struct sdhci_slot *slot); 105 static void sdhci_read_block_pio(struct sdhci_slot *slot); 106 static void sdhci_req_done(struct sdhci_slot *slot); 107 static void sdhci_req_wakeup(struct mmc_request *req); 108 static void sdhci_reset(struct sdhci_slot *slot, uint8_t mask); 109 static void sdhci_retune(void *arg); 110 static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock); 111 static void sdhci_set_power(struct sdhci_slot *slot, u_char power); 112 static void sdhci_set_transfer_mode(struct sdhci_slot *slot, 113 const struct mmc_data *data); 114 static void sdhci_start(struct sdhci_slot *slot); 115 static void sdhci_timeout(void *arg); 116 static void sdhci_start_command(struct sdhci_slot *slot, 117 struct mmc_command *cmd); 118 static void sdhci_start_data(struct sdhci_slot *slot, 119 const struct mmc_data *data); 120 static void sdhci_write_block_pio(struct sdhci_slot *slot); 121 static void sdhci_transfer_pio(struct sdhci_slot *slot); 122 123 #ifdef MMCCAM 124 /* CAM-related */ 125 static void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb); 126 static int sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot, 127 int proposed_clock); 128 static void sdhci_cam_poll(struct cam_sim *sim); 129 static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb); 130 static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb); 131 static int sdhci_cam_update_ios(struct sdhci_slot *slot); 132 #endif 133 134 /* helper routines */ 135 static int sdhci_dma_alloc(struct sdhci_slot *slot, uint32_t caps); 136 static void sdhci_dma_free(struct sdhci_slot *slot); 137 static void sdhci_dumpregs(struct sdhci_slot *slot); 138 static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, 139 int error); 140 static int slot_printf(const struct sdhci_slot *slot, const char * fmt, ...) 141 __printflike(2, 3); 142 static uint32_t sdhci_tuning_intmask(const struct sdhci_slot *slot); 143 144 #define SDHCI_LOCK(_slot) mtx_lock(&(_slot)->mtx) 145 #define SDHCI_UNLOCK(_slot) mtx_unlock(&(_slot)->mtx) 146 #define SDHCI_LOCK_INIT(_slot) \ 147 mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF) 148 #define SDHCI_LOCK_DESTROY(_slot) mtx_destroy(&_slot->mtx); 149 #define SDHCI_ASSERT_LOCKED(_slot) mtx_assert(&_slot->mtx, MA_OWNED); 150 #define SDHCI_ASSERT_UNLOCKED(_slot) mtx_assert(&_slot->mtx, MA_NOTOWNED); 151 152 #define SDHCI_DEFAULT_MAX_FREQ 50 153 154 #define SDHCI_200_MAX_DIVIDER 256 155 #define SDHCI_300_MAX_DIVIDER 2046 156 157 #define SDHCI_CARD_PRESENT_TICKS (hz / 5) 158 #define SDHCI_INSERT_DELAY_TICKS (hz / 2) 159 160 /* 161 * Broadcom BCM577xx Controller Constants 162 */ 163 /* Maximum divider supported by the default clock source. */ 164 #define BCM577XX_DEFAULT_MAX_DIVIDER 256 165 /* Alternative clock's base frequency. */ 166 #define BCM577XX_ALT_CLOCK_BASE 63000000 167 168 #define BCM577XX_HOST_CONTROL 0x198 169 #define BCM577XX_CTRL_CLKSEL_MASK 0xFFFFCFFF 170 #define BCM577XX_CTRL_CLKSEL_SHIFT 12 171 #define BCM577XX_CTRL_CLKSEL_DEFAULT 0x0 172 #define BCM577XX_CTRL_CLKSEL_64MHZ 0x3 173 174 static void 175 sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 176 { 177 178 if (error != 0) { 179 printf("getaddr: error %d\n", error); 180 return; 181 } 182 *(bus_addr_t *)arg = segs[0].ds_addr; 183 } 184 185 static int 186 slot_printf(const struct sdhci_slot *slot, const char * fmt, ...) 187 { 188 char buf[128]; 189 va_list ap; 190 int retval; 191 192 /* 193 * Make sure we print a single line all together rather than in two 194 * halves to avoid console gibberish bingo. 195 */ 196 va_start(ap, fmt); 197 retval = vsnprintf(buf, sizeof(buf), fmt, ap); 198 va_end(ap); 199 200 retval += printf("%s-slot%d: %s", 201 device_get_nameunit(slot->bus), slot->num, buf); 202 return (retval); 203 } 204 205 static void 206 sdhci_dumpregs(struct sdhci_slot *slot) 207 { 208 209 slot_printf(slot, 210 "============== REGISTER DUMP ==============\n"); 211 212 slot_printf(slot, "Sys addr: 0x%08x | Version: 0x%08x\n", 213 RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION)); 214 slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n", 215 RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT)); 216 slot_printf(slot, "Argument: 0x%08x | Trn mode: 0x%08x\n", 217 RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE)); 218 slot_printf(slot, "Present: 0x%08x | Host ctl: 0x%08x\n", 219 RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL)); 220 slot_printf(slot, "Power: 0x%08x | Blk gap: 0x%08x\n", 221 RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL)); 222 slot_printf(slot, "Wake-up: 0x%08x | Clock: 0x%08x\n", 223 RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL)); 224 slot_printf(slot, "Timeout: 0x%08x | Int stat: 0x%08x\n", 225 RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS)); 226 slot_printf(slot, "Int enab: 0x%08x | Sig enab: 0x%08x\n", 227 RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE)); 228 slot_printf(slot, "AC12 err: 0x%08x | Host ctl2:0x%08x\n", 229 RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2)); 230 slot_printf(slot, "Caps: 0x%08x | Caps2: 0x%08x\n", 231 RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2)); 232 slot_printf(slot, "Max curr: 0x%08x | ADMA err: 0x%08x\n", 233 RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR)); 234 slot_printf(slot, "ADMA addr:0x%08x | Slot int: 0x%08x\n", 235 RD4(slot, SDHCI_ADMA_ADDRESS_LO), RD2(slot, SDHCI_SLOT_INT_STATUS)); 236 237 slot_printf(slot, 238 "===========================================\n"); 239 } 240 241 static void 242 sdhci_reset(struct sdhci_slot *slot, uint8_t mask) 243 { 244 int timeout; 245 uint32_t clock; 246 247 if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) { 248 if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot)) 249 return; 250 } 251 252 /* Some controllers need this kick or reset won't work. */ 253 if ((mask & SDHCI_RESET_ALL) == 0 && 254 (slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) { 255 /* This is to force an update */ 256 clock = slot->clock; 257 slot->clock = 0; 258 sdhci_set_clock(slot, clock); 259 } 260 261 if (mask & SDHCI_RESET_ALL) { 262 slot->clock = 0; 263 slot->power = 0; 264 } 265 266 WR1(slot, SDHCI_SOFTWARE_RESET, mask); 267 268 if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) { 269 /* 270 * Resets on TI OMAPs and AM335x are incompatible with SDHCI 271 * specification. The reset bit has internal propagation delay, 272 * so a fast read after write returns 0 even if reset process is 273 * in progress. The workaround is to poll for 1 before polling 274 * for 0. In the worst case, if we miss seeing it asserted the 275 * time we spent waiting is enough to ensure the reset finishes. 276 */ 277 timeout = 10000; 278 while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) { 279 if (timeout <= 0) 280 break; 281 timeout--; 282 DELAY(1); 283 } 284 } 285 286 /* Wait max 100 ms */ 287 timeout = 10000; 288 /* Controller clears the bits when it's done */ 289 while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) { 290 if (timeout <= 0) { 291 slot_printf(slot, "Reset 0x%x never completed.\n", 292 mask); 293 sdhci_dumpregs(slot); 294 return; 295 } 296 timeout--; 297 DELAY(10); 298 } 299 } 300 301 static uint32_t 302 sdhci_tuning_intmask(const struct sdhci_slot *slot) 303 { 304 uint32_t intmask; 305 306 intmask = 0; 307 if (slot->opt & SDHCI_TUNING_ENABLED) { 308 intmask |= SDHCI_INT_TUNEERR; 309 if (slot->retune_mode == SDHCI_RETUNE_MODE_2 || 310 slot->retune_mode == SDHCI_RETUNE_MODE_3) 311 intmask |= SDHCI_INT_RETUNE; 312 } 313 return (intmask); 314 } 315 316 static void 317 sdhci_init(struct sdhci_slot *slot) 318 { 319 320 sdhci_reset(slot, SDHCI_RESET_ALL); 321 322 /* Enable interrupts. */ 323 slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | 324 SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX | 325 SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT | 326 SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | 327 SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE | 328 SDHCI_INT_ACMD12ERR; 329 330 if (!(slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) && 331 !(slot->opt & SDHCI_NON_REMOVABLE)) { 332 slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT; 333 } 334 335 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 336 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 337 } 338 339 static void 340 sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock) 341 { 342 uint32_t clk_base; 343 uint32_t clk_sel; 344 uint32_t res; 345 uint16_t clk; 346 uint16_t div; 347 int timeout; 348 349 if (clock == slot->clock) 350 return; 351 slot->clock = clock; 352 353 /* Turn off the clock. */ 354 clk = RD2(slot, SDHCI_CLOCK_CONTROL); 355 WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN); 356 /* If no clock requested - leave it so. */ 357 if (clock == 0) 358 return; 359 360 /* Determine the clock base frequency */ 361 clk_base = slot->max_clk; 362 if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) { 363 clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) & 364 BCM577XX_CTRL_CLKSEL_MASK; 365 366 /* 367 * Select clock source appropriate for the requested frequency. 368 */ 369 if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) { 370 clk_base = BCM577XX_ALT_CLOCK_BASE; 371 clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ << 372 BCM577XX_CTRL_CLKSEL_SHIFT); 373 } else { 374 clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT << 375 BCM577XX_CTRL_CLKSEL_SHIFT); 376 } 377 378 WR2(slot, BCM577XX_HOST_CONTROL, clk_sel); 379 } 380 381 /* Recalculate timeout clock frequency based on the new sd clock. */ 382 if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) 383 slot->timeout_clk = slot->clock / 1000; 384 385 if (slot->version < SDHCI_SPEC_300) { 386 /* Looking for highest freq <= clock. */ 387 res = clk_base; 388 for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) { 389 if (res <= clock) 390 break; 391 res >>= 1; 392 } 393 /* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */ 394 div >>= 1; 395 } else { 396 /* Version 3.0 divisors are multiples of two up to 1023 * 2 */ 397 if (clock >= clk_base) 398 div = 0; 399 else { 400 for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) { 401 if ((clk_base / div) <= clock) 402 break; 403 } 404 } 405 div >>= 1; 406 } 407 408 if (bootverbose || sdhci_debug) 409 slot_printf(slot, "Divider %d for freq %d (base %d)\n", 410 div, clock, clk_base); 411 412 /* Now we have got divider, set it. */ 413 clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT; 414 clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK) 415 << SDHCI_DIVIDER_HI_SHIFT; 416 417 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 418 /* Enable clock. */ 419 clk |= SDHCI_CLOCK_INT_EN; 420 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 421 /* Wait up to 10 ms until it stabilize. */ 422 timeout = 10; 423 while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL)) 424 & SDHCI_CLOCK_INT_STABLE)) { 425 if (timeout == 0) { 426 slot_printf(slot, 427 "Internal clock never stabilised.