xref: /freebsd/sys/dev/safe/safe.c (revision c243e4902be8df1e643c76b5f18b68bb77cc5268)
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56 
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/kobj.h>
63 
64 #include "cryptodev_if.h"
65 
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcireg.h>
68 
69 #ifdef SAFE_RNDTEST
70 #include <dev/rndtest/rndtest.h>
71 #endif
72 #include <dev/safe/safereg.h>
73 #include <dev/safe/safevar.h>
74 
75 #ifndef bswap32
76 #define	bswap32	NTOHL
77 #endif
78 
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static	int safe_probe(device_t);
83 static	int safe_attach(device_t);
84 static	int safe_detach(device_t);
85 static	int safe_suspend(device_t);
86 static	int safe_resume(device_t);
87 static	int safe_shutdown(device_t);
88 
89 static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90 static	int safe_freesession(device_t, u_int64_t);
91 static	int safe_process(device_t, struct cryptop *, int);
92 
93 static device_method_t safe_methods[] = {
94 	/* Device interface */
95 	DEVMETHOD(device_probe,		safe_probe),
96 	DEVMETHOD(device_attach,	safe_attach),
97 	DEVMETHOD(device_detach,	safe_detach),
98 	DEVMETHOD(device_suspend,	safe_suspend),
99 	DEVMETHOD(device_resume,	safe_resume),
100 	DEVMETHOD(device_shutdown,	safe_shutdown),
101 
102 	/* crypto device methods */
103 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
104 	DEVMETHOD(cryptodev_freesession,safe_freesession),
105 	DEVMETHOD(cryptodev_process,	safe_process),
106 
107 	DEVMETHOD_END
108 };
109 static driver_t safe_driver = {
110 	"safe",
111 	safe_methods,
112 	sizeof (struct safe_softc)
113 };
114 static devclass_t safe_devclass;
115 
116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121 
122 static	void safe_intr(void *);
123 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static	void safe_rng_init(struct safe_softc *);
128 static	void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
131 	        struct safe_dma_alloc *, int);
132 #define	safe_dma_sync(_dma, _flags) \
133 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static	int safe_dmamap_aligned(const struct safe_operand *);
136 static	int safe_dmamap_uniform(const struct safe_operand *);
137 
138 static	void safe_reset_board(struct safe_softc *);
139 static	void safe_init_board(struct safe_softc *);
140 static	void safe_init_pciregs(device_t dev);
141 static	void safe_cleanchip(struct safe_softc *);
142 static	void safe_totalreset(struct safe_softc *);
143 
144 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145 
146 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
147     "SafeNet driver parameters");
148 
149 #ifdef SAFE_DEBUG
150 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
151 static	void safe_dump_ringstate(struct safe_softc *, const char *);
152 static	void safe_dump_intrstate(struct safe_softc *, const char *);
153 static	void safe_dump_request(struct safe_softc *, const char *,
154 		struct safe_ringentry *);
155 
156 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
157 
158 static	int safe_debug = 0;
159 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
160 	    0, "control debugging msgs");
161 #define	DPRINTF(_x)	if (safe_debug) printf _x
162 #else
163 #define	DPRINTF(_x)
164 #endif
165 
166 #define	READ_REG(sc,r) \
167 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
168 
169 #define WRITE_REG(sc,reg,val) \
170 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
171 
172 struct safe_stats safestats;
173 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
174 	    safe_stats, "driver statistics");
175 #ifndef SAFE_NO_RNG
176 static	int safe_rnginterval = 1;		/* poll once a second */
177 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
178 	    0, "RNG polling interval (secs)");
179 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
180 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
181 	    0, "RNG polling buffer size (32-bit words)");
182 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
183 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
184 	    0, "RNG max alarms before reset");
185 #endif /* SAFE_NO_RNG */
186 
187 static int
188 safe_probe(device_t dev)
189 {
190 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
191 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
192 		return (BUS_PROBE_DEFAULT);
193 	return (ENXIO);
194 }
195 
196 static const char*
197 safe_partname(struct safe_softc *sc)
198 {
199 	/* XXX sprintf numbers when not decoded */
200 	switch (pci_get_vendor(sc->sc_dev)) {
201 	case PCI_VENDOR_SAFENET:
202 		switch (pci_get_device(sc->sc_dev)) {
203 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
204 		}
205 		return "SafeNet unknown-part";
206 	}
207 	return "Unknown-vendor unknown-part";
208 }
209 
210 #ifndef SAFE_NO_RNG
211 static void
212 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
213 {
214 	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
215 }
216 #endif /* SAFE_NO_RNG */
217 
218 static int
219 safe_attach(device_t dev)
220 {
221 	struct safe_softc *sc = device_get_softc(dev);
222 	u_int32_t raddr;
223 	u_int32_t cmd, i, devinfo;
224 	int rid;
225 
226 	bzero(sc, sizeof (*sc));
227 	sc->sc_dev = dev;
228 
229 	/* XXX handle power management */
230 
231 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
232 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
233 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
234 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
235 
236 	if (!(cmd & PCIM_CMD_MEMEN)) {
237 		device_printf(dev, "failed to enable memory mapping\n");
238 		goto bad;
239 	}
240 
241 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
242 		device_printf(dev, "failed to enable bus mastering\n");
243 		goto bad;
244 	}
245 
246 	/*
247 	 * Setup memory-mapping of PCI registers.
248 	 */
249 	rid = BS_BAR;
250 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
251 					   RF_ACTIVE);
252 	if (sc->sc_sr == NULL) {
253 		device_printf(dev, "cannot map register space\n");
254 		goto bad;
255 	}
256 	sc->sc_st = rman_get_bustag(sc->sc_sr);
257 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
258 
259 	/*
260 	 * Arrange interrupt line.
261 	 */
262 	rid = 0;
263 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
264 					    RF_SHAREABLE|RF_ACTIVE);
265 	if (sc->sc_irq == NULL) {
266 		device_printf(dev, "could not map interrupt\n");
267 		goto bad1;
268 	}
269 	/*
270 	 * NB: Network code assumes we are blocked with splimp()
271 	 *     so make sure the IRQ is mapped appropriately.
272 	 */
273 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
274 			   NULL, safe_intr, sc, &sc->sc_ih)) {
275 		device_printf(dev, "could not establish interrupt\n");
276 		goto bad2;
277 	}
278 
279 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
280 	if (sc->sc_cid < 0) {
281 		device_printf(dev, "could not get crypto driver id\n");
282 		goto bad3;
283 	}
284 
285 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
286 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
287 
288 	/*
289 	 * Setup DMA descriptor area.
290 	 */
291 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
292 			       1,			/* alignment */
293 			       SAFE_DMA_BOUNDARY,	/* boundary */
294 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
295 			       BUS_SPACE_MAXADDR,	/* highaddr */
296 			       NULL, NULL,		/* filter, filterarg */
297 			       SAFE_MAX_DMA,		/* maxsize */
298 			       SAFE_MAX_PART,		/* nsegments */
299 			       SAFE_MAX_SSIZE,		/* maxsegsize */
300 			       BUS_DMA_ALLOCNOW,	/* flags */
301 			       NULL, NULL,		/* locking */
302 			       &sc->sc_srcdmat)) {
303 		device_printf(dev, "cannot allocate DMA tag\n");
304 		goto bad4;
305 	}
306 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
307 			       1,			/* alignment */
308 			       SAFE_MAX_DSIZE,		/* boundary */
309 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
310 			       BUS_SPACE_MAXADDR,	/* highaddr */
311 			       NULL, NULL,		/* filter, filterarg */
312 			       SAFE_MAX_DMA,		/* maxsize */
313 			       SAFE_MAX_PART,		/* nsegments */
314 			       SAFE_MAX_DSIZE,		/* maxsegsize */
315 			       BUS_DMA_ALLOCNOW,	/* flags */
316 			       NULL, NULL,		/* locking */
317 			       &sc->sc_dstdmat)) {
318 		device_printf(dev, "cannot allocate DMA tag\n");
319 		goto bad4;
320 	}
321 
322 	/*
323 	 * Allocate packet engine descriptors.
324 	 */
325 	if (safe_dma_malloc(sc,
326 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
327 	    &sc->sc_ringalloc, 0)) {
328 		device_printf(dev, "cannot allocate PE descriptor ring\n");
329 		bus_dma_tag_destroy(sc->sc_srcdmat);
330 		goto bad4;
331 	}
332 	/*
333 	 * Hookup the static portion of all our data structures.
