xref: /freebsd/sys/dev/sdhci/fsl_sdhci.c (revision 130d950cafcd29c6a32cf5357bf600dcd9c1d998)
1 /*-
2  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
32  *
33  * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34  */
35 
36 #include "opt_mmccam.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/bus.h>
42 #include <sys/callout.h>
43 #include <sys/kernel.h>
44 #include <sys/libkern.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/mutex.h>
49 #include <sys/resource.h>
50 #include <sys/rman.h>
51 #include <sys/sysctl.h>
52 #include <sys/taskqueue.h>
53 #include <sys/time.h>
54 
55 #include <machine/bus.h>
56 #include <machine/resource.h>
57 #ifdef __arm__
58 #include <machine/intr.h>
59 
60 #include <arm/freescale/imx/imx_ccmvar.h>
61 #endif
62 
63 #ifdef __powerpc__
64 #include <powerpc/mpc85xx/mpc85xx.h>
65 #endif
66 
67 #include <dev/gpio/gpiobusvar.h>
68 
69 #include <dev/ofw/ofw_bus.h>
70 #include <dev/ofw/ofw_bus_subr.h>
71 
72 #include <dev/mmc/bridge.h>
73 
74 #include <dev/sdhci/sdhci.h>
75 #include <dev/sdhci/sdhci_fdt_gpio.h>
76 
77 #include "mmcbr_if.h"
78 #include "sdhci_if.h"
79 
80 struct fsl_sdhci_softc {
81 	device_t		dev;
82 	struct resource *	mem_res;
83 	struct resource *	irq_res;
84 	void *			intr_cookie;
85 	struct sdhci_slot	slot;
86 	struct callout		r1bfix_callout;
87 	sbintime_t		r1bfix_timeout_at;
88 	struct sdhci_fdt_gpio * gpio;
89 	uint32_t		baseclk_hz;
90 	uint32_t		cmd_and_mode;
91 	uint32_t		r1bfix_intmask;
92 	uint16_t		sdclockreg_freq_bits;
93 	uint8_t			r1bfix_type;
94 	uint8_t			hwtype;
95 	bool			slot_init_done;
96 };
97 
98 #define	R1BFIX_NONE	0	/* No fix needed at next interrupt. */
99 #define	R1BFIX_NODATA	1	/* Synthesize DATA_END for R1B w/o data. */
100 #define	R1BFIX_AC12	2	/* Wait for busy after auto command 12. */
101 
102 #define	HWTYPE_NONE	0	/* Hardware not recognized/supported. */
103 #define	HWTYPE_ESDHC	1	/* fsl5x and earlier. */
104 #define	HWTYPE_USDHC	2	/* fsl6. */
105 
106 /*
107  * Freescale-specific registers, or in some cases the layout of bits within the
108  * sdhci-defined register is different on Freescale.  These names all begin with
109  * SDHC_ (not SDHCI_).
110  */
111 
112 #define	SDHC_WTMK_LVL		0x44	/* Watermark Level register. */
113 #define	USDHC_MIX_CONTROL	0x48	/* Mix(ed) Control register. */
114 #define	SDHC_VEND_SPEC		0xC0	/* Vendor-specific register. */
115 #define	 SDHC_VEND_FRC_SDCLK_ON	(1 <<  8)
116 #define	 SDHC_VEND_IPGEN	(1 << 11)
117 #define	 SDHC_VEND_HCKEN	(1 << 12)
118 #define	 SDHC_VEND_PEREN	(1 << 13)
119 
120 #define	SDHC_PRES_STATE		0x24
121 #define	  SDHC_PRES_CIHB	  (1 <<  0)
122 #define	  SDHC_PRES_CDIHB	  (1 <<  1)
123 #define	  SDHC_PRES_DLA		  (1 <<  2)
124 #define	  SDHC_PRES_SDSTB	  (1 <<  3)
125 #define	  SDHC_PRES_IPGOFF	  (1 <<  4)
126 #define	  SDHC_PRES_HCKOFF	  (1 <<  5)
127 #define	  SDHC_PRES_PEROFF	  (1 <<  6)
128 #define	  SDHC_PRES_SDOFF	  (1 <<  7)
129 #define	  SDHC_PRES_WTA		  (1 <<  8)
130 #define	  SDHC_PRES_RTA		  (1 <<  9)
131 #define	  SDHC_PRES_BWEN	  (1 << 10)
132 #define	  SDHC_PRES_BREN	  (1 << 11)
133 #define	  SDHC_PRES_RTR		  (1 << 12)
134 #define	  SDHC_PRES_CINST	  (1 << 16)
135 #define	  SDHC_PRES_CDPL	  (1 << 18)
136 #define	  SDHC_PRES_WPSPL	  (1 << 19)
137 #define	  SDHC_PRES_CLSL	  (1 << 23)
138 #define	  SDHC_PRES_DLSL_SHIFT	  24
139 #define	  SDHC_PRES_DLSL_MASK	  (0xffU << SDHC_PRES_DLSL_SHIFT)
140 
141 #define	SDHC_PROT_CTRL		0x28
142 #define	 SDHC_PROT_LED		(1 << 0)
143 #define	 SDHC_PROT_WIDTH_1BIT	(0 << 1)
