xref: /freebsd/sys/dev/safe/safe.c (revision 6472ac3d8a86336899b6cfb789a4cd9897e3fab5)
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56 
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/kobj.h>
63 
64 #include "cryptodev_if.h"
65 
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcireg.h>
68 
69 #ifdef SAFE_RNDTEST
70 #include <dev/rndtest/rndtest.h>
71 #endif
72 #include <dev/safe/safereg.h>
73 #include <dev/safe/safevar.h>
74 
75 #ifndef bswap32
76 #define	bswap32	NTOHL
77 #endif
78 
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static	int safe_probe(device_t);
83 static	int safe_attach(device_t);
84 static	int safe_detach(device_t);
85 static	int safe_suspend(device_t);
86 static	int safe_resume(device_t);
87 static	int safe_shutdown(device_t);
88 
89 static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90 static	int safe_freesession(device_t, u_int64_t);
91 static	int safe_process(device_t, struct cryptop *, int);
92 
93 static device_method_t safe_methods[] = {
94 	/* Device interface */
95 	DEVMETHOD(device_probe,		safe_probe),
96 	DEVMETHOD(device_attach,	safe_attach),
97 	DEVMETHOD(device_detach,	safe_detach),
98 	DEVMETHOD(device_suspend,	safe_suspend),
99 	DEVMETHOD(device_resume,	safe_resume),
100 	DEVMETHOD(device_shutdown,	safe_shutdown),
101 
102 	/* bus interface */
103 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
104 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
105 
106 	/* crypto device methods */
107 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
108 	DEVMETHOD(cryptodev_freesession,safe_freesession),
109 	DEVMETHOD(cryptodev_process,	safe_process),
110 
111 	{ 0, 0 }
112 };
113 static driver_t safe_driver = {
114 	"safe",
115 	safe_methods,
116 	sizeof (struct safe_softc)
117 };
118 static devclass_t safe_devclass;
119 
120 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
121 MODULE_DEPEND(safe, crypto, 1, 1, 1);
122 #ifdef SAFE_RNDTEST
123 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
124 #endif
125 
126 static	void safe_intr(void *);
127 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
128 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
129 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
130 #ifndef SAFE_NO_RNG
131 static	void safe_rng_init(struct safe_softc *);
132 static	void safe_rng(void *);
133 #endif /* SAFE_NO_RNG */
134 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
135 	        struct safe_dma_alloc *, int);
136 #define	safe_dma_sync(_dma, _flags) \
137 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
138 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
139 static	int safe_dmamap_aligned(const struct safe_operand *);
140 static	int safe_dmamap_uniform(const struct safe_operand *);
141 
142 static	void safe_reset_board(struct safe_softc *);
143 static	void safe_init_board(struct safe_softc *);
144 static	void safe_init_pciregs(device_t dev);
145 static	void safe_cleanchip(struct safe_softc *);
146 static	void safe_totalreset(struct safe_softc *);
147 
148 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
149 
150 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
151     "SafeNet driver parameters");
152 
153 #ifdef SAFE_DEBUG
154 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
155 static	void safe_dump_ringstate(struct safe_softc *, const char *);
156 static	void safe_dump_intrstate(struct safe_softc *, const char *);
157 static	void safe_dump_request(struct safe_softc *, const char *,
158 		struct safe_ringentry *);
159 
160 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
161 
162 static	int safe_debug = 0;
163 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
164 	    0, "control debugging msgs");
165 #define	DPRINTF(_x)	if (safe_debug) printf _x
166 #else
167 #define	DPRINTF(_x)
168 #endif
169 
170 #define	READ_REG(sc,r) \
171 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
172 
173 #define WRITE_REG(sc,reg,val) \
174 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
175 
176 struct safe_stats safestats;
177 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
178 	    safe_stats, "driver statistics");
179 #ifndef SAFE_NO_RNG
180 static	int safe_rnginterval = 1;		/* poll once a second */
181 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
182 	    0, "RNG polling interval (secs)");
183 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
184 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
185 	    0, "RNG polling buffer size (32-bit words)");
186 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
187 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
188 	    0, "RNG max alarms before reset");
189 #endif /* SAFE_NO_RNG */
190 
191 static int
192 safe_probe(device_t dev)
193 {
194 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
195 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
196 		return (BUS_PROBE_DEFAULT);
197 	return (ENXIO);
198 }
199 
200 static const char*
201 safe_partname(struct safe_softc *sc)
202 {
203 	/* XXX sprintf numbers when not decoded */
204 	switch (pci_get_vendor(sc->sc_dev)) {
205 	case PCI_VENDOR_SAFENET:
206 		switch (pci_get_device(sc->sc_dev)) {
207 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
208 		}
209 		return "SafeNet unknown-part";
210 	}
211 	return "Unknown-vendor unknown-part";
212 }
213 
214 #ifndef SAFE_NO_RNG
215 static void
216 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
217 {
218 	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
219 }
220 #endif /* SAFE_NO_RNG */
221 
222 static int
223 safe_attach(device_t dev)
224 {
225 	struct safe_softc *sc = device_get_softc(dev);
226 	u_int32_t raddr;
227 	u_int32_t cmd, i, devinfo;
228 	int rid;
229 
230 	bzero(sc, sizeof (*sc));
231 	sc->sc_dev = dev;
232 
233 	/* XXX handle power management */
234 
235 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
236 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
237 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
238 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
239 
240 	if (!(cmd & PCIM_CMD_MEMEN)) {
241 		device_printf(dev, "failed to enable memory mapping\n");
242 		goto bad;
243 	}
244 
245 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
246 		device_printf(dev, "failed to enable bus mastering\n");
247 		goto bad;
248 	}
249 
250 	/*
251 	 * Setup memory-mapping of PCI registers.
252 	 */
253 	rid = BS_BAR;
254 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
255 					   RF_ACTIVE);
256 	if (sc->sc_sr == NULL) {
257 		device_printf(dev, "cannot map register space\n");
258 		goto bad;
259 	}
260 	sc->sc_st = rman_get_bustag(sc->sc_sr);
261 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
262 
263 	/*
264 	 * Arrange interrupt line.