\n"); 428 sdhci_dumpregs(slot); 429 return; 430 } 431 timeout--; 432 DELAY(1000); 433 } 434 /* Pass clock signal to the bus. */ 435 clk |= SDHCI_CLOCK_CARD_EN; 436 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 437 } 438 439 static void 440 sdhci_set_power(struct sdhci_slot *slot, u_char power) 441 { 442 int i; 443 uint8_t pwr; 444 445 if (slot->power == power) 446 return; 447 448 slot->power = power; 449 450 /* Turn off the power. */ 451 pwr = 0; 452 WR1(slot, SDHCI_POWER_CONTROL, pwr); 453 /* If power down requested - leave it so. */ 454 if (power == 0) 455 return; 456 /* Set voltage. */ 457 switch (1 << power) { 458 case MMC_OCR_LOW_VOLTAGE: 459 pwr |= SDHCI_POWER_180; 460 break; 461 case MMC_OCR_290_300: 462 case MMC_OCR_300_310: 463 pwr |= SDHCI_POWER_300; 464 break; 465 case MMC_OCR_320_330: 466 case MMC_OCR_330_340: 467 pwr |= SDHCI_POWER_330; 468 break; 469 } 470 WR1(slot, SDHCI_POWER_CONTROL, pwr); 471 /* 472 * Turn on VDD1 power. Note that at least some Intel controllers can 473 * fail to enable bus power on the first try after transiting from D3 474 * to D0, so we give them up to 2 ms. 475 */ 476 pwr |= SDHCI_POWER_ON; 477 for (i = 0; i < 20; i++) { 478 WR1(slot, SDHCI_POWER_CONTROL, pwr); 479 if (RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON) 480 break; 481 DELAY(100); 482 } 483 if (!(RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON)) 484 slot_printf(slot, "Bus power failed to enable\n"); 485 486 if (slot->quirks & SDHCI_QUIRK_INTEL_POWER_UP_RESET) { 487 WR1(slot, SDHCI_POWER_CONTROL, pwr | 0x10); 488 DELAY(10); 489 WR1(slot, SDHCI_POWER_CONTROL, pwr); 490 DELAY(300); 491 } 492 } 493 494 static void 495 sdhci_read_block_pio(struct sdhci_slot *slot) 496 { 497 uint32_t data; 498 char *buffer; 499 size_t left; 500 501 buffer = slot->curcmd->data->data; 502 buffer += slot->offset; 503 /* Transfer one block at a time. */ 504 #ifdef MMCCAM 505 if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE) 506 left = min(slot->curcmd->data->block_size, 507 slot->curcmd->data->len - slot->offset); 508 else 509 #endif 510 left = min(512, slot->curcmd->data->len - slot->offset); 511 slot->offset += left; 512 513 /* If we are too fast, broken controllers return zeroes. */ 514 if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) 515 DELAY(10); 516 /* Handle unaligned and aligned buffer cases. */ 517 if ((intptr_t)buffer & 3) { 518 while (left > 3) { 519 data = RD4(slot, SDHCI_BUFFER); 520 buffer[0] = data; 521 buffer[1] = (data >> 8); 522 buffer[2] = (data >> 16); 523 buffer[3] = (data >> 24); 524 buffer += 4; 525 left -= 4; 526 } 527 } else { 528 RD_MULTI_4(slot, SDHCI_BUFFER, 529 (uint32_t *)buffer, left >> 2); 530 left &= 3; 531 } 532 /* Handle uneven size case. */ 533 if (left > 0) { 534 data = RD4(slot, SDHCI_BUFFER); 535 while (left > 0) { 536 *(buffer++) = data; 537 data >>= 8; 538 left--; 539 } 540 } 541 } 542 543 static void 544 sdhci_write_block_pio(struct sdhci_slot *slot) 545 { 546 uint32_t data = 0; 547 char *buffer; 548 size_t left; 549 550 buffer = slot->curcmd->data->data; 551 buffer += slot->offset; 552 /* Transfer one block at a time. */ 553 #ifdef MMCCAM 554 if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE) { 555 left = min(slot->curcmd->data->block_size, 556 slot->curcmd->data->len - slot->offset); 557 } else 558 #endif 559 left = min(512, slot->curcmd->data->len - slot->offset); 560 slot->offset += left; 561 562 /* Handle unaligned and aligned buffer cases. */ 563 if ((intptr_t)buffer & 3) { 564 while (left > 3) { 565 data = buffer[0] + 566 (buffer[1] << 8) + 567 (buffer[2] << 16) + 568 (buffer[3] << 24); 569 left -= 4; 570 buffer += 4; 571 WR4(slot, SDHCI_BUFFER, data); 572 } 573 } else { 574 WR_MULTI_4(slot, SDHCI_BUFFER, 575 (uint32_t *)buffer, left >> 2); 576 left &= 3; 577 } 578 /* Handle uneven size case. */ 579 if (left > 0) { 580 while (left > 0) { 581 data <<= 8; 582 data += *(buffer++); 583 left--; 584 } 585 WR4(slot, SDHCI_BUFFER, data); 586 } 587 } 588 589 static void 590 sdhci_transfer_pio(struct sdhci_slot *slot) 591 { 592 593 /* Read as many blocks as possible. */ 594 if (slot->curcmd->data->flags & MMC_DATA_READ) { 595 while (RD4(slot, SDHCI_PRESENT_STATE) & 596 SDHCI_DATA_AVAILABLE) { 597 sdhci_read_block_pio(slot); 598 if (slot->offset >= slot->curcmd->data->len) 599 break; 600 } 601 } else { 602 while (RD4(slot, SDHCI_PRESENT_STATE) & 603 SDHCI_SPACE_AVAILABLE) { 604 sdhci_write_block_pio(slot); 605 if (slot->offset >= slot->curcmd->data->len) 606 break; 607 } 608 } 609 } 610 611 static void 612 sdhci_card_task(void *arg, int pending __unused) 613 { 614 struct sdhci_slot *slot = arg; 615 device_t d; 616 617 SDHCI_LOCK(slot); 618 if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) { 619 #ifdef MMCCAM 620 if (slot->card_present == 0) { 621 #else 622 if (slot->dev == NULL) { 623 #endif 624 /* If card is present - attach mmc bus. */ 625 if (bootverbose || sdhci_debug) 626 slot_printf(slot, "Card inserted\n"); 627 #ifdef MMCCAM 628 slot->card_present = 1; 629 mmccam_start_discovery(slot->sim); 630 SDHCI_UNLOCK(slot); 631 #else 632 d = slot->dev = device_add_child(slot->bus, "mmc", -1); 633 SDHCI_UNLOCK(slot); 634 if (d) { 635 device_set_ivars(d, slot); 636 (void)device_probe_and_attach(d); 637 } 638 #endif 639 } else 640 SDHCI_UNLOCK(slot); 641 } else { 642 #ifdef MMCCAM 643 if (slot->card_present == 1) { 644 #else 645 if (slot->dev != NULL) { 646 #endif 647 /* If no card present - detach mmc bus. */ 648 if (bootverbose || sdhci_debug) 649 slot_printf(slot, "Card removed\n"); 650 d = slot->dev; 651 slot->dev = NULL; 652 #ifdef MMCCAM 653 slot->card_present = 0; 654 mmccam_start_discovery(slot->sim); 655 SDHCI_UNLOCK(slot); 656 #else 657 slot->intmask &= ~sdhci_tuning_intmask(slot); 658 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 659 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 660 slot->opt &= ~SDHCI_TUNING_ENABLED; 661 SDHCI_UNLOCK(slot); 662 callout_drain(&slot->retune_callout); 663 device_delete_child(slot->bus, d); 664 #endif 665 } else 666 SDHCI_UNLOCK(slot); 667 } 668 } 669 670 static void 671 sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present) 672 { 673 bool was_present; 674 675 /* 676 * If there was no card and now there is one, schedule the task to 677 * create the child device after a short delay. The delay is to 678 * debounce the card insert (sometimes the card detect pin stabilizes 679 * before the other pins have made good contact). 680 * 681 * If there was a card present and now it's gone, immediately schedule 682 * the task to delete the child device. No debouncing -- gone is gone, 683 * because once power is removed, a full card re-init is needed, and 684 * that happens by deleting and recreating the child device. 685 */ 686 #ifdef MMCCAM 687 was_present = slot->card_present; 688 #else 689 was_present = slot->dev != NULL; 690 #endif 691 if (!was_present && is_present) { 692 taskqueue_enqueue_timeout(taskqueue_swi_giant, 693 &slot->card_delayed_task, -SDHCI_INSERT_DELAY_TICKS); 694 } else if (was_present && !is_present) { 695 taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task); 696 } 697 } 698 699 void 700 sdhci_handle_card_present(struct sdhci_slot *slot, bool is_present) 701 { 702 703 SDHCI_LOCK(slot); 704 sdhci_handle_card_present_locked(slot, is_present); 705 SDHCI_UNLOCK(slot); 706 } 707 708 static void 709 sdhci_card_poll(void *arg) 710 { 711 struct sdhci_slot *slot = arg; 712 713 sdhci_handle_card_present(slot, 714 SDHCI_GET_CARD_PRESENT(slot->bus, slot)); 715 callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS, 716 sdhci_card_poll, slot); 717 } 718 719 static int 720 sdhci_dma_alloc(struct sdhci_slot *slot, uint32_t caps) 721 { 722 int err; 723 724 if (!(slot->quirks & SDHCI_QUIRK_BROKEN_SDMA_BOUNDARY)) { 725 if (maxphys <= 1024 * 4) 726 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_4K; 727 else if (maxphys <= 1024 * 8) 728 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_8K; 729 else if (maxphys <= 1024 * 16) 730 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_16K; 731 else if (maxphys <= 1024 * 32) 732 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_32K; 733 else if (maxphys <= 1024 * 64) 734 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_64K; 735 else if (maxphys <= 1024 * 128) 736 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_128K; 737 else if (maxphys <= 1024 * 256) 738 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_256K; 739 else 740 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_512K; 741 } 742 slot->sdma_bbufsz = SDHCI_SDMA_BNDRY_TO_BBUFSZ(slot->sdma_boundary); 743 744 /* 745 * Allocate the DMA tag for an SDMA bounce buffer. 746 * Note that the SDHCI specification doesn't state any alignment 747 * constraint for the SDMA system address. However, controllers 748 * typically ignore the SDMA boundary bits in SDHCI_DMA_ADDRESS when 749 * forming the actual address of data, requiring the SDMA buffer to 750 * be aligned to the SDMA boundary. 