334 	 */
335 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
336 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
337 	sc->sc_front = sc->sc_ring;
338 	sc->sc_back = sc->sc_ring;
339 	raddr = sc->sc_ringalloc.dma_paddr;
340 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
341 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
342 		struct safe_ringentry *re = &sc->sc_ring[i];
343 
344 		re->re_desc.d_sa = raddr +
345 			offsetof(struct safe_ringentry, re_sa);
346 		re->re_sa.sa_staterec = raddr +
347 			offsetof(struct safe_ringentry, re_sastate);
348 
349 		raddr += sizeof (struct safe_ringentry);
350 	}
351 	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
352 		"packet engine ring", MTX_DEF);
353 
354 	/*
355 	 * Allocate scatter and gather particle descriptors.
356 	 */
357 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
358 	    &sc->sc_spalloc, 0)) {
359 		device_printf(dev, "cannot allocate source particle "
360 			"descriptor ring\n");
361 		mtx_destroy(&sc->sc_ringmtx);
362 		safe_dma_free(sc, &sc->sc_ringalloc);
363 		bus_dma_tag_destroy(sc->sc_srcdmat);
364 		goto bad4;
365 	}
366 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
367 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
368 	sc->sc_spfree = sc->sc_spring;
369 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
370 
371 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
372 	    &sc->sc_dpalloc, 0)) {
373 		device_printf(dev, "cannot allocate destination particle "
374 			"descriptor ring\n");
375 		mtx_destroy(&sc->sc_ringmtx);
376 		safe_dma_free(sc, &sc->sc_spalloc);
377 		safe_dma_free(sc, &sc->sc_ringalloc);
378 		bus_dma_tag_destroy(sc->sc_dstdmat);
379 		goto bad4;
380 	}
381 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
382 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
383 	sc->sc_dpfree = sc->sc_dpring;
384 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
385 
386 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
387 
388 	devinfo = READ_REG(sc, SAFE_DEVINFO);
389 	if (devinfo & SAFE_DEVINFO_RNG) {
390 		sc->sc_flags |= SAFE_FLAGS_RNG;
391 		printf(" rng");
392 	}
393 	if (devinfo & SAFE_DEVINFO_PKEY) {
394 #if 0
395 		printf(" key");
396 		sc->sc_flags |= SAFE_FLAGS_KEY;
397 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
398 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
399 #endif
400 	}
401 	if (devinfo & SAFE_DEVINFO_DES) {
402 		printf(" des/3des");
403 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
404 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
405 	}
406 	if (devinfo & SAFE_DEVINFO_AES) {
407 		printf(" aes");
408 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
409 	}
410 	if (devinfo & SAFE_DEVINFO_MD5) {
411 		printf(" md5");
412 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
413 	}
414 	if (devinfo & SAFE_DEVINFO_SHA1) {
415 		printf(" sha1");
416 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
417 	}
418 	printf(" null");
419 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
420 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
421 	/* XXX other supported algorithms */
422 	printf("\n");
423 
424 	safe_reset_board(sc);		/* reset h/w */
425 	safe_init_pciregs(dev);		/* init pci settings */
426 	safe_init_board(sc);		/* init h/w */
427 
428 #ifndef SAFE_NO_RNG
429 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
430 #ifdef SAFE_RNDTEST
431 		sc->sc_rndtest = rndtest_attach(dev);
432 		if (sc->sc_rndtest)
433 			sc->sc_harvest = rndtest_harvest;
434 		else
435 			sc->sc_harvest = default_harvest;
436 #else
437 		sc->sc_harvest = default_harvest;
438 #endif
439 		safe_rng_init(sc);
440 
441 		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
442 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
443 	}
444 #endif /* SAFE_NO_RNG */
445 #ifdef SAFE_DEBUG
446 	safec = sc;			/* for use by hw.safe.dump */
447 #endif
448 	return (0);
449 bad4:
450 	crypto_unregister_all(sc->sc_cid);
451 bad3:
452 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
453 bad2:
454 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
455 bad1:
456 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
457 bad:
458 	return (ENXIO);
459 }
460 
461 /*
462  * Detach a device that successfully probed.
463  */
464 static int
465 safe_detach(device_t dev)
466 {
467 	struct safe_softc *sc = device_get_softc(dev);
468 
469 	/* XXX wait/abort active ops */
470 
471 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
472 
473 	callout_stop(&sc->sc_rngto);
474 
475 	crypto_unregister_all(sc->sc_cid);
476 
477 #ifdef SAFE_RNDTEST
478 	if (sc->sc_rndtest)
479 		rndtest_detach(sc->sc_rndtest);
480 #endif
481 
482 	safe_cleanchip(sc);
483 	safe_dma_free(sc, &sc->sc_dpalloc);
484 	safe_dma_free(sc, &sc->sc_spalloc);
485 	mtx_destroy(&sc->sc_ringmtx);
486 	safe_dma_free(sc, &sc->sc_ringalloc);
487 
488 	bus_generic_detach(dev);
489 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
490 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
491 
492 	bus_dma_tag_destroy(sc->sc_srcdmat);
493 	bus_dma_tag_destroy(sc->sc_dstdmat);
494 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
495 
496 	return (0);
497 }
498 
499 /*
500  * Stop all chip i/o so that the kernel's probe routines don't
501  * get confused by errant DMAs when rebooting.
502  */
503 static int
504 safe_shutdown(device_t dev)
505 {
506 #ifdef notyet
507 	safe_stop(device_get_softc(dev));
508 #endif
509 	return (0);
510 }
511 
512 /*
513  * Device suspend routine.
514  */
515 static int
516 safe_suspend(device_t dev)
517 {
518 	struct safe_softc *sc = device_get_softc(dev);
519 
520 #ifdef notyet
521 	/* XXX stop the device and save PCI settings */
522 #endif
523 	sc->sc_suspended = 1;
524 
525 	return (0);
526 }
527 
528 static int
529 safe_resume(device_t dev)
530 {
531 	struct safe_softc *sc = device_get_softc(dev);
532 
533 #ifdef notyet
534 	/* XXX retore PCI settings and start the device */
535 #endif
536 	sc->sc_suspended = 0;
537 	return (0);
538 }
539 
540 /*
541  * SafeXcel Interrupt routine
542  */
543 static void
544 safe_intr(void *arg)
545 {
546 	struct safe_softc *sc = arg;
547 	volatile u_int32_t stat;
548 
549 	stat = READ_REG(sc, SAFE_HM_STAT);
550 	if (stat == 0)			/* shared irq, not for us */
551 		return;
552 
553 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
554 
555 	if ((stat & SAFE_INT_PE_DDONE)) {
556 		/*
557 		 * Descriptor(s) done; scan the ring and
558 		 * process completed operations.
559 		 */
560 		mtx_lock(&sc->sc_ringmtx);
561 		while (sc->sc_back != sc->sc_front) {
562 			struct safe_ringentry *re = sc->sc_back;
563 #ifdef SAFE_DEBUG
564 			if (safe_debug) {
565 				safe_dump_ringstate(sc, __func__);
566 				safe_dump_request(sc, __func__, re);
567 			}
568 #endif
569 			/*
570 			 * safe_process marks ring entries that were allocated
571 			 * but not used with a csr of zero.  This insures the
572 			 * ring front pointer never needs to be set backwards
573 			 * in the event that an entry is allocated but not used
574 			 * because of a setup error.