265 	 */
266 	rid = 0;
267 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
268 					    RF_SHAREABLE|RF_ACTIVE);
269 	if (sc->sc_irq == NULL) {
270 		device_printf(dev, "could not map interrupt\n");
271 		goto bad1;
272 	}
273 	/*
274 	 * NB: Network code assumes we are blocked with splimp()
275 	 *     so make sure the IRQ is mapped appropriately.
276 	 */
277 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
278 			   NULL, safe_intr, sc, &sc->sc_ih)) {
279 		device_printf(dev, "could not establish interrupt\n");
280 		goto bad2;
281 	}
282 
283 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
284 	if (sc->sc_cid < 0) {
285 		device_printf(dev, "could not get crypto driver id\n");
286 		goto bad3;
287 	}
288 
289 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
290 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
291 
292 	/*
293 	 * Setup DMA descriptor area.
294 	 */
295 	if (bus_dma_tag_create(NULL,			/* parent */
296 			       1,			/* alignment */
297 			       SAFE_DMA_BOUNDARY,	/* boundary */
298 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
299 			       BUS_SPACE_MAXADDR,	/* highaddr */
300 			       NULL, NULL,		/* filter, filterarg */
301 			       SAFE_MAX_DMA,		/* maxsize */
302 			       SAFE_MAX_PART,		/* nsegments */
303 			       SAFE_MAX_SSIZE,		/* maxsegsize */
304 			       BUS_DMA_ALLOCNOW,	/* flags */
305 			       NULL, NULL,		/* locking */
306 			       &sc->sc_srcdmat)) {
307 		device_printf(dev, "cannot allocate DMA tag\n");
308 		goto bad4;
309 	}
310 	if (bus_dma_tag_create(NULL,			/* parent */
311 			       1,			/* alignment */
312 			       SAFE_MAX_DSIZE,		/* boundary */
313 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
314 			       BUS_SPACE_MAXADDR,	/* highaddr */
315 			       NULL, NULL,		/* filter, filterarg */
316 			       SAFE_MAX_DMA,		/* maxsize */
317 			       SAFE_MAX_PART,		/* nsegments */
318 			       SAFE_MAX_DSIZE,		/* maxsegsize */
319 			       BUS_DMA_ALLOCNOW,	/* flags */
320 			       NULL, NULL,		/* locking */
321 			       &sc->sc_dstdmat)) {
322 		device_printf(dev, "cannot allocate DMA tag\n");
323 		goto bad4;
324 	}
325 
326 	/*
327 	 * Allocate packet engine descriptors.
328 	 */
329 	if (safe_dma_malloc(sc,
330 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
331 	    &sc->sc_ringalloc, 0)) {
332 		device_printf(dev, "cannot allocate PE descriptor ring\n");
333 		bus_dma_tag_destroy(sc->sc_srcdmat);
334 		goto bad4;
335 	}
336 	/*
337 	 * Hookup the static portion of all our data structures.
338 	 */
339 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
340 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
341 	sc->sc_front = sc->sc_ring;
342 	sc->sc_back = sc->sc_ring;
343 	raddr = sc->sc_ringalloc.dma_paddr;
344 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
345 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
346 		struct safe_ringentry *re = &sc->sc_ring[i];
347 
348 		re->re_desc.d_sa = raddr +
349 			offsetof(struct safe_ringentry, re_sa);
350 		re->re_sa.sa_staterec = raddr +
351 			offsetof(struct safe_ringentry, re_sastate);
352 
353 		raddr += sizeof (struct safe_ringentry);
354 	}
355 	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
356 		"packet engine ring", MTX_DEF);
357 
358 	/*
359 	 * Allocate scatter and gather particle descriptors.
360 	 */
361 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
362 	    &sc->sc_spalloc, 0)) {
363 		device_printf(dev, "cannot allocate source particle "
364 			"descriptor ring\n");
365 		mtx_destroy(&sc->sc_ringmtx);
366 		safe_dma_free(sc, &sc->sc_ringalloc);
367 		bus_dma_tag_destroy(sc->sc_srcdmat);
368 		goto bad4;
369 	}
370 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
371 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
372 	sc->sc_spfree = sc->sc_spring;
373 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
374 
375 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
376 	    &sc->sc_dpalloc, 0)) {
377 		device_printf(dev, "cannot allocate destination particle "
378 			"descriptor ring\n");
379 		mtx_destroy(&sc->sc_ringmtx);
380 		safe_dma_free(sc, &sc->sc_spalloc);
381 		safe_dma_free(sc, &sc->sc_ringalloc);
382 		bus_dma_tag_destroy(sc->sc_dstdmat);
383 		goto bad4;
384 	}
385 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
386 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
387 	sc->sc_dpfree = sc->sc_dpring;
388 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
389 
390 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
391 
392 	devinfo = READ_REG(sc, SAFE_DEVINFO);
393 	if (devinfo & SAFE_DEVINFO_RNG) {
394 		sc->sc_flags |= SAFE_FLAGS_RNG;
395 		printf(" rng");
396 	}
397 	if (devinfo & SAFE_DEVINFO_PKEY) {
398 #if 0
399 		printf(" key");
400 		sc->sc_flags |= SAFE_FLAGS_KEY;
401 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
402 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
403 #endif
404 	}
405 	if (devinfo & SAFE_DEVINFO_DES) {
406 		printf(" des/3des");
407 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
408 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
409 	}
410 	if (devinfo & SAFE_DEVINFO_AES) {
411 		printf(" aes");
412 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
413 	}
414 	if (devinfo & SAFE_DEVINFO_MD5) {
415 		printf(" md5");
416 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
417 	}
418 	if (devinfo & SAFE_DEVINFO_SHA1) {
419 		printf(" sha1");
420 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
421 	}
422 	printf(" null");
423 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
424 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
425 	/* XXX other supported algorithms */
426 	printf("\n");
427 
428 	safe_reset_board(sc);		/* reset h/w */
429 	safe_init_pciregs(dev);		/* init pci settings */
430 	safe_init_board(sc);		/* init h/w */
431 
432 #ifndef SAFE_NO_RNG
433 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
434 #ifdef SAFE_RNDTEST
435 		sc->sc_rndtest = rndtest_attach(dev);
436 		if (sc->sc_rndtest)
437 			sc->sc_harvest = rndtest_harvest;
438 		else
439 			sc->sc_harvest = default_harvest;
440 #else
441 		sc->sc_harvest = default_harvest;
442 #endif
443 		safe_rng_init(sc);
444 
445 		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
446 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
447 	}
448 #endif /* SAFE_NO_RNG */
449 #ifdef SAFE_DEBUG
450 	safec = sc;			/* for use by hw.safe.dump */
451 #endif
452 	return (0);
453 bad4:
454 	crypto_unregister_all(sc->sc_cid);
455 bad3:
456 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
457 bad2:
458 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
459 bad1:
460 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
461 bad:
462 	return (ENXIO);
463 }
464 
465 /*
466  * Detach a device that successfully probed.
