xref: /freebsd/sys/dev/safe/safe.c (revision 7aa383846770374466b1dcb2cefd71bde9acf463)
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56 
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/kobj.h>
63 
64 #include "cryptodev_if.h"
65 
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcireg.h>
68 
69 #ifdef SAFE_RNDTEST
70 #include <dev/rndtest/rndtest.h>
71 #endif
72 #include <dev/safe/safereg.h>
73 #include <dev/safe/safevar.h>
74 
75 #ifndef bswap32
76 #define	bswap32	NTOHL
77 #endif
78 
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static	int safe_probe(device_t);
83 static	int safe_attach(device_t);
84 static	int safe_detach(device_t);
85 static	int safe_suspend(device_t);
86 static	int safe_resume(device_t);
87 static	int safe_shutdown(device_t);
88 
89 static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90 static	int safe_freesession(device_t, u_int64_t);
91 static	int safe_process(device_t, struct cryptop *, int);
92 
93 static device_method_t safe_methods[] = {
94 	/* Device interface */
95 	DEVMETHOD(device_probe,		safe_probe),
96 	DEVMETHOD(device_attach,	safe_attach),
97 	DEVMETHOD(device_detach,	safe_detach),
98 	DEVMETHOD(device_suspend,	safe_suspend),
99 	DEVMETHOD(device_resume,	safe_resume),
100 	DEVMETHOD(device_shutdown,	safe_shutdown),
101 
102 	/* bus interface */
103 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
104 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
105 
106 	/* crypto device methods */
107 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
108 	DEVMETHOD(cryptodev_freesession,safe_freesession),
109 	DEVMETHOD(cryptodev_process,	safe_process),
110 
111 	{ 0, 0 }
112 };
113 static driver_t safe_driver = {
114 	"safe",
115 	safe_methods,
116 	sizeof (struct safe_softc)
117 };
118 static devclass_t safe_devclass;
119 
120 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
121 MODULE_DEPEND(safe, crypto, 1, 1, 1);
122 #ifdef SAFE_RNDTEST
123 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
124 #endif
125 
126 static	void safe_intr(void *);
127 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
128 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
129 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
130 #ifndef SAFE_NO_RNG
131 static	void safe_rng_init(struct safe_softc *);
132 static	void safe_rng(void *);
133 #endif /* SAFE_NO_RNG */
134 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
135 	        struct safe_dma_alloc *, int);
136 #define	safe_dma_sync(_dma, _flags) \
137 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
138 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
139 static	int safe_dmamap_aligned(const struct safe_operand *);
140 static	int safe_dmamap_uniform(const struct safe_operand *);
141 
142 static	void safe_reset_board(struct safe_softc *);
143 static	void safe_init_board(struct safe_softc *);
144 static	void safe_init_pciregs(device_t dev);
145 static	void safe_cleanchip(struct safe_softc *);
146 static	void safe_totalreset(struct safe_softc *);
147 
148 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
149 
150 SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
151 
152 #ifdef SAFE_DEBUG
153 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
154 static	void safe_dump_ringstate(struct safe_softc *, const char *);
155 static	void safe_dump_intrstate(struct safe_softc *, const char *);
156 static	void safe_dump_request(struct safe_softc *, const char *,
157 		struct safe_ringentry *);
158 
159 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
160 
161 static	int safe_debug = 0;
162 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
163 	    0, "control debugging msgs");
164 #define	DPRINTF(_x)	if (safe_debug) printf _x
165 #else
166 #define	DPRINTF(_x)
167 #endif
168 
169 #define	READ_REG(sc,r) \
170 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
171 
172 #define WRITE_REG(sc,reg,val) \
173 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
174 
175 struct safe_stats safestats;
176 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
177 	    safe_stats, "driver statistics");
178 #ifndef SAFE_NO_RNG
179 static	int safe_rnginterval = 1;		/* poll once a second */
180 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
181 	    0, "RNG polling interval (secs)");
182 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
183 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
184 	    0, "RNG polling buffer size (32-bit words)");
185 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
186 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
187 	    0, "RNG max alarms before reset");
188 #endif /* SAFE_NO_RNG */
189 
190 static int
191 safe_probe(device_t dev)
192 {
193 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
194 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
195 		return (BUS_PROBE_DEFAULT);
196 	return (ENXIO);
197 }
198 
199 static const char*
200 safe_partname(struct safe_softc *sc)
201 {
202 	/* XXX sprintf numbers when not decoded */
203 	switch (pci_get_vendor(sc->sc_dev)) {
204 	case PCI_VENDOR_SAFENET:
205 		switch (pci_get_device(sc->sc_dev)) {
206 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
207 		}
208 		return "SafeNet unknown-part";
209 	}
210 	return "Unknown-vendor unknown-part";
211 }
212 
213 #ifndef SAFE_NO_RNG
214 static void
215 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
216 {
217 	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
218 }
219 #endif /* SAFE_NO_RNG */
220 
221 static int
222 safe_attach(device_t dev)
223 {
224 	struct safe_softc *sc = device_get_softc(dev);
225 	u_int32_t raddr;
226 	u_int32_t cmd, i, devinfo;
227 	int rid;
228 
229 	bzero(sc, sizeof (*sc));
230 	sc->sc_dev = dev;
231 
232 	/* XXX handle power management */
233 
234 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
235 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
236 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
237 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
238 
239 	if (!(cmd & PCIM_CMD_MEMEN)) {
240 		device_printf(dev, "failed to enable memory mapping\n");
241 		goto bad;
242 	}
243 
244 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
245 		device_printf(dev, "failed to enable bus mastering\n");
246 		goto bad;
247 	}
248 
249 	/*
250 	 * Setup memory-mapping of PCI registers.
251 	 */
252 	rid = BS_BAR;
253 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
254 					   RF_ACTIVE);
255 	if (sc->sc_sr == NULL) {
256 		device_printf(dev, "cannot map register space\n");
257 		goto bad;
258 	}
259 	sc->sc_st = rman_get_bustag(sc->sc_sr);
260 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
261 
262 	/*
263 	 * Arrange interrupt line.
264 	 */
265 	rid = 0;
266 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
267 					    RF_SHAREABLE|RF_ACTIVE);
268 	if (sc->sc_irq == NULL) {
269 		device_printf(dev, "could not map interrupt\n");
270 		goto bad1;
271 	}
272 	/*
273 	 * NB: Network code assumes we are blocked with splimp()
274 	 *     so make sure the IRQ is mapped appropriately.
275 	 */
276 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
277 			   NULL, safe_intr, sc, &sc->sc_ih)) {
278 		device_printf(dev, "could not establish interrupt\n");
279 		goto bad2;
280 	}
281 
282 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
283 	if (sc->sc_cid < 0) {
284 		device_printf(dev, "could not get crypto driver id\n");
285 		goto bad3;
286 	}
287 
288 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
289 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
290 
291 	/*
292 	 * Setup DMA descriptor area.
293 	 */
294 	if (bus_dma_tag_create(NULL,			/* parent */
295 			       1,			/* alignment */
296 			       SAFE_DMA_BOUNDARY,	/* boundary */
297 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
298 			       BUS_SPACE_MAXADDR,	/* highaddr */
299 			       NULL, NULL,		/* filter, filterarg */
300 			       SAFE_MAX_DMA,		/* maxsize */
301 			       SAFE_MAX_PART,		/* nsegments */
302 			       SAFE_MAX_SSIZE,		/* maxsegsize */
303 			       BUS_DMA_ALLOCNOW,	/* flags */
304 			       NULL, NULL,		/* locking */
305 			       &sc->sc_srcdmat)) {
306 		device_printf(dev, "cannot allocate DMA tag\n");
307 		goto bad4;
308 	}
309 	if (bus_dma_tag_create(NULL,			/* parent */
310 			       1,			/* alignment */
311 			       SAFE_MAX_DSIZE,		/* boundary */
312 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
313 			       BUS_SPACE_MAXADDR,	/* highaddr */
314 			       NULL, NULL,		/* filter, filterarg */
315 			       SAFE_MAX_DMA,		/* maxsize */
316 			       SAFE_MAX_PART,		/* nsegments */
317 			       SAFE_MAX_DSIZE,		/* maxsegsize */
318 			       BUS_DMA_ALLOCNOW,	/* flags */
319 			       NULL, NULL,		/* locking */
320 			       &sc->sc_dstdmat)) {
321 		device_printf(dev, "cannot allocate DMA tag\n");
322 		goto bad4;
323 	}
324 
325 	/*
326 	 * Allocate packet engine descriptors.
327 	 */
328 	if (safe_dma_malloc(sc,
329 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
330 	    &sc->sc_ringalloc, 0)) {
331 		device_printf(dev, "cannot allocate PE descriptor ring\n");
332 		bus_dma_tag_destroy(sc->sc_srcdmat);
333 		goto bad4;
334 	}
335 	/*
336 	 * Hookup the static portion of all our data structures.