575 			 */
576 			if (re->re_desc.d_csr != 0) {
577 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
578 					break;
579 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
580 					break;
581 				sc->sc_nqchip--;
582 				safe_callback(sc, re);
583 			}
584 			if (++(sc->sc_back) == sc->sc_ringtop)
585 				sc->sc_back = sc->sc_ring;
586 		}
587 		mtx_unlock(&sc->sc_ringmtx);
588 	}
589 
590 	/*
591 	 * Check to see if we got any DMA Error
592 	 */
593 	if (stat & SAFE_INT_PE_ERROR) {
594 		DPRINTF(("dmaerr dmastat %08x\n",
595 			READ_REG(sc, SAFE_PE_DMASTAT)));
596 		safestats.st_dmaerr++;
597 		safe_totalreset(sc);
598 #if 0
599 		safe_feed(sc);
600 #endif
601 	}
602 
603 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
604 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
605 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
606 			sc->sc_needwakeup));
607 		sc->sc_needwakeup &= ~wakeup;
608 		crypto_unblock(sc->sc_cid, wakeup);
609 	}
610 }
611 
612 /*
613  * safe_feed() - post a request to chip
614  */
615 static void
616 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
617 {
618 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
619 	if (re->re_dst_map != NULL)
620 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
621 			BUS_DMASYNC_PREREAD);
622 	/* XXX have no smaller granularity */
623 	safe_dma_sync(&sc->sc_ringalloc,
624 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
625 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
626 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
627 
628 #ifdef SAFE_DEBUG
629 	if (safe_debug) {
630 		safe_dump_ringstate(sc, __func__);
631 		safe_dump_request(sc, __func__, re);
632 	}
633 #endif
634 	sc->sc_nqchip++;
635 	if (sc->sc_nqchip > safestats.st_maxqchip)
636 		safestats.st_maxqchip = sc->sc_nqchip;
637 	/* poke h/w to check descriptor ring, any value can be written */
638 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
639 }
640 
641 #define	N(a)	(sizeof(a) / sizeof (a[0]))
642 static void
643 safe_setup_enckey(struct safe_session *ses, caddr_t key)
644 {
645 	int i;
646 
647 	bcopy(key, ses->ses_key, ses->ses_klen / 8);
648 
649 	/* PE is little-endian, insure proper byte order */
650 	for (i = 0; i < N(ses->ses_key); i++)
651 		ses->ses_key[i] = htole32(ses->ses_key[i]);
652 }
653 
654 static void
655 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
656 {
657 	MD5_CTX md5ctx;
658 	SHA1_CTX sha1ctx;
659 	int i;
660 
661 
662 	for (i = 0; i < klen; i++)
663 		key[i] ^= HMAC_IPAD_VAL;
664 
665 	if (algo == CRYPTO_MD5_HMAC) {
666 		MD5Init(&md5ctx);
667 		MD5Update(&md5ctx, key, klen);
668 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
669 		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
670 	} else {
671 		SHA1Init(&sha1ctx);
672 		SHA1Update(&sha1ctx, key, klen);
673 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
674 		    SHA1_HMAC_BLOCK_LEN - klen);
675 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
676 	}
677 
678 	for (i = 0; i < klen; i++)
679 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
680 
681 	if (algo == CRYPTO_MD5_HMAC) {
682 		MD5Init(&md5ctx);
683 		MD5Update(&md5ctx, key, klen);
684 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
685 		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
686 	} else {
687 		SHA1Init(&sha1ctx);
688 		SHA1Update(&sha1ctx, key, klen);
689 		SHA1Update(&sha1ctx, hmac_opad_buffer,
690 		    SHA1_HMAC_BLOCK_LEN - klen);
691 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
692 	}
693 
694 	for (i = 0; i < klen; i++)
695 		key[i] ^= HMAC_OPAD_VAL;
696 
697 	/* PE is little-endian, insure proper byte order */
698 	for (i = 0; i < N(ses->ses_hminner); i++) {
699 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
700 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
701 	}
702 }
703 #undef N
704 
705 /*
706  * Allocate a new 'session' and return an encoded session id.  'sidp'
707  * contains our registration id, and should contain an encoded session
708  * id on successful allocation.
709  */
710 static int
711 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
712 {
713 	struct safe_softc *sc = device_get_softc(dev);
714 	struct cryptoini *c, *encini = NULL, *macini = NULL;
715 	struct safe_session *ses = NULL;
716 	int sesn;
717 
718 	if (sidp == NULL || cri == NULL || sc == NULL)
719 		return (EINVAL);
720 
721 	for (c = cri; c != NULL; c = c->cri_next) {
722 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
723 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
724 		    c->cri_alg == CRYPTO_NULL_HMAC) {
725 			if (macini)
726 				return (EINVAL);
727 			macini = c;
728 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
729 		    c->cri_alg == CRYPTO_3DES_CBC ||
730 		    c->cri_alg == CRYPTO_AES_CBC ||
731 		    c->cri_alg == CRYPTO_NULL_CBC) {
732 			if (encini)
733 				return (EINVAL);
734 			encini = c;
735 		} else
736 			return (EINVAL);
737 	}
738 	if (encini == NULL && macini == NULL)
739 		return (EINVAL);
740 	if (encini) {			/* validate key length */
741 		switch (encini->cri_alg) {
742 		case CRYPTO_DES_CBC:
743 			if (encini->cri_klen != 64)
744 				return (EINVAL);
745 			break;
746 		case CRYPTO_3DES_CBC:
747 			if (encini->cri_klen != 192)
748 				return (EINVAL);
749 			break;
750 		case CRYPTO_AES_CBC:
751 			if (encini->cri_klen != 128 &&
752 			    encini->cri_klen != 192 &&
753 			    encini->cri_klen != 256)
754 				return (EINVAL);
755 			break;
756 		}
757 	}
758 
759 	if (sc->sc_sessions == NULL) {
760 		ses = sc->sc_sessions = (struct safe_session *)malloc(
761 		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
762 		if (ses == NULL)
763 			return (ENOMEM);
764 		sesn = 0;
765 		sc->sc_nsessions = 1;
766 	} else {
767 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
768 			if (sc->sc_sessions[sesn].ses_used == 0) {
769 				ses = &sc->sc_sessions[sesn];
770 				break;
771 			}
772 		}
773 
774 		if (ses == NULL) {
775 			sesn = sc->sc_nsessions;
776 			ses = (struct safe_session *)malloc((sesn + 1) *
777 			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
778 			if (ses == NULL)
779 				return (ENOMEM);
780 			bcopy(sc->sc_sessions, ses, sesn *
781 			    sizeof(struct safe_session));
782 			bzero(sc->sc_sessions, sesn *
783 			    sizeof(struct safe_session));
784 			free(sc->sc_sessions, M_DEVBUF);
785 			sc->sc_sessions = ses;
786 			ses = &sc->sc_sessions[sesn];
787 			sc->sc_nsessions++;
788 		}
789 	}
790 
791 	bzero(ses, sizeof(struct safe_session));
792 	ses->ses_used = 1;
793 
794 	if (encini) {
795 		/* get an IV */
796 		/* XXX may read fewer than requested */
797 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
798 
799 		ses->ses_klen = encini->cri_klen;
800 		if (encini->cri_key != NULL)
801 			safe_setup_enckey(ses, encini->cri_key);
802 	}
803 
804 	if (macini) {
805 		ses->ses_mlen = macini->cri_mlen;
806 		if (ses->ses_mlen == 0) {
807 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
808 				ses->ses_mlen = MD5_HASH_LEN;
809 			else
810 				ses->ses_mlen = SHA1_HASH_LEN;
811 		}
812 
813 		if (macini->cri_key != NULL) {
814 			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
815 			    macini->cri_klen / 8);
816 		}
817 	}
818 
819 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
820 	return (0);
821 }
822 
823 /*
824  * Deallocate a session.
