xref: /freebsd/sys/dev/safe/safe.c (revision 66c14b21d3ab0b18376563ba643ddb49b4fd33dd)
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56 
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 
63 #include <dev/pci/pcivar.h>
64 #include <dev/pci/pcireg.h>
65 
66 #ifdef SAFE_RNDTEST
67 #include <dev/rndtest/rndtest.h>
68 #endif
69 #include <dev/safe/safereg.h>
70 #include <dev/safe/safevar.h>
71 
72 #ifndef bswap32
73 #define	bswap32	NTOHL
74 #endif
75 
76 /*
77  * Prototypes and count for the pci_device structure
78  */
79 static	int safe_probe(device_t);
80 static	int safe_attach(device_t);
81 static	int safe_detach(device_t);
82 static	int safe_suspend(device_t);
83 static	int safe_resume(device_t);
84 static	void safe_shutdown(device_t);
85 
86 static device_method_t safe_methods[] = {
87 	/* Device interface */
88 	DEVMETHOD(device_probe,		safe_probe),
89 	DEVMETHOD(device_attach,	safe_attach),
90 	DEVMETHOD(device_detach,	safe_detach),
91 	DEVMETHOD(device_suspend,	safe_suspend),
92 	DEVMETHOD(device_resume,	safe_resume),
93 	DEVMETHOD(device_shutdown,	safe_shutdown),
94 
95 	/* bus interface */
96 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
97 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
98 
99 	{ 0, 0 }
100 };
101 static driver_t safe_driver = {
102 	"safe",
103 	safe_methods,
104 	sizeof (struct safe_softc)
105 };
106 static devclass_t safe_devclass;
107 
108 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
109 MODULE_DEPEND(safe, crypto, 1, 1, 1);
110 #ifdef SAFE_RNDTEST
111 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
112 #endif
113 
114 static	void safe_intr(void *);
115 static	int safe_newsession(void *, u_int32_t *, struct cryptoini *);
116 static	int safe_freesession(void *, u_int64_t);
117 static	int safe_process(void *, struct cryptop *, int);
118 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
119 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
120 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
121 #ifndef SAFE_NO_RNG
122 static	void safe_rng_init(struct safe_softc *);
123 static	void safe_rng(void *);
124 #endif /* SAFE_NO_RNG */
125 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
126 	        struct safe_dma_alloc *, int);
127 #define	safe_dma_sync(_dma, _flags) \
128 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
129 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
130 static	int safe_dmamap_aligned(const struct safe_operand *);
131 static	int safe_dmamap_uniform(const struct safe_operand *);
132 
133 static	void safe_reset_board(struct safe_softc *);
134 static	void safe_init_board(struct safe_softc *);
135 static	void safe_init_pciregs(device_t dev);
136 static	void safe_cleanchip(struct safe_softc *);
137 static	void safe_totalreset(struct safe_softc *);
138 
139 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
140 
141 SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
142 
143 #ifdef SAFE_DEBUG
144 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
145 static	void safe_dump_ringstate(struct safe_softc *, const char *);
146 static	void safe_dump_intrstate(struct safe_softc *, const char *);
147 static	void safe_dump_request(struct safe_softc *, const char *,
148 		struct safe_ringentry *);
149 
150 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
151 
152 static	int safe_debug = 0;
153 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
154 	    0, "control debugging msgs");
155 #define	DPRINTF(_x)	if (safe_debug) printf _x
156 #else
157 #define	DPRINTF(_x)
158 #endif
159 
160 #define	READ_REG(sc,r) \
161 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
162 
163 #define WRITE_REG(sc,reg,val) \
164 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
165 
166 struct safe_stats safestats;
167 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
168 	    safe_stats, "driver statistics");
169 #ifndef SAFE_NO_RNG
170 static	int safe_rnginterval = 1;		/* poll once a second */
171 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
172 	    0, "RNG polling interval (secs)");
173 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
174 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
175 	    0, "RNG polling buffer size (32-bit words)");
176 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
177 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
178 	    0, "RNG max alarms before reset");
179 #endif /* SAFE_NO_RNG */
180 
181 static int
182 safe_probe(device_t dev)
183 {
184 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
185 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
186 		return (BUS_PROBE_DEFAULT);
187 	return (ENXIO);
188 }
189 
190 static const char*
191 safe_partname(struct safe_softc *sc)
192 {
193 	/* XXX sprintf numbers when not decoded */
194 	switch (pci_get_vendor(sc->sc_dev)) {
195 	case PCI_VENDOR_SAFENET:
196 		switch (pci_get_device(sc->sc_dev)) {
197 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
198 		}
199 		return "SafeNet unknown-part";
200 	}
201 	return "Unknown-vendor unknown-part";
202 }
203 
204 #ifndef SAFE_NO_RNG
205 static void
206 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
207 {
208 	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
209 }
210 #endif /* SAFE_NO_RNG */
211 
212 static int
213 safe_attach(device_t dev)
214 {
215 	struct safe_softc *sc = device_get_softc(dev);
216 	u_int32_t raddr;
217 	u_int32_t cmd, i, devinfo;
218 	int rid;
219 
220 	bzero(sc, sizeof (*sc));
221 	sc->sc_dev = dev;
222 
223 	/* XXX handle power management */
224 
225 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
226 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
227 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
228 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
229 
230 	if (!(cmd & PCIM_CMD_MEMEN)) {
231 		device_printf(dev, "failed to enable memory mapping\n");
232 		goto bad;
233 	}
234 
235 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
236 		device_printf(dev, "failed to enable bus mastering\n");
237 		goto bad;
238 	}
239 
240 	/*
241 	 * Setup memory-mapping of PCI registers.
242 	 */
243 	rid = BS_BAR;
244 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
245 					   RF_ACTIVE);
246 	if (sc->sc_sr == NULL) {
247 		device_printf(dev, "cannot map register space\n");
248 		goto bad;
249 	}
250 	sc->sc_st = rman_get_bustag(sc->sc_sr);
251 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
252 
253 	/*
254 	 * Arrange interrupt line.
255 	 */
256 	rid = 0;
257 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
258 					    RF_SHAREABLE|RF_ACTIVE);
259 	if (sc->sc_irq == NULL) {
260 		device_printf(dev, "could not map interrupt\n");
261 		goto bad1;
262 	}
263 	/*
264 	 * NB: Network code assumes we are blocked with splimp()
265 	 *     so make sure the IRQ is mapped appropriately.
266 	 */
267 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
268 			   safe_intr, sc, &sc->sc_ih)) {
269 		device_printf(dev, "could not establish interrupt\n");
270 		goto bad2;
271 	}
272 
273 	sc->sc_cid = crypto_get_driverid(0);
274 	if (sc->sc_cid < 0) {
275 		device_printf(dev, "could not get crypto driver id\n");
276 		goto bad3;
277 	}
278 
279 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
280 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
281 
282 	/*
283 	 * Setup DMA descriptor area.
284 	 */
285 	if (bus_dma_tag_create(NULL,			/* parent */
286 			       1,			/* alignment */
287 			       SAFE_DMA_BOUNDARY,	/* boundary */
288 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
289 			       BUS_SPACE_MAXADDR,	/* highaddr */
290 			       NULL, NULL,		/* filter, filterarg */
291 			       SAFE_MAX_DMA,		/* maxsize */
292 			       SAFE_MAX_PART,		/* nsegments */
293 			       SAFE_MAX_SSIZE,		/* maxsegsize */
294 			       BUS_DMA_ALLOCNOW,	/* flags */
295 			       NULL, NULL,		/* locking */
296 			       &sc->sc_srcdmat)) {
297 		device_printf(dev, "cannot allocate DMA tag\n");
298 		goto bad4;
299 	}
300 	if (bus_dma_tag_create(NULL,			/* parent */
301 			       sizeof(u_int32_t),	/* alignment */
302 			       SAFE_MAX_DSIZE,		/* boundary */
303 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
304 			       BUS_SPACE_MAXADDR,	/* highaddr */
305 			       NULL, NULL,		/* filter, filterarg */
306 			       SAFE_MAX_DMA,		/* maxsize */
307 			       SAFE_MAX_PART,		/* nsegments */
308 			       SAFE_MAX_DSIZE,		/* maxsegsize */
309 			       BUS_DMA_ALLOCNOW,	/* flags */
310 			       NULL, NULL,		/* locking */
311 			       &sc->sc_dstdmat)) {
312 		device_printf(dev, "cannot allocate DMA tag\n");
313 		goto bad4;
314 	}
315 
316 	/*
317 	 * Allocate packet engine descriptors.
318 	 */
319 	if (safe_dma_malloc(sc,
320 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
321 	    &sc->sc_ringalloc, 0)) {
322 		device_printf(dev, "cannot allocate PE descriptor ring\n");
323 		bus_dma_tag_destroy(sc->sc_srcdmat);
324 		goto bad4;
325 	}
326 	/*
327 	 * Hookup the static portion of all our data structures.
