xref: /freebsd/sys/dev/sdhci/fsl_sdhci.c (revision b08fc26cbdd00df6852e71e1be58fa9cc92019f0)
1 /*-
2  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
32  *
33  * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/bus.h>
40 #include <sys/callout.h>
41 #include <sys/kernel.h>
42 #include <sys/libkern.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/resource.h>
48 #include <sys/rman.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51 #include <sys/time.h>
52 
53 #include <machine/bus.h>
54 #include <machine/resource.h>
55 #ifdef __arm__
56 #include <machine/intr.h>
57 
58 #include <arm/freescale/imx/imx_ccmvar.h>
59 #endif
60 
61 #include <dev/gpio/gpiobusvar.h>
62 
63 #include <dev/ofw/ofw_bus.h>
64 #include <dev/ofw/ofw_bus_subr.h>
65 
66 #include <dev/mmc/bridge.h>
67 
68 #include <dev/sdhci/sdhci.h>
69 #include <dev/sdhci/sdhci_fdt_gpio.h>
70 
71 #include "mmcbr_if.h"
72 #include "sdhci_if.h"
73 
74 struct fsl_sdhci_softc {
75 	device_t		dev;
76 	struct resource *	mem_res;
77 	struct resource *	irq_res;
78 	void *			intr_cookie;
79 	struct sdhci_slot	slot;
80 	struct callout		r1bfix_callout;
81 	sbintime_t		r1bfix_timeout_at;
82 	struct sdhci_fdt_gpio * gpio;
83 	uint32_t		baseclk_hz;
84 	uint32_t		cmd_and_mode;
85 	uint32_t		r1bfix_intmask;
86 	uint16_t		sdclockreg_freq_bits;
87 	uint8_t			r1bfix_type;
88 	uint8_t			hwtype;
89 };
90 
91 #define	R1BFIX_NONE	0	/* No fix needed at next interrupt. */
92 #define	R1BFIX_NODATA	1	/* Synthesize DATA_END for R1B w/o data. */
93 #define	R1BFIX_AC12	2	/* Wait for busy after auto command 12. */
94 
95 #define	HWTYPE_NONE	0	/* Hardware not recognized/supported. */
96 #define	HWTYPE_ESDHC	1	/* fsl5x and earlier. */
97 #define	HWTYPE_USDHC	2	/* fsl6. */
98 
99 /*
100  * Freescale-specific registers, or in some cases the layout of bits within the
101  * sdhci-defined register is different on Freescale.  These names all begin with
102  * SDHC_ (not SDHCI_).
103  */
104 
105 #define	SDHC_WTMK_LVL		0x44	/* Watermark Level register. */
106 #define	USDHC_MIX_CONTROL	0x48	/* Mix(ed) Control register. */
107 #define	SDHC_VEND_SPEC		0xC0	/* Vendor-specific register. */
108 #define	 SDHC_VEND_FRC_SDCLK_ON	(1 <<  8)
109 #define	 SDHC_VEND_IPGEN	(1 << 11)
110 #define	 SDHC_VEND_HCKEN	(1 << 12)
111 #define	 SDHC_VEND_PEREN	(1 << 13)
112 
113 #define	SDHC_PRES_STATE		0x24
114 #define	  SDHC_PRES_CIHB	  (1 <<  0)
115 #define	  SDHC_PRES_CDIHB	  (1 <<  1)
116 #define	  SDHC_PRES_DLA		  (1 <<  2)
117 #define	  SDHC_PRES_SDSTB	  (1 <<  3)
118 #define	  SDHC_PRES_IPGOFF	  (1 <<  4)
119 #define	  SDHC_PRES_HCKOFF	  (1 <<  5)
120 #define	  SDHC_PRES_PEROFF	  (1 <<  6)
121 #define	  SDHC_PRES_SDOFF	  (1 <<  7)
122 #define	  SDHC_PRES_WTA		  (1 <<  8)
123 #define	  SDHC_PRES_RTA		  (1 <<  9)
124 #define	  SDHC_PRES_BWEN	  (1 << 10)
125 #define	  SDHC_PRES_BREN	  (1 << 11)
126 #define	  SDHC_PRES_RTR		  (1 << 12)
127 #define	  SDHC_PRES_CINST	  (1 << 16)
128 #define	  SDHC_PRES_CDPL	  (1 << 18)
129 #define	  SDHC_PRES_WPSPL	  (1 << 19)
130 #define	  SDHC_PRES_CLSL	  (1 << 23)
131 #define	  SDHC_PRES_DLSL_SHIFT	  24
132 #define	  SDHC_PRES_DLSL_MASK	  (0xffU << SDHC_PRES_DLSL_SHIFT)
133 
134 #define	SDHC_PROT_CTRL		0x28
135 #define	 SDHC_PROT_LED		(1 << 0)
136 #define	 SDHC_PROT_WIDTH_1BIT	(0 << 1)
137 #define	 SDHC_PROT_WIDTH_4BIT	(1 << 1)
138 #define	 SDHC_PROT_WIDTH_8BIT	(2 << 1)