337 	 */
338 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
339 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
340 	sc->sc_front = sc->sc_ring;
341 	sc->sc_back = sc->sc_ring;
342 	raddr = sc->sc_ringalloc.dma_paddr;
343 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
344 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
345 		struct safe_ringentry *re = &sc->sc_ring[i];
346 
347 		re->re_desc.d_sa = raddr +
348 			offsetof(struct safe_ringentry, re_sa);
349 		re->re_sa.sa_staterec = raddr +
350 			offsetof(struct safe_ringentry, re_sastate);
351 
352 		raddr += sizeof (struct safe_ringentry);
353 	}
354 	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
355 		"packet engine ring", MTX_DEF);
356 
357 	/*
358 	 * Allocate scatter and gather particle descriptors.
359 	 */
360 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
361 	    &sc->sc_spalloc, 0)) {
362 		device_printf(dev, "cannot allocate source particle "
363 			"descriptor ring\n");
364 		mtx_destroy(&sc->sc_ringmtx);
365 		safe_dma_free(sc, &sc->sc_ringalloc);
366 		bus_dma_tag_destroy(sc->sc_srcdmat);
367 		goto bad4;
368 	}
369 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
370 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
371 	sc->sc_spfree = sc->sc_spring;
372 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
373 
374 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
375 	    &sc->sc_dpalloc, 0)) {
376 		device_printf(dev, "cannot allocate destination particle "
377 			"descriptor ring\n");
378 		mtx_destroy(&sc->sc_ringmtx);
379 		safe_dma_free(sc, &sc->sc_spalloc);
380 		safe_dma_free(sc, &sc->sc_ringalloc);
381 		bus_dma_tag_destroy(sc->sc_dstdmat);
382 		goto bad4;
383 	}
384 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
385 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
386 	sc->sc_dpfree = sc->sc_dpring;
387 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
388 
389 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
390 
391 	devinfo = READ_REG(sc, SAFE_DEVINFO);
392 	if (devinfo & SAFE_DEVINFO_RNG) {
393 		sc->sc_flags |= SAFE_FLAGS_RNG;
394 		printf(" rng");
395 	}
396 	if (devinfo & SAFE_DEVINFO_PKEY) {
397 #if 0
398 		printf(" key");
399 		sc->sc_flags |= SAFE_FLAGS_KEY;
400 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
401 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
402 #endif
403 	}
404 	if (devinfo & SAFE_DEVINFO_DES) {
405 		printf(" des/3des");
406 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
407 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
408 	}
409 	if (devinfo & SAFE_DEVINFO_AES) {
410 		printf(" aes");
411 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
412 	}
413 	if (devinfo & SAFE_DEVINFO_MD5) {
414 		printf(" md5");
415 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
416 	}
417 	if (devinfo & SAFE_DEVINFO_SHA1) {
418 		printf(" sha1");
419 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
420 	}
421 	printf(" null");
422 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
423 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
424 	/* XXX other supported algorithms */
425 	printf("\n");
426 
427 	safe_reset_board(sc);		/* reset h/w */
428 	safe_init_pciregs(dev);		/* init pci settings */
429 	safe_init_board(sc);		/* init h/w */
430 
431 #ifndef SAFE_NO_RNG
432 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
433 #ifdef SAFE_RNDTEST
434 		sc->sc_rndtest = rndtest_attach(dev);
435 		if (sc->sc_rndtest)
436 			sc->sc_harvest = rndtest_harvest;
437 		else
438 			sc->sc_harvest = default_harvest;
439 #else
440 		sc->sc_harvest = default_harvest;
441 #endif
442 		safe_rng_init(sc);
443 
444 		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
445 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
446 	}
447 #endif /* SAFE_NO_RNG */
448 #ifdef SAFE_DEBUG
449 	safec = sc;			/* for use by hw.safe.dump */
450 #endif
451 	return (0);
452 bad4:
453 	crypto_unregister_all(sc->sc_cid);
454 bad3:
455 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
456 bad2:
457 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
458 bad1:
459 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
460 bad:
461 	return (ENXIO);
462 }
463 
464 /*
465  * Detach a device that successfully probed.
466  */
467 static int
468 safe_detach(device_t dev)
469 {
470 	struct safe_softc *sc = device_get_softc(dev);
471 
472 	/* XXX wait/abort active ops */
473 
474 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
475 
476 	callout_stop(&sc->sc_rngto);
477 
478 	crypto_unregister_all(sc->sc_cid);
479 
480 #ifdef SAFE_RNDTEST
481 	if (sc->sc_rndtest)
482 		rndtest_detach(sc->sc_rndtest);
483 #endif
484 
485 	safe_cleanchip(sc);
486 	safe_dma_free(sc, &sc->sc_dpalloc);
487 	safe_dma_free(sc, &sc->sc_spalloc);
488 	mtx_destroy(&sc->sc_ringmtx);
489 	safe_dma_free(sc, &sc->sc_ringalloc);
490 
491 	bus_generic_detach(dev);
492 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
493 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
494 
495 	bus_dma_tag_destroy(sc->sc_srcdmat);
496 	bus_dma_tag_destroy(sc->sc_dstdmat);
497 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
498 
499 	return (0);
500 }
501 
502 /*
503  * Stop all chip i/o so that the kernel's probe routines don't
504  * get confused by errant DMAs when rebooting.
505  */
506 static int
507 safe_shutdown(device_t dev)
508 {
509 #ifdef notyet
510 	safe_stop(device_get_softc(dev));
511 #endif
512 	return (0);
513 }
514 
515 /*
516  * Device suspend routine.
517  */
518 static int
519 safe_suspend(device_t dev)
520 {
521 	struct safe_softc *sc = device_get_softc(dev);
522 
523 #ifdef notyet
524 	/* XXX stop the device and save PCI settings */
525 #endif
526 	sc->sc_suspended = 1;
527 
528 	return (0);
529 }
530 
531 static int
532 safe_resume(device_t dev)
533 {
534 	struct safe_softc *sc = device_get_softc(dev);
535 
536 #ifdef notyet
537 	/* XXX retore PCI settings and start the device */
538 #endif
539 	sc->sc_suspended = 0;
540 	return (0);
541 }
542 
543 /*
544  * SafeXcel Interrupt routine
545  */
546 static void
547 safe_intr(void *arg)
548 {
549 	struct safe_softc *sc = arg;
550 	volatile u_int32_t stat;
551 
552 	stat = READ_REG(sc, SAFE_HM_STAT);
553 	if (stat == 0)			/* shared irq, not for us */
554 		return;
555 
556 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
557 
558 	if ((stat & SAFE_INT_PE_DDONE)) {
559 		/*
560 		 * Descriptor(s) done; scan the ring and
561 		 * process completed operations.
562 		 */
563 		mtx_lock(&sc->sc_ringmtx);
564 		while (sc->sc_back != sc->sc_front) {
565 			struct safe_ringentry *re = sc->sc_back;
566 #ifdef SAFE_DEBUG
567 			if (safe_debug) {
568 				safe_dump_ringstate(sc, __func__);
569 				safe_dump_request(sc, __func__, re);
570 			}
571 #endif
572 			/*
573 			 * safe_process marks ring entries that were allocated
574 			 * but not used with a csr of zero.  This insures the
575 			 * ring front pointer never needs to be set backwards
576 			 * in the event that an entry is allocated but not used
577 			 * because of a setup error.