328 	 */
329 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
330 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
331 	sc->sc_front = sc->sc_ring;
332 	sc->sc_back = sc->sc_ring;
333 	raddr = sc->sc_ringalloc.dma_paddr;
334 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
335 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
336 		struct safe_ringentry *re = &sc->sc_ring[i];
337 
338 		re->re_desc.d_sa = raddr +
339 			offsetof(struct safe_ringentry, re_sa);
340 		re->re_sa.sa_staterec = raddr +
341 			offsetof(struct safe_ringentry, re_sastate);
342 
343 		raddr += sizeof (struct safe_ringentry);
344 	}
345 	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
346 		"packet engine ring", MTX_DEF);
347 
348 	/*
349 	 * Allocate scatter and gather particle descriptors.
350 	 */
351 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
352 	    &sc->sc_spalloc, 0)) {
353 		device_printf(dev, "cannot allocate source particle "
354 			"descriptor ring\n");
355 		mtx_destroy(&sc->sc_ringmtx);
356 		safe_dma_free(sc, &sc->sc_ringalloc);
357 		bus_dma_tag_destroy(sc->sc_srcdmat);
358 		goto bad4;
359 	}
360 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
361 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
362 	sc->sc_spfree = sc->sc_spring;
363 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
364 
365 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
366 	    &sc->sc_dpalloc, 0)) {
367 		device_printf(dev, "cannot allocate destination particle "
368 			"descriptor ring\n");
369 		mtx_destroy(&sc->sc_ringmtx);
370 		safe_dma_free(sc, &sc->sc_spalloc);
371 		safe_dma_free(sc, &sc->sc_ringalloc);
372 		bus_dma_tag_destroy(sc->sc_dstdmat);
373 		goto bad4;
374 	}
375 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
376 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
377 	sc->sc_dpfree = sc->sc_dpring;
378 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
379 
380 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
381 
382 	devinfo = READ_REG(sc, SAFE_DEVINFO);
383 	if (devinfo & SAFE_DEVINFO_RNG) {
384 		sc->sc_flags |= SAFE_FLAGS_RNG;
385 		printf(" rng");
386 	}
387 	if (devinfo & SAFE_DEVINFO_PKEY) {
388 #if 0
389 		printf(" key");
390 		sc->sc_flags |= SAFE_FLAGS_KEY;
391 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
392 			safe_kprocess, sc);
393 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
394 			safe_kprocess, sc);
395 #endif
396 	}
397 	if (devinfo & SAFE_DEVINFO_DES) {
398 		printf(" des/3des");
399 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
400 			safe_newsession, safe_freesession, safe_process, sc);
401 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
402 			safe_newsession, safe_freesession, safe_process, sc);
403 	}
404 	if (devinfo & SAFE_DEVINFO_AES) {
405 		printf(" aes");
406 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
407 			safe_newsession, safe_freesession, safe_process, sc);
408 	}
409 	if (devinfo & SAFE_DEVINFO_MD5) {
410 		printf(" md5");
411 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
412 			safe_newsession, safe_freesession, safe_process, sc);
413 	}
414 	if (devinfo & SAFE_DEVINFO_SHA1) {
415 		printf(" sha1");
416 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
417 			safe_newsession, safe_freesession, safe_process, sc);
418 	}
419 	printf(" null");
420 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0,
421 		safe_newsession, safe_freesession, safe_process, sc);
422 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0,
423 		safe_newsession, safe_freesession, safe_process, sc);
424 	/* XXX other supported algorithms */
425 	printf("\n");
426 
427 	safe_reset_board(sc);		/* reset h/w */
428 	safe_init_pciregs(dev);		/* init pci settings */
429 	safe_init_board(sc);		/* init h/w */
430 
431 #ifndef SAFE_NO_RNG
432 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
433 #ifdef SAFE_RNDTEST
434 		sc->sc_rndtest = rndtest_attach(dev);
435 		if (sc->sc_rndtest)
436 			sc->sc_harvest = rndtest_harvest;
437 		else
438 			sc->sc_harvest = default_harvest;
439 #else
440 		sc->sc_harvest = default_harvest;
441 #endif
442 		safe_rng_init(sc);
443 
444 		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
445 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
446 	}
447 #endif /* SAFE_NO_RNG */
448 #ifdef SAFE_DEBUG
449 	safec = sc;			/* for use by hw.safe.dump */
450 #endif
451 	return (0);
452 bad4:
453 	crypto_unregister_all(sc->sc_cid);
454 bad3:
455 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
456 bad2:
457 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
458 bad1:
459 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
460 bad:
461 	return (ENXIO);
462 }
463 
464 /*
465  * Detach a device that successfully probed.
466  */
467 static int
468 safe_detach(device_t dev)
469 {
470 	struct safe_softc *sc = device_get_softc(dev);
471 
472 	/* XXX wait/abort active ops */
473 
474 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
475 
476 	callout_stop(&sc->sc_rngto);
477 
478 	crypto_unregister_all(sc->sc_cid);
479 
480 #ifdef SAFE_RNDTEST
481 	if (sc->sc_rndtest)
482 		rndtest_detach(sc->sc_rndtest);
483 #endif
484 
485 	safe_cleanchip(sc);
486 	safe_dma_free(sc, &sc->sc_dpalloc);
487 	safe_dma_free(sc, &sc->sc_spalloc);
488 	mtx_destroy(&sc->sc_ringmtx);
489 	safe_dma_free(sc, &sc->sc_ringalloc);
490 
491 	bus_generic_detach(dev);
492 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
493 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
494 
495 	bus_dma_tag_destroy(sc->sc_srcdmat);
496 	bus_dma_tag_destroy(sc->sc_dstdmat);
497 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
498 
499 	return (0);
500 }
501 
502 /*
503  * Stop all chip i/o so that the kernel's probe routines don't
504  * get confused by errant DMAs when rebooting.
505  */
506 static void
507 safe_shutdown(device_t dev)
508 {
509 #ifdef notyet
510 	safe_stop(device_get_softc(dev));
511 #endif
512 }
513 
514 /*
515  * Device suspend routine.
516  */
517 static int
518 safe_suspend(device_t dev)
519 {
520 	struct safe_softc *sc = device_get_softc(dev);
521 
522 #ifdef notyet
523 	/* XXX stop the device and save PCI settings */
524 #endif
525 	sc->sc_suspended = 1;
526 
527 	return (0);
528 }
529 
530 static int
531 safe_resume(device_t dev)
532 {
533 	struct safe_softc *sc = device_get_softc(dev);
534 
535 #ifdef notyet
536 	/* XXX retore PCI settings and start the device */
537 #endif
538 	sc->sc_suspended = 0;
539 	return (0);
540 }
541 
542 /*
543  * SafeXcel Interrupt routine
544  */
545 static void
546 safe_intr(void *arg)
547 {
548 	struct safe_softc *sc = arg;
549 	volatile u_int32_t stat;
550 
551 	stat = READ_REG(sc, SAFE_HM_STAT);
552 	if (stat == 0)			/* shared irq, not for us */
553 		return;
554 
555 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
556 
557 	if ((stat & SAFE_INT_PE_DDONE)) {
558 		/*
559 		 * Descriptor(s) done; scan the ring and
560 		 * process completed operations.
561 		 */
562 		mtx_lock(&sc->sc_ringmtx);
563 		while (sc->sc_back != sc->sc_front) {
564 			struct safe_ringentry *re = sc->sc_back;
565 #ifdef SAFE_DEBUG
566 			if (safe_debug) {
567 				safe_dump_ringstate(sc, __func__);
568 				safe_dump_request(sc, __func__, re);
569 			}
570 #endif
571 			/*
572 			 * safe_process marks ring entries that were allocated
573 			 * but not used with a csr of zero.  This insures the
574 			 * ring front pointer never needs to be set backwards
575 			 * in the event that an entry is allocated but not used
576 			 * because of a setup error.
577 			 */
578 			if (re->re_desc.d_csr != 0) {
579 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
580 					break;
581 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
582 					break;
583 				sc->sc_nqchip--;
584 				safe_callback(sc, re);
585 			}
586 			if (++(sc->sc_back) == sc->sc_ringtop)
587 				sc->sc_back = sc->sc_ring;
588 		}
589 		mtx_unlock(&sc->sc_ringmtx);
590 	}
591 
592 	/*
593 	 * Check to see if we got any DMA Error
594 	 */
595 	if (stat & SAFE_INT_PE_ERROR) {
596 		DPRINTF(("dmaerr dmastat %08x\n",
597 			READ_REG(sc, SAFE_PE_DMASTAT)));
598 		safestats.st_dmaerr++;
599 		safe_totalreset(sc);
600 #if 0
601 		safe_feed(sc);
602 #endif
603 	}
604 
605 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
606 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
607 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
608 			sc->sc_needwakeup));
609 		sc->sc_needwakeup &= ~wakeup;
610 		crypto_unblock(sc->sc_cid, wakeup);
611 	}
612 }
613 
614 /*
615  * safe_feed() - post a request to chip
616  */
617 static void
618 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
619 {
620 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
621 	if (re->re_dst_map != NULL)
622 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
623 			BUS_DMASYNC_PREREAD);
624 	/* XXX have no smaller granularity */
625 	safe_dma_sync(&sc->sc_ringalloc,
626 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
627 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
628 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
629 
630 #ifdef SAFE_DEBUG
631 	if (safe_debug) {
632 		safe_dump_ringstate(sc, __func__);
633 		safe_dump_request(sc, __func__, re);
634 	}
635 #endif
636 	sc->sc_nqchip++;
637 	if (sc->sc_nqchip > safestats.st_maxqchip)
638 		safestats.st_maxqchip = sc->sc_nqchip;
639 	/* poke h/w to check descriptor ring, any value can be written */
640 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
641 }
642 
643 /*
644  * Allocate a new 'session' and return an encoded session id.  'sidp'
645  * contains our registration id, and should contain an encoded session
646  * id on successful allocation.