139 #define	 SDHC_PROT_WIDTH_MASK	(3 << 1)
140 #define	 SDHC_PROT_D3CD		(1 << 3)
141 #define	 SDHC_PROT_EMODE_BIG	(0 << 4)
142 #define	 SDHC_PROT_EMODE_HALF	(1 << 4)
143 #define	 SDHC_PROT_EMODE_LITTLE	(2 << 4)
144 #define	 SDHC_PROT_EMODE_MASK	(3 << 4)
145 #define	 SDHC_PROT_SDMA		(0 << 8)
146 #define	 SDHC_PROT_ADMA1	(1 << 8)
147 #define	 SDHC_PROT_ADMA2	(2 << 8)
148 #define	 SDHC_PROT_ADMA264	(3 << 8)
149 #define	 SDHC_PROT_DMA_MASK	(3 << 8)
150 #define	 SDHC_PROT_CDTL		(1 << 6)
151 #define	 SDHC_PROT_CDSS		(1 << 7)
152 
153 #define	SDHC_SYS_CTRL		0x2c
154 
155 /*
156  * The clock enable bits exist in different registers for ESDHC vs USDHC, but
157  * they are the same bits in both cases.  The divisor values go into the
158  * standard sdhci clock register, but in different bit positions and meanings
159    than the sdhci spec values.
160  */
161 #define	SDHC_CLK_IPGEN		(1 << 0)
162 #define	SDHC_CLK_HCKEN		(1 << 1)
163 #define	SDHC_CLK_PEREN		(1 << 2)
164 #define	SDHC_CLK_SDCLKEN	(1 << 3)
165 #define	SDHC_CLK_ENABLE_MASK	0x0000000f
166 #define	SDHC_CLK_DIVISOR_MASK	0x000000f0
167 #define	SDHC_CLK_DIVISOR_SHIFT	4
168 #define	SDHC_CLK_PRESCALE_MASK	0x0000ff00
169 #define	SDHC_CLK_PRESCALE_SHIFT	8
170 
171 static struct ofw_compat_data compat_data[] = {
172 	{"fsl,imx6q-usdhc",	HWTYPE_USDHC},
173 	{"fsl,imx6sl-usdhc",	HWTYPE_USDHC},
174 	{"fsl,imx53-esdhc",	HWTYPE_ESDHC},
175 	{"fsl,imx51-esdhc",	HWTYPE_ESDHC},
176 	{"fsl,esdhc",		HWTYPE_ESDHC},
177 	{NULL,			HWTYPE_NONE},
178 };
179 
180 static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
181 static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
182 static void fsl_sdhci_r1bfix_func(void *arg);
183 
184 static inline uint32_t
185 RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
186 {
187 
188 	return (bus_read_4(sc->mem_res, off));
189 }
190 
191 static inline void
192 WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
193 {
194 
195 	bus_write_4(sc->mem_res, off, val);
196 }
197 
198 static uint8_t
199 fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
200 {
201 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
202 	uint32_t val32, wrk32;
203 
204 	/*
205 	 * Most of the things in the standard host control register are in the
206 	 * hardware's wider protocol control register, but some of the bits are
207 	 * moved around.
208 	 */
209 	if (off == SDHCI_HOST_CONTROL) {
210 		wrk32 = RD4(sc, SDHC_PROT_CTRL);
211 		val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
212 		    SDHCI_CTRL_FORCE_CARD);
213 		switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
214 		case SDHC_PROT_WIDTH_1BIT:
215 			/* Value is already 0. */
216 			break;
217 		case SDHC_PROT_WIDTH_4BIT:
218 			val32 |= SDHCI_CTRL_4BITBUS;
219 			break;
220 		case SDHC_PROT_WIDTH_8BIT:
221 			val32 |= SDHCI_CTRL_8BITBUS;
222 			break;
223 		}
224 		switch (wrk32 & SDHC_PROT_DMA_MASK) {
225 		case SDHC_PROT_SDMA:
226 			/* Value is already 0. */
227 			break;
228 		case SDHC_PROT_ADMA1:
229 			/* This value is deprecated, should never appear. */
230 			break;
231 		case SDHC_PROT_ADMA2:
232 			val32 |= SDHCI_CTRL_ADMA2;
233 			break;
234 		case SDHC_PROT_ADMA264:
235 			val32 |= SDHCI_CTRL_ADMA264;
236 			break;
237 		}
238 		return val32;
239 	}
240 
241 	/*
242 	 * XXX can't find the bus power on/off knob.  For now we have to say the
243 	 * power is always on and always set to the same voltage.