578 			 */
579 			if (re->re_desc.d_csr != 0) {
580 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
581 					break;
582 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
583 					break;
584 				sc->sc_nqchip--;
585 				safe_callback(sc, re);
586 			}
587 			if (++(sc->sc_back) == sc->sc_ringtop)
588 				sc->sc_back = sc->sc_ring;
589 		}
590 		mtx_unlock(&sc->sc_ringmtx);
591 	}
592 
593 	/*
594 	 * Check to see if we got any DMA Error
595 	 */
596 	if (stat & SAFE_INT_PE_ERROR) {
597 		DPRINTF(("dmaerr dmastat %08x\n",
598 			READ_REG(sc, SAFE_PE_DMASTAT)));
599 		safestats.st_dmaerr++;
600 		safe_totalreset(sc);
601 #if 0
602 		safe_feed(sc);
603 #endif
604 	}
605 
606 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
607 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
608 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
609 			sc->sc_needwakeup));
610 		sc->sc_needwakeup &= ~wakeup;
611 		crypto_unblock(sc->sc_cid, wakeup);
612 	}
613 }
614 
615 /*
616  * safe_feed() - post a request to chip
617  */
618 static void
619 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
620 {
621 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
622 	if (re->re_dst_map != NULL)
623 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
624 			BUS_DMASYNC_PREREAD);
625 	/* XXX have no smaller granularity */
626 	safe_dma_sync(&sc->sc_ringalloc,
627 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
628 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
629 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
630 
631 #ifdef SAFE_DEBUG
632 	if (safe_debug) {
633 		safe_dump_ringstate(sc, __func__);
634 		safe_dump_request(sc, __func__, re);
635 	}
636 #endif
637 	sc->sc_nqchip++;
638 	if (sc->sc_nqchip > safestats.st_maxqchip)
639 		safestats.st_maxqchip = sc->sc_nqchip;
640 	/* poke h/w to check descriptor ring, any value can be written */
641 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
642 }
643 
644 #define	N(a)	(sizeof(a) / sizeof (a[0]))
645 static void
646 safe_setup_enckey(struct safe_session *ses, caddr_t key)
647 {
648 	int i;
649 
650 	bcopy(key, ses->ses_key, ses->ses_klen / 8);
651 
652 	/* PE is little-endian, insure proper byte order */
653 	for (i = 0; i < N(ses->ses_key); i++)
654 		ses->ses_key[i] = htole32(ses->ses_key[i]);
655 }
656 
657 static void
658 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
659 {
660 	MD5_CTX md5ctx;
661 	SHA1_CTX sha1ctx;
662 	int i;
663 
664 
665 	for (i = 0; i < klen; i++)
666 		key[i] ^= HMAC_IPAD_VAL;
667 
668 	if (algo == CRYPTO_MD5_HMAC) {
669 		MD5Init(&md5ctx);
670 		MD5Update(&md5ctx, key, klen);
671 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
672 		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
673 	} else {
674 		SHA1Init(&sha1ctx);
675 		SHA1Update(&sha1ctx, key, klen);
676 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
677 		    SHA1_HMAC_BLOCK_LEN - klen);
678 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
679 	}
680 
681 	for (i = 0; i < klen; i++)
682 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
683 
684 	if (algo == CRYPTO_MD5_HMAC) {
685 		MD5Init(&md5ctx);
686 		MD5Update(&md5ctx, key, klen);
687 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
688 		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
689 	} else {
690 		SHA1Init(&sha1ctx);
691 		SHA1Update(&sha1ctx, key, klen);
692 		SHA1Update(&sha1ctx, hmac_opad_buffer,
693 		    SHA1_HMAC_BLOCK_LEN - klen);
694 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
695 	}
696 
697 	for (i = 0; i < klen; i++)
698 		key[i] ^= HMAC_OPAD_VAL;
699 
700 	/* PE is little-endian, insure proper byte order */
701 	for (i = 0; i < N(ses->ses_hminner); i++) {
702 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
703 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
704 	}
705 }
706 #undef N
707 
708 /*
709  * Allocate a new 'session' and return an encoded session id.  'sidp'
710  * contains our registration id, and should contain an encoded session
711  * id on successful allocation.
712  */
713 static int
714 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
715 {
716 	struct safe_softc *sc = device_get_softc(dev);
717 	struct cryptoini *c, *encini = NULL, *macini = NULL;
718 	struct safe_session *ses = NULL;
719 	int sesn;
720 
721 	if (sidp == NULL || cri == NULL || sc == NULL)
722 		return (EINVAL);
723 
724 	for (c = cri; c != NULL; c = c->cri_next) {
725 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
726 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
727 		    c->cri_alg == CRYPTO_NULL_HMAC) {
728 			if (macini)
729 				return (EINVAL);
730 			macini = c;
731 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
732 		    c->cri_alg == CRYPTO_3DES_CBC ||
733 		    c->cri_alg == CRYPTO_AES_CBC ||
734 		    c->cri_alg == CRYPTO_NULL_CBC) {
735 			if (encini)
736 				return (EINVAL);
737 			encini = c;
738 		} else
739 			return (EINVAL);
740 	}
741 	if (encini == NULL && macini == NULL)
742 		return (EINVAL);
743 	if (encini) {			/* validate key length */
744 		switch (encini->cri_alg) {
745 		case CRYPTO_DES_CBC:
746 			if (encini->cri_klen != 64)
747 				return (EINVAL);
748 			break;
749 		case CRYPTO_3DES_CBC:
750 			if (encini->cri_klen != 192)
751 				return (EINVAL);
752 			break;
753 		case CRYPTO_AES_CBC:
754 			if (encini->cri_klen != 128 &&
755 			    encini->cri_klen != 192 &&
756 			    encini->cri_klen != 256)
757 				return (EINVAL);
758 			break;
759 		}
760 	}
761 
762 	if (sc->sc_sessions == NULL) {
763 		ses = sc->sc_sessions = (struct safe_session *)malloc(
764 		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
765 		if (ses == NULL)
766 			return (ENOMEM);
767 		sesn = 0;
768 		sc->sc_nsessions = 1;
769 	} else {
770 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
771 			if (sc->sc_sessions[sesn].ses_used == 0) {
772 				ses = &sc->sc_sessions[sesn];
773 				break;
774 			}
775 		}
776 
777 		if (ses == NULL) {
778 			sesn = sc->sc_nsessions;
779 			ses = (struct safe_session *)malloc((sesn + 1) *
780 			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
781 			if (ses == NULL)
782 				return (ENOMEM);
783 			bcopy(sc->sc_sessions, ses, sesn *
784 			    sizeof(struct safe_session));
785 			bzero(sc->sc_sessions, sesn *
786 			    sizeof(struct safe_session));
787 			free(sc->sc_sessions, M_DEVBUF);
788 			sc->sc_sessions = ses;
789 			ses = &sc->sc_sessions[sesn];
790 			sc->sc_nsessions++;
791 		}
792 	}
793 
794 	bzero(ses, sizeof(struct safe_session));
795 	ses->ses_used = 1;
796 
797 	if (encini) {
798 		/* get an IV */
799 		/* XXX may read fewer than requested */
800 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
801 
802 		ses->ses_klen = encini->cri_klen;
803 		if (encini->cri_key != NULL)
804 			safe_setup_enckey(ses, encini->cri_key);
805 	}
806 
807 	if (macini) {
808 		ses->ses_mlen = macini->cri_mlen;
809 		if (ses->ses_mlen == 0) {
810 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
811 				ses->ses_mlen = MD5_HASH_LEN;
812 			else
813 				ses->ses_mlen = SHA1_HASH_LEN;
814 		}
815 
816 		if (macini->cri_key != NULL) {
817 			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
818 			    macini->cri_klen / 8);
819 		}
820 	}
821 
822 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
823 	return (0);
824 }
825 
826 /*
827  * Deallocate a session.