751 */ 752 err = bus_dma_tag_create(bus_get_dma_tag(slot->bus), slot->sdma_bbufsz, 753 0, (caps & SDHCI_CAN_DO_64BIT) ? BUS_SPACE_MAXADDR : 754 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 755 slot->sdma_bbufsz, 1, slot->sdma_bbufsz, BUS_DMA_ALLOCNOW, 756 NULL, NULL, &slot->dmatag); 757 if (err != 0) { 758 slot_printf(slot, "Can't create DMA tag for SDMA\n"); 759 return (err); 760 } 761 /* Allocate DMA memory for the SDMA bounce buffer. */ 762 err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem, 763 BUS_DMA_NOWAIT, &slot->dmamap); 764 if (err != 0) { 765 slot_printf(slot, "Can't alloc DMA memory for SDMA\n"); 766 bus_dma_tag_destroy(slot->dmatag); 767 return (err); 768 } 769 /* Map the memory of the SDMA bounce buffer. */ 770 err = bus_dmamap_load(slot->dmatag, slot->dmamap, 771 (void *)slot->dmamem, slot->sdma_bbufsz, sdhci_getaddr, 772 &slot->paddr, 0); 773 if (err != 0 || slot->paddr == 0) { 774 slot_printf(slot, "Can't load DMA memory for SDMA\n"); 775 bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); 776 bus_dma_tag_destroy(slot->dmatag); 777 if (err) 778 return (err); 779 else 780 return (EFAULT); 781 } 782 783 return (0); 784 } 785 786 static void 787 sdhci_dma_free(struct sdhci_slot *slot) 788 { 789 790 bus_dmamap_unload(slot->dmatag, slot->dmamap); 791 bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); 792 bus_dma_tag_destroy(slot->dmatag); 793 } 794 795 int 796 sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num) 797 { 798 kobjop_desc_t kobj_desc; 799 kobj_method_t *kobj_method; 800 uint32_t caps, caps2, freq, host_caps; 801 int err; 802 803 SDHCI_LOCK_INIT(slot); 804 805 slot->num = num; 806 slot->bus = dev; 807 808 slot->version = (RD2(slot, SDHCI_HOST_VERSION) 809 >> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK; 810 if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) { 811 caps = slot->caps; 812 caps2 = slot->caps2; 813 } else { 814 caps = RD4(slot, SDHCI_CAPABILITIES); 815 if (slot->version >= SDHCI_SPEC_300) 816 caps2 = RD4(slot, SDHCI_CAPABILITIES2); 817 else 818 caps2 = 0; 819 } 820 if (slot->version >= SDHCI_SPEC_300) { 821 if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE && 822 (caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) { 823 slot_printf(slot, 824 "Driver doesn't support shared bus slots\n"); 825 SDHCI_LOCK_DESTROY(slot); 826 return (ENXIO); 827 } else if ((caps & SDHCI_SLOTTYPE_MASK) == 828 SDHCI_SLOTTYPE_EMBEDDED) { 829 slot->opt |= SDHCI_SLOT_EMBEDDED | SDHCI_NON_REMOVABLE; 830 } 831 } 832 /* Calculate base clock frequency. */ 833 if (slot->version >= SDHCI_SPEC_300) 834 freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >> 835 SDHCI_CLOCK_BASE_SHIFT; 836 else 837 freq = (caps & SDHCI_CLOCK_BASE_MASK) >> 838 SDHCI_CLOCK_BASE_SHIFT; 839 if (freq != 0) 840 slot->max_clk = freq * 1000000; 841 /* 842 * If the frequency wasn't in the capabilities and the hardware driver 843 * hasn't already set max_clk we're probably not going to work right 844 * with an assumption, so complain about it. 845 */ 846 if (slot->max_clk == 0) { 847 slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000; 848 slot_printf(slot, "Hardware doesn't specify base clock " 849 "frequency, using %dMHz as default.\n", 850 SDHCI_DEFAULT_MAX_FREQ); 851 } 852 /* Calculate/set timeout clock frequency. */ 853 if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) { 854 slot->timeout_clk = slot->max_clk / 1000; 855 } else if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_1MHZ) { 856 slot->timeout_clk = 1000; 857 } else { 858 slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >> 859 SDHCI_TIMEOUT_CLK_SHIFT; 860 if (caps & SDHCI_TIMEOUT_CLK_UNIT) 861 slot->timeout_clk *= 1000; 862 } 863 /* 864 * If the frequency wasn't in the capabilities and the hardware driver 865 * hasn't already set timeout_clk we'll probably work okay using the 866 * max timeout, but still mention it. 867 */ 868 if (slot->timeout_clk == 0) { 869 slot_printf(slot, "Hardware doesn't specify timeout clock " 870 "frequency, setting BROKEN_TIMEOUT quirk.\n"); 871 slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; 872 } 873 874 slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot); 875 slot->host.f_max = slot->max_clk; 876 slot->host.host_ocr = 0; 877 if (caps & SDHCI_CAN_VDD_330) 878 slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340; 879 if (caps & SDHCI_CAN_VDD_300) 880 slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310; 881 /* 882 * 1.8V VDD is not supposed to be used for removable cards. Hardware 883 * prior to v3.0 had no way to indicate embedded slots, but did 884 * sometimes support 1.8v for non-removable devices. 885 */ 886 if ((caps & SDHCI_CAN_VDD_180) && (slot->version < SDHCI_SPEC_300 || 887 (slot->opt & SDHCI_SLOT_EMBEDDED))) 888 slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE; 889 if (slot->host.host_ocr == 0) { 890 slot_printf(slot, "Hardware doesn't report any " 891 "support voltages.\n"); 892 } 893 894 host_caps = slot->host.caps; 895 host_caps |= MMC_CAP_4_BIT_DATA; 896 if (caps & SDHCI_CAN_DO_8BITBUS) 897 host_caps |= MMC_CAP_8_BIT_DATA; 898 if (caps & SDHCI_CAN_DO_HISPD) 899 host_caps |= MMC_CAP_HSPEED; 900 if (slot->quirks & SDHCI_QUIRK_BOOT_NOACC) 901 host_caps |= MMC_CAP_BOOT_NOACC; 902 if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY) 903 host_caps |= MMC_CAP_WAIT_WHILE_BUSY; 904 905 /* Determine supported UHS-I and eMMC modes. */ 906 if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50)) 907 host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25; 908 if (caps2 & SDHCI_CAN_SDR104) { 909 host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50; 910 if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200)) 911 host_caps |= MMC_CAP_MMC_HS200; 912 } else if (caps2 & SDHCI_CAN_SDR50) 913 host_caps |= MMC_CAP_UHS_SDR50; 914 if (caps2 & SDHCI_CAN_DDR50 && 915 !(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50)) 916 host_caps |= MMC_CAP_UHS_DDR50; 917 if (slot->quirks & SDHCI_QUIRK_MMC_DDR52) 918 host_caps |= MMC_CAP_MMC_DDR52; 919 if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 && 920 caps2 & SDHCI_CAN_MMC_HS400) 921 host_caps |= MMC_CAP_MMC_HS400; 922 if (slot->quirks & SDHCI_QUIRK_MMC_HS400_IF_CAN_SDR104 && 923 caps2 & SDHCI_CAN_SDR104) 924 host_caps |= MMC_CAP_MMC_HS400; 925 926 /* 927 * Disable UHS-I and eMMC modes if the set_uhs_timing method is the 928 * default NULL implementation. 929 */ 930 kobj_desc = &sdhci_set_uhs_timing_desc; 931 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 932 kobj_desc); 933 if (kobj_method == &kobj_desc->deflt) 934 host_caps &= ~(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 935 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | 936 MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400); 937 938 #define SDHCI_CAP_MODES_TUNING(caps2) \ 939 (((caps2) & SDHCI_TUNE_SDR50 ? MMC_CAP_UHS_SDR50 : 0) | \ 940 MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_HS200 | \ 941 MMC_CAP_MMC_HS400) 942 943 /* 944 * Disable UHS-I and eMMC modes that require (re-)tuning if either 945 * the tune or re-tune method is the default NULL implementation. 946 */ 947 kobj_desc = &mmcbr_tune_desc; 948 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 949 kobj_desc); 950 if (kobj_method == &kobj_desc->deflt) 951 goto no_tuning; 952 kobj_desc = &mmcbr_retune_desc; 953 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 954 kobj_desc); 955 if (kobj_method == &kobj_desc->deflt) { 956 no_tuning: 957 host_caps &= ~(SDHCI_CAP_MODES_TUNING(caps2)); 958 } 959 960 /* Allocate tuning structures and determine tuning parameters. */ 961 if (host_caps & SDHCI_CAP_MODES_TUNING(caps2)) { 962 slot->opt |= SDHCI_TUNING_SUPPORTED; 963 slot->tune_req = malloc(sizeof(*slot->tune_req), M_DEVBUF, 964 M_WAITOK); 965 slot->tune_cmd = malloc(sizeof(*slot->tune_cmd), M_DEVBUF, 966 M_WAITOK); 967 slot->tune_data = malloc(sizeof(*slot->tune_data), M_DEVBUF, 968 M_WAITOK); 969 if (caps2 & SDHCI_TUNE_SDR50) 970 slot->opt |= SDHCI_SDR50_NEEDS_TUNING; 971 slot->retune_mode = (caps2 & SDHCI_RETUNE_MODES_MASK) >> 972 SDHCI_RETUNE_MODES_SHIFT; 973 if (slot->retune_mode == SDHCI_RETUNE_MODE_1) { 974 slot->retune_count = (caps2 & SDHCI_RETUNE_CNT_MASK) >> 975 SDHCI_RETUNE_CNT_SHIFT; 976 if (slot->retune_count > 0xb) { 977 slot_printf(slot, "Unknown re-tuning count " 978 "%x, using 1 sec\n", slot->retune_count); 979 slot->retune_count = 1; 980 } else if (slot->retune_count != 0) 981 slot->retune_count = 982 1 << (slot->retune_count - 1); 983 } 984 } 985 986 #undef SDHCI_CAP_MODES_TUNING 987 988 /* Determine supported VCCQ signaling levels. */ 989 host_caps |= MMC_CAP_SIGNALING_330; 990 if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 991 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | 992 MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 | 993 MMC_CAP_MMC_HS400_180)) 994 host_caps |= MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180; 995 996 /* 997 * Disable 1.2 V and 1.8 V signaling if the switch_vccq method is the 998 * default NULL implementation. Disable 1.2 V support if it's the 999 * generic SDHCI implementation. 1000 */ 1001 kobj_desc = &mmcbr_switch_vccq_desc; 1002 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 1003 kobj_desc); 1004 if (kobj_method == &kobj_desc->deflt) 1005 host_caps &= ~(MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180); 1006 else if (kobj_method->func == (kobjop_t)sdhci_generic_switch_vccq) 1007 host_caps &= ~MMC_CAP_SIGNALING_120; 1008 1009 /* Determine supported driver types (type B is always mandatory). */ 1010 if (caps2 & SDHCI_CAN_DRIVE_TYPE_A) 1011 host_caps |= MMC_CAP_DRIVER_TYPE_A; 1012 if (caps2 & SDHCI_CAN_DRIVE_TYPE_C) 1013 host_caps |= MMC_CAP_DRIVER_TYPE_C; 1014 if (caps2 & SDHCI_CAN_DRIVE_TYPE_D) 1015 host_caps |= MMC_CAP_DRIVER_TYPE_D; 1016 slot->host.caps = host_caps; 1017 1018 /* Decide if we have usable DMA. */ 1019 if (caps & SDHCI_CAN_DO_DMA) 1020 slot->opt |= SDHCI_HAVE_DMA; 1021 1022 if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA) 1023 slot->opt &= ~SDHCI_HAVE_DMA; 1024 if (slot->quirks & SDHCI_QUIRK_FORCE_DMA) 1025 slot->opt |= SDHCI_HAVE_DMA; 1026 if (slot->quirks & SDHCI_QUIRK_ALL_SLOTS_NON_REMOVABLE) 1027 slot->opt |= SDHCI_NON_REMOVABLE; 1028 1029 /* 1030 * Use platform-provided transfer backend 1031 * with PIO as a fallback mechanism 1032 */ 1033 if (slot->opt & SDHCI_PLATFORM_TRANSFER) 1034 slot->opt &= ~SDHCI_HAVE_DMA; 1035 1036 if (slot->opt & SDHCI_HAVE_DMA) { 1037 err = sdhci_dma_alloc(slot, caps); 1038 if (err != 0) { 1039 if (slot->opt & SDHCI_TUNING_SUPPORTED) { 1040 free(slot->tune_req, M_DEVBUF); 1041 free(slot->tune_cmd, M_DEVBUF); 1042 free(slot->tune_data, M_DEVBUF); 1043 } 1044 SDHCI_LOCK_DESTROY(slot); 1045 return (err); 1046 } 1047 } 1048 1049 if (bootverbose || sdhci_debug) { 1050 slot_printf(slot, 1051 "%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s %s\n", 1052 slot->max_clk / 1000000, 1053 (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "", 1054 (host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" : 1055 ((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"), 1056 (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "", 1057 (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "", 1058 ((caps & SDHCI_CAN_VDD_180) && 1059 (slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "", 1060 (host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "", 1061 (host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "", 1062 (host_caps & MMC_CAP_DRIVER_TYPE_A) ? "A" : "", 1063 (host_caps & MMC_CAP_DRIVER_TYPE_C) ? "C" : "", 1064 (host_caps & MMC_CAP_DRIVER_TYPE_D) ? "D" : "", 1065 (slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO", 1066 (slot->opt & SDHCI_SLOT_EMBEDDED) ? "embedded" : 1067 (slot->opt & SDHCI_NON_REMOVABLE) ? "non-removable" : 1068 "removable"); 1069 if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | 1070 MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) 1071 slot_printf(slot, "eMMC:%s%s%s%s\n", 1072 (host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "", 1073 (host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "", 1074 (host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "", 1075 ((host_caps & 1076 (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) == 1077 (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ? 