467  */
468 static int
469 safe_detach(device_t dev)
470 {
471 	struct safe_softc *sc = device_get_softc(dev);
472 
473 	/* XXX wait/abort active ops */
474 
475 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
476 
477 	callout_stop(&sc->sc_rngto);
478 
479 	crypto_unregister_all(sc->sc_cid);
480 
481 #ifdef SAFE_RNDTEST
482 	if (sc->sc_rndtest)
483 		rndtest_detach(sc->sc_rndtest);
484 #endif
485 
486 	safe_cleanchip(sc);
487 	safe_dma_free(sc, &sc->sc_dpalloc);
488 	safe_dma_free(sc, &sc->sc_spalloc);
489 	mtx_destroy(&sc->sc_ringmtx);
490 	safe_dma_free(sc, &sc->sc_ringalloc);
491 
492 	bus_generic_detach(dev);
493 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
494 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
495 
496 	bus_dma_tag_destroy(sc->sc_srcdmat);
497 	bus_dma_tag_destroy(sc->sc_dstdmat);
498 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
499 
500 	return (0);
501 }
502 
503 /*
504  * Stop all chip i/o so that the kernel's probe routines don't
505  * get confused by errant DMAs when rebooting.
506  */
507 static int
508 safe_shutdown(device_t dev)
509 {
510 #ifdef notyet
511 	safe_stop(device_get_softc(dev));
512 #endif
513 	return (0);
514 }
515 
516 /*
517  * Device suspend routine.
518  */
519 static int
520 safe_suspend(device_t dev)
521 {
522 	struct safe_softc *sc = device_get_softc(dev);
523 
524 #ifdef notyet
525 	/* XXX stop the device and save PCI settings */
526 #endif
527 	sc->sc_suspended = 1;
528 
529 	return (0);
530 }
531 
532 static int
533 safe_resume(device_t dev)
534 {
535 	struct safe_softc *sc = device_get_softc(dev);
536 
537 #ifdef notyet
538 	/* XXX retore PCI settings and start the device */
539 #endif
540 	sc->sc_suspended = 0;
541 	return (0);
542 }
543 
544 /*
545  * SafeXcel Interrupt routine
546  */
547 static void
548 safe_intr(void *arg)
549 {
550 	struct safe_softc *sc = arg;
551 	volatile u_int32_t stat;
552 
553 	stat = READ_REG(sc, SAFE_HM_STAT);
554 	if (stat == 0)			/* shared irq, not for us */
555 		return;
556 
557 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
558 
559 	if ((stat & SAFE_INT_PE_DDONE)) {
560 		/*
561 		 * Descriptor(s) done; scan the ring and
562 		 * process completed operations.
563 		 */
564 		mtx_lock(&sc->sc_ringmtx);
565 		while (sc->sc_back != sc->sc_front) {
566 			struct safe_ringentry *re = sc->sc_back;
567 #ifdef SAFE_DEBUG
568 			if (safe_debug) {
569 				safe_dump_ringstate(sc, __func__);
570 				safe_dump_request(sc, __func__, re);
571 			}
572 #endif
573 			/*
574 			 * safe_process marks ring entries that were allocated
575 			 * but not used with a csr of zero.  This insures the
576 			 * ring front pointer never needs to be set backwards
577 			 * in the event that an entry is allocated but not used
578 			 * because of a setup error.
579 			 */
580 			if (re->re_desc.d_csr != 0) {
581 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
582 					break;
583 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
584 					break;
585 				sc->sc_nqchip--;
586 				safe_callback(sc, re);
587 			}
588 			if (++(sc->sc_back) == sc->sc_ringtop)
589 				sc->sc_back = sc->sc_ring;
590 		}
591 		mtx_unlock(&sc->sc_ringmtx);
592 	}
593 
594 	/*
595 	 * Check to see if we got any DMA Error
596 	 */
597 	if (stat & SAFE_INT_PE_ERROR) {
598 		DPRINTF(("dmaerr dmastat %08x\n",
599 			READ_REG(sc, SAFE_PE_DMASTAT)));
600 		safestats.st_dmaerr++;
601 		safe_totalreset(sc);
602 #if 0
603 		safe_feed(sc);
604 #endif
605 	}
606 
607 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
608 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
609 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
610 			sc->sc_needwakeup));
611 		sc->sc_needwakeup &= ~wakeup;
612 		crypto_unblock(sc->sc_cid, wakeup);
613 	}
614 }
615 
616 /*
617  * safe_feed() - post a request to chip
618  */
619 static void
620 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
621 {
622 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
623 	if (re->re_dst_map != NULL)
624 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
625 			BUS_DMASYNC_PREREAD);
626 	/* XXX have no smaller granularity */
627 	safe_dma_sync(&sc->sc_ringalloc,
628 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
629 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
630 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
631 
632 #ifdef SAFE_DEBUG
633 	if (safe_debug) {
634 		safe_dump_ringstate(sc, __func__);
635 		safe_dump_request(sc, __func__, re);
636 	}
637 #endif
638 	sc->sc_nqchip++;
639 	if (sc->sc_nqchip > safestats.st_maxqchip)
640 		safestats.st_maxqchip = sc->sc_nqchip;
641 	/* poke h/w to check descriptor ring, any value can be written */
642 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
643 }
644 
645 #define	N(a)	(sizeof(a) / sizeof (a[0]))
646 static void
647 safe_setup_enckey(struct safe_session *ses, caddr_t key)
648 {
649 	int i;
650 
651 	bcopy(key, ses->ses_key, ses->ses_klen / 8);
652 
653 	/* PE is little-endian, insure proper byte order */
654 	for (i = 0; i < N(ses->ses_key); i++)