647  */
648 static int
649 safe_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
650 {
651 #define	N(a)	(sizeof(a) / sizeof (a[0]))
652 	struct cryptoini *c, *encini = NULL, *macini = NULL;
653 	struct safe_softc *sc = arg;
654 	struct safe_session *ses = NULL;
655 	MD5_CTX md5ctx;
656 	SHA1_CTX sha1ctx;
657 	int i, sesn;
658 
659 	if (sidp == NULL || cri == NULL || sc == NULL)
660 		return (EINVAL);
661 
662 	for (c = cri; c != NULL; c = c->cri_next) {
663 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
664 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
665 		    c->cri_alg == CRYPTO_NULL_HMAC) {
666 			if (macini)
667 				return (EINVAL);
668 			macini = c;
669 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
670 		    c->cri_alg == CRYPTO_3DES_CBC ||
671 		    c->cri_alg == CRYPTO_AES_CBC ||
672 		    c->cri_alg == CRYPTO_NULL_CBC) {
673 			if (encini)
674 				return (EINVAL);
675 			encini = c;
676 		} else
677 			return (EINVAL);
678 	}
679 	if (encini == NULL && macini == NULL)
680 		return (EINVAL);
681 	if (encini) {			/* validate key length */
682 		switch (encini->cri_alg) {
683 		case CRYPTO_DES_CBC:
684 			if (encini->cri_klen != 64)
685 				return (EINVAL);
686 			break;
687 		case CRYPTO_3DES_CBC:
688 			if (encini->cri_klen != 192)
689 				return (EINVAL);
690 			break;
691 		case CRYPTO_AES_CBC:
692 			if (encini->cri_klen != 128 &&
693 			    encini->cri_klen != 192 &&
694 			    encini->cri_klen != 256)
695 				return (EINVAL);
696 			break;
697 		}
698 	}
699 
700 	if (sc->sc_sessions == NULL) {
701 		ses = sc->sc_sessions = (struct safe_session *)malloc(
702 		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
703 		if (ses == NULL)
704 			return (ENOMEM);
705 		sesn = 0;
706 		sc->sc_nsessions = 1;
707 	} else {
708 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
709 			if (sc->sc_sessions[sesn].ses_used == 0) {
710 				ses = &sc->sc_sessions[sesn];
711 				break;
712 			}
713 		}
714 
715 		if (ses == NULL) {
716 			sesn = sc->sc_nsessions;
717 			ses = (struct safe_session *)malloc((sesn + 1) *
718 			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
719 			if (ses == NULL)
720 				return (ENOMEM);
721 			bcopy(sc->sc_sessions, ses, sesn *
722 			    sizeof(struct safe_session));
723 			bzero(sc->sc_sessions, sesn *
724 			    sizeof(struct safe_session));
725 			free(sc->sc_sessions, M_DEVBUF);
726 			sc->sc_sessions = ses;
727 			ses = &sc->sc_sessions[sesn];
728 			sc->sc_nsessions++;
729 		}
730 	}
731 
732 	bzero(ses, sizeof(struct safe_session));
733 	ses->ses_used = 1;
734 
735 	if (encini) {
736 		/* get an IV */
737 		/* XXX may read fewer than requested */
738 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
739 
740 		ses->ses_klen = encini->cri_klen;
741 		bcopy(encini->cri_key, ses->ses_key, ses->ses_klen / 8);
742 
743 		/* PE is little-endian, insure proper byte order */
744 		for (i = 0; i < N(ses->ses_key); i++)
745 			ses->ses_key[i] = htole32(ses->ses_key[i]);
746 	}
747 
748 	if (macini) {
749 		ses->ses_mlen = macini->cri_mlen;
750 		if (ses->ses_mlen == 0) {
751 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
752 				ses->ses_mlen = MD5_DIGEST_LENGTH;
753 			else
754 				ses->ses_mlen = SHA1_RESULTLEN;
755 		}
756 
757 		for (i = 0; i < macini->cri_klen / 8; i++)
758 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
759 
760 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
761 			MD5Init(&md5ctx);
762 			MD5Update(&md5ctx, macini->cri_key,
763 			    macini->cri_klen / 8);
764 			MD5Update(&md5ctx, hmac_ipad_buffer,
765 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
766 			bcopy(md5ctx.state, ses->ses_hminner,
767 			    sizeof(md5ctx.state));
768 		} else {
769 			SHA1Init(&sha1ctx);
770 			SHA1Update(&sha1ctx, macini->cri_key,
771 			    macini->cri_klen / 8);
772 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
773 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
774 			bcopy(sha1ctx.h.b32, ses->ses_hminner,
775 			    sizeof(sha1ctx.h.b32));
776 		}
777 
778 		for (i = 0; i < macini->cri_klen / 8; i++)
779 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
780 
781 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
782 			MD5Init(&md5ctx);
783 			MD5Update(&md5ctx, macini->cri_key,
784 			    macini->cri_klen / 8);
785 			MD5Update(&md5ctx, hmac_opad_buffer,
786 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
787 			bcopy(md5ctx.state, ses->ses_hmouter,
788 			    sizeof(md5ctx.state));
789 		} else {
790 			SHA1Init(&sha1ctx);
791 			SHA1Update(&sha1ctx, macini->cri_key,
792 			    macini->cri_klen / 8);
793 			SHA1Update(&sha1ctx, hmac_opad_buffer,
794 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
795 			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
796 			    sizeof(sha1ctx.h.b32));
797 		}
798 
799 		for (i = 0; i < macini->cri_klen / 8; i++)
800 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
801 
802 		/* PE is little-endian, insure proper byte order */
803 		for (i = 0; i < N(ses->ses_hminner); i++) {
804 			ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
805 			ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
806 		}
807 	}
808 
809 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
810 	return (0);
811 #undef N
812 }
813 
814 /*
815  * Deallocate a session.