1078 " HS400ES" : ""); 1079 if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 1080 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104)) 1081 slot_printf(slot, "UHS-I:%s%s%s%s%s\n", 1082 (host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "", 1083 (host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "", 1084 (host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "", 1085 (host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "", 1086 (host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : ""); 1087 if (slot->opt & SDHCI_TUNING_SUPPORTED) 1088 slot_printf(slot, "Re-tuning count %d secs, mode %d\n", 1089 slot->retune_count, slot->retune_mode + 1); 1090 sdhci_dumpregs(slot); 1091 } 1092 1093 slot->timeout = 10; 1094 SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus), 1095 SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO, 1096 "timeout", CTLFLAG_RWTUN, &slot->timeout, 0, 1097 "Maximum timeout for SDHCI transfers (in secs)"); 1098 TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot); 1099 TIMEOUT_TASK_INIT(taskqueue_swi_giant, &slot->card_delayed_task, 0, 1100 sdhci_card_task, slot); 1101 callout_init(&slot->card_poll_callout, 1); 1102 callout_init_mtx(&slot->timeout_callout, &slot->mtx, 0); 1103 callout_init_mtx(&slot->retune_callout, &slot->mtx, 0); 1104 1105 if ((slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) && 1106 !(slot->opt & SDHCI_NON_REMOVABLE)) { 1107 callout_reset(&slot->card_poll_callout, 1108 SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot); 1109 } 1110 1111 sdhci_init(slot); 1112 1113 return (0); 1114 } 1115 1116 #ifndef MMCCAM 1117 void 1118 sdhci_start_slot(struct sdhci_slot *slot) 1119 { 1120 1121 sdhci_card_task(slot, 0); 1122 } 1123 #endif 1124 1125 int 1126 sdhci_cleanup_slot(struct sdhci_slot *slot) 1127 { 1128 device_t d; 1129 1130 callout_drain(&slot->timeout_callout); 1131 callout_drain(&slot->card_poll_callout); 1132 callout_drain(&slot->retune_callout); 1133 taskqueue_drain(taskqueue_swi_giant, &slot->card_task); 1134 taskqueue_drain_timeout(taskqueue_swi_giant, &slot->card_delayed_task); 1135 1136 SDHCI_LOCK(slot); 1137 d = slot->dev; 1138 slot->dev = NULL; 1139 SDHCI_UNLOCK(slot); 1140 if (d != NULL) 1141 device_delete_child(slot->bus, d); 1142 1143 SDHCI_LOCK(slot); 1144 sdhci_reset(slot, SDHCI_RESET_ALL); 1145 SDHCI_UNLOCK(slot); 1146 if (slot->opt & SDHCI_HAVE_DMA) 1147 sdhci_dma_free(slot); 1148 if (slot->opt & SDHCI_TUNING_SUPPORTED) { 1149 free(slot->tune_req, M_DEVBUF); 1150 free(slot->tune_cmd, M_DEVBUF); 1151 free(slot->tune_data, M_DEVBUF); 1152 } 1153 1154 SDHCI_LOCK_DESTROY(slot); 1155 1156 return (0); 1157 } 1158 1159 int 1160 sdhci_generic_suspend(struct sdhci_slot *slot) 1161 { 1162 1163 /* 1164 * We expect the MMC layer to issue initial tuning after resume. 1165 * Otherwise, we'd need to indicate re-tuning including circuit reset 1166 * being required at least for re-tuning modes 1 and 2 ourselves. 1167 */ 1168 callout_drain(&slot->retune_callout); 1169 SDHCI_LOCK(slot); 1170 slot->opt &= ~SDHCI_TUNING_ENABLED; 1171 sdhci_reset(slot, SDHCI_RESET_ALL); 1172 SDHCI_UNLOCK(slot); 1173 1174 return (0); 1175 } 1176 1177 int 1178 sdhci_generic_resume(struct sdhci_slot *slot) 1179 { 1180 1181 SDHCI_LOCK(slot); 1182 sdhci_init(slot); 1183 SDHCI_UNLOCK(slot); 1184 1185 return (0); 1186 } 1187 1188 uint32_t 1189 sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot) 1190 { 1191 1192 if (slot->version >= SDHCI_SPEC_300) 1193 return (slot->max_clk / SDHCI_300_MAX_DIVIDER); 1194 else 1195 return (slot->max_clk / SDHCI_200_MAX_DIVIDER); 1196 } 1197 1198 bool 1199 sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot) 1200 { 1201 1202 if (slot->opt & SDHCI_NON_REMOVABLE) 1203 return true; 1204 1205 return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT); 1206 } 1207 1208 void 1209 sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot) 1210 { 1211 const struct mmc_ios *ios; 1212 uint16_t hostctrl2; 1213 1214 if (slot->version < SDHCI_SPEC_300) 1215 return; 1216 1217 SDHCI_ASSERT_LOCKED(slot); 1218 ios = &slot->host.ios; 1219 sdhci_set_clock(slot, 0); 1220 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1221 hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK; 1222 if (ios->clock > SD_SDR50_MAX) { 1223 if (ios->timing == bus_timing_mmc_hs400 || 1224 ios->timing == bus_timing_mmc_hs400es) 1225 hostctrl2 |= SDHCI_CTRL2_MMC_HS400; 1226 else 1227 hostctrl2 |= SDHCI_CTRL2_UHS_SDR104; 1228 } 1229 else if (ios->clock > SD_SDR25_MAX) 1230 hostctrl2 |= SDHCI_CTRL2_UHS_SDR50; 1231 else if (ios->clock > SD_SDR12_MAX) { 1232 if (ios->timing == bus_timing_uhs_ddr50 || 1233 ios->timing == bus_timing_mmc_ddr52) 1234 hostctrl2 |= SDHCI_CTRL2_UHS_DDR50; 1235 else 1236 hostctrl2 |= SDHCI_CTRL2_UHS_SDR25; 1237 } else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY) 1238 hostctrl2 |= SDHCI_CTRL2_UHS_SDR12; 1239 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1240 sdhci_set_clock(slot, ios->clock); 1241 } 1242 1243 int 1244 sdhci_generic_update_ios(device_t brdev, device_t reqdev) 1245 { 1246 struct sdhci_slot *slot = device_get_ivars(reqdev); 1247 struct mmc_ios *ios = &slot->host.ios; 1248 1249 SDHCI_LOCK(slot); 1250 /* Do full reset on bus power down to clear from any state. */ 1251 if (ios->power_mode == power_off) { 1252 WR4(slot, SDHCI_SIGNAL_ENABLE, 0); 1253 sdhci_init(slot); 1254 } 1255 /* Configure the bus. */ 1256 sdhci_set_clock(slot, ios->clock); 1257 sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd); 1258 if (ios->bus_width == bus_width_8) { 1259 slot->hostctrl |= SDHCI_CTRL_8BITBUS; 1260 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 1261 } else if (ios->bus_width == bus_width_4) { 1262 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 1263 slot->hostctrl |= SDHCI_CTRL_4BITBUS; 1264 } else if (ios->bus_width == bus_width_1) { 1265 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 1266 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 1267 } else { 1268 panic("Invalid bus width: %d", ios->bus_width); 1269 } 1270 if (ios->clock > SD_SDR12_MAX && 1271 !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT)) 1272 slot->hostctrl |= SDHCI_CTRL_HISPD; 1273 else 1274 slot->hostctrl &= ~SDHCI_CTRL_HISPD; 1275 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); 1276 SDHCI_SET_UHS_TIMING(brdev, slot); 1277 /* Some controllers like reset after bus changes. */ 1278 if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS) 1279 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1280 1281 SDHCI_UNLOCK(slot); 1282 return (0); 1283 } 1284 1285 int 1286 sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev) 1287 { 1288 struct sdhci_slot *slot = device_get_ivars(reqdev); 1289 enum mmc_vccq vccq; 1290 int err; 1291 uint16_t hostctrl2; 1292 1293 if (slot->version < SDHCI_SPEC_300) 1294 return (0); 1295 1296 err = 0; 1297 vccq = slot->host.ios.vccq; 1298 SDHCI_LOCK(slot); 1299 sdhci_set_clock(slot, 0); 1300 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1301 switch (vccq) { 1302 case vccq_330: 1303 if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE)) 1304 goto done; 1305 hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE; 1306 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1307 DELAY(5000); 1308 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1309 if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE)) 1310 goto done; 1311 err = EAGAIN; 1312 break; 1313 case vccq_180: 1314 if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) { 1315 err = EINVAL; 1316 goto done; 1317 } 1318 if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE) 1319 goto done; 1320 hostctrl2 |= SDHCI_CTRL2_S18_ENABLE; 1321 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1322 DELAY(5000); 1323 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1324 if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE) 1325 goto done; 1326 err = EAGAIN; 1327 break; 1328 default: 1329 slot_printf(slot, 1330 "Attempt to set unsupported signaling voltage\n"); 1331 err = EINVAL; 1332 break; 1333 } 1334 done: 1335 sdhci_set_clock(slot, slot->host.ios.clock); 1336 SDHCI_UNLOCK(slot); 1337 return (err); 1338 } 1339 1340 int 1341 sdhci_generic_tune(device_t brdev __unused, device_t reqdev, bool hs400) 1342 { 1343 struct sdhci_slot *slot = device_get_ivars(reqdev); 1344 const struct mmc_ios *ios = &slot->host.ios; 1345 struct mmc_command *tune_cmd; 1346 struct mmc_data *tune_data; 1347 uint32_t opcode; 1348 int err; 1349 1350 if (!(slot->opt & SDHCI_TUNING_SUPPORTED)) 1351 return (0); 1352 1353 slot->retune_ticks = slot->retune_count * hz; 1354 opcode = MMC_SEND_TUNING_BLOCK; 1355 SDHCI_LOCK(slot); 1356 switch (ios->timing) { 1357 case bus_timing_mmc_hs400: 1358 slot_printf(slot, "HS400 must be tuned in HS200 mode\n"); 1359 SDHCI_UNLOCK(slot); 1360 return (EINVAL); 1361 case bus_timing_mmc_hs200: 1362 /* 1363 * In HS400 mode, controllers use the data strobe line to 1364 * latch data from the devices so periodic re-tuning isn't 1365 * expected to be required. 1366 */ 1367 if (hs400) 1368 slot->retune_ticks = 0; 1369 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1370 break; 1371 case bus_timing_uhs_ddr50: 1372 case bus_timing_uhs_sdr104: 1373 break; 1374 case bus_timing_uhs_sdr50: 1375 if (slot->opt & SDHCI_SDR50_NEEDS_TUNING) 1376 break; 1377 /* FALLTHROUGH */ 1378 default: 1379 SDHCI_UNLOCK(slot); 1380 return (0); 1381 } 1382 1383 tune_cmd = slot->tune_cmd; 1384 memset(tune_cmd, 0, sizeof(*tune_cmd)); 1385 tune_cmd->opcode = opcode; 1386 tune_cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1387 tune_data = tune_cmd->data = slot->tune_data; 1388 memset(tune_data, 0, sizeof(*tune_data)); 1389 tune_data->len = (opcode == MMC_SEND_TUNING_BLOCK_HS200 && 1390 ios->bus_width == bus_width_8) ? MMC_TUNING_LEN_HS200 : 1391 MMC_TUNING_LEN; 1392 tune_data->flags = MMC_DATA_READ; 1393 tune_data->mrq = tune_cmd->mrq = slot->tune_req; 1394 1395 slot->opt &= ~SDHCI_TUNING_ENABLED; 1396 err = sdhci_exec_tuning(slot, true); 1397 if (err == 0) { 1398 slot->opt |= SDHCI_TUNING_ENABLED; 1399 slot->intmask |= sdhci_tuning_intmask(slot); 1400 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 1401 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 1402 if (slot->retune_ticks) { 1403 callout_reset(&slot->retune_callout, slot->retune_ticks, 1404 sdhci_retune, slot); 1405 } 1406 } 1407 SDHCI_UNLOCK(slot); 1408 return (err); 1409 } 1410 1411 int 1412 sdhci_generic_retune(device_t brdev __unused, device_t reqdev, bool reset) 1413 { 1414 struct sdhci_slot *slot = device_get_ivars(reqdev); 1415 int err; 1416 1417 if (!