244 	 */
245 	if (off == SDHCI_POWER_CONTROL) {
246 		return (SDHCI_POWER_ON | SDHCI_POWER_300);
247 	}
248 
249 
250 	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
251 }
252 
253 static uint16_t
254 fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
255 {
256 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
257 	uint32_t val32;
258 
259 	if (sc->hwtype == HWTYPE_USDHC) {
260 		/*
261 		 * The USDHC hardware has nothing in the version register, but
262 		 * it's v3 compatible with all our translation code.
263 		 */
264 		if (off == SDHCI_HOST_VERSION) {
265 			return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
266 		}
267 		/*
268 		 * The USDHC hardware moved the transfer mode bits to the mixed
269 		 * control register, fetch them from there.
270 		 */
271 		if (off == SDHCI_TRANSFER_MODE)
272 			return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
273 
274 	} else if (sc->hwtype == HWTYPE_ESDHC) {
275 
276 		/*
277 		 * The ESDHC hardware has the typical 32-bit combined "command
278 		 * and mode" register that we have to cache so that command
279 		 * isn't written until after mode.  On a read, just retrieve the
280 		 * cached values last written.
281 		 */
282 		if (off == SDHCI_TRANSFER_MODE) {
283 			return (sc->cmd_and_mode & 0x0000ffff);
284 		} else if (off == SDHCI_COMMAND_FLAGS) {
285 			return (sc->cmd_and_mode >> 16);
286 		}
287 	}
288 
289 	/*
290 	 * This hardware only manages one slot.  Synthesize a slot interrupt
291 	 * status register... if there are any enabled interrupts active they
292 	 * must be coming from our one and only slot.
293 	 */
294 	if (off == SDHCI_SLOT_INT_STATUS) {
295 		val32  = RD4(sc, SDHCI_INT_STATUS);
296 		val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
297 		return (val32 ? 1 : 0);
298 	}
299 
300 	/*
301 	 * Clock bits are scattered into various registers which differ by
302 	 * hardware type, complex enough to have their own function.
303 	 */
304 	if (off == SDHCI_CLOCK_CONTROL) {
305 		return (fsl_sdhc_get_clock(sc));
306 	}
307 
308 	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
309 }
310 
311 static uint32_t
312 fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
313 {
314 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
315 	uint32_t val32, wrk32;
316 
317 	val32 = RD4(sc, off);
318 
319 	/*
320 	 * The hardware leaves the base clock frequency out of the capabilities
321 	 * register, but we filled it in by setting slot->max_clk at attach time
322 	 * rather than here, because we can't represent frequencies above 63MHz
323 	 * in an sdhci 2.0 capabliities register.  The timeout clock is the same
324 	 * as the active output sdclock; we indicate that with a quirk setting
325 	 * so don't populate the timeout frequency bits.
326 	 *
327 	 * XXX Turn off (for now) features the hardware can do but this driver
328 	 * doesn't yet handle (1.8v, suspend/resume, etc).
329 	 */
330 	if (off == SDHCI_CAPABILITIES) {
331 		val32 &= ~SDHCI_CAN_VDD_180;
332 		val32 &= ~SDHCI_CAN_DO_SUSPEND;
333 		val32 |= SDHCI_CAN_DO_8BITBUS;
334 		return (val32);
335 	}
336 
337 	/*
338 	 * The hardware moves bits around in the present state register to make
339 	 * room for all 8 data line state bits.  To translate, mask out all the
340 	 * bits which are not in the same position in both registers (this also
341 	 * masks out some Freescale-specific bits in locations defined as
342 	 * reserved by sdhci), then shift the data line and retune request bits
343 	 * down to their standard locations.
344 	 */
345 	if (off == SDHCI_PRESENT_STATE) {
346 		wrk32 = val32;
347 		val32 &= 0x000F0F07;
348 		val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
349 		val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
350 		return (val32);
351 	}
352 
353 	/*
354 	 * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
355 	 * command with an R1B response, mix it into the hardware status.