144 #define	 SDHC_PROT_WIDTH_4BIT	(1 << 1)
145 #define	 SDHC_PROT_WIDTH_8BIT	(2 << 1)
146 #define	 SDHC_PROT_WIDTH_MASK	(3 << 1)
147 #define	 SDHC_PROT_D3CD		(1 << 3)
148 #define	 SDHC_PROT_EMODE_BIG	(0 << 4)
149 #define	 SDHC_PROT_EMODE_HALF	(1 << 4)
150 #define	 SDHC_PROT_EMODE_LITTLE	(2 << 4)
151 #define	 SDHC_PROT_EMODE_MASK	(3 << 4)
152 #define	 SDHC_PROT_SDMA		(0 << 8)
153 #define	 SDHC_PROT_ADMA1	(1 << 8)
154 #define	 SDHC_PROT_ADMA2	(2 << 8)
155 #define	 SDHC_PROT_ADMA264	(3 << 8)
156 #define	 SDHC_PROT_DMA_MASK	(3 << 8)
157 #define	 SDHC_PROT_CDTL		(1 << 6)
158 #define	 SDHC_PROT_CDSS		(1 << 7)
159 
160 #define	SDHC_SYS_CTRL		0x2c
161 
162 /*
163  * The clock enable bits exist in different registers for ESDHC vs USDHC, but
164  * they are the same bits in both cases.  The divisor values go into the
165  * standard sdhci clock register, but in different bit positions and meanings
166    than the sdhci spec values.
167  */
168 #define	SDHC_CLK_IPGEN		(1 << 0)
169 #define	SDHC_CLK_HCKEN		(1 << 1)
170 #define	SDHC_CLK_PEREN		(1 << 2)
171 #define	SDHC_CLK_SDCLKEN	(1 << 3)
172 #define	SDHC_CLK_ENABLE_MASK	0x0000000f
173 #define	SDHC_CLK_DIVISOR_MASK	0x000000f0
174 #define	SDHC_CLK_DIVISOR_SHIFT	4
175 #define	SDHC_CLK_PRESCALE_MASK	0x0000ff00
176 #define	SDHC_CLK_PRESCALE_SHIFT	8
177 
178 static struct ofw_compat_data compat_data[] = {
179 	{"fsl,imx6q-usdhc",	HWTYPE_USDHC},
180 	{"fsl,imx6sl-usdhc",	HWTYPE_USDHC},
181 	{"fsl,imx53-esdhc",	HWTYPE_ESDHC},
182 	{"fsl,imx51-esdhc",	HWTYPE_ESDHC},
183 	{"fsl,esdhc",		HWTYPE_ESDHC},
184 	{NULL,			HWTYPE_NONE},
185 };
186 
187 static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
188 static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
189 static void fsl_sdhci_r1bfix_func(void *arg);
190 
191 static inline uint32_t
192 RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
193 {
194 
195 	return (bus_read_4(sc->mem_res, off));
196 }
197 
198 static inline void
199 WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
200 {
201 
202 	bus_write_4(sc->mem_res, off, val);
203 }
204 
205 static uint8_t
206 fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
207 {
208 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
209 	uint32_t val32, wrk32;
210 
211 	/*
212 	 * Most of the things in the standard host control register are in the
213 	 * hardware's wider protocol control register, but some of the bits are
214 	 * moved around.
215 	 */
216 	if (off == SDHCI_HOST_CONTROL) {
217 		wrk32 = RD4(sc, SDHC_PROT_CTRL);
218 		val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
219 		    SDHCI_CTRL_FORCE_CARD);
220 		switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
221 		case SDHC_PROT_WIDTH_1BIT:
222 			/* Value is already 0. */
223 			break;
224 		case SDHC_PROT_WIDTH_4BIT:
225 			val32 |= SDHCI_CTRL_4BITBUS;
226 			break;
227 		case SDHC_PROT_WIDTH_8BIT:
228 			val32 |= SDHCI_CTRL_8BITBUS;
229 			break;
230 		}
231 		switch (wrk32 & SDHC_PROT_DMA_MASK) {
232 		case SDHC_PROT_SDMA:
233 			/* Value is already 0. */
234 			break;
235 		case SDHC_PROT_ADMA1:
236 			/* This value is deprecated, should never appear. */
237 			break;
238 		case SDHC_PROT_ADMA2:
239 			val32 |= SDHCI_CTRL_ADMA2;
240 			break;
241 		case SDHC_PROT_ADMA264:
242 			val32 |= SDHCI_CTRL_ADMA264;
243 			break;
244 		}
245 		return val32;
246 	}
247 
248 	/*
249 	 * XXX can't find the bus power on/off knob.  For now we have to say the
250 	 * power is always on and always set to the same voltage.