828  */
829 static int
830 safe_freesession(device_t dev, u_int64_t tid)
831 {
832 	struct safe_softc *sc = device_get_softc(dev);
833 	int session, ret;
834 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
835 
836 	if (sc == NULL)
837 		return (EINVAL);
838 
839 	session = SAFE_SESSION(sid);
840 	if (session < sc->sc_nsessions) {
841 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
842 		ret = 0;
843 	} else
844 		ret = EINVAL;
845 	return (ret);
846 }
847 
848 static void
849 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
850 {
851 	struct safe_operand *op = arg;
852 
853 	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
854 		(u_int) mapsize, nsegs, error));
855 	if (error != 0)
856 		return;
857 	op->mapsize = mapsize;
858 	op->nsegs = nsegs;
859 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
860 }
861 
862 static int
863 safe_process(device_t dev, struct cryptop *crp, int hint)
864 {
865 	struct safe_softc *sc = device_get_softc(dev);
866 	int err = 0, i, nicealign, uniform;
867 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
868 	int bypass, oplen, ivsize;
869 	caddr_t iv;
870 	int16_t coffset;
871 	struct safe_session *ses;
872 	struct safe_ringentry *re;
873 	struct safe_sarec *sa;
874 	struct safe_pdesc *pd;
875 	u_int32_t cmd0, cmd1, staterec;
876 
877 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
878 		safestats.st_invalid++;
879 		return (EINVAL);
880 	}
881 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
882 		safestats.st_badsession++;
883 		return (EINVAL);
884 	}
885 
886 	mtx_lock(&sc->sc_ringmtx);
887 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
888 		safestats.st_ringfull++;
889 		sc->sc_needwakeup |= CRYPTO_SYMQ;
890 		mtx_unlock(&sc->sc_ringmtx);
891 		return (ERESTART);
892 	}
893 	re = sc->sc_front;
894 
895 	staterec = re->re_sa.sa_staterec;	/* save */
896 	/* NB: zero everything but the PE descriptor */
897 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
898 	re->re_sa.sa_staterec = staterec;	/* restore */
899 
900 	re->re_crp = crp;
901 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
902 
903 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
904 		re->re_src_m = (struct mbuf *)crp->crp_buf;
905 		re->re_dst_m = (struct mbuf *)crp->crp_buf;
906 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
907 		re->re_src_io = (struct uio *)crp->crp_buf;
908 		re->re_dst_io = (struct uio *)crp->crp_buf;
909 	} else {
910 		safestats.st_badflags++;
911 		err = EINVAL;
912 		goto errout;	/* XXX we don't handle contiguous blocks! */
913 	}
914 
915 	sa = &re->re_sa;
916 	ses = &sc->sc_sessions[re->re_sesn];
917 
918 	crd1 = crp->crp_desc;
919 	if (crd1 == NULL) {
920 		safestats.st_nodesc++;
921 		err = EINVAL;
922 		goto errout;
923 	}
924 	crd2 = crd1->crd_next;
925 
926 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
927 	cmd1 = 0;
928 	if (crd2 == NULL) {
929 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
930 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
931 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
932 			maccrd = crd1;
933 			enccrd = NULL;
934 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
935 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
936 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
937 		    crd1->crd_alg == CRYPTO_AES_CBC ||
938 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
939 			maccrd = NULL;
940 			enccrd = crd1;
941 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
942 		} else {
943 			safestats.st_badalg++;
944 			err = EINVAL;
945 			goto errout;
946 		}
947 	} else {
948 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
949 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
950 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
951 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
952 			crd2->crd_alg == CRYPTO_3DES_CBC ||
953 		        crd2->crd_alg == CRYPTO_AES_CBC ||
954 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
955 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
956 			maccrd = crd1;
957 			enccrd = crd2;
958 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
959 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
960 		    crd1->crd_alg == CRYPTO_AES_CBC ||
961 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
962 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
963 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
964 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
965 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
966 			enccrd = crd1;
967 			maccrd = crd2;
968 		} else {
969 			safestats.st_badalg++;
970 			err = EINVAL;
971 			goto errout;
972 		}
973 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
974 	}
975 
976 	if (enccrd) {
977 		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
978 			safe_setup_enckey(ses, enccrd->crd_key);
979 
980 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
981 			cmd0 |= SAFE_SA_CMD0_DES;
982 			cmd1 |= SAFE_SA_CMD1_CBC;
983 			ivsize = 2*sizeof(u_int32_t);
984 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
985 			cmd0 |= SAFE_SA_CMD0_3DES;
986 			cmd1 |= SAFE_SA_CMD1_CBC;
987 			ivsize = 2*sizeof(u_int32_t);
988 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
989 			cmd0 |= SAFE_SA_CMD0_AES;
990 			cmd1 |= SAFE_SA_CMD1_CBC;
991 			if (ses->ses_klen == 128)
992 			     cmd1 |=  SAFE_SA_CMD1_AES128;
993 			else if (ses->ses_klen == 192)
994 			     cmd1 |=  SAFE_SA_CMD1_AES192;
995 			else
996 			     cmd1 |=  SAFE_SA_CMD1_AES256;
997 			ivsize = 4*sizeof(u_int32_t);
998 		} else {
999 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
1000 			ivsize = 0;
1001 		}
1002 
1003 		/*
1004 		 * Setup encrypt/decrypt state.  When using basic ops
1005 		 * we can't use an inline IV because hash/crypt offset
1006 		 * must be from the end of the IV to the start of the
1007 		 * crypt data and this leaves out the preceding header
1008 		 * from the hash calculation.  Instead we place the IV
1009 		 * in the state record and set the hash/crypt offset to
1010 		 * copy both the header+IV.
1011 		 */
1012 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1013 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1014 
1015 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1016 				iv = enccrd->crd_iv;
1017 			else
1018 				iv = (caddr_t) ses->ses_iv;
1019 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1020 				crypto_copyback(crp->crp_flags, crp->crp_buf,
1021 				    enccrd->crd_inject, ivsize, iv);
1022 			}
1023 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1024 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1025 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1026 		} else {
1027 			cmd0 |= SAFE_SA_CMD0_INBOUND;
1028 
1029 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1030 				bcopy(enccrd->crd_iv,
1031 					re->re_sastate.sa_saved_iv, ivsize);
1032 			} else {
1033 				crypto_copydata(crp->crp_flags, crp->crp_buf,
1034 				    enccrd->crd_inject, ivsize,
1035 				    (caddr_t)re->re_sastate.sa_saved_iv);
1036 			}
1037 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1038 		}
1039 		/*
1040 		 * For basic encryption use the zero pad algorithm.
1041 		 * This pads results to an 8-byte boundary and
1042 		 * suppresses padding verification for inbound (i.e.
1043 		 * decrypt) operations.
1044 		 *
1045 		 * NB: Not sure if the 8-byte pad boundary is a problem.
1046 		 */
1047 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1048 
1049 		/* XXX assert key bufs have the same size */
1050 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1051 	}
1052 
1053 	if (maccrd) {
1054 		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1055 			safe_setup_mackey(ses, maccrd->crd_alg,
1056 			    maccrd->crd_key, maccrd->crd_klen / 8);
1057 		}
1058 
1059 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1060 			cmd0 |= SAFE_SA_CMD0_MD5;
1061 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1062 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1063 			cmd0 |= SAFE_SA_CMD0_SHA1;
1064 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1065 		} else {
1066 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1067 		}
1068 		/*
1069 		 * Digest data is loaded from the SA and the hash
1070 		 * result is saved to the state block where we
1071 		 * retrieve it for return to the caller.
1072 		 */
1073 		/* XXX assert digest bufs have the same size */
1074 		bcopy(ses->ses_hminner, sa->sa_indigest,
1075 			sizeof(sa->sa_indigest));
1076 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1077 			sizeof(sa->sa_outdigest));
1078 
1079 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1080 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1081 	}
1082 
1083 	if (enccrd && maccrd) {
1084 		/*
1085 		 * The offset from hash data to the start of
1086 		 * crypt data is the difference in the skips.
1087 		 */
1088 		bypass = maccrd->crd_skip;
1089 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1090 		if (coffset < 0) {
1091 			DPRINTF(("%s: hash does not precede crypt; "
1092 				"mac skip %u enc skip %u\n",
1093 				__func__, maccrd->crd_skip, enccrd->crd_skip));
1094 			safestats.st_skipmismatch++;
1095 			err = EINVAL;
1096 			goto errout;
1097 		}
1098 		oplen = enccrd->crd_skip + enccrd->crd_len;
1099 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1100 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1101 				__func__, maccrd->crd_skip + maccrd->crd_len,
1102 				oplen));
1103 			safestats.st_lenmismatch++;
1104 			err = EINVAL;
1105 			goto errout;
1106 		}
1107 #ifdef SAFE_DEBUG
1108 		if (safe_debug) {
1109 			printf("mac: skip %d, len %d, inject %d\n",
1110 			    maccrd->crd_skip, maccrd->crd_len,
1111 			    maccrd->crd_inject);
1112 			printf("enc: skip %d, len %d, inject %d\n",
1113 			    enccrd->crd_skip, enccrd->crd_len,
1114 			    enccrd->crd_inject);
1115 			printf("bypass %d coffset %d oplen %d\n",
1116 				bypass, coffset, oplen);
1117 		}
1118 #endif
1119 		if (coffset & 3) {	/* offset must be 32-bit aligned */
1120 			DPRINTF(("%s: coffset %u misaligned\n",
1121 				__func__, coffset));
1122 			safestats.st_coffmisaligned++;
1123 			err = EINVAL;
1124 			goto errout;
1125 		}
1126 		coffset >>= 2;
1127 		if (coffset > 255) {	/* offset must be <256 dwords */
1128 			DPRINTF(("%s: coffset %u too big\n",
1129 				__func__, coffset));
1130 			safestats.st_cofftoobig++;
1131 			err = EINVAL;
1132 			goto errout;
1133 		}
1134 		/*
1135 		 * Tell the hardware to copy the header to the output.
1136 		 * The header is defined as the data from the end of
1137 		 * the bypass to the start of data to be encrypted.
1138 		 * Typically this is the inline IV.  Note that you need
1139 		 * to do this even if src+dst are the same; it appears
1140 		 * that w/o this bit the crypted data is written
1141 		 * immediately after the bypass data.
1142 		 */
1143 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1144 		/*
1145 		 * Disable IP header mutable bit handling.  This is
1146 		 * needed to get correct HMAC calculations.