825  */
826 static int
827 safe_freesession(device_t dev, u_int64_t tid)
828 {
829 	struct safe_softc *sc = device_get_softc(dev);
830 	int session, ret;
831 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
832 
833 	if (sc == NULL)
834 		return (EINVAL);
835 
836 	session = SAFE_SESSION(sid);
837 	if (session < sc->sc_nsessions) {
838 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
839 		ret = 0;
840 	} else
841 		ret = EINVAL;
842 	return (ret);
843 }
844 
845 static void
846 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
847 {
848 	struct safe_operand *op = arg;
849 
850 	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
851 		(u_int) mapsize, nsegs, error));
852 	if (error != 0)
853 		return;
854 	op->mapsize = mapsize;
855 	op->nsegs = nsegs;
856 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
857 }
858 
859 static int
860 safe_process(device_t dev, struct cryptop *crp, int hint)
861 {
862 	struct safe_softc *sc = device_get_softc(dev);
863 	int err = 0, i, nicealign, uniform;
864 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
865 	int bypass, oplen, ivsize;
866 	caddr_t iv;
867 	int16_t coffset;
868 	struct safe_session *ses;
869 	struct safe_ringentry *re;
870 	struct safe_sarec *sa;
871 	struct safe_pdesc *pd;
872 	u_int32_t cmd0, cmd1, staterec;
873 
874 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
875 		safestats.st_invalid++;
876 		return (EINVAL);
877 	}
878 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
879 		safestats.st_badsession++;
880 		return (EINVAL);
881 	}
882 
883 	mtx_lock(&sc->sc_ringmtx);
884 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
885 		safestats.st_ringfull++;
886 		sc->sc_needwakeup |= CRYPTO_SYMQ;
887 		mtx_unlock(&sc->sc_ringmtx);
888 		return (ERESTART);
889 	}
890 	re = sc->sc_front;
891 
892 	staterec = re->re_sa.sa_staterec;	/* save */
893 	/* NB: zero everything but the PE descriptor */
894 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
895 	re->re_sa.sa_staterec = staterec;	/* restore */
896 
897 	re->re_crp = crp;
898 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
899 
900 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
901 		re->re_src_m = (struct mbuf *)crp->crp_buf;
902 		re->re_dst_m = (struct mbuf *)crp->crp_buf;
903 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
904 		re->re_src_io = (struct uio *)crp->crp_buf;
905 		re->re_dst_io = (struct uio *)crp->crp_buf;
906 	} else {
907 		safestats.st_badflags++;
908 		err = EINVAL;
909 		goto errout;	/* XXX we don't handle contiguous blocks! */
910 	}
911 
912 	sa = &re->re_sa;
913 	ses = &sc->sc_sessions[re->re_sesn];
914 
915 	crd1 = crp->crp_desc;
916 	if (crd1 == NULL) {
917 		safestats.st_nodesc++;
918 		err = EINVAL;
919 		goto errout;
920 	}
921 	crd2 = crd1->crd_next;
922 
923 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
924 	cmd1 = 0;
925 	if (crd2 == NULL) {
926 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
927 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
928 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
929 			maccrd = crd1;
930 			enccrd = NULL;
931 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
932 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
933 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
934 		    crd1->crd_alg == CRYPTO_AES_CBC ||
935 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
936 			maccrd = NULL;
937 			enccrd = crd1;
938 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
939 		} else {
940 			safestats.st_badalg++;
941 			err = EINVAL;
942 			goto errout;
943 		}
944 	} else {
945 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
946 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
947 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
948 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
949 			crd2->crd_alg == CRYPTO_3DES_CBC ||
950 		        crd2->crd_alg == CRYPTO_AES_CBC ||
951 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
952 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
953 			maccrd = crd1;
954 			enccrd = crd2;
955 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
956 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
957 		    crd1->crd_alg == CRYPTO_AES_CBC ||
958 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
959 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
960 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
961 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
962 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
963 			enccrd = crd1;
964 			maccrd = crd2;
965 		} else {
966 			safestats.st_badalg++;
967 			err = EINVAL;
968 			goto errout;
969 		}
970 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
971 	}
972 
973 	if (enccrd) {
974 		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
975 			safe_setup_enckey(ses, enccrd->crd_key);
976 
977 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
978 			cmd0 |= SAFE_SA_CMD0_DES;
979 			cmd1 |= SAFE_SA_CMD1_CBC;
980 			ivsize = 2*sizeof(u_int32_t);
981 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
982 			cmd0 |= SAFE_SA_CMD0_3DES;
983 			cmd1 |= SAFE_SA_CMD1_CBC;
984 			ivsize = 2*sizeof(u_int32_t);
985 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
986 			cmd0 |= SAFE_SA_CMD0_AES;
987 			cmd1 |= SAFE_SA_CMD1_CBC;
988 			if (ses->ses_klen == 128)
989 			     cmd1 |=  SAFE_SA_CMD1_AES128;
990 			else if (ses->ses_klen == 192)
991 			     cmd1 |=  SAFE_SA_CMD1_AES192;
992 			else
993 			     cmd1 |=  SAFE_SA_CMD1_AES256;
994 			ivsize = 4*sizeof(u_int32_t);
995 		} else {
996 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
997 			ivsize = 0;
998 		}
999 
1000 		/*
1001 		 * Setup encrypt/decrypt state.  When using basic ops
1002 		 * we can't use an inline IV because hash/crypt offset
1003 		 * must be from the end of the IV to the start of the
1004 		 * crypt data and this leaves out the preceding header
1005 		 * from the hash calculation.  Instead we place the IV
1006 		 * in the state record and set the hash/crypt offset to
1007 		 * copy both the header+IV.
1008 		 */
1009 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1010 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1011 
1012 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1013 				iv = enccrd->crd_iv;
1014 			else
1015 				iv = (caddr_t) ses->ses_iv;
1016 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1017 				crypto_copyback(crp->crp_flags, crp->crp_buf,
1018 				    enccrd->crd_inject, ivsize, iv);
1019 			}
1020 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1021 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1022 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1023 		} else {
1024 			cmd0 |= SAFE_SA_CMD0_INBOUND;
1025 
1026 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1027 				bcopy(enccrd->crd_iv,
1028 					re->re_sastate.sa_saved_iv, ivsize);
1029 			} else {
1030 				crypto_copydata(crp->crp_flags, crp->crp_buf,
1031 				    enccrd->crd_inject, ivsize,
1032 				    (caddr_t)re->re_sastate.sa_saved_iv);
1033 			}
1034 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1035 		}
1036 		/*
1037 		 * For basic encryption use the zero pad algorithm.
1038 		 * This pads results to an 8-byte boundary and
1039 		 * suppresses padding verification for inbound (i.e.
1040 		 * decrypt) operations.
1041 		 *
1042 		 * NB: Not sure if the 8-byte pad boundary is a problem.
1043 		 */
1044 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1045 
1046 		/* XXX assert key bufs have the same size */
1047 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1048 	}
1049 
1050 	if (maccrd) {
1051 		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1052 			safe_setup_mackey(ses, maccrd->crd_alg,
1053 			    maccrd->crd_key, maccrd->crd_klen / 8);
1054 		}
1055 
1056 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1057 			cmd0 |= SAFE_SA_CMD0_MD5;
1058 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1059 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1060 			cmd0 |= SAFE_SA_CMD0_SHA1;
1061 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1062 		} else {
1063 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1064 		}
1065 		/*
1066 		 * Digest data is loaded from the SA and the hash
1067 		 * result is saved to the state block where we
1068 		 * retrieve it for return to the caller.
1069 		 */
1070 		/* XXX assert digest bufs have the same size */
1071 		bcopy(ses->ses_hminner, sa->sa_indigest,
1072 			sizeof(sa->sa_indigest));
1073 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1074 			sizeof(sa->sa_outdigest));
1075 
1076 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1077 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1078 	}
1079 
1080 	if (enccrd && maccrd) {
1081 		/*
1082 		 * The offset from hash data to the start of
1083 		 * crypt data is the difference in the skips.
1084 		 */
1085 		bypass = maccrd->crd_skip;
1086 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1087 		if (coffset < 0) {
1088 			DPRINTF(("%s: hash does not precede crypt; "
1089 				"mac skip %u enc skip %u\n",
1090 				__func__, maccrd->crd_skip, enccrd->crd_skip));
1091 			safestats.st_skipmismatch++;
1092 			err = EINVAL;
1093 			goto errout;
1094 		}
1095 		oplen = enccrd->crd_skip + enccrd->crd_len;
1096 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1097 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1098 				__func__, maccrd->crd_skip + maccrd->crd_len,
1099 				oplen));
1100 			safestats.st_lenmismatch++;
1101 			err = EINVAL;
1102 			goto errout;
1103 		}
1104 #ifdef SAFE_DEBUG
1105 		if (safe_debug) {
1106 			printf("mac: skip %d, len %d, inject %d\n",
1107 			    maccrd->crd_skip, maccrd->crd_len,
1108 			    maccrd->crd_inject);
1109 			printf("enc: skip %d, len %d, inject %d\n",
1110 			    enccrd->crd_skip, enccrd->crd_len,
1111 			    enccrd->crd_inject);
1112 			printf("bypass %d coffset %d oplen %d\n",
1113 				bypass, coffset, oplen);
1114 		}
1115 #endif
1116 		if (coffset & 3) {	/* offset must be 32-bit aligned */
1117 			DPRINTF(("%s: coffset %u misaligned\n",
1118 				__func__, coffset));
1119 			safestats.st_coffmisaligned++;
1120 			err = EINVAL;
1121 			goto errout;
1122 		}
1123 		coffset >>= 2;
1124 		if (coffset > 255) {	/* offset must be <256 dwords */
1125 			DPRINTF(("%s: coffset %u too big\n",
1126 				__func__, coffset));
1127 			safestats.st_cofftoobig++;
1128 			err = EINVAL;
1129 			goto errout;
1130 		}
1131 		/*
1132 		 * Tell the hardware to copy the header to the output.
1133 		 * The header is defined as the data from the end of
1134 		 * the bypass to the start of data to be encrypted.
1135 		 * Typically this is the inline IV.  Note that you need
1136 		 * to do this even if src+dst are the same; it appears
1137 		 * that w/o this bit the crypted data is written
1138 		 * immediately after the bypass data.
1139 		 */
1140 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1141 		/*
1142 		 * Disable IP header mutable bit handling.  This is
1143 		 * needed to get correct HMAC calculations.