655 		ses->ses_key[i] = htole32(ses->ses_key[i]);
656 }
657 
658 static void
659 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
660 {
661 	MD5_CTX md5ctx;
662 	SHA1_CTX sha1ctx;
663 	int i;
664 
665 
666 	for (i = 0; i < klen; i++)
667 		key[i] ^= HMAC_IPAD_VAL;
668 
669 	if (algo == CRYPTO_MD5_HMAC) {
670 		MD5Init(&md5ctx);
671 		MD5Update(&md5ctx, key, klen);
672 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
673 		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
674 	} else {
675 		SHA1Init(&sha1ctx);
676 		SHA1Update(&sha1ctx, key, klen);
677 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
678 		    SHA1_HMAC_BLOCK_LEN - klen);
679 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
680 	}
681 
682 	for (i = 0; i < klen; i++)
683 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
684 
685 	if (algo == CRYPTO_MD5_HMAC) {
686 		MD5Init(&md5ctx);
687 		MD5Update(&md5ctx, key, klen);
688 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
689 		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
690 	} else {
691 		SHA1Init(&sha1ctx);
692 		SHA1Update(&sha1ctx, key, klen);
693 		SHA1Update(&sha1ctx, hmac_opad_buffer,
694 		    SHA1_HMAC_BLOCK_LEN - klen);
695 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
696 	}
697 
698 	for (i = 0; i < klen; i++)
699 		key[i] ^= HMAC_OPAD_VAL;
700 
701 	/* PE is little-endian, insure proper byte order */
702 	for (i = 0; i < N(ses->ses_hminner); i++) {
703 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
704 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
705 	}
706 }
707 #undef N
708 
709 /*
710  * Allocate a new 'session' and return an encoded session id.  'sidp'
711  * contains our registration id, and should contain an encoded session
712  * id on successful allocation.
713  */
714 static int
715 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
716 {
717 	struct safe_softc *sc = device_get_softc(dev);
718 	struct cryptoini *c, *encini = NULL, *macini = NULL;
719 	struct safe_session *ses = NULL;
720 	int sesn;
721 
722 	if (sidp == NULL || cri == NULL || sc == NULL)
723 		return (EINVAL);
724 
725 	for (c = cri; c != NULL; c = c->cri_next) {
726 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
727 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
728 		    c->cri_alg == CRYPTO_NULL_HMAC) {
729 			if (macini)
730 				return (EINVAL);
731 			macini = c;
732 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
733 		    c->cri_alg == CRYPTO_3DES_CBC ||
734 		    c->cri_alg == CRYPTO_AES_CBC ||
735 		    c->cri_alg == CRYPTO_NULL_CBC) {
736 			if (encini)
737 				return (EINVAL);
738 			encini = c;
739 		} else
740 			return (EINVAL);
741 	}
742 	if (encini == NULL && macini == NULL)
743 		return (EINVAL);
744 	if (encini) {			/* validate key length */
745 		switch (encini->cri_alg) {
746 		case CRYPTO_DES_CBC:
747 			if (encini->cri_klen != 64)
748 				return (EINVAL);
749 			break;
750 		case CRYPTO_3DES_CBC:
751 			if (encini->cri_klen != 192)
752 				return (EINVAL);
753 			break;
754 		case CRYPTO_AES_CBC:
755 			if (encini->cri_klen != 128 &&
756 			    encini->cri_klen != 192 &&
757 			    encini->cri_klen != 256)
758 				return (EINVAL);
759 			break;
760 		}
761 	}
762 
763 	if (sc->sc_sessions == NULL) {
764 		ses = sc->sc_sessions = (struct safe_session *)malloc(
765 		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
766 		if (ses == NULL)
767 			return (ENOMEM);
768 		sesn = 0;
769 		sc->sc_nsessions = 1;
770 	} else {
771 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
772 			if (sc->sc_sessions[sesn].ses_used == 0) {
773 				ses = &sc->sc_sessions[sesn];
774 				break;
775 			}
776 		}
777 
778 		if (ses == NULL) {
779 			sesn = sc->sc_nsessions;
780 			ses = (struct safe_session *)malloc((sesn + 1) *
781 			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
782 			if (ses == NULL)
783 				return (ENOMEM);
784 			bcopy(sc->sc_sessions, ses, sesn *
785 			    sizeof(struct safe_session));
786 			bzero(sc->sc_sessions, sesn *
787 			    sizeof(struct safe_session));
788 			free(sc->sc_sessions, M_DEVBUF);
789 			sc->sc_sessions = ses;
790 			ses = &sc->sc_sessions[sesn];
791 			sc->sc_nsessions++;
792 		}
793 	}
794 
795 	bzero(ses, sizeof(struct safe_session));
796 	ses->ses_used = 1;
797 
798 	if (encini) {
799 		/* get an IV */
800 		/* XXX may read fewer than requested */
801 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
802 
803 		ses->ses_klen = encini->cri_klen;
804 		if (encini->cri_key != NULL)
805 			safe_setup_enckey(ses, encini->cri_key);
806 	}
807 
808 	if (macini) {
809 		ses->ses_mlen = macini->cri_mlen;
810 		if (ses->ses_mlen == 0) {
811 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
812 				ses->ses_mlen = MD5_HASH_LEN;
813 			else
814 				ses->ses_mlen = SHA1_HASH_LEN;
815 		}
816 
817 		if (macini->cri_key != NULL) {
818 			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
819 			    macini->cri_klen / 8);
820 		}
821 	}
822 
823 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
824 	return (0);
825 }
826 
827 /*
828  * Deallocate a session.
