xref: /freebsd/sys/dev/safe/safe.c (revision b339ef955c65fd672f7e3dd39f22c8f946d09f3e)
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56 
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/kobj.h>
63 
64 #include "cryptodev_if.h"
65 
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcireg.h>
68 
69 #ifdef SAFE_RNDTEST
70 #include <dev/rndtest/rndtest.h>
71 #endif
72 #include <dev/safe/safereg.h>
73 #include <dev/safe/safevar.h>
74 
75 #ifndef bswap32
76 #define	bswap32	NTOHL
77 #endif
78 
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static	int safe_probe(device_t);
83 static	int safe_attach(device_t);
84 static	int safe_detach(device_t);
85 static	int safe_suspend(device_t);
86 static	int safe_resume(device_t);
87 static	int safe_shutdown(device_t);
88 
89 static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90 static	int safe_freesession(device_t, u_int64_t);
91 static	int safe_process(device_t, struct cryptop *, int);
92 
93 static device_method_t safe_methods[] = {
94 	/* Device interface */
95 	DEVMETHOD(device_probe,		safe_probe),
96 	DEVMETHOD(device_attach,	safe_attach),
97 	DEVMETHOD(device_detach,	safe_detach),
98 	DEVMETHOD(device_suspend,	safe_suspend),
99 	DEVMETHOD(device_resume,	safe_resume),
100 	DEVMETHOD(device_shutdown,	safe_shutdown),
101 
102 	/* crypto device methods */
103 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
104 	DEVMETHOD(cryptodev_freesession,safe_freesession),
105 	DEVMETHOD(cryptodev_process,	safe_process),
106 
107 	DEVMETHOD_END
108 };
109 static driver_t safe_driver = {
110 	"safe",
111 	safe_methods,
112 	sizeof (struct safe_softc)
113 };
114 static devclass_t safe_devclass;
115 
116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121 
122 static	void safe_intr(void *);
123 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static	void safe_rng_init(struct safe_softc *);
128 static	void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
131 	        struct safe_dma_alloc *, int);
132 #define	safe_dma_sync(_dma, _flags) \
133 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static	int safe_dmamap_aligned(const struct safe_operand *);
136 static	int safe_dmamap_uniform(const struct safe_operand *);
137 
138 static	void safe_reset_board(struct safe_softc *);
139 static	void safe_init_board(struct safe_softc *);
140 static	void safe_init_pciregs(device_t dev);
141 static	void safe_cleanchip(struct safe_softc *);
142 static	void safe_totalreset(struct safe_softc *);
143 
144 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145 
146 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
147     "SafeNet driver parameters");
148 
149 #ifdef SAFE_DEBUG
150 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
151 static	void safe_dump_ringstate(struct safe_softc *, const char *);
152 static	void safe_dump_intrstate(struct safe_softc *, const char *);
153 static	void safe_dump_request(struct safe_softc *, const char *,
154 		struct safe_ringentry *);
155 
156 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
157 
158 static	int safe_debug = 0;
159 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
160 	    0, "control debugging msgs");
161 #define	DPRINTF(_x)	if (safe_debug) printf _x
162 #else
163 #define	DPRINTF(_x)
164 #endif
165 
166 #define	READ_REG(sc,r) \
167 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
168 
169 #define WRITE_REG(sc,reg,val) \
170 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
171 
172 struct safe_stats safestats;
173 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
174 	    safe_stats, "driver statistics");
175 #ifndef SAFE_NO_RNG
176 static	int safe_rnginterval = 1;		/* poll once a second */
177 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
178 	    0, "RNG polling interval (secs)");
179 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
180 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
181 	    0, "RNG polling buffer size (32-bit words)");
182 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
183 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
184 	    0, "RNG max alarms before reset");
185 #endif /* SAFE_NO_RNG */
186 
187 static int
188 safe_probe(device_t dev)
189 {
190 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
191 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
192 		return (BUS_PROBE_DEFAULT);
193 	return (ENXIO);
194 }
195 
196 static const char*
197 safe_partname(struct safe_softc *sc)
198 {
199 	/* XXX sprintf numbers when not decoded */
200 	switch (pci_get_vendor(sc->sc_dev)) {
201 	case PCI_VENDOR_SAFENET:
202 		switch (pci_get_device(sc->sc_dev)) {
203 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
204 		}
205 		return "SafeNet unknown-part";
206 	}
207 	return "Unknown-vendor unknown-part";
208 }
209 
210 #ifndef SAFE_NO_RNG
211 static void
212 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
213 {
214 	/* MarkM: FIX!! Check that this does not swamp the harvester! */
215 	random_harvest_queue(buf, count, count*NBBY/2, RANDOM_PURE_SAFE);
216 }
217 #endif /* SAFE_NO_RNG */
218 
219 static int
220 safe_attach(device_t dev)
221 {
222 	struct safe_softc *sc = device_get_softc(dev);
223 	u_int32_t raddr;
224 	u_int32_t i, devinfo;
225 	int rid;
226 
227 	bzero(sc, sizeof (*sc));
228 	sc->sc_dev = dev;
229 
230 	/* XXX handle power management */
231 
232 	pci_enable_busmaster(dev);
233 
234 	/*
235 	 * Setup memory-mapping of PCI registers.
236 	 */
237 	rid = BS_BAR;
238 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
239 					   RF_ACTIVE);
240 	if (sc->sc_sr == NULL) {
241 		device_printf(dev, "cannot map register space\n");
242 		goto bad;
243 	}
244 	sc->sc_st = rman_get_bustag(sc->sc_sr);
245 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
246 
247 	/*
248 	 * Arrange interrupt line.
249 	 */
250 	rid = 0;
251 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
252 					    RF_SHAREABLE|RF_ACTIVE);
253 	if (sc->sc_irq == NULL) {
254 		device_printf(dev, "could not map interrupt\n");
255 		goto bad1;
256 	}
257 	/*
258 	 * NB: Network code assumes we are blocked with splimp()
259 	 *     so make sure the IRQ is mapped appropriately.
260 	 */
261 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
262 			   NULL, safe_intr, sc, &sc->sc_ih)) {
263 		device_printf(dev, "could not establish interrupt\n");
264 		goto bad2;
265 	}
266 
267 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
268 	if (sc->sc_cid < 0) {
269 		device_printf(dev, "could not get crypto driver id\n");
270 		goto bad3;
271 	}
272 
273 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
274 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
275 
276 	/*
277 	 * Setup DMA descriptor area.
278 	 */
279 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
280 			       1,			/* alignment */
281 			       SAFE_DMA_BOUNDARY,	/* boundary */
282 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
283 			       BUS_SPACE_MAXADDR,	/* highaddr */
284 			       NULL, NULL,		/* filter, filterarg */
285 			       SAFE_MAX_DMA,		/* maxsize */
286 			       SAFE_MAX_PART,		/* nsegments */
287 			       SAFE_MAX_SSIZE,		/* maxsegsize */
288 			       BUS_DMA_ALLOCNOW,	/* flags */
289 			       NULL, NULL,		/* locking */
290 			       &sc->sc_srcdmat)) {
291 		device_printf(dev, "cannot allocate DMA tag\n");
292 		goto bad4;
293 	}
294 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
295 			       1,			/* alignment */
296 			       SAFE_MAX_DSIZE,		/* boundary */
297 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
298 			       BUS_SPACE_MAXADDR,	/* highaddr */
299 			       NULL, NULL,		/* filter, filterarg */
300 			       SAFE_MAX_DMA,		/* maxsize */
301 			       SAFE_MAX_PART,		/* nsegments */
302 			       SAFE_MAX_DSIZE,		/* maxsegsize */
303 			       BUS_DMA_ALLOCNOW,	/* flags */
304 			       NULL, NULL,		/* locking */
305 			       &sc->sc_dstdmat)) {
306 		device_printf(dev, "cannot allocate DMA tag\n");
307 		goto bad4;
308 	}
309 
310 	/*
311 	 * Allocate packet engine descriptors.
312 	 */
313 	if (safe_dma_malloc(sc,
314 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
315 	    &sc->sc_ringalloc, 0)) {
316 		device_printf(dev, "cannot allocate PE descriptor ring\n");
317 		bus_dma_tag_destroy(sc->sc_srcdmat);
318 		goto bad4;
319 	}
320 	/*
321 	 * Hookup the static portion of all our data structures.