1144 		 */
1145 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1146 	} else {
1147 		if (enccrd) {
1148 			bypass = enccrd->crd_skip;
1149 			oplen = bypass + enccrd->crd_len;
1150 		} else {
1151 			bypass = maccrd->crd_skip;
1152 			oplen = bypass + maccrd->crd_len;
1153 		}
1154 		coffset = 0;
1155 	}
1156 	/* XXX verify multiple of 4 when using s/g */
1157 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1158 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1159 		safestats.st_bypasstoobig++;
1160 		err = EINVAL;
1161 		goto errout;
1162 	}
1163 
1164 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1165 		safestats.st_nomap++;
1166 		err = ENOMEM;
1167 		goto errout;
1168 	}
1169 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1170 		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1171 		    re->re_src_m, safe_op_cb,
1172 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1173 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1174 			re->re_src_map = NULL;
1175 			safestats.st_noload++;
1176 			err = ENOMEM;
1177 			goto errout;
1178 		}
1179 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1180 		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1181 		    re->re_src_io, safe_op_cb,
1182 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1183 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1184 			re->re_src_map = NULL;
1185 			safestats.st_noload++;
1186 			err = ENOMEM;
1187 			goto errout;
1188 		}
1189 	}
1190 	nicealign = safe_dmamap_aligned(&re->re_src);
1191 	uniform = safe_dmamap_uniform(&re->re_src);
1192 
1193 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1194 		nicealign, uniform, re->re_src.nsegs));
1195 	if (re->re_src.nsegs > 1) {
1196 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1197 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1198 		for (i = 0; i < re->re_src_nsegs; i++) {
1199 			/* NB: no need to check if there's space */
1200 			pd = sc->sc_spfree;
1201 			if (++(sc->sc_spfree) == sc->sc_springtop)
1202 				sc->sc_spfree = sc->sc_spring;
1203 
1204 			KASSERT((pd->pd_flags&3) == 0 ||
1205 				(pd->pd_flags&3) == SAFE_PD_DONE,
1206 				("bogus source particle descriptor; flags %x",
1207 				pd->pd_flags));
1208 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1209 			pd->pd_size = re->re_src_segs[i].ds_len;
1210 			pd->pd_flags = SAFE_PD_READY;
1211 		}
1212 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1213 	} else {
1214 		/*
1215 		 * No need for gather, reference the operand directly.
1216 		 */
1217 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1218 	}
1219 
1220 	if (enccrd == NULL && maccrd != NULL) {
1221 		/*
1222 		 * Hash op; no destination needed.
1223 		 */
1224 	} else {
1225 		if (crp->crp_flags & CRYPTO_F_IOV) {
1226 			if (!nicealign) {
1227 				safestats.st_iovmisaligned++;
1228 				err = EINVAL;
1229 				goto errout;
1230 			}
1231 			if (uniform != 1) {
1232 				/*
1233 				 * Source is not suitable for direct use as
1234 				 * the destination.  Create a new scatter/gather
1235 				 * list based on the destination requirements
1236 				 * and check if that's ok.
1237 				 */
1238 				if (bus_dmamap_create(sc->sc_dstdmat,
1239 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1240 					safestats.st_nomap++;
1241 					err = ENOMEM;
1242 					goto errout;
1243 				}
1244 				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1245 				    re->re_dst_map, re->re_dst_io,
1246 				    safe_op_cb, &re->re_dst,
1247 				    BUS_DMA_NOWAIT) != 0) {
1248 					bus_dmamap_destroy(sc->sc_dstdmat,
1249 						re->re_dst_map);
1250 					re->re_dst_map = NULL;
1251 					safestats.st_noload++;
1252 					err = ENOMEM;
1253 					goto errout;
1254 				}
1255 				uniform = safe_dmamap_uniform(&re->re_dst);
1256 				if (!uniform) {
1257 					/*
1258 					 * There's no way to handle the DMA
1259 					 * requirements with this uio.  We
1260 					 * could create a separate DMA area for
1261 					 * the result and then copy it back,
1262 					 * but for now we just bail and return
1263 					 * an error.  Note that uio requests
1264 					 * > SAFE_MAX_DSIZE are handled because
1265 					 * the DMA map and segment list for the
1266 					 * destination wil result in a
1267 					 * destination particle list that does
1268 					 * the necessary scatter DMA.
1269 					 */
1270 					safestats.st_iovnotuniform++;
1271 					err = EINVAL;
1272 					goto errout;
1273 				}
1274 			} else
1275 				re->re_dst = re->re_src;
1276 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1277 			if (nicealign && uniform == 1) {
1278 				/*
1279 				 * Source layout is suitable for direct
1280 				 * sharing of the DMA map and segment list.
1281 				 */
1282 				re->re_dst = re->re_src;
1283 			} else if (nicealign && uniform == 2) {
1284 				/*
1285 				 * The source is properly aligned but requires a
1286 				 * different particle list to handle DMA of the
1287 				 * result.  Create a new map and do the load to
1288 				 * create the segment list.  The particle
1289 				 * descriptor setup code below will handle the
1290 				 * rest.
1291 				 */
1292 				if (bus_dmamap_create(sc->sc_dstdmat,
1293 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1294 					safestats.st_nomap++;
1295 					err = ENOMEM;
1296 					goto errout;
1297 				}
1298 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1299 				    re->re_dst_map, re->re_dst_m,
1300 				    safe_op_cb, &re->re_dst,
1301 				    BUS_DMA_NOWAIT) != 0) {
1302 					bus_dmamap_destroy(sc->sc_dstdmat,
1303 						re->re_dst_map);
1304 					re->re_dst_map = NULL;
1305 					safestats.st_noload++;
1306 					err = ENOMEM;
1307 					goto errout;
1308 				}
1309 			} else {		/* !(aligned and/or uniform) */
1310 				int totlen, len;
1311 				struct mbuf *m, *top, **mp;
1312 
1313 				/*
1314 				 * DMA constraints require that we allocate a
1315 				 * new mbuf chain for the destination.  We
1316 				 * allocate an entire new set of mbufs of
1317 				 * optimal/required size and then tell the
1318 				 * hardware to copy any bits that are not
1319 				 * created as a byproduct of the operation.
1320 				 */
1321 				if (!nicealign)
1322 					safestats.st_unaligned++;
1323 				if (!uniform)
1324 					safestats.st_notuniform++;
1325 				totlen = re->re_src_mapsize;
1326 				if (re->re_src_m->m_flags & M_PKTHDR) {
1327 					len = MHLEN;
1328 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1329 					if (m && !m_dup_pkthdr(m, re->re_src_m,
1330 					    M_DONTWAIT)) {
1331 						m_free(m);
1332 						m = NULL;
1333 					}
1334 				} else {
1335 					len = MLEN;
1336 					MGET(m, M_DONTWAIT, MT_DATA);
1337 				}
1338 				if (m == NULL) {
1339 					safestats.st_nombuf++;
1340 					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1341 					goto errout;
1342 				}
1343 				if (totlen >= MINCLSIZE) {
1344 					MCLGET(m, M_DONTWAIT);
1345 					if ((m->m_flags & M_EXT) == 0) {
1346 						m_free(m);
1347 						safestats.st_nomcl++;
1348 						err = sc->sc_nqchip ?
1349 							ERESTART : ENOMEM;
1350 						goto errout;
1351 					}
1352 					len = MCLBYTES;
1353 				}
1354 				m->m_len = len;
1355 				top = NULL;
1356 				mp = &top;
1357 
1358 				while (totlen > 0) {
1359 					if (top) {
1360 						MGET(m, M_DONTWAIT, MT_DATA);
1361 						if (m == NULL) {
1362 							m_freem(top);
1363 							safestats.st_nombuf++;
1364 							err = sc->sc_nqchip ?
1365 							    ERESTART : ENOMEM;
1366 							goto errout;
1367 						}
1368 						len = MLEN;
1369 					}
1370 					if (top && totlen >= MINCLSIZE) {
1371 						MCLGET(m, M_DONTWAIT);
1372 						if ((m->m_flags & M_EXT) == 0) {
1373 							*mp = m;
1374 							m_freem(top);
1375 							safestats.st_nomcl++;
1376 							err = sc->sc_nqchip ?