816  */
817 static int
818 safe_freesession(void *arg, u_int64_t tid)
819 {
820 	struct safe_softc *sc = arg;
821 	int session, ret;
822 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
823 
824 	if (sc == NULL)
825 		return (EINVAL);
826 
827 	session = SAFE_SESSION(sid);
828 	if (session < sc->sc_nsessions) {
829 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
830 		ret = 0;
831 	} else
832 		ret = EINVAL;
833 	return (ret);
834 }
835 
836 static void
837 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
838 {
839 	struct safe_operand *op = arg;
840 
841 	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
842 		(u_int) mapsize, nsegs, error));
843 	if (error != 0)
844 		return;
845 	op->mapsize = mapsize;
846 	op->nsegs = nsegs;
847 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
848 }
849 
850 static int
851 safe_process(void *arg, struct cryptop *crp, int hint)
852 {
853 	int err = 0, i, nicealign, uniform;
854 	struct safe_softc *sc = arg;
855 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
856 	int bypass, oplen, ivsize;
857 	caddr_t iv;
858 	int16_t coffset;
859 	struct safe_session *ses;
860 	struct safe_ringentry *re;
861 	struct safe_sarec *sa;
862 	struct safe_pdesc *pd;
863 	u_int32_t cmd0, cmd1, staterec;
864 
865 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
866 		safestats.st_invalid++;
867 		return (EINVAL);
868 	}
869 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
870 		safestats.st_badsession++;
871 		return (EINVAL);
872 	}
873 
874 	mtx_lock(&sc->sc_ringmtx);
875 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
876 		safestats.st_ringfull++;
877 		sc->sc_needwakeup |= CRYPTO_SYMQ;
878 		mtx_unlock(&sc->sc_ringmtx);
879 		return (ERESTART);
880 	}
881 	re = sc->sc_front;
882 
883 	staterec = re->re_sa.sa_staterec;	/* save */
884 	/* NB: zero everything but the PE descriptor */
885 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
886 	re->re_sa.sa_staterec = staterec;	/* restore */
887 
888 	re->re_crp = crp;
889 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
890 
891 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
892 		re->re_src_m = (struct mbuf *)crp->crp_buf;
893 		re->re_dst_m = (struct mbuf *)crp->crp_buf;
894 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
895 		re->re_src_io = (struct uio *)crp->crp_buf;
896 		re->re_dst_io = (struct uio *)crp->crp_buf;
897 	} else {
898 		safestats.st_badflags++;
899 		err = EINVAL;
900 		goto errout;	/* XXX we don't handle contiguous blocks! */
901 	}
902 
903 	sa = &re->re_sa;
904 	ses = &sc->sc_sessions[re->re_sesn];
905 
906 	crd1 = crp->crp_desc;
907 	if (crd1 == NULL) {
908 		safestats.st_nodesc++;
909 		err = EINVAL;
910 		goto errout;
911 	}
912 	crd2 = crd1->crd_next;
913 
914 	if ((crd1->crd_flags & CRD_F_KEY_EXPLICIT) ||
915 	    (crd2 != NULL && (crd2->crd_flags & CRD_F_KEY_EXPLICIT))) {
916 		safestats.st_badflags++;
917 		err = EINVAL;
918 		goto errout;
919 	}
920 
921 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
922 	cmd1 = 0;
923 	if (crd2 == NULL) {
924 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
925 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
926 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
927 			maccrd = crd1;
928 			enccrd = NULL;
929 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
930 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
931 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
932 		    crd1->crd_alg == CRYPTO_AES_CBC ||
933 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
934 			maccrd = NULL;
935 			enccrd = crd1;
936 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
937 		} else {
938 			safestats.st_badalg++;
939 			err = EINVAL;
940 			goto errout;
941 		}
942 	} else {
943 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
944 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
945 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
946 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
947 			crd2->crd_alg == CRYPTO_3DES_CBC ||
948 		        crd2->crd_alg == CRYPTO_AES_CBC ||
949 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
950 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
951 			maccrd = crd1;
952 			enccrd = crd2;
953 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
954 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
955 		    crd1->crd_alg == CRYPTO_AES_CBC ||
956 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
957 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
958 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
959 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
960 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
961 			enccrd = crd1;
962 			maccrd = crd2;
963 		} else {
964 			safestats.st_badalg++;
965 			err = EINVAL;
966 			goto errout;
967 		}
968 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
969 	}
970 
971 	if (enccrd) {
972 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
973 			cmd0 |= SAFE_SA_CMD0_DES;
974 			cmd1 |= SAFE_SA_CMD1_CBC;
975 			ivsize = 2*sizeof(u_int32_t);
976 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
977 			cmd0 |= SAFE_SA_CMD0_3DES;
978 			cmd1 |= SAFE_SA_CMD1_CBC;
979 			ivsize = 2*sizeof(u_int32_t);
980 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
981 			cmd0 |= SAFE_SA_CMD0_AES;
982 			cmd1 |= SAFE_SA_CMD1_CBC;
983 			if (ses->ses_klen == 128)
984 			     cmd1 |=  SAFE_SA_CMD1_AES128;
985 			else if (ses->ses_klen == 192)
986 			     cmd1 |=  SAFE_SA_CMD1_AES192;
987 			else
988 			     cmd1 |=  SAFE_SA_CMD1_AES256;
989 			ivsize = 4*sizeof(u_int32_t);
990 		} else {
991 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
992 			ivsize = 0;
993 		}
994 
995 		/*
996 		 * Setup encrypt/decrypt state.  When using basic ops
997 		 * we can't use an inline IV because hash/crypt offset
998 		 * must be from the end of the IV to the start of the
999 		 * crypt data and this leaves out the preceding header
1000 		 * from the hash calculation.  Instead we place the IV
1001 		 * in the state record and set the hash/crypt offset to
1002 		 * copy both the header+IV.
1003 		 */
1004 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1005 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1006 
1007 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1008 				iv = enccrd->crd_iv;
1009 			else
1010 				iv = (caddr_t) ses->ses_iv;
1011 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1012 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1013 					m_copyback(re->re_src_m,
1014 						enccrd->crd_inject, ivsize, iv);
1015 				else if (crp->crp_flags & CRYPTO_F_IOV)
1016 					cuio_copyback(re->re_src_io,
1017 						enccrd->crd_inject, ivsize, iv);
1018 			}
1019 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1020 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1021 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1022 		} else {
1023 			cmd0 |= SAFE_SA_CMD0_INBOUND;
1024 
1025 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1026 				bcopy(enccrd->crd_iv,
1027 					re->re_sastate.sa_saved_iv, ivsize);
1028 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1029 				m_copydata(re->re_src_m, enccrd->crd_inject,
1030 					ivsize,
1031 					(caddr_t)re->re_sastate.sa_saved_iv);
1032 			else if (crp->crp_flags & CRYPTO_F_IOV)
1033 				cuio_copydata(re->re_src_io, enccrd->crd_inject,
1034 					ivsize,
1035 					(caddr_t)re->re_sastate.sa_saved_iv);
1036 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1037 		}
1038 		/*
1039 		 * For basic encryption use the zero pad algorithm.
1040 		 * This pads results to an 8-byte boundary and
1041 		 * suppresses padding verification for inbound (i.e.
1042 		 * decrypt) operations.
1043 		 *
1044 		 * NB: Not sure if the 8-byte pad boundary is a problem.
1045 		 */
1046 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1047 
1048 		/* XXX assert key bufs have the same size */
1049 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1050 	}
1051 
1052 	if (maccrd) {
1053 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1054 			cmd0 |= SAFE_SA_CMD0_MD5;
1055 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1056 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1057 			cmd0 |= SAFE_SA_CMD0_SHA1;
1058 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1059 		} else {
1060 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1061 		}
1062 		/*
1063 		 * Digest data is loaded from the SA and the hash
1064 		 * result is saved to the state block where we
1065 		 * retrieve it for return to the caller.
1066 		 */
1067 		/* XXX assert digest bufs have the same size */
1068 		bcopy(ses->ses_hminner, sa->sa_indigest,
1069 			sizeof(sa->sa_indigest));
1070 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1071 			sizeof(sa->sa_outdigest));
1072 
1073 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1074 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1075 	}
1076 
1077 	if (enccrd && maccrd) {
1078 		/*
1079 		 * The offset from hash data to the start of
1080 		 * crypt data is the difference in the skips.
1081 		 */
1082 		bypass = maccrd->crd_skip;
1083 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1084 		if (coffset < 0) {
1085 			DPRINTF(("%s: hash does not precede crypt; "
1086 				"mac skip %u enc skip %u\n",
1087 				__func__, maccrd->crd_skip, enccrd->crd_skip));
1088 			safestats.st_skipmismatch++;
1089 			err = EINVAL;
1090 			goto errout;
1091 		}
1092 		oplen = enccrd->crd_skip + enccrd->crd_len;
1093 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1094 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1095 				__func__, maccrd->crd_skip + maccrd->crd_len,
1096 				oplen));
1097 			safestats.st_lenmismatch++;
1098 			err = EINVAL;
1099 			goto errout;
1100 		}
1101 #ifdef SAFE_DEBUG
1102 		if (safe_debug) {
1103 			printf("mac: skip %d, len %d, inject %d\n",
1104 			    maccrd->crd_skip, maccrd->crd_len,
1105 			    maccrd->crd_inject);
1106 			printf("enc: skip %d, len %d, inject %d\n",
1107 			    enccrd->crd_skip, enccrd->crd_len,
1108 			    enccrd->crd_inject);
1109 			printf("bypass %d coffset %d oplen %d\n",
1110 				bypass, coffset, oplen);
1111 		}
1112 #endif
1113 		if (coffset & 3) {	/* offset must be 32-bit aligned */
1114 			DPRINTF(("%s: coffset %u misaligned\n",
1115 				__func__, coffset));
1116 			safestats.st_coffmisaligned++;
1117 			err = EINVAL;
1118 			goto errout;
1119 		}
1120 		coffset >>= 2;
1121 		if (coffset > 255) {	/* offset must be <256 dwords */
1122 			DPRINTF(("%s: coffset %u too big\n",
1123 				__func__, coffset));
1124 			safestats.st_cofftoobig++;
1125 			err = EINVAL;
1126 			goto errout;
1127 		}
1128 		/*
1129 		 * Tell the hardware to copy the header to the output.
1130 		 * The header is defined as the data from the end of
1131 		 * the bypass to the start of data to be encrypted.
1132 		 * Typically this is the inline IV.  Note that you need
1133 		 * to do this even if src+dst are the same; it appears
1134 		 * that w/o this bit the crypted data is written
1135 		 * immediately after the bypass data.
1136 		 */
1137 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1138 		/*
1139 		 * Disable IP header mutable bit handling.  This is
1140 		 * needed to get correct HMAC calculations.