1147 		 */
1148 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1149 	} else {
1150 		if (enccrd) {
1151 			bypass = enccrd->crd_skip;
1152 			oplen = bypass + enccrd->crd_len;
1153 		} else {
1154 			bypass = maccrd->crd_skip;
1155 			oplen = bypass + maccrd->crd_len;
1156 		}
1157 		coffset = 0;
1158 	}
1159 	/* XXX verify multiple of 4 when using s/g */
1160 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1161 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1162 		safestats.st_bypasstoobig++;
1163 		err = EINVAL;
1164 		goto errout;
1165 	}
1166 
1167 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1168 		safestats.st_nomap++;
1169 		err = ENOMEM;
1170 		goto errout;
1171 	}
1172 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1173 		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1174 		    re->re_src_m, safe_op_cb,
1175 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1176 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1177 			re->re_src_map = NULL;
1178 			safestats.st_noload++;
1179 			err = ENOMEM;
1180 			goto errout;
1181 		}
1182 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1183 		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1184 		    re->re_src_io, safe_op_cb,
1185 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1186 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1187 			re->re_src_map = NULL;
1188 			safestats.st_noload++;
1189 			err = ENOMEM;
1190 			goto errout;
1191 		}
1192 	}
1193 	nicealign = safe_dmamap_aligned(&re->re_src);
1194 	uniform = safe_dmamap_uniform(&re->re_src);
1195 
1196 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1197 		nicealign, uniform, re->re_src.nsegs));
1198 	if (re->re_src.nsegs > 1) {
1199 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1200 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1201 		for (i = 0; i < re->re_src_nsegs; i++) {
1202 			/* NB: no need to check if there's space */
1203 			pd = sc->sc_spfree;
1204 			if (++(sc->sc_spfree) == sc->sc_springtop)
1205 				sc->sc_spfree = sc->sc_spring;
1206 
1207 			KASSERT((pd->pd_flags&3) == 0 ||
1208 				(pd->pd_flags&3) == SAFE_PD_DONE,
1209 				("bogus source particle descriptor; flags %x",
1210 				pd->pd_flags));
1211 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1212 			pd->pd_size = re->re_src_segs[i].ds_len;
1213 			pd->pd_flags = SAFE_PD_READY;
1214 		}
1215 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1216 	} else {
1217 		/*
1218 		 * No need for gather, reference the operand directly.
1219 		 */
1220 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1221 	}
1222 
1223 	if (enccrd == NULL && maccrd != NULL) {
1224 		/*
1225 		 * Hash op; no destination needed.
1226 		 */
1227 	} else {
1228 		if (crp->crp_flags & CRYPTO_F_IOV) {
1229 			if (!nicealign) {
1230 				safestats.st_iovmisaligned++;
1231 				err = EINVAL;
1232 				goto errout;
1233 			}
1234 			if (uniform != 1) {
1235 				/*
1236 				 * Source is not suitable for direct use as
1237 				 * the destination.  Create a new scatter/gather
1238 				 * list based on the destination requirements
1239 				 * and check if that's ok.
1240 				 */
1241 				if (bus_dmamap_create(sc->sc_dstdmat,
1242 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1243 					safestats.st_nomap++;
1244 					err = ENOMEM;
1245 					goto errout;
1246 				}
1247 				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1248 				    re->re_dst_map, re->re_dst_io,
1249 				    safe_op_cb, &re->re_dst,
1250 				    BUS_DMA_NOWAIT) != 0) {
1251 					bus_dmamap_destroy(sc->sc_dstdmat,
1252 						re->re_dst_map);
1253 					re->re_dst_map = NULL;
1254 					safestats.st_noload++;
1255 					err = ENOMEM;
1256 					goto errout;
1257 				}
1258 				uniform = safe_dmamap_uniform(&re->re_dst);
1259 				if (!uniform) {
1260 					/*
1261 					 * There's no way to handle the DMA
1262 					 * requirements with this uio.  We
1263 					 * could create a separate DMA area for
1264 					 * the result and then copy it back,
1265 					 * but for now we just bail and return
1266 					 * an error.  Note that uio requests
1267 					 * > SAFE_MAX_DSIZE are handled because
1268 					 * the DMA map and segment list for the
1269 					 * destination wil result in a
1270 					 * destination particle list that does
1271 					 * the necessary scatter DMA.
1272 					 */
1273 					safestats.st_iovnotuniform++;
1274 					err = EINVAL;
1275 					goto errout;
1276 				}
1277 			} else
1278 				re->re_dst = re->re_src;
1279 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1280 			if (nicealign && uniform == 1) {
1281 				/*
1282 				 * Source layout is suitable for direct
1283 				 * sharing of the DMA map and segment list.
1284 				 */
1285 				re->re_dst = re->re_src;
1286 			} else if (nicealign && uniform == 2) {
1287 				/*
1288 				 * The source is properly aligned but requires a
1289 				 * different particle list to handle DMA of the
1290 				 * result.  Create a new map and do the load to
1291 				 * create the segment list.  The particle
1292 				 * descriptor setup code below will handle the
1293 				 * rest.
1294 				 */
1295 				if (bus_dmamap_create(sc->sc_dstdmat,
1296 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1297 					safestats.st_nomap++;
1298 					err = ENOMEM;
1299 					goto errout;
1300 				}
1301 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1302 				    re->re_dst_map, re->re_dst_m,
1303 				    safe_op_cb, &re->re_dst,
1304 				    BUS_DMA_NOWAIT) != 0) {
1305 					bus_dmamap_destroy(sc->sc_dstdmat,
1306 						re->re_dst_map);
1307 					re->re_dst_map = NULL;
1308 					safestats.st_noload++;
1309 					err = ENOMEM;
1310 					goto errout;
1311 				}
1312 			} else {		/* !(aligned and/or uniform) */
1313 				int totlen, len;
1314 				struct mbuf *m, *top, **mp;
1315 
1316 				/*
1317 				 * DMA constraints require that we allocate a
1318 				 * new mbuf chain for the destination.  We
1319 				 * allocate an entire new set of mbufs of
1320 				 * optimal/required size and then tell the
1321 				 * hardware to copy any bits that are not
1322 				 * created as a byproduct of the operation.
1323 				 */
1324 				if (!nicealign)
1325 					safestats.st_unaligned++;
1326 				if (!uniform)
1327 					safestats.st_notuniform++;
1328 				totlen = re->re_src_mapsize;
1329 				if (re->re_src_m->m_flags & M_PKTHDR) {
1330 					len = MHLEN;
1331 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1332 					if (m && !m_dup_pkthdr(m, re->re_src_m,
1333 					    M_DONTWAIT)) {
1334 						m_free(m);
1335 						m = NULL;
1336 					}
1337 				} else {
1338 					len = MLEN;
1339 					MGET(m, M_DONTWAIT, MT_DATA);
1340 				}
1341 				if (m == NULL) {
1342 					safestats.st_nombuf++;
1343 					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1344 					goto errout;
1345 				}
1346 				if (totlen >= MINCLSIZE) {
1347 					MCLGET(m, M_DONTWAIT);
1348 					if ((m->m_flags & M_EXT) == 0) {
1349 						m_free(m);
1350 						safestats.st_nomcl++;
1351 						err = sc->sc_nqchip ?
1352 							ERESTART : ENOMEM;
1353 						goto errout;
1354 					}
1355 					len = MCLBYTES;
1356 				}
1357 				m->m_len = len;
1358 				top = NULL;
1359 				mp = &top;
1360 
1361 				while (totlen > 0) {
1362 					if (top) {
1363 						MGET(m, M_DONTWAIT, MT_DATA);
1364 						if (m == NULL) {
1365 							m_freem(top);
1366 							safestats.st_nombuf++;
1367 							err = sc->sc_nqchip ?
1368 							    ERESTART : ENOMEM;
1369 							goto errout;
1370 						}
1371 						len = MLEN;
1372 					}
1373 					if (top && totlen >= MINCLSIZE) {
1374 						MCLGET(m, M_DONTWAIT);
1375 						if ((m->m_flags & M_EXT) == 0) {
1376 							*mp = m;
1377 							m_freem(top);
1378 							safestats.st_nomcl++;
1379 							err = sc->sc_nqchip ?