829  */
830 static int
831 safe_freesession(device_t dev, u_int64_t tid)
832 {
833 	struct safe_softc *sc = device_get_softc(dev);
834 	int session, ret;
835 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
836 
837 	if (sc == NULL)
838 		return (EINVAL);
839 
840 	session = SAFE_SESSION(sid);
841 	if (session < sc->sc_nsessions) {
842 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
843 		ret = 0;
844 	} else
845 		ret = EINVAL;
846 	return (ret);
847 }
848 
849 static void
850 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
851 {
852 	struct safe_operand *op = arg;
853 
854 	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
855 		(u_int) mapsize, nsegs, error));
856 	if (error != 0)
857 		return;
858 	op->mapsize = mapsize;
859 	op->nsegs = nsegs;
860 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
861 }
862 
863 static int
864 safe_process(device_t dev, struct cryptop *crp, int hint)
865 {
866 	struct safe_softc *sc = device_get_softc(dev);
867 	int err = 0, i, nicealign, uniform;
868 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
869 	int bypass, oplen, ivsize;
870 	caddr_t iv;
871 	int16_t coffset;
872 	struct safe_session *ses;
873 	struct safe_ringentry *re;
874 	struct safe_sarec *sa;
875 	struct safe_pdesc *pd;
876 	u_int32_t cmd0, cmd1, staterec;
877 
878 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
879 		safestats.st_invalid++;
880 		return (EINVAL);
881 	}
882 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
883 		safestats.st_badsession++;
884 		return (EINVAL);
885 	}
886 
887 	mtx_lock(&sc->sc_ringmtx);
888 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
889 		safestats.st_ringfull++;
890 		sc->sc_needwakeup |= CRYPTO_SYMQ;
891 		mtx_unlock(&sc->sc_ringmtx);
892 		return (ERESTART);
893 	}
894 	re = sc->sc_front;
895 
896 	staterec = re->re_sa.sa_staterec;	/* save */
897 	/* NB: zero everything but the PE descriptor */
898 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
899 	re->re_sa.sa_staterec = staterec;	/* restore */
900 
901 	re->re_crp = crp;
902 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
903 
904 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
905 		re->re_src_m = (struct mbuf *)crp->crp_buf;
906 		re->re_dst_m = (struct mbuf *)crp->crp_buf;
907 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
908 		re->re_src_io = (struct uio *)crp->crp_buf;
909 		re->re_dst_io = (struct uio *)crp->crp_buf;
910 	} else {
911 		safestats.st_badflags++;
912 		err = EINVAL;
913 		goto errout;	/* XXX we don't handle contiguous blocks! */
914 	}
915 
916 	sa = &re->re_sa;
917 	ses = &sc->sc_sessions[re->re_sesn];
918 
919 	crd1 = crp->crp_desc;
920 	if (crd1 == NULL) {
921 		safestats.st_nodesc++;
922 		err = EINVAL;
923 		goto errout;
924 	}
925 	crd2 = crd1->crd_next;
926 
927 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
928 	cmd1 = 0;
929 	if (crd2 == NULL) {
930 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
931 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
932 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
933 			maccrd = crd1;
934 			enccrd = NULL;
935 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
936 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
937 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
938 		    crd1->crd_alg == CRYPTO_AES_CBC ||
939 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
940 			maccrd = NULL;
941 			enccrd = crd1;
942 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
943 		} else {
944 			safestats.st_badalg++;
945 			err = EINVAL;
946 			goto errout;
947 		}
948 	} else {
949 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
950 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
951 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
952 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
953 			crd2->crd_alg == CRYPTO_3DES_CBC ||
954 		        crd2->crd_alg == CRYPTO_AES_CBC ||
955 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
956 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
957 			maccrd = crd1;
958 			enccrd = crd2;
959 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
960 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
961 		    crd1->crd_alg == CRYPTO_AES_CBC ||
962 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
963 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
964 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
965 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
966 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
967 			enccrd = crd1;
968 			maccrd = crd2;
969 		} else {
970 			safestats.st_badalg++;
971 			err = EINVAL;
972 			goto errout;
973 		}
974 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
975 	}
976 
977 	if (enccrd) {
978 		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
979 			safe_setup_enckey(ses, enccrd->crd_key);
980 
981 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
982 			cmd0 |= SAFE_SA_CMD0_DES;
983 			cmd1 |= SAFE_SA_CMD1_CBC;
984 			ivsize = 2*sizeof(u_int32_t);
985 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
986 			cmd0 |= SAFE_SA_CMD0_3DES;
987 			cmd1 |= SAFE_SA_CMD1_CBC;
988 			ivsize = 2*sizeof(u_int32_t);
989 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
990 			cmd0 |= SAFE_SA_CMD0_AES;
991 			cmd1 |= SAFE_SA_CMD1_CBC;
992 			if (ses->ses_klen == 128)
993 			     cmd1 |=  SAFE_SA_CMD1_AES128;
994 			else if (ses->ses_klen == 192)
995 			     cmd1 |=  SAFE_SA_CMD1_AES192;
996 			else
997 			     cmd1 |=  SAFE_SA_CMD1_AES256;
998 			ivsize = 4*sizeof(u_int32_t);
999 		} else {
1000 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
1001 			ivsize = 0;
1002 		}
1003 
1004 		/*
1005 		 * Setup encrypt/decrypt state.  When using basic ops
1006 		 * we can't use an inline IV because hash/crypt offset
1007 		 * must be from the end of the IV to the start of the
1008 		 * crypt data and this leaves out the preceding header
1009 		 * from the hash calculation.  Instead we place the IV
1010 		 * in the state record and set the hash/crypt offset to
1011 		 * copy both the header+IV.
1012 		 */
1013 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1014 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1015 
1016 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1017 				iv = enccrd->crd_iv;
1018 			else
1019 				iv = (caddr_t) ses->ses_iv;
1020 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1021 				crypto_copyback(crp->crp_flags, crp->crp_buf,
1022 				    enccrd->crd_inject, ivsize, iv);
1023 			}
1024 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1025 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1026 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1027 		} else {
1028 			cmd0 |= SAFE_SA_CMD0_INBOUND;
1029 
1030 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1031 				bcopy(enccrd->crd_iv,
1032 					re->re_sastate.sa_saved_iv, ivsize);
1033 			} else {
1034 				crypto_copydata(crp->crp_flags, crp->crp_buf,
1035 				    enccrd->crd_inject, ivsize,
1036 				    (caddr_t)re->re_sastate.sa_saved_iv);
1037 			}
1038 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1039 		}
1040 		/*
1041 		 * For basic encryption use the zero pad algorithm.