(slot->opt & SDHCI_TUNING_ENABLED)) 1418 return (0); 1419 1420 /* HS400 must be tuned in HS200 mode. */ 1421 if (slot->host.ios.timing == bus_timing_mmc_hs400) 1422 return (EINVAL); 1423 1424 SDHCI_LOCK(slot); 1425 err = sdhci_exec_tuning(slot, reset); 1426 /* 1427 * There are two ways sdhci_exec_tuning() can fail: 1428 * EBUSY should not actually happen when requests are only issued 1429 * with the host properly acquired, and 1430 * EIO re-tuning failed (but it did work initially). 1431 * 1432 * In both cases, we should retry at later point if periodic re-tuning 1433 * is enabled. Note that due to slot->retune_req not being cleared in 1434 * these failure cases, the MMC layer should trigger another attempt at 1435 * re-tuning with the next request anyway, though. 1436 */ 1437 if (slot->retune_ticks) { 1438 callout_reset(&slot->retune_callout, slot->retune_ticks, 1439 sdhci_retune, slot); 1440 } 1441 SDHCI_UNLOCK(slot); 1442 return (err); 1443 } 1444 1445 static int 1446 sdhci_exec_tuning(struct sdhci_slot *slot, bool reset) 1447 { 1448 struct mmc_request *tune_req; 1449 struct mmc_command *tune_cmd; 1450 int i; 1451 uint32_t intmask; 1452 uint16_t hostctrl2; 1453 u_char opt; 1454 1455 SDHCI_ASSERT_LOCKED(slot); 1456 if (slot->req != NULL) 1457 return (EBUSY); 1458 1459 /* Tuning doesn't work with DMA enabled. */ 1460 opt = slot->opt; 1461 slot->opt = opt & ~SDHCI_HAVE_DMA; 1462 1463 /* 1464 * Ensure that as documented, SDHCI_INT_DATA_AVAIL is the only 1465 * kind of interrupt we receive in response to a tuning request. 1466 */ 1467 intmask = slot->intmask; 1468 slot->intmask = SDHCI_INT_DATA_AVAIL; 1469 WR4(slot, SDHCI_INT_ENABLE, SDHCI_INT_DATA_AVAIL); 1470 WR4(slot, SDHCI_SIGNAL_ENABLE, SDHCI_INT_DATA_AVAIL); 1471 1472 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1473 if (reset) 1474 hostctrl2 &= ~SDHCI_CTRL2_SAMPLING_CLOCK; 1475 else 1476 hostctrl2 |= SDHCI_CTRL2_SAMPLING_CLOCK; 1477 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 | SDHCI_CTRL2_EXEC_TUNING); 1478 1479 tune_req = slot->tune_req; 1480 tune_cmd = slot->tune_cmd; 1481 for (i = 0; i < MMC_TUNING_MAX; i++) { 1482 memset(tune_req, 0, sizeof(*tune_req)); 1483 tune_req->cmd = tune_cmd; 1484 tune_req->done = sdhci_req_wakeup; 1485 tune_req->done_data = slot; 1486 slot->req = tune_req; 1487 slot->flags = 0; 1488 sdhci_start(slot); 1489 while (!(tune_req->flags & MMC_REQ_DONE)) 1490 msleep(tune_req, &slot->mtx, 0, "sdhciet", 0); 1491 if (!(tune_req->flags & MMC_TUNE_DONE)) 1492 break; 1493 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1494 if (!(hostctrl2 & SDHCI_CTRL2_EXEC_TUNING)) 1495 break; 1496 if (tune_cmd->opcode == MMC_SEND_TUNING_BLOCK) 1497 DELAY(1000); 1498 } 1499 1500 /* 1501 * Restore DMA usage and interrupts. 1502 * Note that the interrupt aggregation code might have cleared 1503 * SDHCI_INT_DMA_END and/or SDHCI_INT_RESPONSE in slot->intmask 1504 * and SDHCI_SIGNAL_ENABLE respectively so ensure SDHCI_INT_ENABLE 1505 * doesn't lose these. 1506 */ 1507 slot->opt = opt; 1508 slot->intmask = intmask; 1509 WR4(slot, SDHCI_INT_ENABLE, intmask | SDHCI_INT_DMA_END | 1510 SDHCI_INT_RESPONSE); 1511 WR4(slot, SDHCI_SIGNAL_ENABLE, intmask); 1512 1513 if ((hostctrl2 & (SDHCI_CTRL2_EXEC_TUNING | 1514 SDHCI_CTRL2_SAMPLING_CLOCK)) == SDHCI_CTRL2_SAMPLING_CLOCK) { 1515 slot->retune_req = 0; 1516 return (0); 1517 } 1518 1519 slot_printf(slot, "Tuning failed, using fixed sampling clock\n"); 1520 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 & ~(SDHCI_CTRL2_EXEC_TUNING | 1521 SDHCI_CTRL2_SAMPLING_CLOCK)); 1522 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1523 return (EIO); 1524 } 1525 1526 static void 1527 sdhci_retune(void *arg) 1528 { 1529 struct sdhci_slot *slot = arg; 1530 1531 slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED; 1532 } 1533 1534 #ifdef MMCCAM 1535 static void 1536 sdhci_req_done(struct sdhci_slot *slot) 1537 { 1538 union ccb *ccb; 1539 1540 if (__predict_false(sdhci_debug > 1)) 1541 slot_printf(slot, "%s\n", __func__); 1542 if (slot->ccb != NULL && slot->curcmd != NULL) { 1543 callout_stop(&slot->timeout_callout); 1544 ccb = slot->ccb; 1545 slot->ccb = NULL; 1546 slot->curcmd = NULL; 1547 1548 /* Tell CAM the request is finished */ 1549 struct ccb_mmcio *mmcio; 1550 mmcio = &ccb->mmcio; 1551 1552 ccb->ccb_h.status = 1553 (mmcio->cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR); 1554 xpt_done(ccb); 1555 } 1556 } 1557 #else 1558 static void 1559 sdhci_req_done(struct sdhci_slot *slot) 1560 { 1561 struct mmc_request *req; 1562 1563 if (slot->req != NULL && slot->curcmd != NULL) { 1564 callout_stop(&slot->timeout_callout); 1565 req = slot->req; 1566 slot->req = NULL; 1567 slot->curcmd = NULL; 1568 req->done(req); 1569 } 1570 } 1571 #endif 1572 1573 static void 1574 sdhci_req_wakeup(struct mmc_request *req) 1575 { 1576 struct sdhci_slot *slot; 1577 1578 slot = req->done_data; 1579 req->flags |= MMC_REQ_DONE; 1580 wakeup(req); 1581 } 1582 1583 static void 1584 sdhci_timeout(void *arg) 1585 { 1586 struct sdhci_slot *slot = arg; 1587 1588 if (slot->curcmd != NULL) { 1589 slot_printf(slot, "Controller timeout\n"); 1590 sdhci_dumpregs(slot); 1591 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1592 slot->curcmd->error = MMC_ERR_TIMEOUT; 1593 sdhci_req_done(slot); 1594 } else { 1595 slot_printf(slot, "Spurious timeout - no active command\n"); 1596 } 1597 } 1598 1599 static void 1600 sdhci_set_transfer_mode(struct sdhci_slot *slot, const struct mmc_data *data) 1601 { 1602 uint16_t mode; 1603 1604 if (data == NULL) 1605 return; 1606 1607 mode = SDHCI_TRNS_BLK_CNT_EN; 1608 if (data->len > 512 || data->block_count > 1) { 1609 mode |= SDHCI_TRNS_MULTI; 1610 if (data->block_count == 0 && __predict_true( 1611 #ifdef MMCCAM 1612 slot->ccb->mmcio.stop.opcode == MMC_STOP_TRANSMISSION && 1613 #else 1614 slot->req->stop != NULL && 1615 #endif 1616 !(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP))) 1617 mode |= SDHCI_TRNS_ACMD12; 1618 } 1619 if (data->flags & MMC_DATA_READ) 1620 mode |= SDHCI_TRNS_READ; 1621 if (slot->flags & SDHCI_USE_DMA) 1622 mode |= SDHCI_TRNS_DMA; 1623 1624 WR2(slot, SDHCI_TRANSFER_MODE, mode); 1625 } 1626 1627 static void 1628 sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd) 1629 { 1630 int flags, timeout; 1631 uint32_t mask; 1632 1633 slot->curcmd = cmd; 1634 slot->cmd_done = 0; 1635 1636 cmd->error = MMC_ERR_NONE; 1637 1638 /* This flags combination is not supported by controller. */ 1639 if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) { 1640 slot_printf(slot, "Unsupported response type!\n"); 1641 cmd->error = MMC_ERR_FAILED; 1642 sdhci_req_done(slot); 1643 return; 1644 } 1645 1646 /* 1647 * Do not issue command if there is no card, clock or power. 1648 * Controller will not detect timeout without clock active. 1649 */ 1650 if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) || 1651 slot->power == 0 || 1652 slot->clock == 0) { 1653 slot_printf(slot, 1654 "Cannot issue a command (power=%d clock=%d)", 1655 slot->power, slot->clock); 1656 cmd->error = MMC_ERR_FAILED; 1657 sdhci_req_done(slot); 1658 return; 1659 } 1660 /* Always wait for free CMD bus. */ 1661 mask = SDHCI_CMD_INHIBIT; 1662 /* Wait for free DAT if we have data or busy signal. */ 1663 if (cmd->data != NULL || (cmd->flags & MMC_RSP_BUSY)) 1664 mask |= SDHCI_DAT_INHIBIT; 1665 /* 1666 * We shouldn't wait for DAT for stop commands or CMD19/CMD21. Note 1667 * that these latter are also special in that SDHCI_CMD_DATA should 1668 * be set below but no actual data is ever read from the controller. 1669 */ 1670 #ifdef MMCCAM 1671 if (cmd == &slot->ccb->mmcio.stop || 1672 #else 1673 if (cmd == slot->req->stop || 1674 #endif 1675 __predict_false(cmd->opcode == MMC_SEND_TUNING_BLOCK || 1676 cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)) 1677 mask &= ~SDHCI_DAT_INHIBIT; 1678 /* 1679 * Wait for bus no more then 250 ms. Typically there will be no wait 1680 * here at all, but when writing a crash dump we may be bypassing the 1681 * host platform's interrupt handler, and in some cases that handler 1682 * may be working around hardware quirks such as not respecting r1b 1683 * busy indications. In those cases, this wait-loop serves the purpose 1684 * of waiting for the prior command and data transfers to be done, and 1685 * SD cards are allowed to take up to 250ms for write and erase ops. 1686 * (It's usually more like 20-30ms in the real world.) 1687 */ 1688 timeout = 250; 1689 while (mask & RD4(slot, SDHCI_PRESENT_STATE)) { 1690 if (timeout == 0) { 1691 slot_printf(slot, "Controller never released " 1692 "inhibit bit(s).\n"); 1693 sdhci_dumpregs(slot); 1694 cmd->error = MMC_ERR_FAILED; 1695 sdhci_req_done(slot); 1696 return; 1697 } 1698 timeout--; 1699 DELAY(1000); 1700 } 1701 1702 /* Prepare command flags. */ 1703 if (!(cmd->flags & MMC_RSP_PRESENT)) 1704 flags = SDHCI_CMD_RESP_NONE; 1705 else if (cmd->flags & MMC_RSP_136) 1706 flags = SDHCI_CMD_RESP_LONG; 1707 else if (cmd->flags & MMC_RSP_BUSY) 1708 flags = SDHCI_CMD_RESP_SHORT_BUSY; 1709 else 1710 flags = SDHCI_CMD_RESP_SHORT; 1711 if (cmd->flags & MMC_RSP_CRC) 1712 flags |= SDHCI_CMD_CRC; 1713 if (cmd->flags & MMC_RSP_OPCODE) 1714 flags |= SDHCI_CMD_INDEX; 1715 if (cmd->data != NULL) 1716 flags |= SDHCI_CMD_DATA; 1717 if (cmd->opcode == MMC_STOP_TRANSMISSION) 1718 flags |= SDHCI_CMD_TYPE_ABORT; 1719 /* Prepare data. */ 1720 sdhci_start_data(slot, cmd->data); 1721 /* 1722 * Interrupt aggregation: To reduce total number of interrupts 1723 * group response interrupt with data interrupt when possible. 1724 * If there going to be data interrupt, mask response one. 1725 */ 1726 if (slot->data_done == 0) { 1727 WR4(slot, SDHCI_SIGNAL_ENABLE, 1728 slot->intmask &= ~SDHCI_INT_RESPONSE); 1729 } 1730 /* Set command argument. */ 1731 WR4(slot, SDHCI_ARGUMENT, cmd->arg); 1732 /* Set data transfer mode. */ 1733 sdhci_set_transfer_mode(slot, cmd->data); 1734 if (__predict_false(sdhci_debug > 1)) 1735 slot_printf(slot, "Starting command opcode %#04x flags %#04x\n", 1736 cmd->opcode, flags); 1737 1738 /* Start command. */ 1739 WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff)); 1740 /* Start timeout callout. */ 1741 callout_reset(&slot->timeout_callout, slot->timeout * hz, 1742 sdhci_timeout, slot); 1743 } 1744 1745 static void 1746 sdhci_finish_command(struct sdhci_slot *slot) 1747 { 1748 int i; 1749 uint32_t val; 1750 uint8_t extra; 1751 1752 if (__predict_false(sdhci_debug > 1)) 1753 slot_printf(slot, "%s: called, err %d flags %#04x\n", 1754 __func__, slot->curcmd->error, slot->curcmd->flags); 1755 slot->cmd_done = 1; 1756 /* 1757 * Interrupt aggregation: Restore command interrupt. 