251 	 */
252 	if (off == SDHCI_POWER_CONTROL) {
253 		return (SDHCI_POWER_ON | SDHCI_POWER_300);
254 	}
255 
256 
257 	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
258 }
259 
260 static uint16_t
261 fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
262 {
263 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
264 	uint32_t val32;
265 
266 	if (sc->hwtype == HWTYPE_USDHC) {
267 		/*
268 		 * The USDHC hardware has nothing in the version register, but
269 		 * it's v3 compatible with all our translation code.
270 		 */
271 		if (off == SDHCI_HOST_VERSION) {
272 			return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
273 		}
274 		/*
275 		 * The USDHC hardware moved the transfer mode bits to the mixed
276 		 * control register, fetch them from there.
277 		 */
278 		if (off == SDHCI_TRANSFER_MODE)
279 			return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
280 
281 	} else if (sc->hwtype == HWTYPE_ESDHC) {
282 
283 		/*
284 		 * The ESDHC hardware has the typical 32-bit combined "command
285 		 * and mode" register that we have to cache so that command
286 		 * isn't written until after mode.  On a read, just retrieve the
287 		 * cached values last written.
288 		 */
289 		if (off == SDHCI_TRANSFER_MODE) {
290 			return (sc->cmd_and_mode & 0x0000ffff);
291 		} else if (off == SDHCI_COMMAND_FLAGS) {
292 			return (sc->cmd_and_mode >> 16);
293 		}
294 	}
295 
296 	/*
297 	 * This hardware only manages one slot.  Synthesize a slot interrupt
298 	 * status register... if there are any enabled interrupts active they
299 	 * must be coming from our one and only slot.
300 	 */
301 	if (off == SDHCI_SLOT_INT_STATUS) {
302 		val32  = RD4(sc, SDHCI_INT_STATUS);
303 		val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
304 		return (val32 ? 1 : 0);
305 	}
306 
307 	/*
308 	 * Clock bits are scattered into various registers which differ by
309 	 * hardware type, complex enough to have their own function.
310 	 */
311 	if (off == SDHCI_CLOCK_CONTROL) {
312 		return (fsl_sdhc_get_clock(sc));
313 	}
314 
315 	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
316 }
317 
318 static uint32_t
319 fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
320 {
321 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
322 	uint32_t val32, wrk32;
323 
324 	val32 = RD4(sc, off);
325 
326 	/*
327 	 * The hardware leaves the base clock frequency out of the capabilities
328 	 * register, but we filled it in by setting slot->max_clk at attach time
329 	 * rather than here, because we can't represent frequencies above 63MHz
330 	 * in an sdhci 2.0 capabliities register.  The timeout clock is the same
331 	 * as the active output sdclock; we indicate that with a quirk setting
332 	 * so don't populate the timeout frequency bits.
333 	 *
334 	 * XXX Turn off (for now) features the hardware can do but this driver
335 	 * doesn't yet handle (1.8v, suspend/resume, etc).
336 	 */
337 	if (off == SDHCI_CAPABILITIES) {
338 		val32 &= ~SDHCI_CAN_VDD_180;
339 		val32 &= ~SDHCI_CAN_DO_SUSPEND;
340 		val32 |= SDHCI_CAN_DO_8BITBUS;
341 		return (val32);
342 	}
343 
344 	/*
345 	 * The hardware moves bits around in the present state register to make
346 	 * room for all 8 data line state bits.  To translate, mask out all the
347 	 * bits which are not in the same position in both registers (this also
348 	 * masks out some Freescale-specific bits in locations defined as
349 	 * reserved by sdhci), then shift the data line and retune request bits
350 	 * down to their standard locations.
351 	 */
352 	if (off == SDHCI_PRESENT_STATE) {
353 		wrk32 = val32;
354 		val32 &= 0x000F0F07;
355 		val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
356 		val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
357 		return (val32);
358 	}
359 
360 	/*
361 	 * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
362 	 * command with an R1B response, mix it into the hardware status.