1042 		 * This pads results to an 8-byte boundary and
1043 		 * suppresses padding verification for inbound (i.e.
1044 		 * decrypt) operations.
1045 		 *
1046 		 * NB: Not sure if the 8-byte pad boundary is a problem.
1047 		 */
1048 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1049 
1050 		/* XXX assert key bufs have the same size */
1051 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1052 	}
1053 
1054 	if (maccrd) {
1055 		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1056 			safe_setup_mackey(ses, maccrd->crd_alg,
1057 			    maccrd->crd_key, maccrd->crd_klen / 8);
1058 		}
1059 
1060 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1061 			cmd0 |= SAFE_SA_CMD0_MD5;
1062 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1063 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1064 			cmd0 |= SAFE_SA_CMD0_SHA1;
1065 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1066 		} else {
1067 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1068 		}
1069 		/*
1070 		 * Digest data is loaded from the SA and the hash
1071 		 * result is saved to the state block where we
1072 		 * retrieve it for return to the caller.
1073 		 */
1074 		/* XXX assert digest bufs have the same size */
1075 		bcopy(ses->ses_hminner, sa->sa_indigest,
1076 			sizeof(sa->sa_indigest));
1077 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1078 			sizeof(sa->sa_outdigest));
1079 
1080 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1081 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1082 	}
1083 
1084 	if (enccrd && maccrd) {
1085 		/*
1086 		 * The offset from hash data to the start of
1087 		 * crypt data is the difference in the skips.
1088 		 */
1089 		bypass = maccrd->crd_skip;
1090 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1091 		if (coffset < 0) {
1092 			DPRINTF(("%s: hash does not precede crypt; "
1093 				"mac skip %u enc skip %u\n",
1094 				__func__, maccrd->crd_skip, enccrd->crd_skip));
1095 			safestats.st_skipmismatch++;
1096 			err = EINVAL;
1097 			goto errout;
1098 		}
1099 		oplen = enccrd->crd_skip + enccrd->crd_len;
1100 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1101 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1102 				__func__, maccrd->crd_skip + maccrd->crd_len,
1103 				oplen));
1104 			safestats.st_lenmismatch++;
1105 			err = EINVAL;
1106 			goto errout;
1107 		}
1108 #ifdef SAFE_DEBUG
1109 		if (safe_debug) {
1110 			printf("mac: skip %d, len %d, inject %d\n",
1111 			    maccrd->crd_skip, maccrd->crd_len,
1112 			    maccrd->crd_inject);
1113 			printf("enc: skip %d, len %d, inject %d\n",
1114 			    enccrd->crd_skip, enccrd->crd_len,
1115 			    enccrd->crd_inject);
1116 			printf("bypass %d coffset %d oplen %d\n",
1117 				bypass, coffset, oplen);
1118 		}
1119 #endif
1120 		if (coffset & 3) {	/* offset must be 32-bit aligned */
1121 			DPRINTF(("%s: coffset %u misaligned\n",
1122 				__func__, coffset));
1123 			safestats.st_coffmisaligned++;
1124 			err = EINVAL;
1125 			goto errout;
1126 		}
1127 		coffset >>= 2;
1128 		if (coffset > 255) {	/* offset must be <256 dwords */
1129 			DPRINTF(("%s: coffset %u too big\n",
1130 				__func__, coffset));
1131 			safestats.st_cofftoobig++;
1132 			err = EINVAL;
1133 			goto errout;
1134 		}
1135 		/*
1136 		 * Tell the hardware to copy the header to the output.
1137 		 * The header is defined as the data from the end of
1138 		 * the bypass to the start of data to be encrypted.
1139 		 * Typically this is the inline IV.  Note that you need
1140 		 * to do this even if src+dst are the same; it appears
1141 		 * that w/o this bit the crypted data is written
1142 		 * immediately after the bypass data.
1143 		 */
1144 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1145 		/*
1146 		 * Disable IP header mutable bit handling.  This is
1147 		 * needed to get correct HMAC calculations.
1148 		 */
1149 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1150 	} else {
1151 		if (enccrd) {
1152 			bypass = enccrd->crd_skip;
1153 			oplen = bypass + enccrd->crd_len;
1154 		} else {
1155 			bypass = maccrd->crd_skip;
1156 			oplen = bypass + maccrd->crd_len;
1157 		}
1158 		coffset = 0;
1159 	}
1160 	/* XXX verify multiple of 4 when using s/g */
1161 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1162 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1163 		safestats.st_bypasstoobig++;
1164 		err = EINVAL;
1165 		goto errout;
1166 	}
1167 
1168 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1169 		safestats.st_nomap++;
1170 		err = ENOMEM;
1171 		goto errout;
1172 	}
1173 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1174 		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1175 		    re->re_src_m, safe_op_cb,
1176 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1177 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1178 			re->re_src_map = NULL;
1179 			safestats.st_noload++;
1180 			err = ENOMEM;
1181 			goto errout;
1182 		}
1183 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1184 		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1185 		    re->re_src_io, safe_op_cb,
1186 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1187 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1188 			re->re_src_map = NULL;
1189 			safestats.st_noload++;
1190 			err = ENOMEM;
1191 			goto errout;
1192 		}
1193 	}
1194 	nicealign = safe_dmamap_aligned(&re->re_src);
1195 	uniform = safe_dmamap_uniform(&re->re_src);
1196 
1197 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1198 		nicealign, uniform, re->re_src.nsegs));
1199 	if (re->re_src.nsegs > 1) {
1200 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1201 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1202 		for (i = 0; i < re->re_src_nsegs; i++) {
1203 			/* NB: no need to check if there's space */
1204 			pd = sc->sc_spfree;
1205 			if (++(sc->sc_spfree) == sc->sc_springtop)
1206 				sc->sc_spfree = sc->sc_spring;
1207 
1208 			KASSERT((pd->pd_flags&3) == 0 ||
1209 				(pd->pd_flags&3) == SAFE_PD_DONE,
1210 				("bogus source particle descriptor; flags %x",
1211 				pd->pd_flags));
1212 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1213 			pd->pd_size = re->re_src_segs[i].ds_len;
1214 			pd->pd_flags = SAFE_PD_READY;
1215 		}
1216 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1217 	} else {
1218 		/*
1219 		 * No need for gather, reference the operand directly.