322 	 */
323 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
324 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
325 	sc->sc_front = sc->sc_ring;
326 	sc->sc_back = sc->sc_ring;
327 	raddr = sc->sc_ringalloc.dma_paddr;
328 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
329 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
330 		struct safe_ringentry *re = &sc->sc_ring[i];
331 
332 		re->re_desc.d_sa = raddr +
333 			offsetof(struct safe_ringentry, re_sa);
334 		re->re_sa.sa_staterec = raddr +
335 			offsetof(struct safe_ringentry, re_sastate);
336 
337 		raddr += sizeof (struct safe_ringentry);
338 	}
339 	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
340 		"packet engine ring", MTX_DEF);
341 
342 	/*
343 	 * Allocate scatter and gather particle descriptors.
344 	 */
345 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
346 	    &sc->sc_spalloc, 0)) {
347 		device_printf(dev, "cannot allocate source particle "
348 			"descriptor ring\n");
349 		mtx_destroy(&sc->sc_ringmtx);
350 		safe_dma_free(sc, &sc->sc_ringalloc);
351 		bus_dma_tag_destroy(sc->sc_srcdmat);
352 		goto bad4;
353 	}
354 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
355 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
356 	sc->sc_spfree = sc->sc_spring;
357 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
358 
359 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
360 	    &sc->sc_dpalloc, 0)) {
361 		device_printf(dev, "cannot allocate destination particle "
362 			"descriptor ring\n");
363 		mtx_destroy(&sc->sc_ringmtx);
364 		safe_dma_free(sc, &sc->sc_spalloc);
365 		safe_dma_free(sc, &sc->sc_ringalloc);
366 		bus_dma_tag_destroy(sc->sc_dstdmat);
367 		goto bad4;
368 	}
369 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
370 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
371 	sc->sc_dpfree = sc->sc_dpring;
372 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
373 
374 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
375 
376 	devinfo = READ_REG(sc, SAFE_DEVINFO);
377 	if (devinfo & SAFE_DEVINFO_RNG) {
378 		sc->sc_flags |= SAFE_FLAGS_RNG;
379 		printf(" rng");
380 	}
381 	if (devinfo & SAFE_DEVINFO_PKEY) {
382 #if 0
383 		printf(" key");
384 		sc->sc_flags |= SAFE_FLAGS_KEY;
385 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
386 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
387 #endif
388 	}
389 	if (devinfo & SAFE_DEVINFO_DES) {
390 		printf(" des/3des");
391 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
392 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
393 	}
394 	if (devinfo & SAFE_DEVINFO_AES) {
395 		printf(" aes");
396 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
397 	}
398 	if (devinfo & SAFE_DEVINFO_MD5) {
399 		printf(" md5");
400 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
401 	}
402 	if (devinfo & SAFE_DEVINFO_SHA1) {
403 		printf(" sha1");
404 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
405 	}
406 	printf(" null");
407 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
408 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
409 	/* XXX other supported algorithms */
410 	printf("\n");
411 
412 	safe_reset_board(sc);		/* reset h/w */
413 	safe_init_pciregs(dev);		/* init pci settings */
414 	safe_init_board(sc);		/* init h/w */
415 
416 #ifndef SAFE_NO_RNG
417 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
418 #ifdef SAFE_RNDTEST
419 		sc->sc_rndtest = rndtest_attach(dev);
420 		if (sc->sc_rndtest)
421 			sc->sc_harvest = rndtest_harvest;
422 		else
423 			sc->sc_harvest = default_harvest;
424 #else
425 		sc->sc_harvest = default_harvest;
426 #endif
427 		safe_rng_init(sc);
428 
429 		callout_init(&sc->sc_rngto, 1);
430 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
431 	}
432 #endif /* SAFE_NO_RNG */
433 #ifdef SAFE_DEBUG
434 	safec = sc;			/* for use by hw.safe.dump */
435 #endif
436 	return (0);
437 bad4:
438 	crypto_unregister_all(sc->sc_cid);
439 bad3:
440 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
441 bad2:
442 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
443 bad1:
444 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
445 bad:
446 	return (ENXIO);
447 }
448 
449 /*
450  * Detach a device that successfully probed.
451  */
452 static int
453 safe_detach(device_t dev)
454 {
455 	struct safe_softc *sc = device_get_softc(dev);
456 
457 	/* XXX wait/abort active ops */
458 
459 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
460 
461 	callout_stop(&sc->sc_rngto);
462 
463 	crypto_unregister_all(sc->sc_cid);
464 
465 #ifdef SAFE_RNDTEST
466 	if (sc->sc_rndtest)
467 		rndtest_detach(sc->sc_rndtest);
468 #endif
469 
470 	safe_cleanchip(sc);
471 	safe_dma_free(sc, &sc->sc_dpalloc);
472 	safe_dma_free(sc, &sc->sc_spalloc);
473 	mtx_destroy(&sc->sc_ringmtx);
474 	safe_dma_free(sc, &sc->sc_ringalloc);
475 
476 	bus_generic_detach(dev);
477 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
478 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
479 
480 	bus_dma_tag_destroy(sc->sc_srcdmat);
481 	bus_dma_tag_destroy(sc->sc_dstdmat);
482 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
483 
484 	return (0);
485 }
486 
487 /*
488  * Stop all chip i/o so that the kernel's probe routines don't
489  * get confused by errant DMAs when rebooting.
490  */
491 static int
492 safe_shutdown(device_t dev)
493 {
494 #ifdef notyet
495 	safe_stop(device_get_softc(dev));
496 #endif
497 	return (0);
498 }
499 
500 /*
501  * Device suspend routine.
502  */
503 static int
504 safe_suspend(device_t dev)
505 {
506 	struct safe_softc *sc = device_get_softc(dev);
507 
508 #ifdef notyet
509 	/* XXX stop the device and save PCI settings */
510 #endif
511 	sc->sc_suspended = 1;
512 
513 	return (0);
514 }
515 
516 static int
517 safe_resume(device_t dev)
518 {
519 	struct safe_softc *sc = device_get_softc(dev);
520 
521 #ifdef notyet
522 	/* XXX retore PCI settings and start the device */
523 #endif
524 	sc->sc_suspended = 0;
525 	return (0);
526 }
527 
528 /*
529  * SafeXcel Interrupt routine
530  */
531 static void
532 safe_intr(void *arg)
533 {
534 	struct safe_softc *sc = arg;
535 	volatile u_int32_t stat;
536 
537 	stat = READ_REG(sc, SAFE_HM_STAT);
538 	if (stat == 0)			/* shared irq, not for us */
539 		return;
540 
541 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
542 
543 	if ((stat & SAFE_INT_PE_DDONE)) {
544 		/*
545 		 * Descriptor(s) done; scan the ring and
546 		 * process completed operations.
547 		 */
548 		mtx_lock(&sc->sc_ringmtx);
549 		while (sc->sc_back != sc->sc_front) {
550 			struct safe_ringentry *re = sc->sc_back;
551 #ifdef SAFE_DEBUG
552 			if (safe_debug) {
553 				safe_dump_ringstate(sc, __func__);
554 				safe_dump_request(sc, __func__, re);
555 			}
556 #endif
557 			/*
558 			 * safe_process marks ring entries that were allocated
559 			 * but not used with a csr of zero.  This insures the
560 			 * ring front pointer never needs to be set backwards
561 			 * in the event that an entry is allocated but not used
562 			 * because of a setup error.