1141 		 */
1142 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1143 	} else {
1144 		if (enccrd) {
1145 			bypass = enccrd->crd_skip;
1146 			oplen = bypass + enccrd->crd_len;
1147 		} else {
1148 			bypass = maccrd->crd_skip;
1149 			oplen = bypass + maccrd->crd_len;
1150 		}
1151 		coffset = 0;
1152 	}
1153 	/* XXX verify multiple of 4 when using s/g */
1154 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1155 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1156 		safestats.st_bypasstoobig++;
1157 		err = EINVAL;
1158 		goto errout;
1159 	}
1160 
1161 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1162 		safestats.st_nomap++;
1163 		err = ENOMEM;
1164 		goto errout;
1165 	}
1166 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1167 		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1168 		    re->re_src_m, safe_op_cb,
1169 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1170 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1171 			re->re_src_map = NULL;
1172 			safestats.st_noload++;
1173 			err = ENOMEM;
1174 			goto errout;
1175 		}
1176 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1177 		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1178 		    re->re_src_io, safe_op_cb,
1179 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1180 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1181 			re->re_src_map = NULL;
1182 			safestats.st_noload++;
1183 			err = ENOMEM;
1184 			goto errout;
1185 		}
1186 	}
1187 	nicealign = safe_dmamap_aligned(&re->re_src);
1188 	uniform = safe_dmamap_uniform(&re->re_src);
1189 
1190 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1191 		nicealign, uniform, re->re_src.nsegs));
1192 	if (re->re_src.nsegs > 1) {
1193 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1194 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1195 		for (i = 0; i < re->re_src_nsegs; i++) {
1196 			/* NB: no need to check if there's space */
1197 			pd = sc->sc_spfree;
1198 			if (++(sc->sc_spfree) == sc->sc_springtop)
1199 				sc->sc_spfree = sc->sc_spring;
1200 
1201 			KASSERT((pd->pd_flags&3) == 0 ||
1202 				(pd->pd_flags&3) == SAFE_PD_DONE,
1203 				("bogus source particle descriptor; flags %x",
1204 				pd->pd_flags));
1205 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1206 			pd->pd_size = re->re_src_segs[i].ds_len;
1207 			pd->pd_flags = SAFE_PD_READY;
1208 		}
1209 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1210 	} else {
1211 		/*
1212 		 * No need for gather, reference the operand directly.
1213 		 */
1214 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1215 	}
1216 
1217 	if (enccrd == NULL && maccrd != NULL) {
1218 		/*
1219 		 * Hash op; no destination needed.
1220 		 */
1221 	} else {
1222 		if (crp->crp_flags & CRYPTO_F_IOV) {
1223 			if (!nicealign) {
1224 				safestats.st_iovmisaligned++;
1225 				err = EINVAL;
1226 				goto errout;
1227 			}
1228 			if (uniform != 1) {
1229 				/*
1230 				 * Source is not suitable for direct use as
1231 				 * the destination.  Create a new scatter/gather
1232 				 * list based on the destination requirements
1233 				 * and check if that's ok.
1234 				 */
1235 				if (bus_dmamap_create(sc->sc_dstdmat,
1236 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1237 					safestats.st_nomap++;
1238 					err = ENOMEM;
1239 					goto errout;
1240 				}
1241 				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1242 				    re->re_dst_map, re->re_dst_io,
1243 				    safe_op_cb, &re->re_dst,
1244 				    BUS_DMA_NOWAIT) != 0) {
1245 					bus_dmamap_destroy(sc->sc_dstdmat,
1246 						re->re_dst_map);
1247 					re->re_dst_map = NULL;
1248 					safestats.st_noload++;
1249 					err = ENOMEM;
1250 					goto errout;
1251 				}
1252 				uniform = safe_dmamap_uniform(&re->re_dst);
1253 				if (!uniform) {
1254 					/*
1255 					 * There's no way to handle the DMA
1256 					 * requirements with this uio.  We
1257 					 * could create a separate DMA area for
1258 					 * the result and then copy it back,
1259 					 * but for now we just bail and return
1260 					 * an error.  Note that uio requests
1261 					 * > SAFE_MAX_DSIZE are handled because
1262 					 * the DMA map and segment list for the
1263 					 * destination wil result in a
1264 					 * destination particle list that does
1265 					 * the necessary scatter DMA.
1266 					 */
1267 					safestats.st_iovnotuniform++;
1268 					err = EINVAL;
1269 					goto errout;
1270 				}
1271 			} else
1272 				re->re_dst = re->re_src;
1273 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1274 			if (nicealign && uniform == 1) {
1275 				/*
1276 				 * Source layout is suitable for direct
1277 				 * sharing of the DMA map and segment list.
1278 				 */
1279 				re->re_dst = re->re_src;
1280 			} else if (nicealign && uniform == 2) {
1281 				/*
1282 				 * The source is properly aligned but requires a
1283 				 * different particle list to handle DMA of the
1284 				 * result.  Create a new map and do the load to
1285 				 * create the segment list.  The particle
1286 				 * descriptor setup code below will handle the
1287 				 * rest.
1288 				 */
1289 				if (bus_dmamap_create(sc->sc_dstdmat,
1290 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1291 					safestats.st_nomap++;
1292 					err = ENOMEM;
1293 					goto errout;
1294 				}
1295 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1296 				    re->re_dst_map, re->re_dst_m,
1297 				    safe_op_cb, &re->re_dst,
1298 				    BUS_DMA_NOWAIT) != 0) {
1299 					bus_dmamap_destroy(sc->sc_dstdmat,
1300 						re->re_dst_map);
1301 					re->re_dst_map = NULL;
1302 					safestats.st_noload++;
1303 					err = ENOMEM;
1304 					goto errout;
1305 				}
1306 			} else {		/* !(aligned and/or uniform) */
1307 				int totlen, len;
1308 				struct mbuf *m, *top, **mp;
1309 
1310 				/*
1311 				 * DMA constraints require that we allocate a
1312 				 * new mbuf chain for the destination.  We
1313 				 * allocate an entire new set of mbufs of
1314 				 * optimal/required size and then tell the
1315 				 * hardware to copy any bits that are not
1316 				 * created as a byproduct of the operation.
1317 				 */
1318 				if (!nicealign)
1319 					safestats.st_unaligned++;
1320 				if (!uniform)
1321 					safestats.st_notuniform++;
1322 				totlen = re->re_src_mapsize;
1323 				if (re->re_src_m->m_flags & M_PKTHDR) {
1324 					len = MHLEN;
1325 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1326 					if (m && !m_dup_pkthdr(m, re->re_src_m,
1327 					    M_DONTWAIT)) {
1328 						m_free(m);
1329 						m = NULL;
1330 					}
1331 				} else {
1332 					len = MLEN;
1333 					MGET(m, M_DONTWAIT, MT_DATA);
1334 				}
1335 				if (m == NULL) {
1336 					safestats.st_nombuf++;
1337 					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1338 					goto errout;
1339 				}
1340 				if (totlen >= MINCLSIZE) {
1341 					MCLGET(m, M_DONTWAIT);
1342 					if ((m->m_flags & M_EXT) == 0) {
1343 						m_free(m);
1344 						safestats.st_nomcl++;
1345 						err = sc->sc_nqchip ?
1346 							ERESTART : ENOMEM;
1347 						goto errout;
1348 					}
1349 					len = MCLBYTES;
1350 				}
1351 				m->m_len = len;
1352 				top = NULL;
1353 				mp = &top;
1354 
1355 				while (totlen > 0) {
1356 					if (top) {
1357 						MGET(m, M_DONTWAIT, MT_DATA);
1358 						if (m == NULL) {
1359 							m_freem(top);
1360 							safestats.st_nombuf++;
1361 							err = sc->sc_nqchip ?
1362 							    ERESTART : ENOMEM;
1363 							goto errout;
1364 						}
1365 						len = MLEN;
1366 					}
1367 					if (top && totlen >= MINCLSIZE) {
1368 						MCLGET(m, M_DONTWAIT);
1369 						if ((m->m_flags & M_EXT) == 0) {
1370 							*mp = m;
1371 							m_freem(top);
1372 							safestats.st_nomcl++;
1373 							err = sc->sc_nqchip ?