1220 		 */
1221 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1222 	}
1223 
1224 	if (enccrd == NULL && maccrd != NULL) {
1225 		/*
1226 		 * Hash op; no destination needed.
1227 		 */
1228 	} else {
1229 		if (crp->crp_flags & CRYPTO_F_IOV) {
1230 			if (!nicealign) {
1231 				safestats.st_iovmisaligned++;
1232 				err = EINVAL;
1233 				goto errout;
1234 			}
1235 			if (uniform != 1) {
1236 				/*
1237 				 * Source is not suitable for direct use as
1238 				 * the destination.  Create a new scatter/gather
1239 				 * list based on the destination requirements
1240 				 * and check if that's ok.
1241 				 */
1242 				if (bus_dmamap_create(sc->sc_dstdmat,
1243 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1244 					safestats.st_nomap++;
1245 					err = ENOMEM;
1246 					goto errout;
1247 				}
1248 				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1249 				    re->re_dst_map, re->re_dst_io,
1250 				    safe_op_cb, &re->re_dst,
1251 				    BUS_DMA_NOWAIT) != 0) {
1252 					bus_dmamap_destroy(sc->sc_dstdmat,
1253 						re->re_dst_map);
1254 					re->re_dst_map = NULL;
1255 					safestats.st_noload++;
1256 					err = ENOMEM;
1257 					goto errout;
1258 				}
1259 				uniform = safe_dmamap_uniform(&re->re_dst);
1260 				if (!uniform) {
1261 					/*
1262 					 * There's no way to handle the DMA
1263 					 * requirements with this uio.  We
1264 					 * could create a separate DMA area for
1265 					 * the result and then copy it back,
1266 					 * but for now we just bail and return
1267 					 * an error.  Note that uio requests
1268 					 * > SAFE_MAX_DSIZE are handled because
1269 					 * the DMA map and segment list for the
1270 					 * destination wil result in a
1271 					 * destination particle list that does
1272 					 * the necessary scatter DMA.
1273 					 */
1274 					safestats.st_iovnotuniform++;
1275 					err = EINVAL;
1276 					goto errout;
1277 				}
1278 			} else
1279 				re->re_dst = re->re_src;
1280 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1281 			if (nicealign && uniform == 1) {
1282 				/*
1283 				 * Source layout is suitable for direct
1284 				 * sharing of the DMA map and segment list.
1285 				 */
1286 				re->re_dst = re->re_src;
1287 			} else if (nicealign && uniform == 2) {
1288 				/*
1289 				 * The source is properly aligned but requires a
1290 				 * different particle list to handle DMA of the
1291 				 * result.  Create a new map and do the load to
1292 				 * create the segment list.  The particle
1293 				 * descriptor setup code below will handle the
1294 				 * rest.
1295 				 */
1296 				if (bus_dmamap_create(sc->sc_dstdmat,
1297 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1298 					safestats.st_nomap++;
1299 					err = ENOMEM;
1300 					goto errout;
1301 				}
1302 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1303 				    re->re_dst_map, re->re_dst_m,
1304 				    safe_op_cb, &re->re_dst,
1305 				    BUS_DMA_NOWAIT) != 0) {
1306 					bus_dmamap_destroy(sc->sc_dstdmat,
1307 						re->re_dst_map);
1308 					re->re_dst_map = NULL;
1309 					safestats.st_noload++;
1310 					err = ENOMEM;
1311 					goto errout;
1312 				}
1313 			} else {		/* !(aligned and/or uniform) */
1314 				int totlen, len;
1315 				struct mbuf *m, *top, **mp;
1316 
1317 				/*
1318 				 * DMA constraints require that we allocate a
1319 				 * new mbuf chain for the destination.  We
1320 				 * allocate an entire new set of mbufs of
1321 				 * optimal/required size and then tell the
1322 				 * hardware to copy any bits that are not
1323 				 * created as a byproduct of the operation.
1324 				 */
1325 				if (!nicealign)
1326 					safestats.st_unaligned++;
1327 				if (!uniform)
1328 					safestats.st_notuniform++;
1329 				totlen = re->re_src_mapsize;
1330 				if (re->re_src_m->m_flags & M_PKTHDR) {
1331 					len = MHLEN;
1332 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1333 					if (m && !m_dup_pkthdr(m, re->re_src_m,
1334 					    M_DONTWAIT)) {
1335 						m_free(m);
1336 						m = NULL;
1337 					}
1338 				} else {
1339 					len = MLEN;
1340 					MGET(m, M_DONTWAIT, MT_DATA);
1341 				}
1342 				if (m == NULL) {
1343 					safestats.st_nombuf++;
1344 					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1345 					goto errout;
1346 				}
1347 				if (totlen >= MINCLSIZE) {
1348 					MCLGET(m, M_DONTWAIT);
1349 					if ((m->m_flags & M_EXT) == 0) {
1350 						m_free(m);
1351 						safestats.st_nomcl++;
1352 						err = sc->sc_nqchip ?
1353 							ERESTART : ENOMEM;
1354 						goto errout;
1355 					}
1356 					len = MCLBYTES;
1357 				}
1358 				m->m_len = len;
1359 				top = NULL;
1360 				mp = &top;
1361 
1362 				while (totlen > 0) {
1363 					if (top) {
1364 						MGET(m, M_DONTWAIT, MT_DATA);
1365 						if (m == NULL) {
1366 							m_freem(top);
1367 							safestats.st_nombuf++;
1368 							err = sc->sc_nqchip ?