1758 * Main restore point for the case when command interrupt 1759 * happened first. 1760 */ 1761 if (__predict_true(slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK && 1762 slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK_HS200)) 1763 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |= 1764 SDHCI_INT_RESPONSE); 1765 /* In case of error - reset host and return. */ 1766 if (slot->curcmd->error) { 1767 if (slot->curcmd->error == MMC_ERR_BADCRC) 1768 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 1769 sdhci_reset(slot, SDHCI_RESET_CMD); 1770 sdhci_reset(slot, SDHCI_RESET_DATA); 1771 sdhci_start(slot); 1772 return; 1773 } 1774 /* If command has response - fetch it. */ 1775 if (slot->curcmd->flags & MMC_RSP_PRESENT) { 1776 if (slot->curcmd->flags & MMC_RSP_136) { 1777 /* CRC is stripped so we need one byte shift. */ 1778 extra = 0; 1779 for (i = 0; i < 4; i++) { 1780 val = RD4(slot, SDHCI_RESPONSE + i * 4); 1781 if (slot->quirks & 1782 SDHCI_QUIRK_DONT_SHIFT_RESPONSE) 1783 slot->curcmd->resp[3 - i] = val; 1784 else { 1785 slot->curcmd->resp[3 - i] = 1786 (val << 8) | extra; 1787 extra = val >> 24; 1788 } 1789 } 1790 } else 1791 slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE); 1792 } 1793 if (__predict_false(sdhci_debug > 1)) 1794 slot_printf(slot, "Resp: %#04x %#04x %#04x %#04x\n", 1795 slot->curcmd->resp[0], slot->curcmd->resp[1], 1796 slot->curcmd->resp[2], slot->curcmd->resp[3]); 1797 1798 /* If data ready - finish. */ 1799 if (slot->data_done) 1800 sdhci_start(slot); 1801 } 1802 1803 static void 1804 sdhci_start_data(struct sdhci_slot *slot, const struct mmc_data *data) 1805 { 1806 uint32_t blkcnt, blksz, current_timeout, sdma_bbufsz, target_timeout; 1807 uint8_t div; 1808 1809 if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { 1810 slot->data_done = 1; 1811 return; 1812 } 1813 1814 slot->data_done = 0; 1815 1816 /* Calculate and set data timeout.*/ 1817 /* XXX: We should have this from mmc layer, now assume 1 sec. */ 1818 if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) { 1819 div = 0xE; 1820 } else { 1821 target_timeout = 1000000; 1822 div = 0; 1823 current_timeout = (1 << 13) * 1000 / slot->timeout_clk; 1824 while (current_timeout < target_timeout && div < 0xE) { 1825 ++div; 1826 current_timeout <<= 1; 1827 } 1828 /* Compensate for an off-by-one error in the CaFe chip.*/ 1829 if (div < 0xE && 1830 (slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) { 1831 ++div; 1832 } 1833 } 1834 WR1(slot, SDHCI_TIMEOUT_CONTROL, div); 1835 1836 if (data == NULL) 1837 return; 1838 1839 /* Use DMA if possible. */ 1840 if ((slot->opt & SDHCI_HAVE_DMA)) 1841 slot->flags |= SDHCI_USE_DMA; 1842 /* If data is small, broken DMA may return zeroes instead of data. */ 1843 if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) && 1844 (data->len <= 512)) 1845 slot->flags &= ~SDHCI_USE_DMA; 1846 /* Some controllers require even block sizes. */ 1847 if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) && 1848 ((data->len) & 0x3)) 1849 slot->flags &= ~SDHCI_USE_DMA; 1850 /* Load DMA buffer. */ 1851 if (slot->flags & SDHCI_USE_DMA) { 1852 sdma_bbufsz = slot->sdma_bbufsz; 1853 if (data->flags & MMC_DATA_READ) 1854 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1855 BUS_DMASYNC_PREREAD); 1856 else { 1857 memcpy(slot->dmamem, data->data, ulmin(data->len, 1858 sdma_bbufsz)); 1859 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1860 BUS_DMASYNC_PREWRITE); 1861 } 1862 WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); 1863 /* 1864 * Interrupt aggregation: Mask border interrupt for the last 1865 * bounce buffer and unmask otherwise. 1866 */ 1867 if (data->len == sdma_bbufsz) 1868 slot->intmask &= ~SDHCI_INT_DMA_END; 1869 else 1870 slot->intmask |= SDHCI_INT_DMA_END; 1871 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 1872 } 1873 /* Current data offset for both PIO and DMA. */ 1874 slot->offset = 0; 1875 #ifdef MMCCAM 1876 if (data->flags & MMC_DATA_BLOCK_SIZE) { 1877 /* Set block size and request border interrupts on the SDMA boundary. */ 1878 blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, data->block_size); 1879 blkcnt = data->block_count; 1880 if (__predict_false(sdhci_debug > 0)) 1881 slot_printf(slot, "SDIO Custom block params: blksz: " 1882 "%#10x, blk cnt: %#10x\n", blksz, blkcnt); 1883 } else 1884 #endif 1885 { 1886 /* Set block size and request border interrupts on the SDMA boundary. */ 1887 blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, ulmin(data->len, 512)); 1888 blkcnt = howmany(data->len, 512); 1889 } 1890 1891 WR2(slot, SDHCI_BLOCK_SIZE, blksz); 1892 WR2(slot, SDHCI_BLOCK_COUNT, blkcnt); 1893 if (__predict_false(sdhci_debug > 1)) 1894 slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n", 1895 blksz, blkcnt); 1896 } 1897 1898 void 1899 sdhci_finish_data(struct sdhci_slot *slot) 1900 { 1901 struct mmc_data *data = slot->curcmd->data; 1902 size_t left; 1903 1904 /* Interrupt aggregation: Restore command interrupt. 1905 * Auxiliary restore point for the case when data interrupt 1906 * happened first. */ 1907 if (!slot->cmd_done) { 1908 WR4(slot, SDHCI_SIGNAL_ENABLE, 1909 slot->intmask |= SDHCI_INT_RESPONSE); 1910 } 1911 /* Unload rest of data from DMA buffer. */ 1912 if (!slot->data_done && (slot->flags & SDHCI_USE_DMA) && 1913 slot->curcmd->data != NULL) { 1914 if (data->flags & MMC_DATA_READ) { 1915 left = data->len - slot->offset; 1916 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1917 BUS_DMASYNC_POSTREAD); 1918 memcpy((u_char*)data->data + slot->offset, slot->dmamem, 1919 ulmin(left, slot->sdma_bbufsz)); 1920 } else 1921 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1922 BUS_DMASYNC_POSTWRITE); 1923 } 1924 slot->data_done = 1; 1925 /* If there was error - reset the host. */ 1926 if (slot->curcmd->error) { 1927 if (slot->curcmd->error == MMC_ERR_BADCRC) 1928 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 1929 sdhci_reset(slot, SDHCI_RESET_CMD); 1930 sdhci_reset(slot, SDHCI_RESET_DATA); 1931 sdhci_start(slot); 1932 return; 1933 } 1934 /* If we already have command response - finish. */ 1935 if (slot->cmd_done) 1936 sdhci_start(slot); 1937 } 1938 1939 #ifdef MMCCAM 1940 static void 1941 sdhci_start(struct sdhci_slot *slot) 1942 { 1943 union ccb *ccb; 1944 struct ccb_mmcio *mmcio; 1945 1946 ccb = slot->ccb; 1947 if (ccb == NULL) 1948 return; 1949 1950 mmcio = &ccb->mmcio; 1951 if (!(slot->flags & CMD_STARTED)) { 1952 slot->flags |= CMD_STARTED; 1953 sdhci_start_command(slot, &mmcio->cmd); 1954 return; 1955 } 1956 1957 /* 1958 * Old stack doesn't use this! 1959 * Enabling this code causes significant performance degradation 1960 * and IRQ storms on BBB, Wandboard behaves fine. 1961 * Not using this code does no harm... 1962 if (!(slot->flags & STOP_STARTED) && mmcio->stop.opcode != 0) { 1963 slot->flags |= STOP_STARTED; 1964 sdhci_start_command(slot, &mmcio->stop); 1965 return; 1966 } 1967 */ 1968 if (__predict_false(sdhci_debug > 1)) 1969 slot_printf(slot, "result: %d\n", mmcio->cmd.error); 1970 if (mmcio->cmd.error == 0 && 1971 (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) { 1972 sdhci_reset(slot, SDHCI_RESET_CMD); 1973 sdhci_reset(slot, SDHCI_RESET_DATA); 1974 } 1975 1976 sdhci_req_done(slot); 1977 } 1978 #else 1979 static void 1980 sdhci_start(struct sdhci_slot *slot) 1981 { 1982 const struct mmc_request *req; 1983 1984 req = slot->req; 1985 if (req == NULL) 1986 return; 1987 1988 if (!(slot->flags & CMD_STARTED)) { 1989 slot->flags |= CMD_STARTED; 1990 sdhci_start_command(slot, req->cmd); 1991 return; 1992 } 1993 if ((slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP) && 1994 !(slot->flags & STOP_STARTED) && req->stop) { 1995 slot->flags |= STOP_STARTED; 1996 sdhci_start_command(slot, req->stop); 1997 return; 1998 } 1999 if (__predict_false(sdhci_debug > 1)) 2000 slot_printf(slot, "result: %d\n", req->cmd->error); 2001 if (!req->cmd->error && 2002 ((slot->curcmd == req->stop && 2003 (slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) || 2004 (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) { 2005 sdhci_reset(slot, SDHCI_RESET_CMD); 2006 sdhci_reset(slot, SDHCI_RESET_DATA); 2007 } 2008 2009 sdhci_req_done(slot); 2010 } 2011 #endif 2012 2013 int 2014 sdhci_generic_request(device_t brdev __unused, device_t reqdev, 2015 struct mmc_request *req) 2016 { 2017 struct sdhci_slot *slot = device_get_ivars(reqdev); 2018 2019 SDHCI_LOCK(slot); 2020 if (slot->req != NULL) { 2021 SDHCI_UNLOCK(slot); 2022 return (EBUSY); 2023 } 2024 if (__predict_false(sdhci_debug > 1)) { 2025 slot_printf(slot, 2026 "CMD%u arg %#x flags %#x dlen %u dflags %#x\n", 2027 req->cmd->opcode, req->cmd->arg, req->cmd->flags, 2028 (req->cmd->data)?(u_int)req->cmd->data->len:0, 2029 (req->cmd->data)?req->cmd->data->flags:0); 2030 } 2031 slot->req = req; 2032 slot->flags = 0; 2033 sdhci_start(slot); 2034 SDHCI_UNLOCK(slot); 2035 if (dumping) { 2036 while (slot->req != NULL) { 2037 sdhci_generic_intr(slot); 2038 DELAY(10); 2039 } 2040 } 2041 return (0); 2042 } 2043 2044 int 2045 sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev) 2046 { 2047 struct sdhci_slot *slot = device_get_ivars(reqdev); 2048 uint32_t val; 2049 2050 SDHCI_LOCK(slot); 2051 val = RD4(slot, SDHCI_PRESENT_STATE); 2052 SDHCI_UNLOCK(slot); 2053 return (!(val & SDHCI_WRITE_PROTECT)); 2054 } 2055 2056 int 2057 sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev) 2058 { 2059 struct sdhci_slot *slot = device_get_ivars(reqdev); 2060 int err = 0; 2061 2062 SDHCI_LOCK(slot); 2063 while (slot->bus_busy) 2064 msleep(slot, &slot->mtx, 0, "sdhciah", 0); 2065 slot->bus_busy++; 2066 /* Activate led. */ 2067 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED); 2068 SDHCI_UNLOCK(slot); 2069 return (err); 2070 } 2071 2072 int 2073 sdhci_generic_release_host(device_t brdev __unused, device_t reqdev) 2074 { 2075 struct sdhci_slot *slot = device_get_ivars(reqdev); 2076 2077 SDHCI_LOCK(slot); 2078 /* Deactivate led. */ 2079 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED); 2080 slot->bus_busy--; 2081 wakeup(slot); 2082 SDHCI_UNLOCK(slot); 2083 return (0); 2084 } 2085 2086 static void 2087 sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask) 2088 { 2089 2090 if (!slot->curcmd) { 2091 slot_printf(slot, "Got command interrupt 0x%08x, but " 2092 "there is no active command.