1374 							    ERESTART : ENOMEM;
1375 							goto errout;
1376 						}
1377 						len = MCLBYTES;
1378 					}
1379 					m->m_len = len = min(totlen, len);
1380 					totlen -= len;
1381 					*mp = m;
1382 					mp = &m->m_next;
1383 				}
1384 				re->re_dst_m = top;
1385 				if (bus_dmamap_create(sc->sc_dstdmat,
1386 				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1387 					safestats.st_nomap++;
1388 					err = ENOMEM;
1389 					goto errout;
1390 				}
1391 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1392 				    re->re_dst_map, re->re_dst_m,
1393 				    safe_op_cb, &re->re_dst,
1394 				    BUS_DMA_NOWAIT) != 0) {
1395 					bus_dmamap_destroy(sc->sc_dstdmat,
1396 					re->re_dst_map);
1397 					re->re_dst_map = NULL;
1398 					safestats.st_noload++;
1399 					err = ENOMEM;
1400 					goto errout;
1401 				}
1402 				if (re->re_src.mapsize > oplen) {
1403 					/*
1404 					 * There's data following what the
1405 					 * hardware will copy for us.  If this
1406 					 * isn't just the ICV (that's going to
1407 					 * be written on completion), copy it
1408 					 * to the new mbufs
1409 					 */
1410 					if (!(maccrd &&
1411 					    (re->re_src.mapsize-oplen) == 12 &&
1412 					    maccrd->crd_inject == oplen))
1413 						safe_mcopy(re->re_src_m,
1414 							   re->re_dst_m,
1415 							   oplen);
1416 					else
1417 						safestats.st_noicvcopy++;
1418 				}
1419 			}
1420 		} else {
1421 			safestats.st_badflags++;
1422 			err = EINVAL;
1423 			goto errout;
1424 		}
1425 
1426 		if (re->re_dst.nsegs > 1) {
1427 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1428 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1429 			for (i = 0; i < re->re_dst_nsegs; i++) {
1430 				pd = sc->sc_dpfree;
1431 				KASSERT((pd->pd_flags&3) == 0 ||
1432 					(pd->pd_flags&3) == SAFE_PD_DONE,
1433 					("bogus dest particle descriptor; flags %x",
1434 						pd->pd_flags));
1435 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1436 					sc->sc_dpfree = sc->sc_dpring;
1437 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1438 				pd->pd_flags = SAFE_PD_READY;
1439 			}
1440 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1441 		} else {
1442 			/*
1443 			 * No need for scatter, reference the operand directly.
1444 			 */
1445 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * All done with setup; fillin the SA command words
1451 	 * and the packet engine descriptor.  The operation
1452 	 * is now ready for submission to the hardware.
1453 	 */
1454 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1455 	sa->sa_cmd1 = cmd1
1456 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1457 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1458 		    | SAFE_SA_CMD1_SRPCI
1459 		    ;
1460 	/*
1461 	 * NB: the order of writes is important here.  In case the
1462 	 * chip is scanning the ring because of an outstanding request
1463 	 * it might nab this one too.  In that case we need to make
1464 	 * sure the setup is complete before we write the length
1465 	 * field of the descriptor as it signals the descriptor is
1466 	 * ready for processing.
1467 	 */
1468 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1469 	if (maccrd)
1470 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1471 	re->re_desc.d_len = oplen
1472 			  | SAFE_PE_LEN_READY
1473 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1474 			  ;
1475 
1476 	safestats.st_ipackets++;
1477 	safestats.st_ibytes += oplen;
1478 
1479 	if (++(sc->sc_front) == sc->sc_ringtop)
1480 		sc->sc_front = sc->sc_ring;
1481 
1482 	/* XXX honor batching */
1483 	safe_feed(sc, re);
1484 	mtx_unlock(&sc->sc_ringmtx);
1485 	return (0);
1486 
1487 errout:
1488 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1489 		m_freem(re->re_dst_m);
1490 
1491 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1492 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1493 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1494 	}
1495 	if (re->re_src_map != NULL) {
1496 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1497 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1498 	}
1499 	mtx_unlock(&sc->sc_ringmtx);
1500 	if (err != ERESTART) {
1501 		crp->crp_etype = err;
1502 		crypto_done(crp);
1503 	} else {
1504 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1505 	}
1506 	return (err);
1507 }
1508 
1509 static void
1510 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1511 {
1512 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1513 	struct cryptodesc *crd;
1514 
1515 	safestats.st_opackets++;
1516 	safestats.st_obytes += re->re_dst.mapsize;
1517 
1518 	safe_dma_sync(&sc->sc_ringalloc,
1519 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1520 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1521 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1522 			re->re_desc.d_csr,
1523 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1524 		safestats.st_peoperr++;
1525 		crp->crp_etype = EIO;		/* something more meaningful? */
1526 	}
1527 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1528 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1529 		    BUS_DMASYNC_POSTREAD);
1530 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1531 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1532 	}
1533 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1534 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1535 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1536 
1537 	/*
1538 	 * If result was written to a differet mbuf chain, swap
1539 	 * it in as the return value and reclaim the original.
1540 	 */
1541 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1542 		m_freem(re->re_src_m);
1543 		crp->crp_buf = (caddr_t)re->re_dst_m;
1544 	}
1545 
1546 	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1547 		/* copy out IV for future use */
1548 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1549 			int ivsize;
1550 
1551 			if (crd->crd_alg == CRYPTO_DES_CBC ||
1552 			    crd->crd_alg == CRYPTO_3DES_CBC) {
1553 				ivsize = 2*sizeof(u_int32_t);
1554 			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1555 				ivsize = 4*sizeof(u_int32_t);
1556 			} else
1557 				continue;
1558 			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1559 				m_copydata((struct mbuf *)crp->crp_buf,
1560 					crd->crd_skip + crd->crd_len - ivsize,
1561 					ivsize,
1562 					(caddr_t) sc->sc_sessions[re->re_sesn].ses_iv);
1563 			} else if (crp->crp_flags & CRYPTO_F_IOV) {
1564 				cuio_copydata((struct uio *)crp->crp_buf,
1565 					crd->crd_skip + crd->crd_len - ivsize,
1566 					ivsize,
1567 					(caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1568 			}
1569 			break;
1570 		}
1571 	}
1572 
1573 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1574 		/* copy out ICV result */
1575 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1576 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1577 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1578 			    crd->crd_alg == CRYPTO_NULL_HMAC))
1579 				continue;
1580 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1581 				/*
1582 				 * SHA-1 ICV's are byte-swapped; fix 'em up
1583 				 * before copy them to their destination.
1584 				 */
1585 				bswap32(re->re_sastate.sa_saved_indigest[0]);
1586 				bswap32(re->re_sastate.sa_saved_indigest[1]);
1587 				bswap32(re->re_sastate.sa_saved_indigest[2]);
1588 			}
1589 			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1590 				m_copyback((struct mbuf *)crp->crp_buf,
1591 					crd->crd_inject,
1592 					sc->sc_sessions[re->re_sesn].ses_mlen,
1593 					(caddr_t)re->re_sastate.sa_saved_indigest);
1594 			} else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) {
1595 				bcopy((caddr_t)re->re_sastate.sa_saved_indigest,
1596 					crp->crp_mac,
1597 					sc->sc_sessions[re->re_sesn].ses_mlen);
1598 			}
1599 			break;
1600 		}
1601 	}
1602 	crypto_done(crp);
1603 }
1604 
1605 /*
1606  * Copy all data past offset from srcm to dstm.
1607  */
1608 static void
1609 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1610 {
1611 	u_int j, dlen, slen;
1612 	caddr_t dptr, sptr;
1613 
1614 	/*
1615 	 * Advance src and dst to offset.
1616 	 */
1617 	j = offset;
1618 	while (j >= 0) {
1619 		if (srcm->m_len > j)
1620 			break;
1621 		j -= srcm->m_len;
1622 		srcm = srcm->m_next;
1623 		if (srcm == NULL)
1624 			return;
1625 	}
1626 	sptr = mtod(srcm, caddr_t) + j;
1627 	slen = srcm->m_len - j;
1628 
1629 	j = offset;
1630 	while (j >= 0) {
1631 		if (dstm->m_len > j)
1632 			break;
1633 		j -= dstm->m_len;
1634 		dstm = dstm->m_next;
1635 		if (dstm == NULL)
1636 			return;
1637 	}
1638 	dptr = mtod(dstm, caddr_t) + j;
1639 	dlen = dstm->m_len - j;
1640 
1641 	/*
1642 	 * Copy everything that remains.
1643 	 */
1644 	for (;;) {
1645 		j = min(slen, dlen);
1646 		bcopy(sptr, dptr, j);
1647 		if (slen == j) {
1648 			srcm = srcm->m_next;
1649 			if (srcm == NULL)
1650 				return;
1651 			sptr = srcm->m_data;
1652 			slen = srcm->m_len;
1653 		} else
1654 			sptr += j, slen -= j;
1655 		if (dlen == j) {
1656 			dstm = dstm->m_next;
1657 			if (dstm == NULL)
1658 				return;
1659 			dptr = dstm->m_data;
1660 			dlen = dstm->m_len;
1661 		} else
1662 			dptr += j, dlen -= j;
1663 	}
1664 }
1665 
1666 #ifndef SAFE_NO_RNG
1667 #define	SAFE_RNG_MAXWAIT	1000
1668 
1669 static void
1670 safe_rng_init(struct safe_softc *sc)
1671 {
1672 	u_int32_t w, v;
1673 	int i;
1674 
1675 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1676 	/* use default value according to the manual */
1677 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1678 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1679 
1680 	/*
1681 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1682 	 * is brought out of reset the ready status flag does not
1683 	 * work until the RNG has finished its internal initialization.
1684 	 *
1685 	 * So in order to determine the device is through its
1686 	 * initialization we must read the data register, using the
1687 	 * status reg in the read in case it is initialized.  Then read
1688 	 * the data register until it changes from the first read.
1689 	 * Once it changes read the data register until it changes
1690 	 * again.  At this time the RNG is considered initialized.