563 			 */
564 			if (re->re_desc.d_csr != 0) {
565 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
566 					break;
567 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
568 					break;
569 				sc->sc_nqchip--;
570 				safe_callback(sc, re);
571 			}
572 			if (++(sc->sc_back) == sc->sc_ringtop)
573 				sc->sc_back = sc->sc_ring;
574 		}
575 		mtx_unlock(&sc->sc_ringmtx);
576 	}
577 
578 	/*
579 	 * Check to see if we got any DMA Error
580 	 */
581 	if (stat & SAFE_INT_PE_ERROR) {
582 		DPRINTF(("dmaerr dmastat %08x\n",
583 			READ_REG(sc, SAFE_PE_DMASTAT)));
584 		safestats.st_dmaerr++;
585 		safe_totalreset(sc);
586 #if 0
587 		safe_feed(sc);
588 #endif
589 	}
590 
591 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
592 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
593 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
594 			sc->sc_needwakeup));
595 		sc->sc_needwakeup &= ~wakeup;
596 		crypto_unblock(sc->sc_cid, wakeup);
597 	}
598 }
599 
600 /*
601  * safe_feed() - post a request to chip
602  */
603 static void
604 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
605 {
606 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
607 	if (re->re_dst_map != NULL)
608 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
609 			BUS_DMASYNC_PREREAD);
610 	/* XXX have no smaller granularity */
611 	safe_dma_sync(&sc->sc_ringalloc,
612 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
613 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
614 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
615 
616 #ifdef SAFE_DEBUG
617 	if (safe_debug) {
618 		safe_dump_ringstate(sc, __func__);
619 		safe_dump_request(sc, __func__, re);
620 	}
621 #endif
622 	sc->sc_nqchip++;
623 	if (sc->sc_nqchip > safestats.st_maxqchip)
624 		safestats.st_maxqchip = sc->sc_nqchip;
625 	/* poke h/w to check descriptor ring, any value can be written */
626 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
627 }
628 
629 #define	N(a)	(sizeof(a) / sizeof (a[0]))
630 static void
631 safe_setup_enckey(struct safe_session *ses, caddr_t key)
632 {
633 	int i;
634 
635 	bcopy(key, ses->ses_key, ses->ses_klen / 8);
636 
637 	/* PE is little-endian, insure proper byte order */
638 	for (i = 0; i < N(ses->ses_key); i++)
639 		ses->ses_key[i] = htole32(ses->ses_key[i]);
640 }
641 
642 static void
643 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
644 {
645 	MD5_CTX md5ctx;
646 	SHA1_CTX sha1ctx;
647 	int i;
648 
649 
650 	for (i = 0; i < klen; i++)
651 		key[i] ^= HMAC_IPAD_VAL;
652 
653 	if (algo == CRYPTO_MD5_HMAC) {
654 		MD5Init(&md5ctx);
655 		MD5Update(&md5ctx, key, klen);
656 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
657 		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
658 	} else {
659 		SHA1Init(&sha1ctx);
660 		SHA1Update(&sha1ctx, key, klen);
661 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
662 		    SHA1_HMAC_BLOCK_LEN - klen);
663 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
664 	}
665 
666 	for (i = 0; i < klen; i++)
667 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
668 
669 	if (algo == CRYPTO_MD5_HMAC) {
670 		MD5Init(&md5ctx);
671 		MD5Update(&md5ctx, key, klen);
672 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
673 		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
674 	} else {
675 		SHA1Init(&sha1ctx);
676 		SHA1Update(&sha1ctx, key, klen);
677 		SHA1Update(&sha1ctx, hmac_opad_buffer,
678 		    SHA1_HMAC_BLOCK_LEN - klen);
679 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
680 	}
681 
682 	for (i = 0; i < klen; i++)
683 		key[i] ^= HMAC_OPAD_VAL;
684 
685 	/* PE is little-endian, insure proper byte order */
686 	for (i = 0; i < N(ses->ses_hminner); i++) {
687 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
688 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
689 	}
690 }
691 #undef N
692 
693 /*
694  * Allocate a new 'session' and return an encoded session id.  'sidp'
695  * contains our registration id, and should contain an encoded session
696  * id on successful allocation.
697  */
698 static int
699 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
700 {
701 	struct safe_softc *sc = device_get_softc(dev);
702 	struct cryptoini *c, *encini = NULL, *macini = NULL;
703 	struct safe_session *ses = NULL;
704 	int sesn;
705 
706 	if (sidp == NULL || cri == NULL || sc == NULL)
707 		return (EINVAL);
708 
709 	for (c = cri; c != NULL; c = c->cri_next) {
710 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
711 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
712 		    c->cri_alg == CRYPTO_NULL_HMAC) {
713 			if (macini)
714 				return (EINVAL);
715 			macini = c;
716 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
717 		    c->cri_alg == CRYPTO_3DES_CBC ||
718 		    c->cri_alg == CRYPTO_AES_CBC ||
719 		    c->cri_alg == CRYPTO_NULL_CBC) {
720 			if (encini)
721 				return (EINVAL);
722 			encini = c;
723 		} else
724 			return (EINVAL);
725 	}
726 	if (encini == NULL && macini == NULL)
727 		return (EINVAL);
728 	if (encini) {			/* validate key length */
729 		switch (encini->cri_alg) {
730 		case CRYPTO_DES_CBC:
731 			if (encini->cri_klen != 64)
732 				return (EINVAL);
733 			break;
734 		case CRYPTO_3DES_CBC:
735 			if (encini->cri_klen != 192)
736 				return (EINVAL);
737 			break;
738 		case CRYPTO_AES_CBC:
739 			if (encini->cri_klen != 128 &&
740 			    encini->cri_klen != 192 &&
741 			    encini->cri_klen != 256)
742 				return (EINVAL);
743 			break;
744 		}
745 	}
746 
747 	if (sc->sc_sessions == NULL) {
748 		ses = sc->sc_sessions = (struct safe_session *)malloc(
749 		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
750 		if (ses == NULL)
751 			return (ENOMEM);
752 		sesn = 0;
753 		sc->sc_nsessions = 1;
754 	} else {
755 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
756 			if (sc->sc_sessions[sesn].ses_used == 0) {
757 				ses = &sc->sc_sessions[sesn];
758 				break;
759 			}
760 		}
761 
762 		if (ses == NULL) {
763 			sesn = sc->sc_nsessions;
764 			ses = (struct safe_session *)malloc((sesn + 1) *
765 			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
766 			if (ses == NULL)
767 				return (ENOMEM);
768 			bcopy(sc->sc_sessions, ses, sesn *
769 			    sizeof(struct safe_session));
770 			bzero(sc->sc_sessions, sesn *
771 			    sizeof(struct safe_session));
772 			free(sc->sc_sessions, M_DEVBUF);
773 			sc->sc_sessions = ses;
774 			ses = &sc->sc_sessions[sesn];
775 			sc->sc_nsessions++;
776 		}
777 	}
778 
779 	bzero(ses, sizeof(struct safe_session));
780 	ses->ses_used = 1;
781 
782 	if (encini) {
783 		/* get an IV */
784 		/* XXX may read fewer than requested */
785 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
786 
787 		ses->ses_klen = encini->cri_klen;
788 		if (encini->cri_key != NULL)
789 			safe_setup_enckey(ses, encini->cri_key);
790 	}
791 
792 	if (macini) {
793 		ses->ses_mlen = macini->cri_mlen;
794 		if (ses->ses_mlen == 0) {
795 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
796 				ses->ses_mlen = MD5_HASH_LEN;
797 			else
798 				ses->ses_mlen = SHA1_HASH_LEN;
799 		}
800 
801 		if (macini->cri_key != NULL) {
802 			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
803 			    macini->cri_klen / 8);
804 		}
805 	}
806 
807 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
808 	return (0);
809 }
810 
811 /*
812  * Deallocate a session.