1380 							    ERESTART : ENOMEM;
1381 							goto errout;
1382 						}
1383 						len = MCLBYTES;
1384 					}
1385 					m->m_len = len = min(totlen, len);
1386 					totlen -= len;
1387 					*mp = m;
1388 					mp = &m->m_next;
1389 				}
1390 				re->re_dst_m = top;
1391 				if (bus_dmamap_create(sc->sc_dstdmat,
1392 				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1393 					safestats.st_nomap++;
1394 					err = ENOMEM;
1395 					goto errout;
1396 				}
1397 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1398 				    re->re_dst_map, re->re_dst_m,
1399 				    safe_op_cb, &re->re_dst,
1400 				    BUS_DMA_NOWAIT) != 0) {
1401 					bus_dmamap_destroy(sc->sc_dstdmat,
1402 					re->re_dst_map);
1403 					re->re_dst_map = NULL;
1404 					safestats.st_noload++;
1405 					err = ENOMEM;
1406 					goto errout;
1407 				}
1408 				if (re->re_src.mapsize > oplen) {
1409 					/*
1410 					 * There's data following what the
1411 					 * hardware will copy for us.  If this
1412 					 * isn't just the ICV (that's going to
1413 					 * be written on completion), copy it
1414 					 * to the new mbufs
1415 					 */
1416 					if (!(maccrd &&
1417 					    (re->re_src.mapsize-oplen) == 12 &&
1418 					    maccrd->crd_inject == oplen))
1419 						safe_mcopy(re->re_src_m,
1420 							   re->re_dst_m,
1421 							   oplen);
1422 					else
1423 						safestats.st_noicvcopy++;
1424 				}
1425 			}
1426 		} else {
1427 			safestats.st_badflags++;
1428 			err = EINVAL;
1429 			goto errout;
1430 		}
1431 
1432 		if (re->re_dst.nsegs > 1) {
1433 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1434 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1435 			for (i = 0; i < re->re_dst_nsegs; i++) {
1436 				pd = sc->sc_dpfree;
1437 				KASSERT((pd->pd_flags&3) == 0 ||
1438 					(pd->pd_flags&3) == SAFE_PD_DONE,
1439 					("bogus dest particle descriptor; flags %x",
1440 						pd->pd_flags));
1441 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1442 					sc->sc_dpfree = sc->sc_dpring;
1443 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1444 				pd->pd_flags = SAFE_PD_READY;
1445 			}
1446 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1447 		} else {
1448 			/*
1449 			 * No need for scatter, reference the operand directly.
1450 			 */
1451 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1452 		}
1453 	}
1454 
1455 	/*
1456 	 * All done with setup; fillin the SA command words
1457 	 * and the packet engine descriptor.  The operation
1458 	 * is now ready for submission to the hardware.
1459 	 */
1460 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1461 	sa->sa_cmd1 = cmd1
1462 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1463 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1464 		    | SAFE_SA_CMD1_SRPCI
1465 		    ;
1466 	/*
1467 	 * NB: the order of writes is important here.  In case the
1468 	 * chip is scanning the ring because of an outstanding request
1469 	 * it might nab this one too.  In that case we need to make
1470 	 * sure the setup is complete before we write the length
1471 	 * field of the descriptor as it signals the descriptor is
1472 	 * ready for processing.
1473 	 */
1474 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1475 	if (maccrd)
1476 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1477 	re->re_desc.d_len = oplen
1478 			  | SAFE_PE_LEN_READY
1479 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1480 			  ;
1481 
1482 	safestats.st_ipackets++;
1483 	safestats.st_ibytes += oplen;
1484 
1485 	if (++(sc->sc_front) == sc->sc_ringtop)
1486 		sc->sc_front = sc->sc_ring;
1487 
1488 	/* XXX honor batching */
1489 	safe_feed(sc, re);
1490 	mtx_unlock(&sc->sc_ringmtx);
1491 	return (0);
1492 
1493 errout:
1494 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1495 		m_freem(re->re_dst_m);
1496 
1497 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1498 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1499 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1500 	}
1501 	if (re->re_src_map != NULL) {
1502 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1503 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1504 	}
1505 	mtx_unlock(&sc->sc_ringmtx);
1506 	if (err != ERESTART) {
1507 		crp->crp_etype = err;
1508 		crypto_done(crp);
1509 	} else {
1510 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1511 	}
1512 	return (err);
1513 }
1514 
1515 static void
1516 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1517 {
1518 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1519 	struct cryptodesc *crd;
1520 
1521 	safestats.st_opackets++;
1522 	safestats.st_obytes += re->re_dst.mapsize;
1523 
1524 	safe_dma_sync(&sc->sc_ringalloc,
1525 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1526 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1527 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1528 			re->re_desc.d_csr,
1529 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1530 		safestats.st_peoperr++;
1531 		crp->crp_etype = EIO;		/* something more meaningful? */
1532 	}
1533 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1534 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1535 		    BUS_DMASYNC_POSTREAD);
1536 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1537 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1538 	}
1539 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1540 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1541 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1542 
1543 	/*
1544 	 * If result was written to a differet mbuf chain, swap
1545 	 * it in as the return value and reclaim the original.
1546 	 */
1547 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1548 		m_freem(re->re_src_m);
1549 		crp->crp_buf = (caddr_t)re->re_dst_m;
1550 	}
1551 
1552 	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1553 		/* copy out IV for future use */
1554 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1555 			int ivsize;
1556 
1557 			if (crd->crd_alg == CRYPTO_DES_CBC ||
1558 			    crd->crd_alg == CRYPTO_3DES_CBC) {
1559 				ivsize = 2*sizeof(u_int32_t);
1560 			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1561 				ivsize = 4*sizeof(u_int32_t);
1562 			} else
1563 				continue;
1564 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1565 			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1566 			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1567 			break;
1568 		}
1569 	}
1570 
1571 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1572 		/* copy out ICV result */
1573 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1574 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1575 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1576 			    crd->crd_alg == CRYPTO_NULL_HMAC))
1577 				continue;
1578 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1579 				/*
1580 				 * SHA-1 ICV's are byte-swapped; fix 'em up
1581 				 * before copy them to their destination.
1582 				 */
1583 				bswap32(re->re_sastate.sa_saved_indigest[0]);
1584 				bswap32(re->re_sastate.sa_saved_indigest[1]);
1585 				bswap32(re->re_sastate.sa_saved_indigest[2]);
1586 			}
1587 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1588 			    crd->crd_inject,
1589 			    sc->sc_sessions[re->re_sesn].ses_mlen,
1590 			    (caddr_t)re->re_sastate.sa_saved_indigest);
1591 			break;
1592 		}
1593 	}
1594 	crypto_done(crp);
1595 }
1596 
1597 /*
1598  * Copy all data past offset from srcm to dstm.
1599  */
1600 static void
1601 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1602 {
1603 	u_int j, dlen, slen;
1604 	caddr_t dptr, sptr;
1605 
1606 	/*
1607 	 * Advance src and dst to offset.
1608 	 */
1609 	j = offset;
1610 	while (j >= 0) {
1611 		if (srcm->m_len > j)
1612 			break;
1613 		j -= srcm->m_len;
1614 		srcm = srcm->m_next;
1615 		if (srcm == NULL)
1616 			return;
1617 	}
1618 	sptr = mtod(srcm, caddr_t) + j;
1619 	slen = srcm->m_len - j;
1620 
1621 	j = offset;
1622 	while (j >= 0) {
1623 		if (dstm->m_len > j)
1624 			break;
1625 		j -= dstm->m_len;
1626 		dstm = dstm->m_next;
1627 		if (dstm == NULL)
1628 			return;
1629 	}
1630 	dptr = mtod(dstm, caddr_t) + j;
1631 	dlen = dstm->m_len - j;
1632 
1633 	/*
1634 	 * Copy everything that remains.
1635 	 */
1636 	for (;;) {
1637 		j = min(slen, dlen);
1638 		bcopy(sptr, dptr, j);
1639 		if (slen == j) {
1640 			srcm = srcm->m_next;
1641 			if (srcm == NULL)
1642 				return;
1643 			sptr = srcm->m_data;
1644 			slen = srcm->m_len;
1645 		} else
1646 			sptr += j, slen -= j;
1647 		if (dlen == j) {
1648 			dstm = dstm->m_next;
1649 			if (dstm == NULL)
1650 				return;
1651 			dptr = dstm->m_data;
1652 			dlen = dstm->m_len;
1653 		} else
1654 			dptr += j, dlen -= j;
1655 	}
1656 }
1657 
1658 #ifndef SAFE_NO_RNG
1659 #define	SAFE_RNG_MAXWAIT	1000
1660 
1661 static void
1662 safe_rng_init(struct safe_softc *sc)
1663 {
1664 	u_int32_t w, v;
1665 	int i;
1666 
1667 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1668 	/* use default value according to the manual */
1669 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1670 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1671 
1672 	/*
1673 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1674 	 * is brought out of reset the ready status flag does not
1675 	 * work until the RNG has finished its internal initialization.
1676 	 *
1677 	 * So in order to determine the device is through its
1678 	 * initialization we must read the data register, using the
1679 	 * status reg in the read in case it is initialized.  Then read
1680 	 * the data register until it changes from the first read.
1681 	 * Once it changes read the data register until it changes
1682 	 * again.  At this time the RNG is considered initialized.
1683 	 * This could take between 750ms - 1000ms in time.