1691 	 * This could take between 750ms - 1000ms in time.
1692 	 */
1693 	i = 0;
1694 	w = READ_REG(sc, SAFE_RNG_OUT);
1695 	do {
1696 		v = READ_REG(sc, SAFE_RNG_OUT);
1697 		if (v != w) {
1698 			w = v;
1699 			break;
1700 		}
1701 		DELAY(10);
1702 	} while (++i < SAFE_RNG_MAXWAIT);
1703 
1704 	/* Wait Until data changes again */
1705 	i = 0;
1706 	do {
1707 		v = READ_REG(sc, SAFE_RNG_OUT);
1708 		if (v != w)
1709 			break;
1710 		DELAY(10);
1711 	} while (++i < SAFE_RNG_MAXWAIT);
1712 }
1713 
1714 static __inline void
1715 safe_rng_disable_short_cycle(struct safe_softc *sc)
1716 {
1717 	WRITE_REG(sc, SAFE_RNG_CTRL,
1718 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1719 }
1720 
1721 static __inline void
1722 safe_rng_enable_short_cycle(struct safe_softc *sc)
1723 {
1724 	WRITE_REG(sc, SAFE_RNG_CTRL,
1725 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1726 }
1727 
1728 static __inline u_int32_t
1729 safe_rng_read(struct safe_softc *sc)
1730 {
1731 	int i;
1732 
1733 	i = 0;
1734 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1735 		;
1736 	return READ_REG(sc, SAFE_RNG_OUT);
1737 }
1738 
1739 static void
1740 safe_rng(void *arg)
1741 {
1742 	struct safe_softc *sc = arg;
1743 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1744 	u_int maxwords;
1745 	int i;
1746 
1747 	safestats.st_rng++;
1748 	/*
1749 	 * Fetch the next block of data.
1750 	 */
1751 	maxwords = safe_rngbufsize;
1752 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1753 		maxwords = SAFE_RNG_MAXBUFSIZ;
1754 retry:
1755 	for (i = 0; i < maxwords; i++)
1756 		buf[i] = safe_rng_read(sc);
1757 	/*
1758 	 * Check the comparator alarm count and reset the h/w if
1759 	 * it exceeds our threshold.  This guards against the
1760 	 * hardware oscillators resonating with external signals.
1761 	 */
1762 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1763 		u_int32_t freq_inc, w;
1764 
1765 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1766 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1767 		safestats.st_rngalarm++;
1768 		safe_rng_enable_short_cycle(sc);
1769 		freq_inc = 18;
1770 		for (i = 0; i < 64; i++) {
1771 			w = READ_REG(sc, SAFE_RNG_CNFG);
1772 			freq_inc = ((w + freq_inc) & 0x3fL);
1773 			w = ((w & ~0x3fL) | freq_inc);
1774 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1775 
1776 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1777 
1778 			(void) safe_rng_read(sc);
1779 			DELAY(25);
1780 
1781 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1782 				safe_rng_disable_short_cycle(sc);
1783 				goto retry;
1784 			}
1785 			freq_inc = 1;
1786 		}
1787 		safe_rng_disable_short_cycle(sc);
1788 	} else
1789 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1790 
1791 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1792 	callout_reset(&sc->sc_rngto,
1793 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1794 }
1795 #endif /* SAFE_NO_RNG */
1796 
1797 static void
1798 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1799 {
1800 	bus_addr_t *paddr = (bus_addr_t*) arg;
1801 	*paddr = segs->ds_addr;
1802 }
1803 
1804 static int
1805 safe_dma_malloc(
1806 	struct safe_softc *sc,
1807 	bus_size_t size,
1808 	struct safe_dma_alloc *dma,
1809 	int mapflags
1810 )
1811 {
1812 	int r;
1813 
1814 	r = bus_dma_tag_create(NULL,			/* parent */
1815 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1816 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1817 			       BUS_SPACE_MAXADDR,	/* highaddr */
1818 			       NULL, NULL,		/* filter, filterarg */
1819 			       size,			/* maxsize */
1820 			       1,			/* nsegments */
1821 			       size,			/* maxsegsize */
1822 			       BUS_DMA_ALLOCNOW,	/* flags */
1823 			       NULL, NULL,		/* locking */
1824 			       &dma->dma_tag);
1825 	if (r != 0) {
1826 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1827 			"bus_dma_tag_create failed; error %u\n", r);
1828 		goto fail_0;
1829 	}
1830 
1831 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1832 	if (r != 0) {
1833 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1834 			"bus_dmamap_create failed; error %u\n", r);
1835 		goto fail_1;
1836 	}
1837 
1838 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1839 			     BUS_DMA_NOWAIT, &dma->dma_map);
1840 	if (r != 0) {
1841 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1842 			"bus_dmammem_alloc failed; size %zu, error %u\n",
1843 			size, r);
1844 		goto fail_2;
1845 	}
1846 
1847 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1848 		            size,
1849 			    safe_dmamap_cb,
1850 			    &dma->dma_paddr,
1851 			    mapflags | BUS_DMA_NOWAIT);
1852 	if (r != 0) {
1853 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1854 			"bus_dmamap_load failed; error %u\n", r);
1855 		goto fail_3;
1856 	}
1857 
1858 	dma->dma_size = size;
1859 	return (0);
1860 
1861 fail_3:
1862 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1863 fail_2:
1864 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1865 fail_1:
1866 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1867 	bus_dma_tag_destroy(dma->dma_tag);
1868 fail_0:
1869 	dma->dma_map = NULL;
1870 	dma->dma_tag = NULL;
1871 	return (r);
1872 }
1873 
1874 static void
1875 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1876 {
1877 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1878 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1879 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1880 	bus_dma_tag_destroy(dma->dma_tag);
1881 }
1882 
1883 /*
1884  * Resets the board.  Values in the regesters are left as is
1885  * from the reset (i.e. initial values are assigned elsewhere).
1886  */
1887 static void
1888 safe_reset_board(struct safe_softc *sc)
1889 {
1890 	u_int32_t v;
1891 	/*
1892 	 * Reset the device.  The manual says no delay
1893 	 * is needed between marking and clearing reset.
1894 	 */
1895 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1896 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1897 		 SAFE_PE_DMACFG_SGRESET);
1898 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1899 				    | SAFE_PE_DMACFG_PERESET
1900 				    | SAFE_PE_DMACFG_PDRRESET
1901 				    | SAFE_PE_DMACFG_SGRESET);
1902 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1903 }
1904 
1905 /*
1906  * Initialize registers we need to touch only once.
1907  */
1908 static void
1909 safe_init_board(struct safe_softc *sc)
1910 {
1911 	u_int32_t v, dwords;
1912 
1913 	v = READ_REG(sc, SAFE_PE_DMACFG);;
1914 	v &=~ SAFE_PE_DMACFG_PEMODE;
1915 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1916 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1917 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1918 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1919 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1920 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1921 	  ;
1922 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1923 #if 0
1924 	/* XXX select byte swap based on host byte order */
1925 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1926 #endif
1927 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1928 		/*
1929 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1930 		 * "target mode transfers" done while the chip is DMA'ing
1931 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1932 		 * we reduce the max PCI transfer size and use small source
1933 		 * particle descriptors (<= 256 bytes).
1934 		 */
1935 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1936 		device_printf(sc->sc_dev,
1937 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1938 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1939 			SAFE_REV_MAJ(sc->sc_chiprev),
1940 			SAFE_REV_MIN(sc->sc_chiprev));
1941 	}
1942 
1943 	/* NB: operands+results are overlaid */
1944 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1945 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1946 	/*
1947 	 * Configure ring entry size and number of items in the ring.
1948 	 */
1949 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1950 		("PE ring entry not 32-bit aligned!"));
1951 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1952 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1953 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1954 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1955 
1956 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1957 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1958 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1959 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1960 	/*
1961 	 * NB: destination particles are fixed size.  We use
1962 	 *     an mbuf cluster and require all results go to
1963 	 *     clusters or smaller.
1964 	 */
1965 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1966 
1967 	/* it's now safe to enable PE mode, do it */
1968 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1969 
1970 	/*
1971 	 * Configure hardware to use level-triggered interrupts and
1972 	 * to interrupt after each descriptor is processed.
1973 	 */
1974 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1975 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1976 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1977 }
1978 
1979 /*
1980  * Init PCI registers
1981  */
1982 static void
1983 safe_init_pciregs(device_t dev)
1984 {
1985 }
1986 
1987 /*
1988  * Clean up after a chip crash.
1989  * It is assumed that the caller in splimp()
1990  */
1991 static void
1992 safe_cleanchip(struct safe_softc *sc)
1993 {
1994 
1995 	if (sc->sc_nqchip != 0) {
1996 		struct safe_ringentry *re = sc->sc_back;
1997 
1998 		while (re != sc->sc_front) {
1999 			if (re->re_desc.d_csr != 0)
2000 				safe_free_entry(sc, re);
2001 			if (++re == sc->sc_ringtop)
2002 				re = sc->sc_ring;
2003 		}
2004 		sc->sc_back = re;
2005 		sc->sc_nqchip = 0;
2006 	}
2007 }
2008 
2009 /*
2010  * free a safe_q
2011  * It is assumed that the caller is within splimp().