1377 							    ERESTART : ENOMEM;
1378 							goto errout;
1379 						}
1380 						len = MCLBYTES;
1381 					}
1382 					m->m_len = len = min(totlen, len);
1383 					totlen -= len;
1384 					*mp = m;
1385 					mp = &m->m_next;
1386 				}
1387 				re->re_dst_m = top;
1388 				if (bus_dmamap_create(sc->sc_dstdmat,
1389 				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1390 					safestats.st_nomap++;
1391 					err = ENOMEM;
1392 					goto errout;
1393 				}
1394 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1395 				    re->re_dst_map, re->re_dst_m,
1396 				    safe_op_cb, &re->re_dst,
1397 				    BUS_DMA_NOWAIT) != 0) {
1398 					bus_dmamap_destroy(sc->sc_dstdmat,
1399 					re->re_dst_map);
1400 					re->re_dst_map = NULL;
1401 					safestats.st_noload++;
1402 					err = ENOMEM;
1403 					goto errout;
1404 				}
1405 				if (re->re_src.mapsize > oplen) {
1406 					/*
1407 					 * There's data following what the
1408 					 * hardware will copy for us.  If this
1409 					 * isn't just the ICV (that's going to
1410 					 * be written on completion), copy it
1411 					 * to the new mbufs
1412 					 */
1413 					if (!(maccrd &&
1414 					    (re->re_src.mapsize-oplen) == 12 &&
1415 					    maccrd->crd_inject == oplen))
1416 						safe_mcopy(re->re_src_m,
1417 							   re->re_dst_m,
1418 							   oplen);
1419 					else
1420 						safestats.st_noicvcopy++;
1421 				}
1422 			}
1423 		} else {
1424 			safestats.st_badflags++;
1425 			err = EINVAL;
1426 			goto errout;
1427 		}
1428 
1429 		if (re->re_dst.nsegs > 1) {
1430 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1431 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1432 			for (i = 0; i < re->re_dst_nsegs; i++) {
1433 				pd = sc->sc_dpfree;
1434 				KASSERT((pd->pd_flags&3) == 0 ||
1435 					(pd->pd_flags&3) == SAFE_PD_DONE,
1436 					("bogus dest particle descriptor; flags %x",
1437 						pd->pd_flags));
1438 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1439 					sc->sc_dpfree = sc->sc_dpring;
1440 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1441 				pd->pd_flags = SAFE_PD_READY;
1442 			}
1443 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1444 		} else {
1445 			/*
1446 			 * No need for scatter, reference the operand directly.
1447 			 */
1448 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * All done with setup; fillin the SA command words
1454 	 * and the packet engine descriptor.  The operation
1455 	 * is now ready for submission to the hardware.
1456 	 */
1457 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1458 	sa->sa_cmd1 = cmd1
1459 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1460 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1461 		    | SAFE_SA_CMD1_SRPCI
1462 		    ;
1463 	/*
1464 	 * NB: the order of writes is important here.  In case the
1465 	 * chip is scanning the ring because of an outstanding request
1466 	 * it might nab this one too.  In that case we need to make
1467 	 * sure the setup is complete before we write the length
1468 	 * field of the descriptor as it signals the descriptor is
1469 	 * ready for processing.
1470 	 */
1471 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1472 	if (maccrd)
1473 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1474 	re->re_desc.d_len = oplen
1475 			  | SAFE_PE_LEN_READY
1476 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1477 			  ;
1478 
1479 	safestats.st_ipackets++;
1480 	safestats.st_ibytes += oplen;
1481 
1482 	if (++(sc->sc_front) == sc->sc_ringtop)
1483 		sc->sc_front = sc->sc_ring;
1484 
1485 	/* XXX honor batching */
1486 	safe_feed(sc, re);
1487 	mtx_unlock(&sc->sc_ringmtx);
1488 	return (0);
1489 
1490 errout:
1491 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1492 		m_freem(re->re_dst_m);
1493 
1494 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1495 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1496 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1497 	}
1498 	if (re->re_src_map != NULL) {
1499 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1500 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1501 	}
1502 	mtx_unlock(&sc->sc_ringmtx);
1503 	if (err != ERESTART) {
1504 		crp->crp_etype = err;
1505 		crypto_done(crp);
1506 	} else {
1507 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1508 	}
1509 	return (err);
1510 }
1511 
1512 static void
1513 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1514 {
1515 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1516 	struct cryptodesc *crd;
1517 
1518 	safestats.st_opackets++;
1519 	safestats.st_obytes += re->re_dst.mapsize;
1520 
1521 	safe_dma_sync(&sc->sc_ringalloc,
1522 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1523 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1524 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1525 			re->re_desc.d_csr,
1526 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1527 		safestats.st_peoperr++;
1528 		crp->crp_etype = EIO;		/* something more meaningful? */
1529 	}
1530 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1531 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1532 		    BUS_DMASYNC_POSTREAD);
1533 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1534 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1535 	}
1536 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1537 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1538 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1539 
1540 	/*
1541 	 * If result was written to a differet mbuf chain, swap
1542 	 * it in as the return value and reclaim the original.
1543 	 */
1544 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1545 		m_freem(re->re_src_m);
1546 		crp->crp_buf = (caddr_t)re->re_dst_m;
1547 	}
1548 
1549 	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1550 		/* copy out IV for future use */
1551 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1552 			int ivsize;
1553 
1554 			if (crd->crd_alg == CRYPTO_DES_CBC ||
1555 			    crd->crd_alg == CRYPTO_3DES_CBC) {
1556 				ivsize = 2*sizeof(u_int32_t);
1557 			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1558 				ivsize = 4*sizeof(u_int32_t);
1559 			} else
1560 				continue;
1561 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1562 			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1563 			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1564 			break;
1565 		}
1566 	}
1567 
1568 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1569 		/* copy out ICV result */
1570 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1571 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1572 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1573 			    crd->crd_alg == CRYPTO_NULL_HMAC))
1574 				continue;
1575 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1576 				/*
1577 				 * SHA-1 ICV's are byte-swapped; fix 'em up
1578 				 * before copy them to their destination.
1579 				 */
1580 				re->re_sastate.sa_saved_indigest[0] =
1581 				    bswap32(re->re_sastate.sa_saved_indigest[0]);
1582 				re->re_sastate.sa_saved_indigest[1] =
1583 				    bswap32(re->re_sastate.sa_saved_indigest[1]);
1584 				re->re_sastate.sa_saved_indigest[2] =
1585 				    bswap32(re->re_sastate.sa_saved_indigest[2]);
1586 			}
1587 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1588 			    crd->crd_inject,
1589 			    sc->sc_sessions[re->re_sesn].ses_mlen,
1590 			    (caddr_t)re->re_sastate.sa_saved_indigest);
1591 			break;
1592 		}
1593 	}
1594 	crypto_done(crp);
1595 }
1596 
1597 /*
1598  * Copy all data past offset from srcm to dstm.
1599  */
1600 static void
1601 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1602 {
1603 	u_int j, dlen, slen;
1604 	caddr_t dptr, sptr;
1605 
1606 	/*
1607 	 * Advance src and dst to offset.
1608 	 */
1609 	j = offset;
1610 	while (j >= 0) {
1611 		if (srcm->m_len > j)
1612 			break;
1613 		j -= srcm->m_len;
1614 		srcm = srcm->m_next;
1615 		if (srcm == NULL)
1616 			return;
1617 	}
1618 	sptr = mtod(srcm, caddr_t) + j;
1619 	slen = srcm->m_len - j;
1620 
1621 	j = offset;
1622 	while (j >= 0) {
1623 		if (dstm->m_len > j)
1624 			break;
1625 		j -= dstm->m_len;
1626 		dstm = dstm->m_next;
1627 		if (dstm == NULL)
1628 			return;
1629 	}
1630 	dptr = mtod(dstm, caddr_t) + j;
1631 	dlen = dstm->m_len - j;
1632 
1633 	/*
1634 	 * Copy everything that remains.
1635 	 */
1636 	for (;;) {
1637 		j = min(slen, dlen);
1638 		bcopy(sptr, dptr, j);
1639 		if (slen == j) {
1640 			srcm = srcm->m_next;
1641 			if (srcm == NULL)
1642 				return;
1643 			sptr = srcm->m_data;
1644 			slen = srcm->m_len;
1645 		} else
1646 			sptr += j, slen -= j;
1647 		if (dlen == j) {
1648 			dstm = dstm->m_next;
1649 			if (dstm == NULL)
1650 				return;
1651 			dptr = dstm->m_data;
1652 			dlen = dstm->m_len;
1653 		} else
1654 			dptr += j, dlen -= j;
1655 	}
1656 }
1657 
1658 #ifndef SAFE_NO_RNG
1659 #define	SAFE_RNG_MAXWAIT	1000
1660 
1661 static void
1662 safe_rng_init(struct safe_softc *sc)
1663 {
1664 	u_int32_t w, v;
1665 	int i;
1666 
1667 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1668 	/* use default value according to the manual */
1669 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1670 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1671 
1672 	/*
1673 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1674 	 * is brought out of reset the ready status flag does not
1675 	 * work until the RNG has finished its internal initialization.
1676 	 *
1677 	 * So in order to determine the device is through its
1678 	 * initialization we must read the data register, using the
1679 	 * status reg in the read in case it is initialized.  Then read
1680 	 * the data register until it changes from the first read.
1681 	 * Once it changes read the data register until it changes
1682 	 * again.  At this time the RNG is considered initialized.
1683 	 * This could take between 750ms - 1000ms in time.