813  */
814 static int
815 safe_freesession(device_t dev, u_int64_t tid)
816 {
817 	struct safe_softc *sc = device_get_softc(dev);
818 	int session, ret;
819 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
820 
821 	if (sc == NULL)
822 		return (EINVAL);
823 
824 	session = SAFE_SESSION(sid);
825 	if (session < sc->sc_nsessions) {
826 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
827 		ret = 0;
828 	} else
829 		ret = EINVAL;
830 	return (ret);
831 }
832 
833 static void
834 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
835 {
836 	struct safe_operand *op = arg;
837 
838 	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
839 		(u_int) mapsize, nsegs, error));
840 	if (error != 0)
841 		return;
842 	op->mapsize = mapsize;
843 	op->nsegs = nsegs;
844 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
845 }
846 
847 static int
848 safe_process(device_t dev, struct cryptop *crp, int hint)
849 {
850 	struct safe_softc *sc = device_get_softc(dev);
851 	int err = 0, i, nicealign, uniform;
852 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
853 	int bypass, oplen, ivsize;
854 	caddr_t iv;
855 	int16_t coffset;
856 	struct safe_session *ses;
857 	struct safe_ringentry *re;
858 	struct safe_sarec *sa;
859 	struct safe_pdesc *pd;
860 	u_int32_t cmd0, cmd1, staterec;
861 
862 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
863 		safestats.st_invalid++;
864 		return (EINVAL);
865 	}
866 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
867 		safestats.st_badsession++;
868 		return (EINVAL);
869 	}
870 
871 	mtx_lock(&sc->sc_ringmtx);
872 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
873 		safestats.st_ringfull++;
874 		sc->sc_needwakeup |= CRYPTO_SYMQ;
875 		mtx_unlock(&sc->sc_ringmtx);
876 		return (ERESTART);
877 	}
878 	re = sc->sc_front;
879 
880 	staterec = re->re_sa.sa_staterec;	/* save */
881 	/* NB: zero everything but the PE descriptor */
882 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
883 	re->re_sa.sa_staterec = staterec;	/* restore */
884 
885 	re->re_crp = crp;
886 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
887 
888 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
889 		re->re_src_m = (struct mbuf *)crp->crp_buf;
890 		re->re_dst_m = (struct mbuf *)crp->crp_buf;
891 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
892 		re->re_src_io = (struct uio *)crp->crp_buf;
893 		re->re_dst_io = (struct uio *)crp->crp_buf;
894 	} else {
895 		safestats.st_badflags++;
896 		err = EINVAL;
897 		goto errout;	/* XXX we don't handle contiguous blocks! */
898 	}
899 
900 	sa = &re->re_sa;
901 	ses = &sc->sc_sessions[re->re_sesn];
902 
903 	crd1 = crp->crp_desc;
904 	if (crd1 == NULL) {
905 		safestats.st_nodesc++;
906 		err = EINVAL;
907 		goto errout;
908 	}
909 	crd2 = crd1->crd_next;
910 
911 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
912 	cmd1 = 0;
913 	if (crd2 == NULL) {
914 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
915 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
916 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
917 			maccrd = crd1;
918 			enccrd = NULL;
919 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
920 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
921 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
922 		    crd1->crd_alg == CRYPTO_AES_CBC ||
923 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
924 			maccrd = NULL;
925 			enccrd = crd1;
926 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
927 		} else {
928 			safestats.st_badalg++;
929 			err = EINVAL;
930 			goto errout;
931 		}
932 	} else {
933 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
934 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
935 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
936 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
937 			crd2->crd_alg == CRYPTO_3DES_CBC ||
938 		        crd2->crd_alg == CRYPTO_AES_CBC ||
939 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
940 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
941 			maccrd = crd1;
942 			enccrd = crd2;
943 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
944 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
945 		    crd1->crd_alg == CRYPTO_AES_CBC ||
946 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
947 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
948 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
949 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
950 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
951 			enccrd = crd1;
952 			maccrd = crd2;
953 		} else {
954 			safestats.st_badalg++;
955 			err = EINVAL;
956 			goto errout;
957 		}
958 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
959 	}
960 
961 	if (enccrd) {
962 		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
963 			safe_setup_enckey(ses, enccrd->crd_key);
964 
965 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
966 			cmd0 |= SAFE_SA_CMD0_DES;
967 			cmd1 |= SAFE_SA_CMD1_CBC;
968 			ivsize = 2*sizeof(u_int32_t);
969 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
970 			cmd0 |= SAFE_SA_CMD0_3DES;
971 			cmd1 |= SAFE_SA_CMD1_CBC;
972 			ivsize = 2*sizeof(u_int32_t);
973 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
974 			cmd0 |= SAFE_SA_CMD0_AES;
975 			cmd1 |= SAFE_SA_CMD1_CBC;
976 			if (ses->ses_klen == 128)
977 			     cmd1 |=  SAFE_SA_CMD1_AES128;
978 			else if (ses->ses_klen == 192)
979 			     cmd1 |=  SAFE_SA_CMD1_AES192;
980 			else
981 			     cmd1 |=  SAFE_SA_CMD1_AES256;
982 			ivsize = 4*sizeof(u_int32_t);
983 		} else {
984 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
985 			ivsize = 0;
986 		}
987 
988 		/*
989 		 * Setup encrypt/decrypt state.  When using basic ops
990 		 * we can't use an inline IV because hash/crypt offset
991 		 * must be from the end of the IV to the start of the
992 		 * crypt data and this leaves out the preceding header
993 		 * from the hash calculation.  Instead we place the IV
994 		 * in the state record and set the hash/crypt offset to
995 		 * copy both the header+IV.
996 		 */
997 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
998 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
999 
1000 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1001 				iv = enccrd->crd_iv;
1002 			else
1003 				iv = (caddr_t) ses->ses_iv;
1004 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1005 				crypto_copyback(crp->crp_flags, crp->crp_buf,
1006 				    enccrd->crd_inject, ivsize, iv);
1007 			}
1008 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1009 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1010 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1011 		} else {
1012 			cmd0 |= SAFE_SA_CMD0_INBOUND;
1013 
1014 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1015 				bcopy(enccrd->crd_iv,
1016 					re->re_sastate.sa_saved_iv, ivsize);
1017 			} else {
1018 				crypto_copydata(crp->crp_flags, crp->crp_buf,
1019 				    enccrd->crd_inject, ivsize,
1020 				    (caddr_t)re->re_sastate.sa_saved_iv);
1021 			}
1022 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1023 		}
1024 		/*
1025 		 * For basic encryption use the zero pad algorithm.
1026 		 * This pads results to an 8-byte boundary and
1027 		 * suppresses padding verification for inbound (i.e.
1028 		 * decrypt) operations.
1029 		 *
1030 		 * NB: Not sure if the 8-byte pad boundary is a problem.
1031 		 */
1032 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1033 
1034 		/* XXX assert key bufs have the same size */
1035 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1036 	}
1037 
1038 	if (maccrd) {
1039 		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1040 			safe_setup_mackey(ses, maccrd->crd_alg,
1041 			    maccrd->crd_key, maccrd->crd_klen / 8);
1042 		}
1043 
1044 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1045 			cmd0 |= SAFE_SA_CMD0_MD5;
1046 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1047 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1048 			cmd0 |= SAFE_SA_CMD0_SHA1;
1049 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1050 		} else {
1051 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1052 		}
1053 		/*
1054 		 * Digest data is loaded from the SA and the hash
1055 		 * result is saved to the state block where we
1056 		 * retrieve it for return to the caller.
1057 		 */
1058 		/* XXX assert digest bufs have the same size */
1059 		bcopy(ses->ses_hminner, sa->sa_indigest,
1060 			sizeof(sa->sa_indigest));
1061 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1062 			sizeof(sa->sa_outdigest));
1063 
1064 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1065 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1066 	}
1067 
1068 	if (enccrd && maccrd) {
1069 		/*
1070 		 * The offset from hash data to the start of
1071 		 * crypt data is the difference in the skips.
1072 		 */
1073 		bypass = maccrd->crd_skip;
1074 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1075 		if (coffset < 0) {
1076 			DPRINTF(("%s: hash does not precede crypt; "
1077 				"mac skip %u enc skip %u\n",
1078 				__func__, maccrd->crd_skip, enccrd->crd_skip));
1079 			safestats.st_skipmismatch++;
1080 			err = EINVAL;
1081 			goto errout;
1082 		}
1083 		oplen = enccrd->crd_skip + enccrd->crd_len;
1084 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1085 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1086 				__func__, maccrd->crd_skip + maccrd->crd_len,
1087 				oplen));
1088 			safestats.st_lenmismatch++;
1089 			err = EINVAL;
1090 			goto errout;
1091 		}
1092 #ifdef SAFE_DEBUG
1093 		if (safe_debug) {
1094 			printf("mac: skip %d, len %d, inject %d\n",
1095 			    maccrd->crd_skip, maccrd->crd_len,
1096 			    maccrd->crd_inject);
1097 			printf("enc: skip %d, len %d, inject %d\n",
1098 			    enccrd->crd_skip, enccrd->crd_len,
1099 			    enccrd->crd_inject);
1100 			printf("bypass %d coffset %d oplen %d\n",
1101 				bypass, coffset, oplen);
1102 		}
1103 #endif
1104 		if (coffset & 3) {	/* offset must be 32-bit aligned */
1105 			DPRINTF(("%s: coffset %u misaligned\n",
1106 				__func__, coffset));
1107 			safestats.st_coffmisaligned++;
1108 			err = EINVAL;
1109 			goto errout;
1110 		}
1111 		coffset >>= 2;
1112 		if (coffset > 255) {	/* offset must be <256 dwords */
1113 			DPRINTF(("%s: coffset %u too big\n",
1114 				__func__, coffset));
1115 			safestats.st_cofftoobig++;
1116 			err = EINVAL;
1117 			goto errout;
1118 		}
1119 		/*
1120 		 * Tell the hardware to copy the header to the output.
1121 		 * The header is defined as the data from the end of
1122 		 * the bypass to the start of data to be encrypted.
1123 		 * Typically this is the inline IV.  Note that you need
1124 		 * to do this even if src+dst are the same; it appears
1125 		 * that w/o this bit the crypted data is written
1126 		 * immediately after the bypass data.
1127 		 */
1128 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1129 		/*
1130 		 * Disable IP header mutable bit handling.  This is
1131 		 * needed to get correct HMAC calculations.