1684 	 */
1685 	i = 0;
1686 	w = READ_REG(sc, SAFE_RNG_OUT);
1687 	do {
1688 		v = READ_REG(sc, SAFE_RNG_OUT);
1689 		if (v != w) {
1690 			w = v;
1691 			break;
1692 		}
1693 		DELAY(10);
1694 	} while (++i < SAFE_RNG_MAXWAIT);
1695 
1696 	/* Wait Until data changes again */
1697 	i = 0;
1698 	do {
1699 		v = READ_REG(sc, SAFE_RNG_OUT);
1700 		if (v != w)
1701 			break;
1702 		DELAY(10);
1703 	} while (++i < SAFE_RNG_MAXWAIT);
1704 }
1705 
1706 static __inline void
1707 safe_rng_disable_short_cycle(struct safe_softc *sc)
1708 {
1709 	WRITE_REG(sc, SAFE_RNG_CTRL,
1710 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1711 }
1712 
1713 static __inline void
1714 safe_rng_enable_short_cycle(struct safe_softc *sc)
1715 {
1716 	WRITE_REG(sc, SAFE_RNG_CTRL,
1717 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1718 }
1719 
1720 static __inline u_int32_t
1721 safe_rng_read(struct safe_softc *sc)
1722 {
1723 	int i;
1724 
1725 	i = 0;
1726 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1727 		;
1728 	return READ_REG(sc, SAFE_RNG_OUT);
1729 }
1730 
1731 static void
1732 safe_rng(void *arg)
1733 {
1734 	struct safe_softc *sc = arg;
1735 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1736 	u_int maxwords;
1737 	int i;
1738 
1739 	safestats.st_rng++;
1740 	/*
1741 	 * Fetch the next block of data.
1742 	 */
1743 	maxwords = safe_rngbufsize;
1744 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1745 		maxwords = SAFE_RNG_MAXBUFSIZ;
1746 retry:
1747 	for (i = 0; i < maxwords; i++)
1748 		buf[i] = safe_rng_read(sc);
1749 	/*
1750 	 * Check the comparator alarm count and reset the h/w if
1751 	 * it exceeds our threshold.  This guards against the
1752 	 * hardware oscillators resonating with external signals.
1753 	 */
1754 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1755 		u_int32_t freq_inc, w;
1756 
1757 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1758 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1759 		safestats.st_rngalarm++;
1760 		safe_rng_enable_short_cycle(sc);
1761 		freq_inc = 18;
1762 		for (i = 0; i < 64; i++) {
1763 			w = READ_REG(sc, SAFE_RNG_CNFG);
1764 			freq_inc = ((w + freq_inc) & 0x3fL);
1765 			w = ((w & ~0x3fL) | freq_inc);
1766 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1767 
1768 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1769 
1770 			(void) safe_rng_read(sc);
1771 			DELAY(25);
1772 
1773 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1774 				safe_rng_disable_short_cycle(sc);
1775 				goto retry;
1776 			}
1777 			freq_inc = 1;
1778 		}
1779 		safe_rng_disable_short_cycle(sc);
1780 	} else
1781 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1782 
1783 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1784 	callout_reset(&sc->sc_rngto,
1785 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1786 }
1787 #endif /* SAFE_NO_RNG */
1788 
1789 static void
1790 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1791 {
1792 	bus_addr_t *paddr = (bus_addr_t*) arg;
1793 	*paddr = segs->ds_addr;
1794 }
1795 
1796 static int
1797 safe_dma_malloc(
1798 	struct safe_softc *sc,
1799 	bus_size_t size,
1800 	struct safe_dma_alloc *dma,
1801 	int mapflags
1802 )
1803 {
1804 	int r;
1805 
1806 	r = bus_dma_tag_create(NULL,			/* parent */
1807 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1808 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1809 			       BUS_SPACE_MAXADDR,	/* highaddr */
1810 			       NULL, NULL,		/* filter, filterarg */
1811 			       size,			/* maxsize */
1812 			       1,			/* nsegments */
1813 			       size,			/* maxsegsize */
1814 			       BUS_DMA_ALLOCNOW,	/* flags */
1815 			       NULL, NULL,		/* locking */
1816 			       &dma->dma_tag);
1817 	if (r != 0) {
1818 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1819 			"bus_dma_tag_create failed; error %u\n", r);
1820 		goto fail_0;
1821 	}
1822 
1823 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1824 	if (r != 0) {
1825 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1826 			"bus_dmamap_create failed; error %u\n", r);
1827 		goto fail_1;
1828 	}
1829 
1830 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1831 			     BUS_DMA_NOWAIT, &dma->dma_map);
1832 	if (r != 0) {
1833 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1834 			"bus_dmammem_alloc failed; size %zu, error %u\n",
1835 			size, r);
1836 		goto fail_2;
1837 	}
1838 
1839 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1840 		            size,
1841 			    safe_dmamap_cb,
1842 			    &dma->dma_paddr,
1843 			    mapflags | BUS_DMA_NOWAIT);
1844 	if (r != 0) {
1845 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1846 			"bus_dmamap_load failed; error %u\n", r);
1847 		goto fail_3;
1848 	}
1849 
1850 	dma->dma_size = size;
1851 	return (0);
1852 
1853 fail_3:
1854 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1855 fail_2:
1856 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1857 fail_1:
1858 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1859 	bus_dma_tag_destroy(dma->dma_tag);
1860 fail_0:
1861 	dma->dma_map = NULL;
1862 	dma->dma_tag = NULL;
1863 	return (r);
1864 }
1865 
1866 static void
1867 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1868 {
1869 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1870 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1871 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1872 	bus_dma_tag_destroy(dma->dma_tag);
1873 }
1874 
1875 /*
1876  * Resets the board.  Values in the regesters are left as is
1877  * from the reset (i.e. initial values are assigned elsewhere).
1878  */
1879 static void
1880 safe_reset_board(struct safe_softc *sc)
1881 {
1882 	u_int32_t v;
1883 	/*
1884 	 * Reset the device.  The manual says no delay
1885 	 * is needed between marking and clearing reset.
1886 	 */
1887 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1888 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1889 		 SAFE_PE_DMACFG_SGRESET);
1890 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1891 				    | SAFE_PE_DMACFG_PERESET
1892 				    | SAFE_PE_DMACFG_PDRRESET
1893 				    | SAFE_PE_DMACFG_SGRESET);
1894 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1895 }
1896 
1897 /*
1898  * Initialize registers we need to touch only once.
1899  */
1900 static void
1901 safe_init_board(struct safe_softc *sc)
1902 {
1903 	u_int32_t v, dwords;
1904 
1905 	v = READ_REG(sc, SAFE_PE_DMACFG);
1906 	v &=~ SAFE_PE_DMACFG_PEMODE;
1907 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1908 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1909 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1910 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1911 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1912 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1913 	  ;
1914 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1915 #if 0
1916 	/* XXX select byte swap based on host byte order */
1917 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1918 #endif
1919 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1920 		/*
1921 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1922 		 * "target mode transfers" done while the chip is DMA'ing
1923 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1924 		 * we reduce the max PCI transfer size and use small source
1925 		 * particle descriptors (<= 256 bytes).
1926 		 */
1927 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1928 		device_printf(sc->sc_dev,
1929 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1930 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1931 			SAFE_REV_MAJ(sc->sc_chiprev),
1932 			SAFE_REV_MIN(sc->sc_chiprev));
1933 	}
1934 
1935 	/* NB: operands+results are overlaid */
1936 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1937 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1938 	/*
1939 	 * Configure ring entry size and number of items in the ring.
1940 	 */
1941 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1942 		("PE ring entry not 32-bit aligned!"));
1943 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1944 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1945 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1946 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1947 
1948 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1949 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1950 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1951 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1952 	/*
1953 	 * NB: destination particles are fixed size.  We use
1954 	 *     an mbuf cluster and require all results go to
1955 	 *     clusters or smaller.
1956 	 */
1957 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1958 
1959 	/* it's now safe to enable PE mode, do it */
1960 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1961 
1962 	/*
1963 	 * Configure hardware to use level-triggered interrupts and
1964 	 * to interrupt after each descriptor is processed.
1965 	 */
1966 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1967 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1968 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1969 }
1970 
1971 /*
1972  * Init PCI registers
1973  */
1974 static void
1975 safe_init_pciregs(device_t dev)
1976 {
1977 }
1978 
1979 /*
1980  * Clean up after a chip crash.
1981  * It is assumed that the caller in splimp()
1982  */
1983 static void
1984 safe_cleanchip(struct safe_softc *sc)
1985 {
1986 
1987 	if (sc->sc_nqchip != 0) {
1988 		struct safe_ringentry *re = sc->sc_back;
1989 
1990 		while (re != sc->sc_front) {
1991 			if (re->re_desc.d_csr != 0)
1992 				safe_free_entry(sc, re);
1993 			if (++re == sc->sc_ringtop)
1994 				re = sc->sc_ring;
1995 		}
1996 		sc->sc_back = re;
1997 		sc->sc_nqchip = 0;
1998 	}
1999 }
2000 
2001 /*
2002  * free a safe_q
2003  * It is assumed that the caller is within splimp().