1684 	 */
1685 	i = 0;
1686 	w = READ_REG(sc, SAFE_RNG_OUT);
1687 	do {
1688 		v = READ_REG(sc, SAFE_RNG_OUT);
1689 		if (v != w) {
1690 			w = v;
1691 			break;
1692 		}
1693 		DELAY(10);
1694 	} while (++i < SAFE_RNG_MAXWAIT);
1695 
1696 	/* Wait Until data changes again */
1697 	i = 0;
1698 	do {
1699 		v = READ_REG(sc, SAFE_RNG_OUT);
1700 		if (v != w)
1701 			break;
1702 		DELAY(10);
1703 	} while (++i < SAFE_RNG_MAXWAIT);
1704 }
1705 
1706 static __inline void
1707 safe_rng_disable_short_cycle(struct safe_softc *sc)
1708 {
1709 	WRITE_REG(sc, SAFE_RNG_CTRL,
1710 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1711 }
1712 
1713 static __inline void
1714 safe_rng_enable_short_cycle(struct safe_softc *sc)
1715 {
1716 	WRITE_REG(sc, SAFE_RNG_CTRL,
1717 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1718 }
1719 
1720 static __inline u_int32_t
1721 safe_rng_read(struct safe_softc *sc)
1722 {
1723 	int i;
1724 
1725 	i = 0;
1726 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1727 		;
1728 	return READ_REG(sc, SAFE_RNG_OUT);
1729 }
1730 
1731 static void
1732 safe_rng(void *arg)
1733 {
1734 	struct safe_softc *sc = arg;
1735 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1736 	u_int maxwords;
1737 	int i;
1738 
1739 	safestats.st_rng++;
1740 	/*
1741 	 * Fetch the next block of data.
1742 	 */
1743 	maxwords = safe_rngbufsize;
1744 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1745 		maxwords = SAFE_RNG_MAXBUFSIZ;
1746 retry:
1747 	for (i = 0; i < maxwords; i++)
1748 		buf[i] = safe_rng_read(sc);
1749 	/*
1750 	 * Check the comparator alarm count and reset the h/w if
1751 	 * it exceeds our threshold.  This guards against the
1752 	 * hardware oscillators resonating with external signals.
1753 	 */
1754 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1755 		u_int32_t freq_inc, w;
1756 
1757 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1758 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1759 		safestats.st_rngalarm++;
1760 		safe_rng_enable_short_cycle(sc);
1761 		freq_inc = 18;
1762 		for (i = 0; i < 64; i++) {
1763 			w = READ_REG(sc, SAFE_RNG_CNFG);
1764 			freq_inc = ((w + freq_inc) & 0x3fL);
1765 			w = ((w & ~0x3fL) | freq_inc);
1766 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1767 
1768 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1769 
1770 			(void) safe_rng_read(sc);
1771 			DELAY(25);
1772 
1773 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1774 				safe_rng_disable_short_cycle(sc);
1775 				goto retry;
1776 			}
1777 			freq_inc = 1;
1778 		}
1779 		safe_rng_disable_short_cycle(sc);
1780 	} else
1781 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1782 
1783 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1784 	callout_reset(&sc->sc_rngto,
1785 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1786 }
1787 #endif /* SAFE_NO_RNG */
1788 
1789 static void
1790 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1791 {
1792 	bus_addr_t *paddr = (bus_addr_t*) arg;
1793 	*paddr = segs->ds_addr;
1794 }
1795 
1796 static int
1797 safe_dma_malloc(
1798 	struct safe_softc *sc,
1799 	bus_size_t size,
1800 	struct safe_dma_alloc *dma,
1801 	int mapflags
1802 )
1803 {
1804 	int r;
1805 
1806 	r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1807 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1808 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1809 			       BUS_SPACE_MAXADDR,	/* highaddr */
1810 			       NULL, NULL,		/* filter, filterarg */
1811 			       size,			/* maxsize */
1812 			       1,			/* nsegments */
1813 			       size,			/* maxsegsize */
1814 			       BUS_DMA_ALLOCNOW,	/* flags */
1815 			       NULL, NULL,		/* locking */
1816 			       &dma->dma_tag);
1817 	if (r != 0) {
1818 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1819 			"bus_dma_tag_create failed; error %u\n", r);
1820 		goto fail_0;
1821 	}
1822 
1823 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1824 	if (r != 0) {
1825 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1826 			"bus_dmamap_create failed; error %u\n", r);
1827 		goto fail_1;
1828 	}
1829 
1830 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1831 			     BUS_DMA_NOWAIT, &dma->dma_map);
1832 	if (r != 0) {
1833 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1834 			"bus_dmammem_alloc failed; size %zu, error %u\n",
1835 			size, r);
1836 		goto fail_2;
1837 	}
1838 
1839 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1840 		            size,
1841 			    safe_dmamap_cb,
1842 			    &dma->dma_paddr,
1843 			    mapflags | BUS_DMA_NOWAIT);
1844 	if (r != 0) {
1845 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1846 			"bus_dmamap_load failed; error %u\n", r);
1847 		goto fail_3;
1848 	}
1849 
1850 	dma->dma_size = size;
1851 	return (0);
1852 
1853 fail_3:
1854 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1855 fail_2:
1856 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1857 fail_1:
1858 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1859 	bus_dma_tag_destroy(dma->dma_tag);
1860 fail_0:
1861 	dma->dma_map = NULL;
1862 	dma->dma_tag = NULL;
1863 	return (r);
1864 }
1865 
1866 static void
1867 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1868 {
1869 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1870 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1871 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1872 	bus_dma_tag_destroy(dma->dma_tag);
1873 }
1874 
1875 /*
1876  * Resets the board.  Values in the regesters are left as is
1877  * from the reset (i.e. initial values are assigned elsewhere).
1878  */
1879 static void
1880 safe_reset_board(struct safe_softc *sc)
1881 {
1882 	u_int32_t v;
1883 	/*
1884 	 * Reset the device.  The manual says no delay
1885 	 * is needed between marking and clearing reset.
1886 	 */
1887 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1888 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1889 		 SAFE_PE_DMACFG_SGRESET);
1890 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1891 				    | SAFE_PE_DMACFG_PERESET
1892 				    | SAFE_PE_DMACFG_PDRRESET
1893 				    | SAFE_PE_DMACFG_SGRESET);
1894 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1895 }
1896 
1897 /*
1898  * Initialize registers we need to touch only once.
1899  */
1900 static void
1901 safe_init_board(struct safe_softc *sc)
1902 {
1903 	u_int32_t v, dwords;
1904 
1905 	v = READ_REG(sc, SAFE_PE_DMACFG);
1906 	v &=~ SAFE_PE_DMACFG_PEMODE;
1907 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1908 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1909 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1910 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1911 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1912 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1913 	  ;
1914 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1915 #if 0
1916 	/* XXX select byte swap based on host byte order */
1917 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1918 #endif
1919 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1920 		/*
1921 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1922 		 * "target mode transfers" done while the chip is DMA'ing
1923 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1924 		 * we reduce the max PCI transfer size and use small source
1925 		 * particle descriptors (<= 256 bytes).
1926 		 */
1927 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1928 		device_printf(sc->sc_dev,
1929 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1930 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1931 			SAFE_REV_MAJ(sc->sc_chiprev),
1932 			SAFE_REV_MIN(sc->sc_chiprev));
1933 	}
1934 
1935 	/* NB: operands+results are overlaid */
1936 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1937 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1938 	/*
1939 	 * Configure ring entry size and number of items in the ring.
1940 	 */
1941 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1942 		("PE ring entry not 32-bit aligned!"));
1943 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1944 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1945 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1946 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1947 
1948 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1949 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1950 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1951 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1952 	/*
1953 	 * NB: destination particles are fixed size.  We use
1954 	 *     an mbuf cluster and require all results go to
1955 	 *     clusters or smaller.
1956 	 */
1957 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1958 
1959 	/* it's now safe to enable PE mode, do it */
1960 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1961 
1962 	/*
1963 	 * Configure hardware to use level-triggered interrupts and
1964 	 * to interrupt after each descriptor is processed.
1965 	 */
1966 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1967 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1968 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1969 }
1970 
1971 /*
1972  * Init PCI registers
1973  */
1974 static void
1975 safe_init_pciregs(device_t dev)
1976 {
1977 }
1978 
1979 /*
1980  * Clean up after a chip crash.
1981  * It is assumed that the caller in splimp()
1982  */
1983 static void
1984 safe_cleanchip(struct safe_softc *sc)
1985 {
1986 
1987 	if (sc->sc_nqchip != 0) {
1988 		struct safe_ringentry *re = sc->sc_back;
1989 
1990 		while (re != sc->sc_front) {
1991 			if (re->re_desc.d_csr != 0)
1992 				safe_free_entry(sc, re);
1993 			if (++re == sc->sc_ringtop)
1994 				re = sc->sc_ring;
1995 		}
1996 		sc->sc_back = re;
1997 		sc->sc_nqchip = 0;
1998 	}
1999 }
2000 
2001 /*
2002  * free a safe_q
2003  * It is assumed that the caller is within splimp().