356 	 */
357 	if (off == SDHCI_INT_STATUS) {
358 		return (val32 | sc->r1bfix_intmask);
359 	}
360 
361 	return val32;
362 }
363 
364 static void
365 fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
366     uint32_t *data, bus_size_t count)
367 {
368 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
369 
370 	bus_read_multi_4(sc->mem_res, off, data, count);
371 }
372 
373 static void
374 fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
375 {
376 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
377 	uint32_t val32;
378 
379 	/*
380 	 * Most of the things in the standard host control register are in the
381 	 * hardware's wider protocol control register, but some of the bits are
382 	 * moved around.
383 	 */
384 	if (off == SDHCI_HOST_CONTROL) {
385 		val32 = RD4(sc, SDHC_PROT_CTRL);
386 		val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
387 		    SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
388 		val32 |= (val & SDHCI_CTRL_LED);
389 		if (val & SDHCI_CTRL_8BITBUS)
390 			val32 |= SDHC_PROT_WIDTH_8BIT;
391 		else
392 			val32 |= (val & SDHCI_CTRL_4BITBUS);
393 		val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
394 		val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
395 		WR4(sc, SDHC_PROT_CTRL, val32);
396 		return;
397 	}
398 
399 	/* XXX I can't find the bus power on/off knob; do nothing. */
400 	if (off == SDHCI_POWER_CONTROL) {
401 		return;
402 	}
403 #ifdef __powerpc__
404 	/* XXX Reset doesn't seem to work as expected.  Do nothing for now. */
405 	if (off == SDHCI_SOFTWARE_RESET)
406 		return;
407 #endif
408 
409 	val32 = RD4(sc, off & ~3);
410 	val32 &= ~(0xff << (off & 3) * 8);
411 	val32 |= (val << (off & 3) * 8);
412 
413 	WR4(sc, off & ~3, val32);
414 }
415 
416 static void
417 fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
418 {
419 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
420 	uint32_t val32;
421 
422 	/*
423 	 * The clock control stuff is complex enough to have its own function
424 	 * that can handle the ESDHC versus USDHC differences.
425 	 */
426 	if (off == SDHCI_CLOCK_CONTROL) {
427 		fsl_sdhc_set_clock(sc, val);
428 		return;
429 	}
430 
431 	/*
432 	 * Figure out whether we need to check the DAT0 line for busy status at
433 	 * interrupt time.  The controller should be doing this, but for some
434 	 * reason it doesn't.  There are two cases:
435 	 *  - R1B response with no data transfer should generate a DATA_END (aka
436 	 *    TRANSFER_COMPLETE) interrupt after waiting for busy, but if
437 	 *    there's no data transfer there's no DATA_END interrupt.  This is
438 	 *    documented; they seem to think it's a feature.
439 	 *  - R1B response after Auto-CMD12 appears to not work, even though
440 	 *    there's a control bit for it (bit 3) in the vendor register.
441 	 * When we're starting a command that needs a manual DAT0 line check at
442 	 * interrupt time, we leave ourselves a note in r1bfix_type so that we
443 	 * can do the extra work in fsl_sdhci_intr().
444 	 */
445 	if (off == SDHCI_COMMAND_FLAGS) {
446 		if (val & SDHCI_CMD_DATA) {
447 			const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
448 			val32 = RD4(sc, USDHC_MIX_CONTROL);
449 			if ((val32 & MBAUTOCMD) == MBAUTOCMD)
450 				sc->r1bfix_type = R1BFIX_AC12;
451 		} else {
452 			if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
453 				WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
454 				WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
455 				sc->r1bfix_type = R1BFIX_NODATA;
456 			}
457 		}
458 	}
459 
460 	/*
461 	 * The USDHC hardware moved the transfer mode bits to mixed control; we
462 	 * just write them there and we're done.  The ESDHC hardware has the
463 	 * typical combined cmd-and-mode register that allows only 32-bit
464 	 * access, so when writing the mode bits just save them, then later when
465 	 * writing the command bits, add in the saved mode bits.