363 	 */
364 	if (off == SDHCI_INT_STATUS) {
365 		return (val32 | sc->r1bfix_intmask);
366 	}
367 
368 	return val32;
369 }
370 
371 static void
372 fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
373     uint32_t *data, bus_size_t count)
374 {
375 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
376 
377 	bus_read_multi_4(sc->mem_res, off, data, count);
378 }
379 
380 static void
381 fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
382 {
383 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
384 	uint32_t val32;
385 
386 	/*
387 	 * Most of the things in the standard host control register are in the
388 	 * hardware's wider protocol control register, but some of the bits are
389 	 * moved around.
390 	 */
391 	if (off == SDHCI_HOST_CONTROL) {
392 		val32 = RD4(sc, SDHC_PROT_CTRL);
393 		val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
394 		    SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
395 		val32 |= (val & SDHCI_CTRL_LED);
396 		if (val & SDHCI_CTRL_8BITBUS)
397 			val32 |= SDHC_PROT_WIDTH_8BIT;
398 		else
399 			val32 |= (val & SDHCI_CTRL_4BITBUS);
400 		val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
401 		val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
402 		WR4(sc, SDHC_PROT_CTRL, val32);
403 		return;
404 	}
405 
406 	/* XXX I can't find the bus power on/off knob; do nothing. */
407 	if (off == SDHCI_POWER_CONTROL) {
408 		return;
409 	}
410 #ifdef __powerpc__
411 	/* XXX Reset doesn't seem to work as expected.  Do nothing for now. */
412 	if (off == SDHCI_SOFTWARE_RESET)
413 		return;
414 #endif
415 
416 	val32 = RD4(sc, off & ~3);
417 	val32 &= ~(0xff << (off & 3) * 8);
418 	val32 |= (val << (off & 3) * 8);
419 
420 	WR4(sc, off & ~3, val32);
421 }
422 
423 static void
424 fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
425 {
426 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
427 	uint32_t val32;
428 
429 	/*
430 	 * The clock control stuff is complex enough to have its own function
431 	 * that can handle the ESDHC versus USDHC differences.
432 	 */
433 	if (off == SDHCI_CLOCK_CONTROL) {
434 		fsl_sdhc_set_clock(sc, val);
435 		return;
436 	}
437 
438 	/*
439 	 * Figure out whether we need to check the DAT0 line for busy status at
440 	 * interrupt time.  The controller should be doing this, but for some
441 	 * reason it doesn't.  There are two cases:
442 	 *  - R1B response with no data transfer should generate a DATA_END (aka
443 	 *    TRANSFER_COMPLETE) interrupt after waiting for busy, but if
444 	 *    there's no data transfer there's no DATA_END interrupt.  This is
445 	 *    documented; they seem to think it's a feature.
446 	 *  - R1B response after Auto-CMD12 appears to not work, even though
447 	 *    there's a control bit for it (bit 3) in the vendor register.
448 	 * When we're starting a command that needs a manual DAT0 line check at
449 	 * interrupt time, we leave ourselves a note in r1bfix_type so that we
450 	 * can do the extra work in fsl_sdhci_intr().
451 	 */
452 	if (off == SDHCI_COMMAND_FLAGS) {
453 		if (val & SDHCI_CMD_DATA) {
454 			const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
455 			val32 = RD4(sc, USDHC_MIX_CONTROL);
456 			if ((val32 & MBAUTOCMD) == MBAUTOCMD)
457 				sc->r1bfix_type = R1BFIX_AC12;
458 		} else {
459 			if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
460 				WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
461 				WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
462 				sc->r1bfix_type = R1BFIX_NODATA;
463 			}
464 		}
465 	}
466 
467 	/*
468 	 * The USDHC hardware moved the transfer mode bits to mixed control; we
469 	 * just write them there and we're done.  The ESDHC hardware has the
470 	 * typical combined cmd-and-mode register that allows only 32-bit
471 	 * access, so when writing the mode bits just save them, then later when
472 	 * writing the command bits, add in the saved mode bits.