\n", intmask); 2093 sdhci_dumpregs(slot); 2094 return; 2095 } 2096 if (intmask & SDHCI_INT_TIMEOUT) 2097 slot->curcmd->error = MMC_ERR_TIMEOUT; 2098 else if (intmask & SDHCI_INT_CRC) 2099 slot->curcmd->error = MMC_ERR_BADCRC; 2100 else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) 2101 slot->curcmd->error = MMC_ERR_FIFO; 2102 2103 sdhci_finish_command(slot); 2104 } 2105 2106 static void 2107 sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask) 2108 { 2109 struct mmc_data *data; 2110 size_t left; 2111 uint32_t sdma_bbufsz; 2112 2113 if (!slot->curcmd) { 2114 slot_printf(slot, "Got data interrupt 0x%08x, but " 2115 "there is no active command.\n", intmask); 2116 sdhci_dumpregs(slot); 2117 return; 2118 } 2119 if (slot->curcmd->data == NULL && 2120 (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { 2121 slot_printf(slot, "Got data interrupt 0x%08x, but " 2122 "there is no active data operation.\n", 2123 intmask); 2124 sdhci_dumpregs(slot); 2125 return; 2126 } 2127 if (intmask & SDHCI_INT_DATA_TIMEOUT) 2128 slot->curcmd->error = MMC_ERR_TIMEOUT; 2129 else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT)) 2130 slot->curcmd->error = MMC_ERR_BADCRC; 2131 if (slot->curcmd->data == NULL && 2132 (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | 2133 SDHCI_INT_DMA_END))) { 2134 slot_printf(slot, "Got data interrupt 0x%08x, but " 2135 "there is busy-only command.\n", intmask); 2136 sdhci_dumpregs(slot); 2137 slot->curcmd->error = MMC_ERR_INVALID; 2138 } 2139 if (slot->curcmd->error) { 2140 /* No need to continue after any error. */ 2141 goto done; 2142 } 2143 2144 /* Handle tuning completion interrupt. */ 2145 if (__predict_false((intmask & SDHCI_INT_DATA_AVAIL) && 2146 (slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK || 2147 slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))) { 2148 slot->req->flags |= MMC_TUNE_DONE; 2149 sdhci_finish_command(slot); 2150 sdhci_finish_data(slot); 2151 return; 2152 } 2153 /* Handle PIO interrupt. */ 2154 if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) { 2155 if ((slot->opt & SDHCI_PLATFORM_TRANSFER) && 2156 SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) { 2157 SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot, 2158 &intmask); 2159 slot->flags |= PLATFORM_DATA_STARTED; 2160 } else 2161 sdhci_transfer_pio(slot); 2162 } 2163 /* Handle DMA border. */ 2164 if (intmask & SDHCI_INT_DMA_END) { 2165 data = slot->curcmd->data; 2166 sdma_bbufsz = slot->sdma_bbufsz; 2167 2168 /* Unload DMA buffer ... */ 2169 left = data->len - slot->offset; 2170 if (data->flags & MMC_DATA_READ) { 2171 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2172 BUS_DMASYNC_POSTREAD); 2173 memcpy((u_char*)data->data + slot->offset, slot->dmamem, 2174 ulmin(left, sdma_bbufsz)); 2175 } else { 2176 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2177 BUS_DMASYNC_POSTWRITE); 2178 } 2179 /* ... and reload it again. */ 2180 slot->offset += sdma_bbufsz; 2181 left = data->len - slot->offset; 2182 if (data->flags & MMC_DATA_READ) { 2183 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2184 BUS_DMASYNC_PREREAD); 2185 } else { 2186 memcpy(slot->dmamem, (u_char*)data->data + slot->offset, 2187 ulmin(left, sdma_bbufsz)); 2188 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2189 BUS_DMASYNC_PREWRITE); 2190 } 2191 /* 2192 * Interrupt aggregation: Mask border interrupt for the last 2193 * bounce buffer. 2194 */ 2195 if (left == sdma_bbufsz) { 2196 slot->intmask &= ~SDHCI_INT_DMA_END; 2197 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 2198 } 2199 /* Restart DMA. */ 2200 WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); 2201 } 2202 /* We have got all data. */ 2203 if (intmask & SDHCI_INT_DATA_END) { 2204 if (slot->flags & PLATFORM_DATA_STARTED) { 2205 slot->flags &= ~PLATFORM_DATA_STARTED; 2206 SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot); 2207 } else 2208 sdhci_finish_data(slot); 2209 } 2210 done: 2211 if (slot->curcmd != NULL && slot->curcmd->error != 0) { 2212 if (slot->flags & PLATFORM_DATA_STARTED) { 2213 slot->flags &= ~PLATFORM_DATA_STARTED; 2214 SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot); 2215 } else 2216 sdhci_finish_data(slot); 2217 } 2218 } 2219 2220 static void 2221 sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err) 2222 { 2223 2224 if (!slot->curcmd) { 2225 slot_printf(slot, "Got AutoCMD12 error 0x%04x, but " 2226 "there is no active command.\n", acmd_err); 2227 sdhci_dumpregs(slot); 2228 return; 2229 } 2230 slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", acmd_err); 2231 sdhci_reset(slot, SDHCI_RESET_CMD); 2232 } 2233 2234 void 2235 sdhci_generic_intr(struct sdhci_slot *slot) 2236 { 2237 uint32_t intmask, present; 2238 uint16_t val16; 2239 2240 SDHCI_LOCK(slot); 2241 /* Read slot interrupt status. */ 2242 intmask = RD4(slot, SDHCI_INT_STATUS); 2243 if (intmask == 0 || intmask == 0xffffffff) { 2244 SDHCI_UNLOCK(slot); 2245 return; 2246 } 2247 if (__predict_false(sdhci_debug > 2)) 2248 slot_printf(slot, "Interrupt %#x\n", intmask); 2249 2250 /* Handle tuning error interrupt. */ 2251 if (__predict_false(intmask & SDHCI_INT_TUNEERR)) { 2252 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_TUNEERR); 2253 slot_printf(slot, "Tuning error indicated\n"); 2254 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 2255 if (slot->curcmd) { 2256 slot->curcmd->error = MMC_ERR_BADCRC; 2257 sdhci_finish_command(slot); 2258 } 2259 } 2260 /* Handle re-tuning interrupt. */ 2261 if (__predict_false(intmask & SDHCI_INT_RETUNE)) 2262 slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED; 2263 /* Handle card presence interrupts. */ 2264 if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { 2265 present = (intmask & SDHCI_INT_CARD_INSERT) != 0; 2266 slot->intmask &= 2267 ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE); 2268 slot->intmask |= present ? SDHCI_INT_CARD_REMOVE : 2269 SDHCI_INT_CARD_INSERT; 2270 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 2271 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 2272 WR4(slot, SDHCI_INT_STATUS, intmask & 2273 (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)); 2274 sdhci_handle_card_present_locked(slot, present); 2275 } 2276 /* Handle command interrupts. */ 2277 if (intmask & SDHCI_INT_CMD_MASK) { 2278 WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK); 2279 sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK); 2280 } 2281 /* Handle data interrupts. */ 2282 if (intmask & SDHCI_INT_DATA_MASK) { 2283 WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK); 2284 /* Don't call data_irq in case of errored command. */ 2285 if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0) 2286 sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK); 2287 } 2288 /* Handle AutoCMD12 error interrupt. */ 2289 if (intmask & SDHCI_INT_ACMD12ERR) { 2290 /* Clearing SDHCI_INT_ACMD12ERR may clear SDHCI_ACMD12_ERR. */ 2291 val16 = RD2(slot, SDHCI_ACMD12_ERR); 2292 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR); 2293 sdhci_acmd_irq(slot, val16); 2294 } 2295 /* Handle bus power interrupt. */ 2296 if (intmask & SDHCI_INT_BUS_POWER) { 2297 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER); 2298 slot_printf(slot, "Card is consuming too much power!\n"); 2299 } 2300 intmask &= ~(SDHCI_INT_ERROR | SDHCI_INT_TUNEERR | SDHCI_INT_RETUNE | 2301 SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK | 2302 SDHCI_INT_DATA_MASK | SDHCI_INT_ACMD12ERR | SDHCI_INT_BUS_POWER); 2303 /* The rest is unknown. */ 2304 if (intmask) { 2305 WR4(slot, SDHCI_INT_STATUS, intmask); 2306 slot_printf(slot, "Unexpected interrupt 0x%08x.\n", 2307 intmask); 2308 sdhci_dumpregs(slot); 2309 } 2310 2311 SDHCI_UNLOCK(slot); 2312 } 2313 2314 int 2315 sdhci_generic_read_ivar(device_t bus, device_t child, int which, 2316 uintptr_t *result) 2317 { 2318 const struct sdhci_slot *slot = device_get_ivars(child); 2319 2320 switch (which) { 2321 default: 2322 return (EINVAL); 2323 case MMCBR_IVAR_BUS_MODE: 2324 *result = slot->host.ios.bus_mode; 2325 break; 2326 case MMCBR_IVAR_BUS_WIDTH: 2327 *result = slot->host.ios.bus_width; 2328 break; 2329 case MMCBR_IVAR_CHIP_SELECT: 2330 *result = slot->host.ios.chip_select; 2331 break; 2332 case MMCBR_IVAR_CLOCK: 2333 *result = slot->host.ios.clock; 2334 break; 2335 case MMCBR_IVAR_F_MIN: 2336 *result = slot->host.f_min; 2337 break; 2338 case MMCBR_IVAR_F_MAX: 2339 *result = slot->host.f_max; 2340 break; 2341 case MMCBR_IVAR_HOST_OCR: 2342 *result = slot->host.host_ocr; 2343 break; 2344 case MMCBR_IVAR_MODE: 2345 *result = slot->host.mode; 2346 break; 2347 case MMCBR_IVAR_OCR: 2348 *result = slot->host.ocr; 2349 break; 2350 case MMCBR_IVAR_POWER_MODE: 2351 *result = slot->host.ios.power_mode; 2352 break; 2353 case MMCBR_IVAR_VDD: 2354 *result = slot->host.ios.vdd; 2355 break; 2356 case MMCBR_IVAR_RETUNE_REQ: 2357 if (slot->opt & SDHCI_TUNING_ENABLED) { 2358 if (slot->retune_req & SDHCI_RETUNE_REQ_RESET) { 2359 *result = retune_req_reset; 2360 break; 2361 } 2362 if (slot->retune_req & SDHCI_RETUNE_REQ_NEEDED) { 2363 *result = retune_req_normal; 2364 break; 2365 } 2366 } 2367 *result = retune_req_none; 2368 break; 2369 case MMCBR_IVAR_VCCQ: 2370 *result = slot->host.ios.vccq; 2371 break; 2372 case MMCBR_IVAR_CAPS: 2373 *result = slot->host.caps; 2374 break; 2375 case MMCBR_IVAR_TIMING: 2376 *result = slot->host.ios.timing; 2377 break; 2378 case MMCBR_IVAR_MAX_DATA: 2379 /* 2380 * Re-tuning modes 1 and 2 restrict the maximum data length 2381 * per read/write command to 4 MiB. 2382 */ 2383 if (slot->opt & SDHCI_TUNING_ENABLED && 2384 (slot->retune_mode == SDHCI_RETUNE_MODE_1 || 2385 slot->retune_mode == SDHCI_RETUNE_MODE_2)) { 2386 *result = 4 * 1024 * 1024 / MMC_SECTOR_SIZE; 2387 break; 2388 } 2389 *result = 65535; 2390 break; 2391 case MMCBR_IVAR_MAX_BUSY_TIMEOUT: 2392 /* 2393 * Currently, sdhci_start_data() hardcodes 1 s for all CMDs. 2394 */ 2395 *result = 1000000; 2396 break; 2397 } 2398 return (0); 2399 } 2400 2401 int 2402 sdhci_generic_write_ivar(device_t bus, device_t child, int which, 2403 uintptr_t value) 2404 { 2405 struct sdhci_slot *slot = device_get_ivars(child); 2406 uint32_t clock, max_clock; 2407 int i; 2408 2409 if (sdhci_debug > 1) 2410 slot_printf(slot, "%s: var=%d\n", __func__, which); 2411 switch (which) { 2412 default: 2413 return (EINVAL); 2414 case MMCBR_IVAR_BUS_MODE: 2415 slot->host.ios.bus_mode = value; 2416 break; 2417 case MMCBR_IVAR_BUS_WIDTH: 2418 