466 	 */
467 	if (sc->hwtype == HWTYPE_USDHC) {
468 		if (off == SDHCI_TRANSFER_MODE) {
469 			val32 = RD4(sc, USDHC_MIX_CONTROL);
470 			val32 &= ~0x3f;
471 			val32 |= val & 0x37;
472 			// XXX acmd23 not supported here (or by sdhci driver)
473 			WR4(sc, USDHC_MIX_CONTROL, val32);
474 			return;
475 		}
476 	} else if (sc->hwtype == HWTYPE_ESDHC) {
477 		if (off == SDHCI_TRANSFER_MODE) {
478 			sc->cmd_and_mode =
479 			    (sc->cmd_and_mode & 0xffff0000) | val;
480 			return;
481 		} else if (off == SDHCI_COMMAND_FLAGS) {
482 			sc->cmd_and_mode =
483 			    (sc->cmd_and_mode & 0xffff) | (val << 16);
484 			WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
485 			return;
486 		}
487 	}
488 
489 	val32 = RD4(sc, off & ~3);
490 	val32 &= ~(0xffff << (off & 3) * 8);
491 	val32 |= ((val & 0xffff) << (off & 3) * 8);
492 	WR4(sc, off & ~3, val32);
493 }
494 
495 static void
496 fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
497 {
498 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
499 
500 	/* Clear synthesized interrupts, then pass the value to the hardware. */
501 	if (off == SDHCI_INT_STATUS) {
502 		sc->r1bfix_intmask &= ~val;
503 	}
504 
505 	WR4(sc, off, val);
506 }
507 
508 static void
509 fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
510     uint32_t *data, bus_size_t count)
511 {
512 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
513 
514 	bus_write_multi_4(sc->mem_res, off, data, count);
515 }
516 
517 static uint16_t
518 fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
519 {
520 	uint16_t val;
521 
522 	/*
523 	 * Whenever the sdhci driver writes the clock register we save a
524 	 * snapshot of just the frequency bits, so that we can play them back
525 	 * here on a register read without recalculating the frequency from the
526 	 * prescalar and divisor bits in the real register.  We'll start with
527 	 * those bits, and mix in the clock status and enable bits that come
528 	 * from different places depending on which hardware we've got.
529 	 */
530 	val = sc->sdclockreg_freq_bits;
531 
532 	/*
533 	 * The internal clock is always enabled (actually, the hardware manages
534 	 * it).  Whether the internal clock is stable yet after a frequency
535 	 * change comes from the present-state register on both hardware types.
536 	 */
537 	val |= SDHCI_CLOCK_INT_EN;
538 	if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
539 	    val |= SDHCI_CLOCK_INT_STABLE;
540 
541 	/*
542 	 * On i.MX ESDHC hardware the card bus clock enable is in the usual
543 	 * sdhci register but it's a different bit, so transcribe it (note the
544 	 * difference between standard SDHCI_ and Freescale SDHC_ prefixes
545 	 * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
546 	 * no force-off for the card bus clock (the hardware runs the clock when
547 	 * transfers are active no matter what), so we always say the clock is
548 	 * on.
549 	 * XXX Maybe we should say it's in whatever state the sdhci driver last
550 	 * set it to.
551 	 */
552 	if (sc->hwtype == HWTYPE_ESDHC) {
553 #ifdef __arm__
554 		if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
555 #endif
556 			val |= SDHCI_CLOCK_CARD_EN;
557 	} else {
558 		val |= SDHCI_CLOCK_CARD_EN;
559 	}
560 
561 	return (val);
562 }
563 
564 static void
565 fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
566 {
567 	uint32_t divisor, freq, prescale, val32;
568 
569 	val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
570 
571 	/*
572 	 * Save the frequency-setting bits in SDHCI format so that we can play
573 	 * them back in get_clock without complex decoding of hardware regs,
574 	 * then deal with the freqency part of the value based on hardware type.
575 	 */
576 	sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
577 	if (sc->hwtype == HWTYPE_ESDHC) {
578 		/*
579 		 * The i.MX5 ESDHC hardware requires the driver to manually
580 		 * start and stop the sd bus clock.  If the enable bit is not
581 		 * set, turn off the clock in hardware and we're done, otherwise
582 		 * decode the requested frequency.  ESDHC hardware is sdhci 2.0;
583 		 * the sdhci driver will use the original 8-bit divisor field
584 		 * and the "base / 2^N" divisor scheme.
585 		 */
586 		if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
587 #ifdef __arm__
588 			/* On QorIQ, this is a reserved bit. */
589 			WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
590 #endif
591 			return;
592 
593 		}
594 		divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
595 		freq = sc->baseclk_hz >> ffs(divisor);
596 	} else {
597 		/*
598 		 * The USDHC hardware provides only "force always on" control
599 		 * over the sd bus clock, but no way to turn it off.  (If a cmd
600 		 * or data transfer is in progress the clock is on, otherwise it
601 		 * is off.)  If the clock is being disabled, we can just return
602 		 * now, otherwise we decode the requested frequency.  USDHC
603 		 * hardware is sdhci 3.0; the sdhci driver will use a 10-bit
604 		 * divisor using the "base / 2*N" divisor scheme.