473 	 */
474 	if (sc->hwtype == HWTYPE_USDHC) {
475 		if (off == SDHCI_TRANSFER_MODE) {
476 			val32 = RD4(sc, USDHC_MIX_CONTROL);
477 			val32 &= ~0x3f;
478 			val32 |= val & 0x37;
479 			// XXX acmd23 not supported here (or by sdhci driver)
480 			WR4(sc, USDHC_MIX_CONTROL, val32);
481 			return;
482 		}
483 	} else if (sc->hwtype == HWTYPE_ESDHC) {
484 		if (off == SDHCI_TRANSFER_MODE) {
485 			sc->cmd_and_mode =
486 			    (sc->cmd_and_mode & 0xffff0000) | val;
487 			return;
488 		} else if (off == SDHCI_COMMAND_FLAGS) {
489 			sc->cmd_and_mode =
490 			    (sc->cmd_and_mode & 0xffff) | (val << 16);
491 			WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
492 			return;
493 		}
494 	}
495 
496 	val32 = RD4(sc, off & ~3);
497 	val32 &= ~(0xffff << (off & 3) * 8);
498 	val32 |= ((val & 0xffff) << (off & 3) * 8);
499 	WR4(sc, off & ~3, val32);
500 }
501 
502 static void
503 fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
504 {
505 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
506 
507 	/* Clear synthesized interrupts, then pass the value to the hardware. */
508 	if (off == SDHCI_INT_STATUS) {
509 		sc->r1bfix_intmask &= ~val;
510 	}
511 
512 	WR4(sc, off, val);
513 }
514 
515 static void
516 fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
517     uint32_t *data, bus_size_t count)
518 {
519 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
520 
521 	bus_write_multi_4(sc->mem_res, off, data, count);
522 }
523 
524 static uint16_t
525 fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
526 {
527 	uint16_t val;
528 
529 	/*
530 	 * Whenever the sdhci driver writes the clock register we save a
531 	 * snapshot of just the frequency bits, so that we can play them back
532 	 * here on a register read without recalculating the frequency from the
533 	 * prescalar and divisor bits in the real register.  We'll start with
534 	 * those bits, and mix in the clock status and enable bits that come
535 	 * from different places depending on which hardware we've got.
536 	 */
537 	val = sc->sdclockreg_freq_bits;
538 
539 	/*
540 	 * The internal clock is always enabled (actually, the hardware manages
541 	 * it).  Whether the internal clock is stable yet after a frequency
542 	 * change comes from the present-state register on both hardware types.
543 	 */
544 	val |= SDHCI_CLOCK_INT_EN;
545 	if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
546 	    val |= SDHCI_CLOCK_INT_STABLE;
547 
548 	/*
549 	 * On i.MX ESDHC hardware the card bus clock enable is in the usual
550 	 * sdhci register but it's a different bit, so transcribe it (note the
551 	 * difference between standard SDHCI_ and Freescale SDHC_ prefixes
552 	 * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
553 	 * no force-off for the card bus clock (the hardware runs the clock when
554 	 * transfers are active no matter what), so we always say the clock is
555 	 * on.
556 	 * XXX Maybe we should say it's in whatever state the sdhci driver last
557 	 * set it to.
558 	 */
559 	if (sc->hwtype == HWTYPE_ESDHC) {
560 #ifdef __arm__
561 		if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
562 #endif
563 			val |= SDHCI_CLOCK_CARD_EN;
564 	} else {
565 		val |= SDHCI_CLOCK_CARD_EN;
566 	}
567 
568 	return (val);
569 }
570 
571 static void
572 fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
573 {
574 	uint32_t divisor, freq, prescale, val32;
575 
576 	val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
577 
578 	/*
579 	 * Save the frequency-setting bits in SDHCI format so that we can play
580 	 * them back in get_clock without complex decoding of hardware regs,
581 	 * then deal with the freqency part of the value based on hardware type.
582 	 */
583 	sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
584 	if (sc->hwtype == HWTYPE_ESDHC) {
585 		/*
586 		 * The i.MX5 ESDHC hardware requires the driver to manually
587 		 * start and stop the sd bus clock.  If the enable bit is not
588 		 * set, turn off the clock in hardware and we're done, otherwise
589 		 * decode the requested frequency.  ESDHC hardware is sdhci 2.0;
590 		 * the sdhci driver will use the original 8-bit divisor field
591 		 * and the "base / 2^N" divisor scheme.
592 		 */
593 		if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
594 #ifdef __arm__
595 			/* On QorIQ, this is a reserved bit. */
596 			WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
597 #endif
598 			return;
599 
600 		}
601 		divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
602 		freq = sc->baseclk_hz >> ffs(divisor);
603 	} else {
604 		/*
605 		 * The USDHC hardware provides only "force always on" control
606 		 * over the sd bus clock, but no way to turn it off.  (If a cmd
607 		 * or data transfer is in progress the clock is on, otherwise it
608 		 * is off.)  If the clock is being disabled, we can just return
609 		 * now, otherwise we decode the requested frequency.  USDHC
610 		 * hardware is sdhci 3.0; the sdhci driver will use a 10-bit
611 		 * divisor using the "base / 2*N" divisor scheme.