slot->host.ios.bus_width = value; 2419 break; 2420 case MMCBR_IVAR_CHIP_SELECT: 2421 slot->host.ios.chip_select = value; 2422 break; 2423 case MMCBR_IVAR_CLOCK: 2424 if (value > 0) { 2425 max_clock = slot->max_clk; 2426 clock = max_clock; 2427 2428 if (slot->version < SDHCI_SPEC_300) { 2429 for (i = 0; i < SDHCI_200_MAX_DIVIDER; 2430 i <<= 1) { 2431 if (clock <= value) 2432 break; 2433 clock >>= 1; 2434 } 2435 } else { 2436 for (i = 0; i < SDHCI_300_MAX_DIVIDER; 2437 i += 2) { 2438 if (clock <= value) 2439 break; 2440 clock = max_clock / (i + 2); 2441 } 2442 } 2443 2444 slot->host.ios.clock = clock; 2445 } else 2446 slot->host.ios.clock = 0; 2447 break; 2448 case MMCBR_IVAR_MODE: 2449 slot->host.mode = value; 2450 break; 2451 case MMCBR_IVAR_OCR: 2452 slot->host.ocr = value; 2453 break; 2454 case MMCBR_IVAR_POWER_MODE: 2455 slot->host.ios.power_mode = value; 2456 break; 2457 case MMCBR_IVAR_VDD: 2458 slot->host.ios.vdd = value; 2459 break; 2460 case MMCBR_IVAR_VCCQ: 2461 slot->host.ios.vccq = value; 2462 break; 2463 case MMCBR_IVAR_TIMING: 2464 slot->host.ios.timing = value; 2465 break; 2466 case MMCBR_IVAR_CAPS: 2467 case MMCBR_IVAR_HOST_OCR: 2468 case MMCBR_IVAR_F_MIN: 2469 case MMCBR_IVAR_F_MAX: 2470 case MMCBR_IVAR_MAX_DATA: 2471 case MMCBR_IVAR_RETUNE_REQ: 2472 return (EINVAL); 2473 } 2474 return (0); 2475 } 2476 2477 #ifdef MMCCAM 2478 void 2479 sdhci_start_slot(struct sdhci_slot *slot) 2480 { 2481 2482 if ((slot->devq = cam_simq_alloc(1)) == NULL) 2483 goto fail; 2484 2485 mtx_init(&slot->sim_mtx, "sdhcisim", NULL, MTX_DEF); 2486 slot->sim = cam_sim_alloc(sdhci_cam_action, sdhci_cam_poll, 2487 "sdhci_slot", slot, device_get_unit(slot->bus), 2488 &slot->sim_mtx, 1, 1, slot->devq); 2489 2490 if (slot->sim == NULL) { 2491 cam_simq_free(slot->devq); 2492 slot_printf(slot, "cannot allocate CAM SIM\n"); 2493 goto fail; 2494 } 2495 2496 mtx_lock(&slot->sim_mtx); 2497 if (xpt_bus_register(slot->sim, slot->bus, 0) != 0) { 2498 slot_printf(slot, "cannot register SCSI pass-through bus\n"); 2499 cam_sim_free(slot->sim, FALSE); 2500 cam_simq_free(slot->devq); 2501 mtx_unlock(&slot->sim_mtx); 2502 goto fail; 2503 } 2504 mtx_unlock(&slot->sim_mtx); 2505 2506 /* End CAM-specific init */ 2507 slot->card_present = 0; 2508 sdhci_card_task(slot, 0); 2509 return; 2510 2511 fail: 2512 if (slot->sim != NULL) { 2513 mtx_lock(&slot->sim_mtx); 2514 xpt_bus_deregister(cam_sim_path(slot->sim)); 2515 cam_sim_free(slot->sim, FALSE); 2516 mtx_unlock(&slot->sim_mtx); 2517 } 2518 2519 if (slot->devq != NULL) 2520 cam_simq_free(slot->devq); 2521 } 2522 2523 void 2524 sdhci_cam_action(struct cam_sim *sim, union ccb *ccb) 2525 { 2526 struct sdhci_slot *slot; 2527 2528 slot = cam_sim_softc(sim); 2529 if (slot == NULL) { 2530 ccb->ccb_h.status = CAM_SEL_TIMEOUT; 2531 xpt_done(ccb); 2532 return; 2533 } 2534 2535 mtx_assert(&slot->sim_mtx, MA_OWNED); 2536 2537 switch (ccb->ccb_h.func_code) { 2538 case XPT_PATH_INQ: 2539 mmc_path_inq(&ccb->cpi, "Deglitch Networks", sim, maxphys); 2540 break; 2541 2542 case XPT_MMC_GET_TRAN_SETTINGS: 2543 case XPT_GET_TRAN_SETTINGS: 2544 { 2545 struct ccb_trans_settings *cts = &ccb->cts; 2546 uint32_t max_data; 2547 2548 if (sdhci_debug > 1) 2549 slot_printf(slot, "Got XPT_GET_TRAN_SETTINGS\n"); 2550 2551 cts->protocol = PROTO_MMCSD; 2552 cts->protocol_version = 1; 2553 cts->transport = XPORT_MMCSD; 2554 cts->transport_version = 1; 2555 cts->xport_specific.valid = 0; 2556 cts->proto_specific.mmc.host_ocr = slot->host.host_ocr; 2557 cts->proto_specific.mmc.host_f_min = slot->host.f_min; 2558 cts->proto_specific.mmc.host_f_max = slot->host.f_max; 2559 cts->proto_specific.mmc.host_caps = slot->host.caps; 2560 /* 2561 * Re-tuning modes 1 and 2 restrict the maximum data length 2562 * per read/write command to 4 MiB. 2563 */ 2564 if (slot->opt & SDHCI_TUNING_ENABLED && 2565 (slot->retune_mode == SDHCI_RETUNE_MODE_1 || 2566 slot->retune_mode == SDHCI_RETUNE_MODE_2)) { 2567 max_data = 4 * 1024 * 1024 / MMC_SECTOR_SIZE; 2568 } else { 2569 max_data = 65535; 2570 } 2571 cts->proto_specific.mmc.host_max_data = max_data; 2572 2573 memcpy(&cts->proto_specific.mmc.ios, &slot->host.ios, sizeof(struct mmc_ios)); 2574 ccb->ccb_h.status = CAM_REQ_CMP; 2575 break; 2576 } 2577 case XPT_MMC_SET_TRAN_SETTINGS: 2578 case XPT_SET_TRAN_SETTINGS: 2579 if (sdhci_debug > 1) 2580 slot_printf(slot, "Got XPT_SET_TRAN_SETTINGS\n"); 2581 sdhci_cam_settran_settings(slot, ccb); 2582 ccb->ccb_h.status = CAM_REQ_CMP; 2583 break; 2584 case XPT_RESET_BUS: 2585 if (sdhci_debug > 1) 2586 slot_printf(slot, "Got XPT_RESET_BUS, ACK it...\n"); 2587 ccb->ccb_h.status = CAM_REQ_CMP; 2588 break; 2589 case XPT_MMC_IO: 2590 /* 2591 * Here is the HW-dependent part of 2592 * sending the command to the underlying h/w 2593 * At some point in the future an interrupt comes. 2594 * Then the request will be marked as completed. 2595 */ 2596 if (__predict_false(sdhci_debug > 1)) 2597 slot_printf(slot, "Got XPT_MMC_IO\n"); 2598 ccb->ccb_h.status = CAM_REQ_INPROG; 2599 2600 sdhci_cam_request(cam_sim_softc(sim), ccb); 2601 return; 2602 default: 2603 ccb->ccb_h.status = CAM_REQ_INVALID; 2604 break; 2605 } 2606 xpt_done(ccb); 2607 return; 2608 } 2609 2610 void 2611 sdhci_cam_poll(struct cam_sim *sim) 2612 { 2613 return; 2614 } 2615 2616 static int 2617 sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot, 2618 int proposed_clock) 2619 { 2620 int max_clock, clock, i; 2621 2622 if (proposed_clock == 0) 2623 return 0; 2624 max_clock = slot->max_clk; 2625 clock = max_clock; 2626 2627 if (slot->version < SDHCI_SPEC_300) { 2628 for (i = 0; i < SDHCI_200_MAX_DIVIDER; i <<= 1) { 2629 if (clock <= proposed_clock) 2630 break; 2631 clock >>= 1; 2632 } 2633 } else { 2634 for (i = 0; i < SDHCI_300_MAX_DIVIDER; i += 2) { 2635 if (clock <= proposed_clock) 2636 break; 2637 clock = max_clock / (i + 2); 2638 } 2639 } 2640 return clock; 2641 } 2642 2643 static int 2644 sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb) 2645 { 2646 struct mmc_ios *ios; 2647 const struct mmc_ios *new_ios; 2648 const struct ccb_trans_settings_mmc *cts; 2649 2650 ios = &slot->host.ios; 2651 cts = &ccb->cts.proto_specific.mmc; 2652 new_ios = &cts->ios; 2653 2654 /* Update only requested fields */ 2655 if (cts->ios_valid & MMC_CLK) { 2656 ios->clock = sdhci_cam_get_possible_host_clock(slot, new_ios->clock); 2657 if (sdhci_debug > 1) 2658 slot_printf(slot, "Clock => %d\n", ios->clock); 2659 } 2660 if (cts->ios_valid & MMC_VDD) { 2661 ios->vdd = new_ios->vdd; 2662 if (sdhci_debug > 1) 2663 slot_printf(slot, "VDD => %d\n", ios->vdd); 2664 } 2665 if (cts->ios_valid & MMC_CS) { 2666 ios->chip_select = new_ios->chip_select; 2667 if (sdhci_debug > 1) 2668 slot_printf(slot, "CS => %d\n", ios->chip_select); 2669 } 2670 if (cts->ios_valid & MMC_BW) { 2671 ios->bus_width = new_ios->bus_width; 2672 if (sdhci_debug > 1) 2673 slot_printf(slot, "Bus width => %d\n", ios->bus_width); 2674 } 2675 if (cts->ios_valid & MMC_PM) { 2676 ios->power_mode = new_ios->power_mode; 2677 if (sdhci_debug > 1) 2678 slot_printf(slot, "Power mode => %d\n", ios->power_mode); 2679 } 2680 if (cts->ios_valid & MMC_BT) { 2681 ios->timing = new_ios->timing; 2682 if (sdhci_debug > 1) 2683 slot_printf(slot, "Timing => %d\n", ios->timing); 2684 } 2685 if (cts->ios_valid & MMC_BM) { 2686 ios->bus_mode = new_ios->bus_mode; 2687 if (sdhci_debug > 1) 2688 slot_printf(slot, "Bus mode => %d\n", ios->bus_mode); 2689 } 2690 if (cts->ios_valid & MMC_VCCQ) { 2691 ios->vccq = new_ios->vccq; 2692 if (sdhci_debug > 1) 2693 slot_printf(slot, "VCCQ => %d\n", ios->vccq); 2694 } 2695 2696 /* XXX Provide a way to call a chip-specific IOS update, required for TI */ 2697 return (sdhci_cam_update_ios(slot)); 2698 } 2699 2700 static int 2701 sdhci_cam_update_ios(struct sdhci_slot *slot) 2702 { 2703 struct mmc_ios *ios = &slot->host.ios; 2704 2705 if (sdhci_debug > 1) 2706 slot_printf(slot, "%s: power_mode=%d, clk=%d, bus_width=%d, timing=%d\n", 2707 __func__, ios->power_mode, ios->clock, ios->bus_width, ios->timing); 2708 SDHCI_LOCK(slot); 2709 /* Do full reset on bus power down to clear from any state. */ 2710 if (ios->power_mode == power_off) { 2711 WR4(slot, SDHCI_SIGNAL_ENABLE, 0); 2712 sdhci_init(slot); 2713 } 2714 /* Configure the bus. */ 2715 sdhci_set_clock(slot, ios->clock); 2716 sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd); 2717 if (ios->bus_width == bus_width_8) { 2718 slot->hostctrl |= SDHCI_CTRL_8BITBUS; 2719 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 2720 } else if (ios->bus_width == bus_width_4) { 2721 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 2722 slot->hostctrl |= SDHCI_CTRL_4BITBUS; 2723 } else if (ios->bus_width == bus_width_1) { 2724 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 2725 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 2726 } else { 2727 panic("Invalid bus width: %d", ios->bus_width); 2728 } 2729 if (ios->timing == bus_timing_hs && 2730 !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT)) 2731 slot->hostctrl |= SDHCI_CTRL_HISPD; 2732 else 2733 slot->hostctrl &= ~SDHCI_CTRL_HISPD; 2734 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); 2735 /* Some controllers like reset after bus changes. */ 2736 if(slot->quirks & SDHCI_QUIRK_RESET_ON_IOS) 2737 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 2738 2739 SDHCI_UNLOCK(slot); 2740 return (0); 2741 } 2742 2743 static int 2744 sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb) 2745 { 2746 const struct ccb_mmcio *mmcio; 2747 2748 mmcio = &ccb->mmcio; 2749 2750 SDHCI_LOCK(slot); 2751 /* if (slot->req != NULL) { 2752 SDHCI_UNLOCK(slot); 2753 return (EBUSY); 2754 } 2755 */ 2756 if (__predict_false(sdhci_debug > 1)) { 2757 slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x " 2758 "blksz=%zu blkcnt=%zu\n", 2759 mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags, 2760 mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0, 2761 mmcio->cmd.data != NULL ? mmcio->cmd.data->flags : 0, 2762 mmcio->cmd.data != NULL ? mmcio->cmd.data->block_size : 0, 2763 mmcio->cmd.data != NULL ? mmcio->cmd.data->block_count : 0); 2764 } 2765 if (mmcio->cmd.data != NULL) { 2766 if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0) 2767 panic("data->len = %d, data->flags = %d -- something is b0rked", 2768 (int)mmcio->cmd.data->len, mmcio->cmd.data->flags); 2769 } 2770 slot->ccb = ccb; 2771 slot->flags = 0; 2772 sdhci_start(slot); 2773 SDHCI_UNLOCK(slot); 2774 if (dumping) { 2775 while (slot->ccb != NULL) { 2776 sdhci_generic_intr(slot); 2777 DELAY(10); 2778 } 2779 } 2780 return (0); 2781 } 2782 #endif /* MMCCAM */ 2783 2784 MODULE_VERSION(sdhci, SDHCI_VERSION); 2785