605 		 */
606 		if ((val & SDHCI_CLOCK_CARD_EN) == 0)
607 			return;
608 		divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
609 		    ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
610 		    SDHCI_DIVIDER_MASK_LEN;
611 		if (divisor == 0)
612 			freq = sc->baseclk_hz;
613 		else
614 			freq = sc->baseclk_hz / (2 * divisor);
615 	}
616 
617 	/*
618 	 * Get a prescaler and final divisor to achieve the desired frequency.
619 	 */
620 	for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
621 		prescale <<= 1;
622 
623 	for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
624 		++divisor;
625 
626 #ifdef DEBUG
627 	device_printf(sc->dev,
628 	    "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
629 	    freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
630 	    prescale, divisor);
631 #endif
632 
633 	/*
634 	 * Adjust to zero-based values, and store them to the hardware.
635 	 */
636 	prescale >>= 1;
637 	divisor -= 1;
638 
639 	val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
640 	val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
641 	val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
642 	val32 |= SDHC_CLK_IPGEN;
643 	WR4(sc, SDHCI_CLOCK_CONTROL, val32);
644 }
645 
646 static boolean_t
647 fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
648 {
649 	uint32_t inhibit;
650 
651 	mtx_assert(&sc->slot.mtx, MA_OWNED);
652 
653 	/*
654 	 * Check the DAT0 line status using both the DLA (data line active) and
655 	 * CDIHB (data inhibit) bits in the present state register.  In theory
656 	 * just DLA should do the trick,  but in practice it takes both.  If the
657 	 * DAT0 line is still being held and we're not yet beyond the timeout
658 	 * point, just schedule another callout to check again later.
659 	 */
660 	inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
661 
662 	if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
663 		callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
664 		    fsl_sdhci_r1bfix_func, sc, 0);
665 		return (false);
666 	}
667 
668 	/*
669 	 * If we reach this point with the inhibit bits still set, we've got a
670 	 * timeout, synthesize a DATA_TIMEOUT interrupt.  Otherwise the DAT0
671 	 * line has been released, and we synthesize a DATA_END, and if the type
672 	 * of fix needed was on a command-without-data we also now add in the
673 	 * original INT_RESPONSE that we suppressed earlier.
674 	 */
675 	if (inhibit)
676 		sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
677 	else {
678 		sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
679 		if (sc->r1bfix_type == R1BFIX_NODATA)
680 			sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
681 	}
682 
683 	sc->r1bfix_type = R1BFIX_NONE;
684 	return (true);
685 }
686 
687 static void
688 fsl_sdhci_r1bfix_func(void * arg)
689 {
690 	struct fsl_sdhci_softc *sc = arg;
691 	boolean_t r1bwait_done;
692 
693 	mtx_lock(&sc->slot.mtx);
694 	r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
695 	mtx_unlock(&sc->slot.mtx);
696 	if (r1bwait_done)
697 		sdhci_generic_intr(&sc->slot);
698 }
699 
700 static void
701 fsl_sdhci_intr(void *arg)
702 {
703 	struct fsl_sdhci_softc *sc = arg;
704 	uint32_t intmask;
705 
706 	mtx_lock(&sc->slot.mtx);
707 
708 	/*
709 	 * Manually check the DAT0 line for R1B response types that the
710 	 * controller fails to handle properly.  The controller asserts the done
711 	 * interrupt while the card is still asserting busy with the DAT0 line.
712 	 *
713 	 * We check DAT0 immediately because most of the time, especially on a
714 	 * read, the card will actually be done by time we get here.  If it's
715 	 * not, then the wait_done routine will schedule a callout to re-check
716 	 * periodically until it is done.  In that case we clear the interrupt
717 	 * out of the hardware now so that we can present it later when the DAT0
718 	 * line is released.
719 	 *
720 	 * If we need to wait for the DAT0 line to be released, we set up a
721 	 * timeout point 250ms in the future.  This number comes from the SD
722 	 * spec, which allows a command to take that long.  In the real world,
723 	 * cards tend to take 10-20ms for a long-running command such as a write
724 	 * or erase that spans two pages.