1132 		 */
1133 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1134 	} else {
1135 		if (enccrd) {
1136 			bypass = enccrd->crd_skip;
1137 			oplen = bypass + enccrd->crd_len;
1138 		} else {
1139 			bypass = maccrd->crd_skip;
1140 			oplen = bypass + maccrd->crd_len;
1141 		}
1142 		coffset = 0;
1143 	}
1144 	/* XXX verify multiple of 4 when using s/g */
1145 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1146 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1147 		safestats.st_bypasstoobig++;
1148 		err = EINVAL;
1149 		goto errout;
1150 	}
1151 
1152 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1153 		safestats.st_nomap++;
1154 		err = ENOMEM;
1155 		goto errout;
1156 	}
1157 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1158 		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1159 		    re->re_src_m, safe_op_cb,
1160 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1161 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1162 			re->re_src_map = NULL;
1163 			safestats.st_noload++;
1164 			err = ENOMEM;
1165 			goto errout;
1166 		}
1167 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1168 		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1169 		    re->re_src_io, safe_op_cb,
1170 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1171 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1172 			re->re_src_map = NULL;
1173 			safestats.st_noload++;
1174 			err = ENOMEM;
1175 			goto errout;
1176 		}
1177 	}
1178 	nicealign = safe_dmamap_aligned(&re->re_src);
1179 	uniform = safe_dmamap_uniform(&re->re_src);
1180 
1181 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1182 		nicealign, uniform, re->re_src.nsegs));
1183 	if (re->re_src.nsegs > 1) {
1184 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1185 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1186 		for (i = 0; i < re->re_src_nsegs; i++) {
1187 			/* NB: no need to check if there's space */
1188 			pd = sc->sc_spfree;
1189 			if (++(sc->sc_spfree) == sc->sc_springtop)
1190 				sc->sc_spfree = sc->sc_spring;
1191 
1192 			KASSERT((pd->pd_flags&3) == 0 ||
1193 				(pd->pd_flags&3) == SAFE_PD_DONE,
1194 				("bogus source particle descriptor; flags %x",
1195 				pd->pd_flags));
1196 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1197 			pd->pd_size = re->re_src_segs[i].ds_len;
1198 			pd->pd_flags = SAFE_PD_READY;
1199 		}
1200 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1201 	} else {
1202 		/*
1203 		 * No need for gather, reference the operand directly.
1204 		 */
1205 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1206 	}
1207 
1208 	if (enccrd == NULL && maccrd != NULL) {
1209 		/*
1210 		 * Hash op; no destination needed.
1211 		 */
1212 	} else {
1213 		if (crp->crp_flags & CRYPTO_F_IOV) {
1214 			if (!nicealign) {
1215 				safestats.st_iovmisaligned++;
1216 				err = EINVAL;
1217 				goto errout;
1218 			}
1219 			if (uniform != 1) {
1220 				/*
1221 				 * Source is not suitable for direct use as
1222 				 * the destination.  Create a new scatter/gather
1223 				 * list based on the destination requirements
1224 				 * and check if that's ok.
1225 				 */
1226 				if (bus_dmamap_create(sc->sc_dstdmat,
1227 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1228 					safestats.st_nomap++;
1229 					err = ENOMEM;
1230 					goto errout;
1231 				}
1232 				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1233 				    re->re_dst_map, re->re_dst_io,
1234 				    safe_op_cb, &re->re_dst,
1235 				    BUS_DMA_NOWAIT) != 0) {
1236 					bus_dmamap_destroy(sc->sc_dstdmat,
1237 						re->re_dst_map);
1238 					re->re_dst_map = NULL;
1239 					safestats.st_noload++;
1240 					err = ENOMEM;
1241 					goto errout;
1242 				}
1243 				uniform = safe_dmamap_uniform(&re->re_dst);
1244 				if (!uniform) {
1245 					/*
1246 					 * There's no way to handle the DMA
1247 					 * requirements with this uio.  We
1248 					 * could create a separate DMA area for
1249 					 * the result and then copy it back,
1250 					 * but for now we just bail and return
1251 					 * an error.  Note that uio requests
1252 					 * > SAFE_MAX_DSIZE are handled because
1253 					 * the DMA map and segment list for the
1254 					 * destination wil result in a
1255 					 * destination particle list that does
1256 					 * the necessary scatter DMA.
1257 					 */
1258 					safestats.st_iovnotuniform++;
1259 					err = EINVAL;
1260 					goto errout;
1261 				}
1262 			} else
1263 				re->re_dst = re->re_src;
1264 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1265 			if (nicealign && uniform == 1) {
1266 				/*
1267 				 * Source layout is suitable for direct
1268 				 * sharing of the DMA map and segment list.
1269 				 */
1270 				re->re_dst = re->re_src;
1271 			} else if (nicealign && uniform == 2) {
1272 				/*
1273 				 * The source is properly aligned but requires a
1274 				 * different particle list to handle DMA of the
1275 				 * result.  Create a new map and do the load to
1276 				 * create the segment list.  The particle
1277 				 * descriptor setup code below will handle the
1278 				 * rest.
1279 				 */
1280 				if (bus_dmamap_create(sc->sc_dstdmat,
1281 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1282 					safestats.st_nomap++;
1283 					err = ENOMEM;
1284 					goto errout;
1285 				}
1286 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1287 				    re->re_dst_map, re->re_dst_m,
1288 				    safe_op_cb, &re->re_dst,
1289 				    BUS_DMA_NOWAIT) != 0) {
1290 					bus_dmamap_destroy(sc->sc_dstdmat,
1291 						re->re_dst_map);
1292 					re->re_dst_map = NULL;
1293 					safestats.st_noload++;
1294 					err = ENOMEM;
1295 					goto errout;
1296 				}
1297 			} else {		/* !(aligned and/or uniform) */
1298 				int totlen, len;
1299 				struct mbuf *m, *top, **mp;
1300 
1301 				/*
1302 				 * DMA constraints require that we allocate a
1303 				 * new mbuf chain for the destination.  We
1304 				 * allocate an entire new set of mbufs of
1305 				 * optimal/required size and then tell the
1306 				 * hardware to copy any bits that are not
1307 				 * created as a byproduct of the operation.
1308 				 */
1309 				if (!nicealign)
1310 					safestats.st_unaligned++;
1311 				if (!uniform)
1312 					safestats.st_notuniform++;
1313 				totlen = re->re_src_mapsize;
1314 				if (re->re_src_m->m_flags & M_PKTHDR) {
1315 					len = MHLEN;
1316 					MGETHDR(m, M_NOWAIT, MT_DATA);
1317 					if (m && !m_dup_pkthdr(m, re->re_src_m,
1318 					    M_NOWAIT)) {
1319 						m_free(m);
1320 						m = NULL;
1321 					}
1322 				} else {
1323 					len = MLEN;
1324 					MGET(m, M_NOWAIT, MT_DATA);
1325 				}
1326 				if (m == NULL) {
1327 					safestats.st_nombuf++;
1328 					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1329 					goto errout;
1330 				}
1331 				if (totlen >= MINCLSIZE) {
1332 					if (!(MCLGET(m, M_NOWAIT))) {
1333 						m_free(m);
1334 						safestats.st_nomcl++;
1335 						err = sc->sc_nqchip ?
1336 							ERESTART : ENOMEM;
1337 						goto errout;
1338 					}
1339 					len = MCLBYTES;
1340 				}
1341 				m->m_len = len;
1342 				top = NULL;
1343 				mp = &top;
1344 
1345 				while (totlen > 0) {
1346 					if (top) {
1347 						MGET(m, M_NOWAIT, MT_DATA);
1348 						if (m == NULL) {
1349 							m_freem(top);
1350 							safestats.st_nombuf++;
1351 							err = sc->sc_nqchip ?
1352 							    ERESTART : ENOMEM;
1353 							goto errout;
1354 						}
1355 						len = MLEN;
1356 					}
1357 					if (top && totlen >= MINCLSIZE) {
1358 						if (!(MCLGET(m, M_NOWAIT))) {
1359 							*mp = m;
1360 							m_freem(top);
1361 							safestats.st_nomcl++;
1362 							err = sc->sc_nqchip ?