612 		 */
613 		if ((val & SDHCI_CLOCK_CARD_EN) == 0)
614 			return;
615 		divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
616 		    ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
617 		    SDHCI_DIVIDER_MASK_LEN;
618 		if (divisor == 0)
619 			freq = sc->baseclk_hz;
620 		else
621 			freq = sc->baseclk_hz / (2 * divisor);
622 	}
623 
624 	/*
625 	 * Get a prescaler and final divisor to achieve the desired frequency.
626 	 */
627 	for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
628 		prescale <<= 1;
629 
630 	for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
631 		++divisor;
632 
633 #ifdef DEBUG
634 	device_printf(sc->dev,
635 	    "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
636 	    freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
637 	    prescale, divisor);
638 #endif
639 
640 	/*
641 	 * Adjust to zero-based values, and store them to the hardware.
642 	 */
643 	prescale >>= 1;
644 	divisor -= 1;
645 
646 	val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
647 	val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
648 	val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
649 	val32 |= SDHC_CLK_IPGEN;
650 	WR4(sc, SDHCI_CLOCK_CONTROL, val32);
651 }
652 
653 static boolean_t
654 fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
655 {
656 	uint32_t inhibit;
657 
658 	mtx_assert(&sc->slot.mtx, MA_OWNED);
659 
660 	/*
661 	 * Check the DAT0 line status using both the DLA (data line active) and
662 	 * CDIHB (data inhibit) bits in the present state register.  In theory
663 	 * just DLA should do the trick,  but in practice it takes both.  If the
664 	 * DAT0 line is still being held and we're not yet beyond the timeout
665 	 * point, just schedule another callout to check again later.
666 	 */
667 	inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
668 
669 	if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
670 		callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
671 		    fsl_sdhci_r1bfix_func, sc, 0);
672 		return (false);
673 	}
674 
675 	/*
676 	 * If we reach this point with the inhibit bits still set, we've got a
677 	 * timeout, synthesize a DATA_TIMEOUT interrupt.  Otherwise the DAT0
678 	 * line has been released, and we synthesize a DATA_END, and if the type
679 	 * of fix needed was on a command-without-data we also now add in the
680 	 * original INT_RESPONSE that we suppressed earlier.
681 	 */
682 	if (inhibit)
683 		sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
684 	else {
685 		sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
686 		if (sc->r1bfix_type == R1BFIX_NODATA)
687 			sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
688 	}
689 
690 	sc->r1bfix_type = R1BFIX_NONE;
691 	return (true);
692 }
693 
694 static void
695 fsl_sdhci_r1bfix_func(void * arg)
696 {
697 	struct fsl_sdhci_softc *sc = arg;
698 	boolean_t r1bwait_done;
699 
700 	mtx_lock(&sc->slot.mtx);
701 	r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
702 	mtx_unlock(&sc->slot.mtx);
703 	if (r1bwait_done)
704 		sdhci_generic_intr(&sc->slot);
705 }
706 
707 static void
708 fsl_sdhci_intr(void *arg)
709 {
710 	struct fsl_sdhci_softc *sc = arg;
711 	uint32_t intmask;
712 
713 	mtx_lock(&sc->slot.mtx);
714 
715 	/*
716 	 * Manually check the DAT0 line for R1B response types that the
717 	 * controller fails to handle properly.  The controller asserts the done
718 	 * interrupt while the card is still asserting busy with the DAT0 line.
719 	 *
720 	 * We check DAT0 immediately because most of the time, especially on a
721 	 * read, the card will actually be done by time we get here.  If it's
722 	 * not, then the wait_done routine will schedule a callout to re-check
723 	 * periodically until it is done.  In that case we clear the interrupt
724 	 * out of the hardware now so that we can present it later when the DAT0
725 	 * line is released.
726 	 *
727 	 * If we need to wait for the DAT0 line to be released, we set up a
728 	 * timeout point 250ms in the future.  This number comes from the SD
729 	 * spec, which allows a command to take that long.  In the real world,
730 	 * cards tend to take 10-20ms for a long-running command such as a write
731 	 * or erase that spans two pages.