725 	 */
726 	switch (sc->r1bfix_type) {
727 	case R1BFIX_NODATA:
728 		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
729 		break;
730 	case R1BFIX_AC12:
731 		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
732 		break;
733 	default:
734 		intmask = 0;
735 		break;
736 	}
737 	if (intmask) {
738 		sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
739 		if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
740 			WR4(sc, SDHCI_INT_STATUS, intmask);
741 			bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4,
742 			    BUS_SPACE_BARRIER_WRITE);
743 		}
744 	}
745 
746 	mtx_unlock(&sc->slot.mtx);
747 	sdhci_generic_intr(&sc->slot);
748 }
749 
750 static int
751 fsl_sdhci_get_ro(device_t bus, device_t child)
752 {
753 	struct fsl_sdhci_softc *sc = device_get_softc(bus);
754 
755 	return (sdhci_fdt_gpio_get_readonly(sc->gpio));
756 }
757 
758 static bool
759 fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot)
760 {
761 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
762 
763 	return (sdhci_fdt_gpio_get_present(sc->gpio));
764 }
765 
766 #ifdef __powerpc__
767 static uint32_t
768 fsl_sdhci_get_platform_clock(device_t dev)
769 {
770 	device_t parent;
771 	phandle_t node;
772 	uint32_t clock;
773 
774 	node = ofw_bus_get_node(dev);
775 
776 	/* Get sdhci node properties */
777 	if((OF_getprop(node, "clock-frequency", (void *)&clock,
778 	    sizeof(clock)) <= 0) || (clock == 0)) {
779 
780 		/*
781 		 * Trying to get clock from parent device (soc) if correct
782 		 * clock cannot be acquired from sdhci node.
783 		 */
784 		parent = device_get_parent(dev);
785 		node = ofw_bus_get_node(parent);
786 
787 		/* Get soc properties */
788 		if ((OF_getprop(node, "bus-frequency", (void *)&clock,
789 		    sizeof(clock)) <= 0) || (clock == 0)) {
790 			device_printf(dev,"Cannot acquire correct sdhci "
791 			    "frequency from DTS.\n");
792 
793 			return (0);
794 		}
795 		/* eSDHC clock is 1/2 platform clock. */
796 		clock /= 2;
797 	}
798 
799 	if (bootverbose)
800 		device_printf(dev, "Acquired clock: %d from DTS\n", clock);
801 
802 	return (clock);
803 }
804 #endif
805 
806 
807 static int
808 fsl_sdhci_detach(device_t dev)
809 {
810 
811 	/* sdhci_fdt_gpio_teardown(sc->gpio); */
812 	return (EBUSY);
813 }
814 
815 static int
816 fsl_sdhci_attach(device_t dev)
817 {
818 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
819 	int rid, err;
820 #ifdef __powerpc__
821 	phandle_t node;
822 	uint32_t protctl;
823 #endif
824 
825 	sc->dev = dev;
826 
827 	sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
828 	if (sc->hwtype == HWTYPE_NONE)
829 		panic("Impossible: not compatible in fsl_sdhci_attach()");
830 
831 	rid = 0;
832 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
833 	    RF_ACTIVE);
834 	if (!sc->mem_res) {
835 		device_printf(dev, "cannot allocate memory window\n");
836 		err = ENXIO;
837 		goto fail;
838 	}
839 
840 	rid = 0;
841 	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
842 	    RF_ACTIVE);
843 	if (!sc->irq_res) {
844 		device_printf(dev, "cannot allocate interrupt\n");
845 		err = ENXIO;
846 		goto fail;
847 	}
848 
849 	if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
850 	    NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
851 		device_printf(dev, "cannot setup interrupt handler\n");
852 		err = ENXIO;
853 		goto fail;
854 	}
855 
856 	sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
857 
858 	/*
859 	 * DMA is not really broken, I just haven't implemented it yet.
860 	 */
861 	sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
862 
863 	/*
864 	 * Set the buffer watermark level to 128 words (512 bytes) for both read
865 	 * and write.  The hardware has a restriction that when the read or
866 	 * write ready status is asserted, that means you can read exactly the
867 	 * number of words set in the watermark register before you have to
868 	 * re-check the status and potentially wait for more data.  The main
869 	 * sdhci driver provides no hook for doing status checking on less than
870 	 * a full block boundary, so we set the watermark level to be a full
871 	 * block.  Reads and writes where the block size is less than the
872 	 * watermark size will work correctly too, no need to change the
873 	 * watermark for different size blocks.  However, 128 is the maximum
874 	 * allowed for the watermark, so PIO is limitted to 512 byte blocks
875 	 * (which works fine for SD cards, may be a problem for SDIO some day).
876 	 *
877 	 * XXX need named constants for this stuff.
878 	 */
879 	/* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
880 	if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
881 		WR4(sc, SDHC_WTMK_LVL, 0x10801080);
882 	else
883 		WR4(sc, SDHC_WTMK_LVL, 0x08800880);
884 
885 	/*
886 	 * We read in native byte order in the main driver, but the register
887 	 * defaults to little endian.