1363 							    ERESTART : ENOMEM;
1364 							goto errout;
1365 						}
1366 						len = MCLBYTES;
1367 					}
1368 					m->m_len = len = min(totlen, len);
1369 					totlen -= len;
1370 					*mp = m;
1371 					mp = &m->m_next;
1372 				}
1373 				re->re_dst_m = top;
1374 				if (bus_dmamap_create(sc->sc_dstdmat,
1375 				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1376 					safestats.st_nomap++;
1377 					err = ENOMEM;
1378 					goto errout;
1379 				}
1380 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1381 				    re->re_dst_map, re->re_dst_m,
1382 				    safe_op_cb, &re->re_dst,
1383 				    BUS_DMA_NOWAIT) != 0) {
1384 					bus_dmamap_destroy(sc->sc_dstdmat,
1385 					re->re_dst_map);
1386 					re->re_dst_map = NULL;
1387 					safestats.st_noload++;
1388 					err = ENOMEM;
1389 					goto errout;
1390 				}
1391 				if (re->re_src.mapsize > oplen) {
1392 					/*
1393 					 * There's data following what the
1394 					 * hardware will copy for us.  If this
1395 					 * isn't just the ICV (that's going to
1396 					 * be written on completion), copy it
1397 					 * to the new mbufs
1398 					 */
1399 					if (!(maccrd &&
1400 					    (re->re_src.mapsize-oplen) == 12 &&
1401 					    maccrd->crd_inject == oplen))
1402 						safe_mcopy(re->re_src_m,
1403 							   re->re_dst_m,
1404 							   oplen);
1405 					else
1406 						safestats.st_noicvcopy++;
1407 				}
1408 			}
1409 		} else {
1410 			safestats.st_badflags++;
1411 			err = EINVAL;
1412 			goto errout;
1413 		}
1414 
1415 		if (re->re_dst.nsegs > 1) {
1416 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1417 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1418 			for (i = 0; i < re->re_dst_nsegs; i++) {
1419 				pd = sc->sc_dpfree;
1420 				KASSERT((pd->pd_flags&3) == 0 ||
1421 					(pd->pd_flags&3) == SAFE_PD_DONE,
1422 					("bogus dest particle descriptor; flags %x",
1423 						pd->pd_flags));
1424 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1425 					sc->sc_dpfree = sc->sc_dpring;
1426 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1427 				pd->pd_flags = SAFE_PD_READY;
1428 			}
1429 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1430 		} else {
1431 			/*
1432 			 * No need for scatter, reference the operand directly.
1433 			 */
1434 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1435 		}
1436 	}
1437 
1438 	/*
1439 	 * All done with setup; fillin the SA command words
1440 	 * and the packet engine descriptor.  The operation
1441 	 * is now ready for submission to the hardware.
1442 	 */
1443 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1444 	sa->sa_cmd1 = cmd1
1445 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1446 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1447 		    | SAFE_SA_CMD1_SRPCI
1448 		    ;
1449 	/*
1450 	 * NB: the order of writes is important here.  In case the
1451 	 * chip is scanning the ring because of an outstanding request
1452 	 * it might nab this one too.  In that case we need to make
1453 	 * sure the setup is complete before we write the length
1454 	 * field of the descriptor as it signals the descriptor is
1455 	 * ready for processing.
1456 	 */
1457 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1458 	if (maccrd)
1459 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1460 	re->re_desc.d_len = oplen
1461 			  | SAFE_PE_LEN_READY
1462 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1463 			  ;
1464 
1465 	safestats.st_ipackets++;
1466 	safestats.st_ibytes += oplen;
1467 
1468 	if (++(sc->sc_front) == sc->sc_ringtop)
1469 		sc->sc_front = sc->sc_ring;
1470 
1471 	/* XXX honor batching */
1472 	safe_feed(sc, re);
1473 	mtx_unlock(&sc->sc_ringmtx);
1474 	return (0);
1475 
1476 errout:
1477 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1478 		m_freem(re->re_dst_m);
1479 
1480 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1481 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1482 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1483 	}
1484 	if (re->re_src_map != NULL) {
1485 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1486 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1487 	}
1488 	mtx_unlock(&sc->sc_ringmtx);
1489 	if (err != ERESTART) {
1490 		crp->crp_etype = err;
1491 		crypto_done(crp);
1492 	} else {
1493 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1494 	}
1495 	return (err);
1496 }
1497 
1498 static void
1499 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1500 {
1501 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1502 	struct cryptodesc *crd;
1503 
1504 	safestats.st_opackets++;
1505 	safestats.st_obytes += re->re_dst.mapsize;
1506 
1507 	safe_dma_sync(&sc->sc_ringalloc,
1508 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1509 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1510 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1511 			re->re_desc.d_csr,
1512 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1513 		safestats.st_peoperr++;
1514 		crp->crp_etype = EIO;		/* something more meaningful? */
1515 	}
1516 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1517 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1518 		    BUS_DMASYNC_POSTREAD);
1519 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1520 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1521 	}
1522 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1523 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1524 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1525 
1526 	/*
1527 	 * If result was written to a differet mbuf chain, swap
1528 	 * it in as the return value and reclaim the original.
1529 	 */
1530 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1531 		m_freem(re->re_src_m);
1532 		crp->crp_buf = (caddr_t)re->re_dst_m;
1533 	}
1534 
1535 	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1536 		/* copy out IV for future use */
1537 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1538 			int ivsize;
1539 
1540 			if (crd->crd_alg == CRYPTO_DES_CBC ||
1541 			    crd->crd_alg == CRYPTO_3DES_CBC) {
1542 				ivsize = 2*sizeof(u_int32_t);
1543 			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1544 				ivsize = 4*sizeof(u_int32_t);
1545 			} else
1546 				continue;
1547 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1548 			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1549 			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1550 			break;
1551 		}
1552 	}
1553 
1554 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1555 		/* copy out ICV result */
1556 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1557 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1558 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1559 			    crd->crd_alg == CRYPTO_NULL_HMAC))
1560 				continue;
1561 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1562 				/*
1563 				 * SHA-1 ICV's are byte-swapped; fix 'em up
1564 				 * before copy them to their destination.
1565 				 */
1566 				re->re_sastate.sa_saved_indigest[0] =
1567 				    bswap32(re->re_sastate.sa_saved_indigest[0]);
1568 				re->re_sastate.sa_saved_indigest[1] =
1569 				    bswap32(re->re_sastate.sa_saved_indigest[1]);
1570 				re->re_sastate.sa_saved_indigest[2] =
1571 				    bswap32(re->re_sastate.sa_saved_indigest[2]);
1572 			}
1573 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1574 			    crd->crd_inject,
1575 			    sc->sc_sessions[re->re_sesn].ses_mlen,
1576 			    (caddr_t)re->re_sastate.sa_saved_indigest);
1577 			break;
1578 		}
1579 	}
1580 	crypto_done(crp);
1581 }
1582 
1583 /*
1584  * Copy all data past offset from srcm to dstm.
1585  */
1586 static void
1587 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1588 {
1589 	u_int j, dlen, slen;
1590 	caddr_t dptr, sptr;
1591 
1592 	/*
1593 	 * Advance src and dst to offset.
1594 	 */
1595 	j = offset;
1596 	while (j >= 0) {
1597 		if (srcm->m_len > j)
1598 			break;
1599 		j -= srcm->m_len;
1600 		srcm = srcm->m_next;
1601 		if (srcm == NULL)
1602 			return;
1603 	}
1604 	sptr = mtod(srcm, caddr_t) + j;
1605 	slen = srcm->m_len - j;
1606 
1607 	j = offset;
1608 	while (j >= 0) {
1609 		if (dstm->m_len > j)
1610 			break;
1611 		j -= dstm->m_len;
1612 		dstm = dstm->m_next;
1613 		if (dstm == NULL)
1614 			return;
1615 	}
1616 	dptr = mtod(dstm, caddr_t) + j;
1617 	dlen = dstm->m_len - j;
1618 
1619 	/*
1620 	 * Copy everything that remains.
1621 	 */
1622 	for (;;) {
1623 		j = min(slen, dlen);
1624 		bcopy(sptr, dptr, j);
1625 		if (slen == j) {
1626 			srcm = srcm->m_next;
1627 			if (srcm == NULL)
1628 				return;
1629 			sptr = srcm->m_data;
1630 			slen = srcm->m_len;
1631 		} else
1632 			sptr += j, slen -= j;
1633 		if (dlen == j) {
1634 			dstm = dstm->m_next;
1635 			if (dstm == NULL)
1636 				return;
1637 			dptr = dstm->m_data;
1638 			dlen = dstm->m_len;
1639 		} else
1640 			dptr += j, dlen -= j;
1641 	}
1642 }
1643 
1644 #ifndef SAFE_NO_RNG
1645 #define	SAFE_RNG_MAXWAIT	1000
1646 
1647 static void
1648 safe_rng_init(struct safe_softc *sc)
1649 {
1650 	u_int32_t w, v;
1651 	int i;
1652 
1653 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1654 	/* use default value according to the manual */
1655 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1656 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1657 
1658 	/*
1659 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1660 	 * is brought out of reset the ready status flag does not
1661 	 * work until the RNG has finished its internal initialization.
1662 	 *
1663 	 * So in order to determine the device is through its
1664 	 * initialization we must read the data register, using the
1665 	 * status reg in the read in case it is initialized.  Then read
1666 	 * the data register until it changes from the first read.
1667 	 * Once it changes read the data register until it changes
1668 	 * again.  At this time the RNG is considered initialized.
1669 	 * This could take between 750ms - 1000ms in time.