2012  */
2013 static int
2014 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2015 {
2016 	struct cryptop *crp;
2017 
2018 	/*
2019 	 * Free header MCR
2020 	 */
2021 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2022 		m_freem(re->re_dst_m);
2023 
2024 	crp = (struct cryptop *)re->re_crp;
2025 
2026 	re->re_desc.d_csr = 0;
2027 
2028 	crp->crp_etype = EFAULT;
2029 	crypto_done(crp);
2030 	return(0);
2031 }
2032 
2033 /*
2034  * Routine to reset the chip and clean up.
2035  * It is assumed that the caller is in splimp()
2036  */
2037 static void
2038 safe_totalreset(struct safe_softc *sc)
2039 {
2040 	safe_reset_board(sc);
2041 	safe_init_board(sc);
2042 	safe_cleanchip(sc);
2043 }
2044 
2045 /*
2046  * Is the operand suitable aligned for direct DMA.  Each
2047  * segment must be aligned on a 32-bit boundary and all
2048  * but the last segment must be a multiple of 4 bytes.
2049  */
2050 static int
2051 safe_dmamap_aligned(const struct safe_operand *op)
2052 {
2053 	int i;
2054 
2055 	for (i = 0; i < op->nsegs; i++) {
2056 		if (op->segs[i].ds_addr & 3)
2057 			return (0);
2058 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2059 			return (0);
2060 	}
2061 	return (1);
2062 }
2063 
2064 /*
2065  * Is the operand suitable for direct DMA as the destination
2066  * of an operation.  The hardware requires that each ``particle''
2067  * but the last in an operation result have the same size.  We
2068  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2069  * 0 if some segment is not a multiple of of this size, 1 if all
2070  * segments are exactly this size, or 2 if segments are at worst
2071  * a multple of this size.
2072  */
2073 static int
2074 safe_dmamap_uniform(const struct safe_operand *op)
2075 {
2076 	int result = 1;
2077 
2078 	if (op->nsegs > 0) {
2079 		int i;
2080 
2081 		for (i = 0; i < op->nsegs-1; i++) {
2082 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2083 				return (0);
2084 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2085 				result = 2;
2086 		}
2087 	}
2088 	return (result);
2089 }
2090 
2091 #ifdef SAFE_DEBUG
2092 static void
2093 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2094 {
2095 	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2096 		, tag
2097 		, READ_REG(sc, SAFE_DMA_ENDIAN)
2098 		, READ_REG(sc, SAFE_DMA_SRCADDR)
2099 		, READ_REG(sc, SAFE_DMA_DSTADDR)
2100 		, READ_REG(sc, SAFE_DMA_STAT)
2101 	);
2102 }
2103 
2104 static void
2105 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2106 {
2107 	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2108 		, tag
2109 		, READ_REG(sc, SAFE_HI_CFG)
2110 		, READ_REG(sc, SAFE_HI_MASK)
2111 		, READ_REG(sc, SAFE_HI_DESC_CNT)
2112 		, READ_REG(sc, SAFE_HU_STAT)
2113 		, READ_REG(sc, SAFE_HM_STAT)
2114 	);
2115 }
2116 
2117 static void
2118 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2119 {
2120 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2121 
2122 	/* NB: assume caller has lock on ring */
2123 	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2124 		tag,
2125 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2126 		(unsigned long)(sc->sc_back - sc->sc_ring),
2127 		(unsigned long)(sc->sc_front - sc->sc_ring));
2128 }
2129 
2130 static void
2131 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2132 {
2133 	int ix, nsegs;
2134 
2135 	ix = re - sc->sc_ring;
2136 	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2137 		, tag
2138 		, re, ix
2139 		, re->re_desc.d_csr
2140 		, re->re_desc.d_src
2141 		, re->re_desc.d_dst
2142 		, re->re_desc.d_sa
2143 		, re->re_desc.d_len
2144 	);
2145 	if (re->re_src.nsegs > 1) {
2146 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2147 			sizeof(struct safe_pdesc);
2148 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2149 			printf(" spd[%u] %p: %p size %u flags %x"
2150 				, ix, &sc->sc_spring[ix]
2151 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2152 				, sc->sc_spring[ix].pd_size
2153 				, sc->sc_spring[ix].pd_flags
2154 			);
2155 			if (sc->sc_spring[ix].pd_size == 0)
2156 				printf(" (zero!)");
2157 			printf("\n");
2158 			if (++ix == SAFE_TOTAL_SPART)
2159 				ix = 0;
2160 		}
2161 	}
2162 	if (re->re_dst.nsegs > 1) {
2163 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2164 			sizeof(struct safe_pdesc);
2165 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2166 			printf(" dpd[%u] %p: %p flags %x\n"
2167 				, ix, &sc->sc_dpring[ix]
2168 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2169 				, sc->sc_dpring[ix].pd_flags
2170 			);
2171 			if (++ix == SAFE_TOTAL_DPART)
2172 				ix = 0;
2173 		}
2174 	}
2175 	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2176 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2177 	printf("sa: key %x %x %x %x %x %x %x %x\n"
2178 		, re->re_sa.sa_key[0]
2179 		, re->re_sa.sa_key[1]
2180 		, re->re_sa.sa_key[2]
2181 		, re->re_sa.sa_key[3]
2182 		, re->re_sa.sa_key[4]
2183 		, re->re_sa.sa_key[5]
2184 		, re->re_sa.sa_key[6]
2185 		, re->re_sa.sa_key[7]
2186 	);
2187 	printf("sa: indigest %x %x %x %x %x\n"
2188 		, re->re_sa.sa_indigest[0]
2189 		, re->re_sa.sa_indigest[1]
2190 		, re->re_sa.sa_indigest[2]
2191 		, re->re_sa.sa_indigest[3]
2192 		, re->re_sa.sa_indigest[4]
2193 	);
2194 	printf("sa: outdigest %x %x %x %x %x\n"
2195 		, re->re_sa.sa_outdigest[0]
2196 		, re->re_sa.sa_outdigest[1]
2197 		, re->re_sa.sa_outdigest[2]
2198 		, re->re_sa.sa_outdigest[3]
2199 		, re->re_sa.sa_outdigest[4]
2200 	);
2201 	printf("sr: iv %x %x %x %x\n"
2202 		, re->re_sastate.sa_saved_iv[0]
2203 		, re->re_sastate.sa_saved_iv[1]
2204 		, re->re_sastate.sa_saved_iv[2]
2205 		, re->re_sastate.sa_saved_iv[3]
2206 	);
2207 	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2208 		, re->re_sastate.sa_saved_hashbc
2209 		, re->re_sastate.sa_saved_indigest[0]
2210 		, re->re_sastate.sa_saved_indigest[1]
2211 		, re->re_sastate.sa_saved_indigest[2]
2212 		, re->re_sastate.sa_saved_indigest[3]
2213 		, re->re_sastate.sa_saved_indigest[4]
2214 	);
2215 }
2216 
2217 static void
2218 safe_dump_ring(struct safe_softc *sc, const char *tag)
2219 {
2220 	mtx_lock(&sc->sc_ringmtx);
2221 	printf("\nSafeNet Ring State:\n");
2222 	safe_dump_intrstate(sc, tag);
2223 	safe_dump_dmastatus(sc, tag);
2224 	safe_dump_ringstate(sc, tag);
2225 	if (sc->sc_nqchip) {
2226 		struct safe_ringentry *re = sc->sc_back;
2227 		do {
2228 			safe_dump_request(sc, tag, re);
2229 			if (++re == sc->sc_ringtop)
2230 				re = sc->sc_ring;
2231 		} while (re != sc->sc_front);
2232 	}
2233 	mtx_unlock(&sc->sc_ringmtx);
2234 }
2235 
2236 static int
2237 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2238 {
2239 	char dmode[64];
2240 	int error;
2241 
2242 	strncpy(dmode, "", sizeof(dmode) - 1);
2243 	dmode[sizeof(dmode) - 1] = '\0';
2244 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2245 
2246 	if (error == 0 && req->newptr != NULL) {
2247 		struct safe_softc *sc = safec;
2248 
2249 		if (!sc)
2250 			return EINVAL;
2251 		if (strncmp(dmode, "dma", 3) == 0)
2252 			safe_dump_dmastatus(sc, "safe0");
2253 		else if (strncmp(dmode, "int", 3) == 0)
2254 			safe_dump_intrstate(sc, "safe0");
2255 		else if (strncmp(dmode, "ring", 4) == 0)
2256 			safe_dump_ring(sc, "safe0");
2257 		else
2258 			return EINVAL;
2259 	}
2260 	return error;
2261 }
2262 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2263 	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2264 #endif /* SAFE_DEBUG */
2265