888 	 */
889 #ifdef __powerpc__
890 	sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
891 #else
892 	sc->baseclk_hz = imx_ccm_sdhci_hz();
893 #endif
894 	sc->slot.max_clk = sc->baseclk_hz;
895 
896 	/*
897 	 * Set up any gpio pin handling described in the FDT data. This cannot
898 	 * fail; see comments in sdhci_fdt_gpio.h for details.
899 	 */
900 	sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
901 
902 #ifdef __powerpc__
903 	node = ofw_bus_get_node(dev);
904 	/* Default to big-endian on powerpc */
905 	protctl = RD4(sc, SDHC_PROT_CTRL);
906 	protctl &= ~SDHC_PROT_EMODE_MASK;
907 	if (OF_hasprop(node, "little-endian"))
908 		protctl |= SDHC_PROT_EMODE_LITTLE;
909 	else
910 		protctl |= SDHC_PROT_EMODE_BIG;
911 	WR4(sc, SDHC_PROT_CTRL, protctl);
912 #endif
913 
914 	callout_init(&sc->r1bfix_callout, 1);
915 	sdhci_init_slot(dev, &sc->slot, 0);
916 
917 	bus_generic_probe(dev);
918 	bus_generic_attach(dev);
919 
920 	sdhci_start_slot(&sc->slot);
921 
922 	return (0);
923 
924 fail:
925 	if (sc->intr_cookie)
926 		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
927 	if (sc->irq_res)
928 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
929 	if (sc->mem_res)
930 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
931 
932 	return (err);
933 }
934 
935 static int
936 fsl_sdhci_probe(device_t dev)
937 {
938 
939         if (!ofw_bus_status_okay(dev))
940 		return (ENXIO);
941 
942 	switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
943 	case HWTYPE_ESDHC:
944 		device_set_desc(dev, "Freescale eSDHC controller");
945 		return (BUS_PROBE_DEFAULT);
946 	case HWTYPE_USDHC:
947 		device_set_desc(dev, "Freescale uSDHC controller");
948 		return (BUS_PROBE_DEFAULT);
949 	default:
950 		break;
951 	}
952 	return (ENXIO);
953 }
954 
955 static device_method_t fsl_sdhci_methods[] = {
956 	/* Device interface */
957 	DEVMETHOD(device_probe,		fsl_sdhci_probe),
958 	DEVMETHOD(device_attach,	fsl_sdhci_attach),
959 	DEVMETHOD(device_detach,	fsl_sdhci_detach),
960 
961 	/* Bus interface */
962 	DEVMETHOD(bus_read_ivar,	sdhci_generic_read_ivar),
963 	DEVMETHOD(bus_write_ivar,	sdhci_generic_write_ivar),
964 
965 	/* MMC bridge interface */
966 	DEVMETHOD(mmcbr_update_ios,	sdhci_generic_update_ios),
967 	DEVMETHOD(mmcbr_request,	sdhci_generic_request),
968 	DEVMETHOD(mmcbr_get_ro,		fsl_sdhci_get_ro),
969 	DEVMETHOD(mmcbr_acquire_host,	sdhci_generic_acquire_host),
970 	DEVMETHOD(mmcbr_release_host,	sdhci_generic_release_host),
971 
972 	/* SDHCI accessors */
973 	DEVMETHOD(sdhci_read_1,		fsl_sdhci_read_1),
974 	DEVMETHOD(sdhci_read_2,		fsl_sdhci_read_2),
975 	DEVMETHOD(sdhci_read_4,		fsl_sdhci_read_4),
976 	DEVMETHOD(sdhci_read_multi_4,	fsl_sdhci_read_multi_4),
977 	DEVMETHOD(sdhci_write_1,	fsl_sdhci_write_1),
978 	DEVMETHOD(sdhci_write_2,	fsl_sdhci_write_2),
979 	DEVMETHOD(sdhci_write_4,	fsl_sdhci_write_4),
980 	DEVMETHOD(sdhci_write_multi_4,	fsl_sdhci_write_multi_4),
981 	DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present),
982 
983 	DEVMETHOD_END
984 };
985 
986 static devclass_t fsl_sdhci_devclass;
987 
988 static driver_t fsl_sdhci_driver = {
989 	"sdhci_fsl",
990 	fsl_sdhci_methods,
991 	sizeof(struct fsl_sdhci_softc),
992 };
993 
994 DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, fsl_sdhci_devclass,
995     NULL, NULL);
996 MODULE_DEPEND(sdhci_fsl, sdhci, 1, 1, 1);
997 MMC_DECLARE_BRIDGE(sdhci_fsl);
998