2004  */
2005 static int
2006 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2007 {
2008 	struct cryptop *crp;
2009 
2010 	/*
2011 	 * Free header MCR
2012 	 */
2013 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2014 		m_freem(re->re_dst_m);
2015 
2016 	crp = (struct cryptop *)re->re_crp;
2017 
2018 	re->re_desc.d_csr = 0;
2019 
2020 	crp->crp_etype = EFAULT;
2021 	crypto_done(crp);
2022 	return(0);
2023 }
2024 
2025 /*
2026  * Routine to reset the chip and clean up.
2027  * It is assumed that the caller is in splimp()
2028  */
2029 static void
2030 safe_totalreset(struct safe_softc *sc)
2031 {
2032 	safe_reset_board(sc);
2033 	safe_init_board(sc);
2034 	safe_cleanchip(sc);
2035 }
2036 
2037 /*
2038  * Is the operand suitable aligned for direct DMA.  Each
2039  * segment must be aligned on a 32-bit boundary and all
2040  * but the last segment must be a multiple of 4 bytes.
2041  */
2042 static int
2043 safe_dmamap_aligned(const struct safe_operand *op)
2044 {
2045 	int i;
2046 
2047 	for (i = 0; i < op->nsegs; i++) {
2048 		if (op->segs[i].ds_addr & 3)
2049 			return (0);
2050 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2051 			return (0);
2052 	}
2053 	return (1);
2054 }
2055 
2056 /*
2057  * Is the operand suitable for direct DMA as the destination
2058  * of an operation.  The hardware requires that each ``particle''
2059  * but the last in an operation result have the same size.  We
2060  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2061  * 0 if some segment is not a multiple of of this size, 1 if all
2062  * segments are exactly this size, or 2 if segments are at worst
2063  * a multple of this size.
2064  */
2065 static int
2066 safe_dmamap_uniform(const struct safe_operand *op)
2067 {
2068 	int result = 1;
2069 
2070 	if (op->nsegs > 0) {
2071 		int i;
2072 
2073 		for (i = 0; i < op->nsegs-1; i++) {
2074 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2075 				return (0);
2076 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2077 				result = 2;
2078 		}
2079 	}
2080 	return (result);
2081 }
2082 
2083 #ifdef SAFE_DEBUG
2084 static void
2085 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2086 {
2087 	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2088 		, tag
2089 		, READ_REG(sc, SAFE_DMA_ENDIAN)
2090 		, READ_REG(sc, SAFE_DMA_SRCADDR)
2091 		, READ_REG(sc, SAFE_DMA_DSTADDR)
2092 		, READ_REG(sc, SAFE_DMA_STAT)
2093 	);
2094 }
2095 
2096 static void
2097 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2098 {
2099 	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2100 		, tag
2101 		, READ_REG(sc, SAFE_HI_CFG)
2102 		, READ_REG(sc, SAFE_HI_MASK)
2103 		, READ_REG(sc, SAFE_HI_DESC_CNT)
2104 		, READ_REG(sc, SAFE_HU_STAT)
2105 		, READ_REG(sc, SAFE_HM_STAT)
2106 	);
2107 }
2108 
2109 static void
2110 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2111 {
2112 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2113 
2114 	/* NB: assume caller has lock on ring */
2115 	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2116 		tag,
2117 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2118 		(unsigned long)(sc->sc_back - sc->sc_ring),
2119 		(unsigned long)(sc->sc_front - sc->sc_ring));
2120 }
2121 
2122 static void
2123 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2124 {
2125 	int ix, nsegs;
2126 
2127 	ix = re - sc->sc_ring;
2128 	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2129 		, tag
2130 		, re, ix
2131 		, re->re_desc.d_csr
2132 		, re->re_desc.d_src
2133 		, re->re_desc.d_dst
2134 		, re->re_desc.d_sa
2135 		, re->re_desc.d_len
2136 	);
2137 	if (re->re_src.nsegs > 1) {
2138 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2139 			sizeof(struct safe_pdesc);
2140 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2141 			printf(" spd[%u] %p: %p size %u flags %x"
2142 				, ix, &sc->sc_spring[ix]
2143 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2144 				, sc->sc_spring[ix].pd_size
2145 				, sc->sc_spring[ix].pd_flags
2146 			);
2147 			if (sc->sc_spring[ix].pd_size == 0)
2148 				printf(" (zero!)");
2149 			printf("\n");
2150 			if (++ix == SAFE_TOTAL_SPART)
2151 				ix = 0;
2152 		}
2153 	}
2154 	if (re->re_dst.nsegs > 1) {
2155 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2156 			sizeof(struct safe_pdesc);
2157 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2158 			printf(" dpd[%u] %p: %p flags %x\n"
2159 				, ix, &sc->sc_dpring[ix]
2160 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2161 				, sc->sc_dpring[ix].pd_flags
2162 			);
2163 			if (++ix == SAFE_TOTAL_DPART)
2164 				ix = 0;
2165 		}
2166 	}
2167 	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2168 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2169 	printf("sa: key %x %x %x %x %x %x %x %x\n"
2170 		, re->re_sa.sa_key[0]
2171 		, re->re_sa.sa_key[1]
2172 		, re->re_sa.sa_key[2]
2173 		, re->re_sa.sa_key[3]
2174 		, re->re_sa.sa_key[4]
2175 		, re->re_sa.sa_key[5]
2176 		, re->re_sa.sa_key[6]
2177 		, re->re_sa.sa_key[7]
2178 	);
2179 	printf("sa: indigest %x %x %x %x %x\n"
2180 		, re->re_sa.sa_indigest[0]
2181 		, re->re_sa.sa_indigest[1]
2182 		, re->re_sa.sa_indigest[2]
2183 		, re->re_sa.sa_indigest[3]
2184 		, re->re_sa.sa_indigest[4]
2185 	);
2186 	printf("sa: outdigest %x %x %x %x %x\n"
2187 		, re->re_sa.sa_outdigest[0]
2188 		, re->re_sa.sa_outdigest[1]
2189 		, re->re_sa.sa_outdigest[2]
2190 		, re->re_sa.sa_outdigest[3]
2191 		, re->re_sa.sa_outdigest[4]
2192 	);
2193 	printf("sr: iv %x %x %x %x\n"
2194 		, re->re_sastate.sa_saved_iv[0]
2195 		, re->re_sastate.sa_saved_iv[1]
2196 		, re->re_sastate.sa_saved_iv[2]
2197 		, re->re_sastate.sa_saved_iv[3]
2198 	);
2199 	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2200 		, re->re_sastate.sa_saved_hashbc
2201 		, re->re_sastate.sa_saved_indigest[0]
2202 		, re->re_sastate.sa_saved_indigest[1]
2203 		, re->re_sastate.sa_saved_indigest[2]
2204 		, re->re_sastate.sa_saved_indigest[3]
2205 		, re->re_sastate.sa_saved_indigest[4]
2206 	);
2207 }
2208 
2209 static void
2210 safe_dump_ring(struct safe_softc *sc, const char *tag)
2211 {
2212 	mtx_lock(&sc->sc_ringmtx);
2213 	printf("\nSafeNet Ring State:\n");
2214 	safe_dump_intrstate(sc, tag);
2215 	safe_dump_dmastatus(sc, tag);
2216 	safe_dump_ringstate(sc, tag);
2217 	if (sc->sc_nqchip) {
2218 		struct safe_ringentry *re = sc->sc_back;
2219 		do {
2220 			safe_dump_request(sc, tag, re);
2221 			if (++re == sc->sc_ringtop)
2222 				re = sc->sc_ring;
2223 		} while (re != sc->sc_front);
2224 	}
2225 	mtx_unlock(&sc->sc_ringmtx);
2226 }
2227 
2228 static int
2229 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2230 {
2231 	char dmode[64];
2232 	int error;
2233 
2234 	strncpy(dmode, "", sizeof(dmode) - 1);
2235 	dmode[sizeof(dmode) - 1] = '\0';
2236 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2237 
2238 	if (error == 0 && req->newptr != NULL) {
2239 		struct safe_softc *sc = safec;
2240 
2241 		if (!sc)
2242 			return EINVAL;
2243 		if (strncmp(dmode, "dma", 3) == 0)
2244 			safe_dump_dmastatus(sc, "safe0");
2245 		else if (strncmp(dmode, "int", 3) == 0)
2246 			safe_dump_intrstate(sc, "safe0");
2247 		else if (strncmp(dmode, "ring", 4) == 0)
2248 			safe_dump_ring(sc, "safe0");
2249 		else
2250 			return EINVAL;
2251 	}
2252 	return error;
2253 }
2254 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2255 	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2256 #endif /* SAFE_DEBUG */
2257