1670 	 */
1671 	i = 0;
1672 	w = READ_REG(sc, SAFE_RNG_OUT);
1673 	do {
1674 		v = READ_REG(sc, SAFE_RNG_OUT);
1675 		if (v != w) {
1676 			w = v;
1677 			break;
1678 		}
1679 		DELAY(10);
1680 	} while (++i < SAFE_RNG_MAXWAIT);
1681 
1682 	/* Wait Until data changes again */
1683 	i = 0;
1684 	do {
1685 		v = READ_REG(sc, SAFE_RNG_OUT);
1686 		if (v != w)
1687 			break;
1688 		DELAY(10);
1689 	} while (++i < SAFE_RNG_MAXWAIT);
1690 }
1691 
1692 static __inline void
1693 safe_rng_disable_short_cycle(struct safe_softc *sc)
1694 {
1695 	WRITE_REG(sc, SAFE_RNG_CTRL,
1696 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1697 }
1698 
1699 static __inline void
1700 safe_rng_enable_short_cycle(struct safe_softc *sc)
1701 {
1702 	WRITE_REG(sc, SAFE_RNG_CTRL,
1703 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1704 }
1705 
1706 static __inline u_int32_t
1707 safe_rng_read(struct safe_softc *sc)
1708 {
1709 	int i;
1710 
1711 	i = 0;
1712 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1713 		;
1714 	return READ_REG(sc, SAFE_RNG_OUT);
1715 }
1716 
1717 static void
1718 safe_rng(void *arg)
1719 {
1720 	struct safe_softc *sc = arg;
1721 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1722 	u_int maxwords;
1723 	int i;
1724 
1725 	safestats.st_rng++;
1726 	/*
1727 	 * Fetch the next block of data.
1728 	 */
1729 	maxwords = safe_rngbufsize;
1730 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1731 		maxwords = SAFE_RNG_MAXBUFSIZ;
1732 retry:
1733 	for (i = 0; i < maxwords; i++)
1734 		buf[i] = safe_rng_read(sc);
1735 	/*
1736 	 * Check the comparator alarm count and reset the h/w if
1737 	 * it exceeds our threshold.  This guards against the
1738 	 * hardware oscillators resonating with external signals.
1739 	 */
1740 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1741 		u_int32_t freq_inc, w;
1742 
1743 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1744 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1745 		safestats.st_rngalarm++;
1746 		safe_rng_enable_short_cycle(sc);
1747 		freq_inc = 18;
1748 		for (i = 0; i < 64; i++) {
1749 			w = READ_REG(sc, SAFE_RNG_CNFG);
1750 			freq_inc = ((w + freq_inc) & 0x3fL);
1751 			w = ((w & ~0x3fL) | freq_inc);
1752 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1753 
1754 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1755 
1756 			(void) safe_rng_read(sc);
1757 			DELAY(25);
1758 
1759 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1760 				safe_rng_disable_short_cycle(sc);
1761 				goto retry;
1762 			}
1763 			freq_inc = 1;
1764 		}
1765 		safe_rng_disable_short_cycle(sc);
1766 	} else
1767 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1768 
1769 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1770 	callout_reset(&sc->sc_rngto,
1771 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1772 }
1773 #endif /* SAFE_NO_RNG */
1774 
1775 static void
1776 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1777 {
1778 	bus_addr_t *paddr = (bus_addr_t*) arg;
1779 	*paddr = segs->ds_addr;
1780 }
1781 
1782 static int
1783 safe_dma_malloc(
1784 	struct safe_softc *sc,
1785 	bus_size_t size,
1786 	struct safe_dma_alloc *dma,
1787 	int mapflags
1788 )
1789 {
1790 	int r;
1791 
1792 	r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1793 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1794 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1795 			       BUS_SPACE_MAXADDR,	/* highaddr */
1796 			       NULL, NULL,		/* filter, filterarg */
1797 			       size,			/* maxsize */
1798 			       1,			/* nsegments */
1799 			       size,			/* maxsegsize */
1800 			       BUS_DMA_ALLOCNOW,	/* flags */
1801 			       NULL, NULL,		/* locking */
1802 			       &dma->dma_tag);
1803 	if (r != 0) {
1804 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1805 			"bus_dma_tag_create failed; error %u\n", r);
1806 		goto fail_0;
1807 	}
1808 
1809 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1810 			     BUS_DMA_NOWAIT, &dma->dma_map);
1811 	if (r != 0) {
1812 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1813 			"bus_dmammem_alloc failed; size %ju, error %u\n",
1814 			(uintmax_t)size, r);
1815 		goto fail_1;
1816 	}
1817 
1818 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1819 		            size,
1820 			    safe_dmamap_cb,
1821 			    &dma->dma_paddr,
1822 			    mapflags | BUS_DMA_NOWAIT);
1823 	if (r != 0) {
1824 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1825 			"bus_dmamap_load failed; error %u\n", r);
1826 		goto fail_2;
1827 	}
1828 
1829 	dma->dma_size = size;
1830 	return (0);
1831 
1832 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1833 fail_2:
1834 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1835 fail_1:
1836 	bus_dma_tag_destroy(dma->dma_tag);
1837 fail_0:
1838 	dma->dma_tag = NULL;
1839 	return (r);
1840 }
1841 
1842 static void
1843 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1844 {
1845 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1846 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1847 	bus_dma_tag_destroy(dma->dma_tag);
1848 }
1849 
1850 /*
1851  * Resets the board.  Values in the regesters are left as is
1852  * from the reset (i.e. initial values are assigned elsewhere).
1853  */
1854 static void
1855 safe_reset_board(struct safe_softc *sc)
1856 {
1857 	u_int32_t v;
1858 	/*
1859 	 * Reset the device.  The manual says no delay
1860 	 * is needed between marking and clearing reset.
1861 	 */
1862 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1863 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1864 		 SAFE_PE_DMACFG_SGRESET);
1865 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1866 				    | SAFE_PE_DMACFG_PERESET
1867 				    | SAFE_PE_DMACFG_PDRRESET
1868 				    | SAFE_PE_DMACFG_SGRESET);
1869 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1870 }
1871 
1872 /*
1873  * Initialize registers we need to touch only once.
1874  */
1875 static void
1876 safe_init_board(struct safe_softc *sc)
1877 {
1878 	u_int32_t v, dwords;
1879 
1880 	v = READ_REG(sc, SAFE_PE_DMACFG);
1881 	v &=~ SAFE_PE_DMACFG_PEMODE;
1882 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1883 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1884 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1885 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1886 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1887 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1888 	  ;
1889 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1890 #if 0
1891 	/* XXX select byte swap based on host byte order */
1892 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1893 #endif
1894 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1895 		/*
1896 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1897 		 * "target mode transfers" done while the chip is DMA'ing
1898 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1899 		 * we reduce the max PCI transfer size and use small source
1900 		 * particle descriptors (<= 256 bytes).
1901 		 */
1902 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1903 		device_printf(sc->sc_dev,
1904 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1905 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1906 			SAFE_REV_MAJ(sc->sc_chiprev),
1907 			SAFE_REV_MIN(sc->sc_chiprev));
1908 	}
1909 
1910 	/* NB: operands+results are overlaid */
1911 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1912 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1913 	/*
1914 	 * Configure ring entry size and number of items in the ring.
1915 	 */
1916 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1917 		("PE ring entry not 32-bit aligned!"));
1918 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1919 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1920 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1921 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1922 
1923 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1924 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1925 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1926 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1927 	/*
1928 	 * NB: destination particles are fixed size.  We use
1929 	 *     an mbuf cluster and require all results go to
1930 	 *     clusters or smaller.
1931 	 */
1932 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1933 
1934 	/* it's now safe to enable PE mode, do it */
1935 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1936 
1937 	/*
1938 	 * Configure hardware to use level-triggered interrupts and
1939 	 * to interrupt after each descriptor is processed.
1940 	 */
1941 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1942 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1943 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1944 }
1945 
1946 /*
1947  * Init PCI registers
1948  */
1949 static void
1950 safe_init_pciregs(device_t dev)
1951 {
1952 }
1953 
1954 /*
1955  * Clean up after a chip crash.
1956  * It is assumed that the caller in splimp()
1957  */
1958 static void
1959 safe_cleanchip(struct safe_softc *sc)
1960 {
1961 
1962 	if (sc->sc_nqchip != 0) {
1963 		struct safe_ringentry *re = sc->sc_back;
1964 
1965 		while (re != sc->sc_front) {
1966 			if (re->re_desc.d_csr != 0)
1967 				safe_free_entry(sc, re);
1968 			if (++re == sc->sc_ringtop)
1969 				re = sc->sc_ring;
1970 		}
1971 		sc->sc_back = re;
1972 		sc->sc_nqchip = 0;
1973 	}
1974 }
1975 
1976 /*
1977  * free a safe_q
1978  * It is assumed that the caller is within splimp().