732 	 */
733 	switch (sc->r1bfix_type) {
734 	case R1BFIX_NODATA:
735 		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
736 		break;
737 	case R1BFIX_AC12:
738 		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
739 		break;
740 	default:
741 		intmask = 0;
742 		break;
743 	}
744 	if (intmask) {
745 		sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
746 		if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
747 			WR4(sc, SDHCI_INT_STATUS, intmask);
748 			bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4,
749 			    BUS_SPACE_BARRIER_WRITE);
750 		}
751 	}
752 
753 	mtx_unlock(&sc->slot.mtx);
754 	sdhci_generic_intr(&sc->slot);
755 }
756 
757 static int
758 fsl_sdhci_get_ro(device_t bus, device_t child)
759 {
760 	struct fsl_sdhci_softc *sc = device_get_softc(bus);
761 
762 	return (sdhci_fdt_gpio_get_readonly(sc->gpio));
763 }
764 
765 static bool
766 fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot)
767 {
768 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
769 
770 	return (sdhci_fdt_gpio_get_present(sc->gpio));
771 }
772 
773 #ifdef __powerpc__
774 static uint32_t
775 fsl_sdhci_get_platform_clock(device_t dev)
776 {
777 	phandle_t node;
778 	uint32_t clock;
779 
780 	node = ofw_bus_get_node(dev);
781 
782 	/* Get sdhci node properties */
783 	if((OF_getprop(node, "clock-frequency", (void *)&clock,
784 	    sizeof(clock)) <= 0) || (clock == 0)) {
785 
786 		clock = mpc85xx_get_system_clock();
787 
788 		if (clock == 0) {
789 			device_printf(dev,"Cannot acquire correct sdhci "
790 			    "frequency from DTS.\n");
791 
792 			return (0);
793 		}
794 	}
795 
796 	if (bootverbose)
797 		device_printf(dev, "Acquired clock: %d from DTS\n", clock);
798 
799 	return (clock);
800 }
801 #endif
802 
803 
804 static int
805 fsl_sdhci_detach(device_t dev)
806 {
807 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
808 
809 	if (sc->gpio != NULL)
810 		sdhci_fdt_gpio_teardown(sc->gpio);
811 
812 	callout_drain(&sc->r1bfix_callout);
813 
814 	if (sc->slot_init_done)
815 		sdhci_cleanup_slot(&sc->slot);
816 
817 	if (sc->intr_cookie != NULL)
818 		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
819 	if (sc->irq_res != NULL)
820 		bus_release_resource(dev, SYS_RES_IRQ,
821 		    rman_get_rid(sc->irq_res), sc->irq_res);
822 
823 	if (sc->mem_res != NULL) {
824 		bus_release_resource(dev, SYS_RES_MEMORY,
825 		    rman_get_rid(sc->mem_res), sc->mem_res);
826 	}
827 
828 	return (0);
829 }
830 
831 static int
832 fsl_sdhci_attach(device_t dev)
833 {
834 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
835 	int rid, err;
836 #ifdef __powerpc__
837 	phandle_t node;
838 	uint32_t protctl;
839 #endif
840 
841 	sc->dev = dev;
842 
843 	callout_init(&sc->r1bfix_callout, 1);
844 
845 	sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
846 	if (sc->hwtype == HWTYPE_NONE)
847 		panic("Impossible: not compatible in fsl_sdhci_attach()");
848 
849 	rid = 0;
850 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
851 	    RF_ACTIVE);
852 	if (!sc->mem_res) {
853 		device_printf(dev, "cannot allocate memory window\n");
854 		err = ENXIO;
855 		goto fail;
856 	}
857 
858 	rid = 0;
859 	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
860 	    RF_ACTIVE);
861 	if (!sc->irq_res) {
862 		device_printf(dev, "cannot allocate interrupt\n");
863 		err = ENXIO;
864 		goto fail;
865 	}
866 
867 	if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
868 	    NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
869 		device_printf(dev, "cannot setup interrupt handler\n");
870 		err = ENXIO;
871 		goto fail;
872 	}
873 
874 	sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
875 
876 	/*
877 	 * DMA is not really broken, I just haven't implemented it yet.
878 	 */
879 	sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
880 
881 	/*
882 	 * Set the buffer watermark level to 128 words (512 bytes) for both read
883 	 * and write.  The hardware has a restriction that when the read or
884 	 * write ready status is asserted, that means you can read exactly the
885 	 * number of words set in the watermark register before you have to
886 	 * re-check the status and potentially wait for more data.  The main
887 	 * sdhci driver provides no hook for doing status checking on less than
888 	 * a full block boundary, so we set the watermark level to be a full
889 	 * block.  Reads and writes where the block size is less than the
890 	 * watermark size will work correctly too, no need to change the
891 	 * watermark for different size blocks.  However, 128 is the maximum
892 	 * allowed for the watermark, so PIO is limitted to 512 byte blocks
893 	 * (which works fine for SD cards, may be a problem for SDIO some day).
894 	 *
895 	 * XXX need named constants for this stuff.
896 	 */
897 	/* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
898 	if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
899 		WR4(sc, SDHC_WTMK_LVL, 0x10801080);
900 	else
901 		WR4(sc, SDHC_WTMK_LVL, 0x08800880);
902 
903 	/*
904 	 * We read in native byte order in the main driver, but the register
905 	 * defaults to little endian.