2004  */
2005 static int
2006 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2007 {
2008 	struct cryptop *crp;
2009 
2010 	/*
2011 	 * Free header MCR
2012 	 */
2013 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2014 		m_freem(re->re_dst_m);
2015 
2016 	crp = (struct cryptop *)re->re_crp;
2017 
2018 	re->re_desc.d_csr = 0;
2019 
2020 	crp->crp_etype = EFAULT;
2021 	crypto_done(crp);
2022 	return(0);
2023 }
2024 
2025 /*
2026  * Routine to reset the chip and clean up.
2027  * It is assumed that the caller is in splimp()
2028  */
2029 static void
2030 safe_totalreset(struct safe_softc *sc)
2031 {
2032 	safe_reset_board(sc);
2033 	safe_init_board(sc);
2034 	safe_cleanchip(sc);
2035 }
2036 
2037 /*
2038  * Is the operand suitable aligned for direct DMA.  Each
2039  * segment must be aligned on a 32-bit boundary and all
2040  * but the last segment must be a multiple of 4 bytes.
2041  */
2042 static int
2043 safe_dmamap_aligned(const struct safe_operand *op)
2044 {
2045 	int i;
2046 
2047 	for (i = 0; i < op->nsegs; i++) {
2048 		if (op->segs[i].ds_addr & 3)
2049 			return (0);
2050 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2051 			return (0);
2052 	}
2053 	return (1);
2054 }
2055 
2056 /*
2057  * Is the operand suitable for direct DMA as the destination
2058  * of an operation.  The hardware requires that each ``particle''
2059  * but the last in an operation result have the same size.  We
2060  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2061  * 0 if some segment is not a multiple of of this size, 1 if all
2062  * segments are exactly this size, or 2 if segments are at worst
2063  * a multple of this size.
2064  */
2065 static int
2066 safe_dmamap_uniform(const struct safe_operand *op)
2067 {
2068 	int result = 1;
2069 
2070 	if (op->nsegs > 0) {
2071 		int i;
2072 
2073 		for (i = 0; i < op->nsegs-1; i++) {
2074 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2075 				return (0);
2076 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2077 				result = 2;
2078 		}
2079 	}
2080 	return (result);
2081 }
2082 
2083 #ifdef SAFE_DEBUG
2084 static void
2085 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2086 {
2087 	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2088 		, tag
2089 		, READ_REG(sc, SAFE_DMA_ENDIAN)
2090 		, READ_REG(sc, SAFE_DMA_SRCADDR)
2091 		, READ_REG(sc, SAFE_DMA_DSTADDR)
2092 		, READ_REG(sc, SAFE_DMA_STAT)
2093 	);
2094 }
2095 
2096 static void
2097 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2098 {
2099 	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2100 		, tag
2101 		, READ_REG(sc, SAFE_HI_CFG)
2102 		, READ_REG(sc, SAFE_HI_MASK)
2103 		, READ_REG(sc, SAFE_HI_DESC_CNT)
2104 		, READ_REG(sc, SAFE_HU_STAT)
2105 		, READ_REG(sc, SAFE_HM_STAT)
2106 	);
2107 }
2108 
2109 static void
2110 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2111 {
2112 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2113 
2114 	/* NB: assume caller has lock on ring */
2115 	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2116 		tag,
2117 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2118 		(unsigned long)(sc->sc_back - sc->sc_ring),
2119 		(unsigned long)(sc->sc_front - sc->sc_ring));
2120 }
2121 
2122 static void
2123 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2124 {
2125 	int ix, nsegs;
2126 
2127 	ix = re - sc->sc_ring;
2128 	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2129 		, tag
2130 		, re, ix
2131 		, re->re_desc.d_csr
2132 		, re->re_desc.d_src
2133 		, re->re_desc.d_dst
2134 		, re->re_desc.d_sa
2135 		, re->re_desc.d_len
2136 	);
2137 	if (re->re_src.nsegs > 1) {
2138 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2139 			sizeof(struct safe_pdesc);
2140 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2141 			printf(" spd[%u] %p: %p size %u flags %x"
2142 				, ix, &sc->sc_spring[ix]
2143 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2144 				, sc->sc_spring[ix].pd_size
2145 				, sc->sc_spring[ix].pd_flags
2146 			);
2147 			if (sc->sc_spring[ix].pd_size == 0)
2148 				printf(" (zero!)");
2149 			printf("\n");
2150 			if (++ix == SAFE_TOTAL_SPART)
2151 				ix = 0;
2152 		}
2153 	}
2154 	if (re->re_dst.nsegs > 1) {
2155 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2156 			sizeof(struct safe_pdesc);
2157 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2158 			printf(" dpd[%u] %p: %p flags %x\n"
2159 				, ix, &sc->sc_dpring[ix]
2160 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2161 				, sc->sc_dpring[ix].pd_flags
2162 			);
2163 			if (++ix == SAFE_TOTAL_DPART)
2164 				ix = 0;
2165 		}
2166 	}
2167 	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2168 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2169 	printf("sa: key %x %x %x %x %x %x %x %x\n"
2170 		, re->re_sa.sa_key[0]
2171 		, re->re_sa.sa_key[1]
2172 		, re->re_sa.sa_key[2]
2173 		, re->re_sa.sa_key[3]
2174 		, re->re_sa.sa_key[4]
2175 		, re->re_sa.sa_key[5]
2176 		, re->re_sa.sa_key[6]
2177 		, re->re_sa.sa_key[7]
2178 	);
2179 	printf("sa: indigest %x %x %x %x %x\n"
2180 		, re->re_sa.sa_indigest[0]
2181 		, re->re_sa.sa_indigest[1]
2182 		, re->re_sa.sa_indigest[2]
2183 		, re->re_sa.sa_indigest[3]
2184 		, re->re_sa.sa_indigest[4]
2185 	);
2186 	printf("sa: outdigest %x %x %x %x %x\n"
2187 		, re->re_sa.sa_outdigest[0]
2188 		, re->re_sa.sa_outdigest[1]
2189 		, re->re_sa.sa_outdigest[2]
2190 		, re->re_sa.sa_outdigest[3]
2191 		, re->re_sa.sa_outdigest[4]
2192 	);
2193 	printf("sr: iv %x %x %x %x\n"
2194 		, re->re_sastate.sa_saved_iv[0]
2195 		, re->re_sastate.sa_saved_iv[1]
2196 		, re->re_sastate.sa_saved_iv[2]
2197 		, re->re_sastate.sa_saved_iv[3]
2198 	);
2199 	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2200 		, re->re_sastate.sa_saved_hashbc
2201 		, re->re_sastate.sa_saved_indigest[0]
2202 		, re->re_sastate.sa_saved_indigest[1]
2203 		, re->re_sastate.sa_saved_indigest[2]
2204 		, re->re_sastate.sa_saved_indigest[3]
2205 		, re->re_sastate.sa_saved_indigest[4]
2206 	);
2207 }
2208 
2209 static void
2210 safe_dump_ring(struct safe_softc *sc, const char *tag)
2211 {
2212 	mtx_lock(&sc->sc_ringmtx);
2213 	printf("\nSafeNet Ring State:\n");
2214 	safe_dump_intrstate(sc, tag);
2215 	safe_dump_dmastatus(sc, tag);
2216 	safe_dump_ringstate(sc, tag);
2217 	if (sc->sc_nqchip) {
2218 		struct safe_ringentry *re = sc->sc_back;
2219 		do {
2220 			safe_dump_request(sc, tag, re);
2221 			if (++re == sc->sc_ringtop)
2222 				re = sc->sc_ring;
2223 		} while (re != sc->sc_front);
2224 	}
2225 	mtx_unlock(&sc->sc_ringmtx);
2226 }
2227 
2228 static int
2229 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2230 {
2231 	char dmode[64];
2232 	int error;
2233 
2234 	strncpy(dmode, "", sizeof(dmode) - 1);
2235 	dmode[sizeof(dmode) - 1] = '\0';
2236 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2237 
2238 	if (error == 0 && req->newptr != NULL) {
2239 		struct safe_softc *sc = safec;
2240 
2241 		if (!sc)
2242 			return EINVAL;
2243 		if (strncmp(dmode, "dma", 3) == 0)
2244 			safe_dump_dmastatus(sc, "safe0");
2245 		else if (strncmp(dmode, "int", 3) == 0)
2246 			safe_dump_intrstate(sc, "safe0");
2247 		else if (strncmp(dmode, "ring", 4) == 0)
2248 			safe_dump_ring(sc, "safe0");
2249 		else
2250 			return EINVAL;
2251 	}
2252 	return error;
2253 }
2254 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2255 	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2256 #endif /* SAFE_DEBUG */
2257