1979  */
1980 static int
1981 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1982 {
1983 	struct cryptop *crp;
1984 
1985 	/*
1986 	 * Free header MCR
1987 	 */
1988 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1989 		m_freem(re->re_dst_m);
1990 
1991 	crp = (struct cryptop *)re->re_crp;
1992 
1993 	re->re_desc.d_csr = 0;
1994 
1995 	crp->crp_etype = EFAULT;
1996 	crypto_done(crp);
1997 	return(0);
1998 }
1999 
2000 /*
2001  * Routine to reset the chip and clean up.
2002  * It is assumed that the caller is in splimp()
2003  */
2004 static void
2005 safe_totalreset(struct safe_softc *sc)
2006 {
2007 	safe_reset_board(sc);
2008 	safe_init_board(sc);
2009 	safe_cleanchip(sc);
2010 }
2011 
2012 /*
2013  * Is the operand suitable aligned for direct DMA.  Each
2014  * segment must be aligned on a 32-bit boundary and all
2015  * but the last segment must be a multiple of 4 bytes.
2016  */
2017 static int
2018 safe_dmamap_aligned(const struct safe_operand *op)
2019 {
2020 	int i;
2021 
2022 	for (i = 0; i < op->nsegs; i++) {
2023 		if (op->segs[i].ds_addr & 3)
2024 			return (0);
2025 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2026 			return (0);
2027 	}
2028 	return (1);
2029 }
2030 
2031 /*
2032  * Is the operand suitable for direct DMA as the destination
2033  * of an operation.  The hardware requires that each ``particle''
2034  * but the last in an operation result have the same size.  We
2035  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2036  * 0 if some segment is not a multiple of of this size, 1 if all
2037  * segments are exactly this size, or 2 if segments are at worst
2038  * a multple of this size.
2039  */
2040 static int
2041 safe_dmamap_uniform(const struct safe_operand *op)
2042 {
2043 	int result = 1;
2044 
2045 	if (op->nsegs > 0) {
2046 		int i;
2047 
2048 		for (i = 0; i < op->nsegs-1; i++) {
2049 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2050 				return (0);
2051 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2052 				result = 2;
2053 		}
2054 	}
2055 	return (result);
2056 }
2057 
2058 #ifdef SAFE_DEBUG
2059 static void
2060 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2061 {
2062 	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2063 		, tag
2064 		, READ_REG(sc, SAFE_DMA_ENDIAN)
2065 		, READ_REG(sc, SAFE_DMA_SRCADDR)
2066 		, READ_REG(sc, SAFE_DMA_DSTADDR)
2067 		, READ_REG(sc, SAFE_DMA_STAT)
2068 	);
2069 }
2070 
2071 static void
2072 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2073 {
2074 	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2075 		, tag
2076 		, READ_REG(sc, SAFE_HI_CFG)
2077 		, READ_REG(sc, SAFE_HI_MASK)
2078 		, READ_REG(sc, SAFE_HI_DESC_CNT)
2079 		, READ_REG(sc, SAFE_HU_STAT)
2080 		, READ_REG(sc, SAFE_HM_STAT)
2081 	);
2082 }
2083 
2084 static void
2085 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2086 {
2087 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2088 
2089 	/* NB: assume caller has lock on ring */
2090 	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2091 		tag,
2092 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2093 		(unsigned long)(sc->sc_back - sc->sc_ring),
2094 		(unsigned long)(sc->sc_front - sc->sc_ring));
2095 }
2096 
2097 static void
2098 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2099 {
2100 	int ix, nsegs;
2101 
2102 	ix = re - sc->sc_ring;
2103 	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2104 		, tag
2105 		, re, ix
2106 		, re->re_desc.d_csr
2107 		, re->re_desc.d_src
2108 		, re->re_desc.d_dst
2109 		, re->re_desc.d_sa
2110 		, re->re_desc.d_len
2111 	);
2112 	if (re->re_src.nsegs > 1) {
2113 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2114 			sizeof(struct safe_pdesc);
2115 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2116 			printf(" spd[%u] %p: %p size %u flags %x"
2117 				, ix, &sc->sc_spring[ix]
2118 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2119 				, sc->sc_spring[ix].pd_size
2120 				, sc->sc_spring[ix].pd_flags
2121 			);
2122 			if (sc->sc_spring[ix].pd_size == 0)
2123 				printf(" (zero!)");
2124 			printf("\n");
2125 			if (++ix == SAFE_TOTAL_SPART)
2126 				ix = 0;
2127 		}
2128 	}
2129 	if (re->re_dst.nsegs > 1) {
2130 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2131 			sizeof(struct safe_pdesc);
2132 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2133 			printf(" dpd[%u] %p: %p flags %x\n"
2134 				, ix, &sc->sc_dpring[ix]
2135 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2136 				, sc->sc_dpring[ix].pd_flags
2137 			);
2138 			if (++ix == SAFE_TOTAL_DPART)
2139 				ix = 0;
2140 		}
2141 	}
2142 	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2143 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2144 	printf("sa: key %x %x %x %x %x %x %x %x\n"
2145 		, re->re_sa.sa_key[0]
2146 		, re->re_sa.sa_key[1]
2147 		, re->re_sa.sa_key[2]
2148 		, re->re_sa.sa_key[3]
2149 		, re->re_sa.sa_key[4]
2150 		, re->re_sa.sa_key[5]
2151 		, re->re_sa.sa_key[6]
2152 		, re->re_sa.sa_key[7]
2153 	);
2154 	printf("sa: indigest %x %x %x %x %x\n"
2155 		, re->re_sa.sa_indigest[0]
2156 		, re->re_sa.sa_indigest[1]
2157 		, re->re_sa.sa_indigest[2]
2158 		, re->re_sa.sa_indigest[3]
2159 		, re->re_sa.sa_indigest[4]
2160 	);
2161 	printf("sa: outdigest %x %x %x %x %x\n"
2162 		, re->re_sa.sa_outdigest[0]
2163 		, re->re_sa.sa_outdigest[1]
2164 		, re->re_sa.sa_outdigest[2]
2165 		, re->re_sa.sa_outdigest[3]
2166 		, re->re_sa.sa_outdigest[4]
2167 	);
2168 	printf("sr: iv %x %x %x %x\n"
2169 		, re->re_sastate.sa_saved_iv[0]
2170 		, re->re_sastate.sa_saved_iv[1]
2171 		, re->re_sastate.sa_saved_iv[2]
2172 		, re->re_sastate.sa_saved_iv[3]
2173 	);
2174 	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2175 		, re->re_sastate.sa_saved_hashbc
2176 		, re->re_sastate.sa_saved_indigest[0]
2177 		, re->re_sastate.sa_saved_indigest[1]
2178 		, re->re_sastate.sa_saved_indigest[2]
2179 		, re->re_sastate.sa_saved_indigest[3]
2180 		, re->re_sastate.sa_saved_indigest[4]
2181 	);
2182 }
2183 
2184 static void
2185 safe_dump_ring(struct safe_softc *sc, const char *tag)
2186 {
2187 	mtx_lock(&sc->sc_ringmtx);
2188 	printf("\nSafeNet Ring State:\n");
2189 	safe_dump_intrstate(sc, tag);
2190 	safe_dump_dmastatus(sc, tag);
2191 	safe_dump_ringstate(sc, tag);
2192 	if (sc->sc_nqchip) {
2193 		struct safe_ringentry *re = sc->sc_back;
2194 		do {
2195 			safe_dump_request(sc, tag, re);
2196 			if (++re == sc->sc_ringtop)
2197 				re = sc->sc_ring;
2198 		} while (re != sc->sc_front);
2199 	}
2200 	mtx_unlock(&sc->sc_ringmtx);
2201 }
2202 
2203 static int
2204 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2205 {
2206 	char dmode[64];
2207 	int error;
2208 
2209 	strncpy(dmode, "", sizeof(dmode) - 1);
2210 	dmode[sizeof(dmode) - 1] = '\0';
2211 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2212 
2213 	if (error == 0 && req->newptr != NULL) {
2214 		struct safe_softc *sc = safec;
2215 
2216 		if (!sc)
2217 			return EINVAL;
2218 		if (strncmp(dmode, "dma", 3) == 0)
2219 			safe_dump_dmastatus(sc, "safe0");
2220 		else if (strncmp(dmode, "int", 3) == 0)
2221 			safe_dump_intrstate(sc, "safe0");
2222 		else if (strncmp(dmode, "ring", 4) == 0)
2223 			safe_dump_ring(sc, "safe0");
2224 		else
2225 			return EINVAL;
2226 	}
2227 	return error;
2228 }
2229 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2230 	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2231 #endif /* SAFE_DEBUG */
2232