906 	 */
907 #ifdef __powerpc__
908 	sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
909 #else
910 	sc->baseclk_hz = imx_ccm_sdhci_hz();
911 #endif
912 	sc->slot.max_clk = sc->baseclk_hz;
913 
914 	/*
915 	 * Set up any gpio pin handling described in the FDT data. This cannot
916 	 * fail; see comments in sdhci_fdt_gpio.h for details.
917 	 */
918 	sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
919 
920 #ifdef __powerpc__
921 	node = ofw_bus_get_node(dev);
922 	/* Default to big-endian on powerpc */
923 	protctl = RD4(sc, SDHC_PROT_CTRL);
924 	protctl &= ~SDHC_PROT_EMODE_MASK;
925 	if (OF_hasprop(node, "little-endian"))
926 		protctl |= SDHC_PROT_EMODE_LITTLE;
927 	else
928 		protctl |= SDHC_PROT_EMODE_BIG;
929 	WR4(sc, SDHC_PROT_CTRL, protctl);
930 #endif
931 
932 	sdhci_init_slot(dev, &sc->slot, 0);
933 	sc->slot_init_done = true;
934 
935 	bus_generic_probe(dev);
936 	bus_generic_attach(dev);
937 
938 	sdhci_start_slot(&sc->slot);
939 
940 	return (0);
941 
942 fail:
943 	fsl_sdhci_detach(dev);
944 	return (err);
945 }
946 
947 static int
948 fsl_sdhci_probe(device_t dev)
949 {
950 
951 	if (!ofw_bus_status_okay(dev))
952 		return (ENXIO);
953 
954 	switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
955 	case HWTYPE_ESDHC:
956 		device_set_desc(dev, "Freescale eSDHC controller");
957 		return (BUS_PROBE_DEFAULT);
958 	case HWTYPE_USDHC:
959 		device_set_desc(dev, "Freescale uSDHC controller");
960 		return (BUS_PROBE_DEFAULT);
961 	default:
962 		break;
963 	}
964 	return (ENXIO);
965 }
966 
967 static device_method_t fsl_sdhci_methods[] = {
968 	/* Device interface */
969 	DEVMETHOD(device_probe,		fsl_sdhci_probe),
970 	DEVMETHOD(device_attach,	fsl_sdhci_attach),
971 	DEVMETHOD(device_detach,	fsl_sdhci_detach),
972 
973 	/* Bus interface */
974 	DEVMETHOD(bus_read_ivar,	sdhci_generic_read_ivar),
975 	DEVMETHOD(bus_write_ivar,	sdhci_generic_write_ivar),
976 
977 	/* MMC bridge interface */
978 	DEVMETHOD(mmcbr_update_ios,	sdhci_generic_update_ios),
979 	DEVMETHOD(mmcbr_request,	sdhci_generic_request),
980 	DEVMETHOD(mmcbr_get_ro,		fsl_sdhci_get_ro),
981 	DEVMETHOD(mmcbr_acquire_host,	sdhci_generic_acquire_host),
982 	DEVMETHOD(mmcbr_release_host,	sdhci_generic_release_host),
983 
984 	/* SDHCI accessors */
985 	DEVMETHOD(sdhci_read_1,		fsl_sdhci_read_1),
986 	DEVMETHOD(sdhci_read_2,		fsl_sdhci_read_2),
987 	DEVMETHOD(sdhci_read_4,		fsl_sdhci_read_4),
988 	DEVMETHOD(sdhci_read_multi_4,	fsl_sdhci_read_multi_4),
989 	DEVMETHOD(sdhci_write_1,	fsl_sdhci_write_1),
990 	DEVMETHOD(sdhci_write_2,	fsl_sdhci_write_2),
991 	DEVMETHOD(sdhci_write_4,	fsl_sdhci_write_4),
992 	DEVMETHOD(sdhci_write_multi_4,	fsl_sdhci_write_multi_4),
993 	DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present),
994 
995 	DEVMETHOD_END
996 };
997 
998 static devclass_t fsl_sdhci_devclass;
999 
1000 static driver_t fsl_sdhci_driver = {
1001 	"sdhci_fsl",
1002 	fsl_sdhci_methods,
1003 	sizeof(struct fsl_sdhci_softc),
1004 };
1005 
1006 DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, fsl_sdhci_devclass,
1007     NULL, NULL);
1008 SDHCI_DEPEND(sdhci_fsl);
1009 
1010 #ifndef MMCCAM
1011 MMC_DECLARE_BRIDGE(sdhci_fsl);
1012 #endif
1013