1369 							    ERESTART : ENOMEM;
1370 							goto errout;
1371 						}
1372 						len = MLEN;
1373 					}
1374 					if (top && totlen >= MINCLSIZE) {
1375 						MCLGET(m, M_DONTWAIT);
1376 						if ((m->m_flags & M_EXT) == 0) {
1377 							*mp = m;
1378 							m_freem(top);
1379 							safestats.st_nomcl++;
1380 							err = sc->sc_nqchip ?
1381 							    ERESTART : ENOMEM;
1382 							goto errout;
1383 						}
1384 						len = MCLBYTES;
1385 					}
1386 					m->m_len = len = min(totlen, len);
1387 					totlen -= len;
1388 					*mp = m;
1389 					mp = &m->m_next;
1390 				}
1391 				re->re_dst_m = top;
1392 				if (bus_dmamap_create(sc->sc_dstdmat,
1393 				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1394 					safestats.st_nomap++;
1395 					err = ENOMEM;
1396 					goto errout;
1397 				}
1398 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1399 				    re->re_dst_map, re->re_dst_m,
1400 				    safe_op_cb, &re->re_dst,
1401 				    BUS_DMA_NOWAIT) != 0) {
1402 					bus_dmamap_destroy(sc->sc_dstdmat,
1403 					re->re_dst_map);
1404 					re->re_dst_map = NULL;
1405 					safestats.st_noload++;
1406 					err = ENOMEM;
1407 					goto errout;
1408 				}
1409 				if (re->re_src.mapsize > oplen) {
1410 					/*
1411 					 * There's data following what the
1412 					 * hardware will copy for us.  If this
1413 					 * isn't just the ICV (that's going to
1414 					 * be written on completion), copy it
1415 					 * to the new mbufs
1416 					 */
1417 					if (!(maccrd &&
1418 					    (re->re_src.mapsize-oplen) == 12 &&
1419 					    maccrd->crd_inject == oplen))
1420 						safe_mcopy(re->re_src_m,
1421 							   re->re_dst_m,
1422 							   oplen);
1423 					else
1424 						safestats.st_noicvcopy++;
1425 				}
1426 			}
1427 		} else {
1428 			safestats.st_badflags++;
1429 			err = EINVAL;
1430 			goto errout;
1431 		}
1432 
1433 		if (re->re_dst.nsegs > 1) {
1434 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1435 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1436 			for (i = 0; i < re->re_dst_nsegs; i++) {
1437 				pd = sc->sc_dpfree;
1438 				KASSERT((pd->pd_flags&3) == 0 ||
1439 					(pd->pd_flags&3) == SAFE_PD_DONE,
1440 					("bogus dest particle descriptor; flags %x",
1441 						pd->pd_flags));
1442 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1443 					sc->sc_dpfree = sc->sc_dpring;
1444 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1445 				pd->pd_flags = SAFE_PD_READY;
1446 			}
1447 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1448 		} else {
1449 			/*
1450 			 * No need for scatter, reference the operand directly.
1451 			 */
1452 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1453 		}
1454 	}
1455 
1456 	/*
1457 	 * All done with setup; fillin the SA command words
1458 	 * and the packet engine descriptor.  The operation
1459 	 * is now ready for submission to the hardware.
1460 	 */
1461 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1462 	sa->sa_cmd1 = cmd1
1463 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1464 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1465 		    | SAFE_SA_CMD1_SRPCI
1466 		    ;
1467 	/*
1468 	 * NB: the order of writes is important here.  In case the
1469 	 * chip is scanning the ring because of an outstanding request
1470 	 * it might nab this one too.  In that case we need to make
1471 	 * sure the setup is complete before we write the length
1472 	 * field of the descriptor as it signals the descriptor is
1473 	 * ready for processing.
1474 	 */
1475 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1476 	if (maccrd)
1477 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1478 	re->re_desc.d_len = oplen
1479 			  | SAFE_PE_LEN_READY
1480 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1481 			  ;
1482 
1483 	safestats.st_ipackets++;
1484 	safestats.st_ibytes += oplen;
1485 
1486 	if (++(sc->sc_front) == sc->sc_ringtop)
1487 		sc->sc_front = sc->sc_ring;
1488 
1489 	/* XXX honor batching */
1490 	safe_feed(sc, re);
1491 	mtx_unlock(&sc->sc_ringmtx);
1492 	return (0);
1493 
1494 errout:
1495 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1496 		m_freem(re->re_dst_m);
1497 
1498 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1499 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1500 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1501 	}
1502 	if (re->re_src_map != NULL) {
1503 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1504 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1505 	}
1506 	mtx_unlock(&sc->sc_ringmtx);
1507 	if (err != ERESTART) {
1508 		crp->crp_etype = err;
1509 		crypto_done(crp);
1510 	} else {
1511 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1512 	}
1513 	return (err);
1514 }
1515 
1516 static void
1517 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1518 {
1519 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1520 	struct cryptodesc *crd;
1521 
1522 	safestats.st_opackets++;
1523 	safestats.st_obytes += re->re_dst.mapsize;
1524 
1525 	safe_dma_sync(&sc->sc_ringalloc,
1526 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1527 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1528 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1529 			re->re_desc.d_csr,
1530 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1531 		safestats.st_peoperr++;
1532 		crp->crp_etype = EIO;		/* something more meaningful? */
1533 	}
1534 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1535 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1536 		    BUS_DMASYNC_POSTREAD);
1537 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1538 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1539 	}
1540 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1541 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1542 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1543 
1544 	/*
1545 	 * If result was written to a differet mbuf chain, swap
1546 	 * it in as the return value and reclaim the original.
1547 	 */
1548 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1549 		m_freem(re->re_src_m);
1550 		crp->crp_buf = (caddr_t)re->re_dst_m;
1551 	}
1552 
1553 	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1554 		/* copy out IV for future use */
1555 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1556 			int ivsize;
1557 
1558 			if (crd->crd_alg == CRYPTO_DES_CBC ||
1559 			    crd->crd_alg == CRYPTO_3DES_CBC) {
1560 				ivsize = 2*sizeof(u_int32_t);
1561 			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1562 				ivsize = 4*sizeof(u_int32_t);
1563 			} else
1564 				continue;
1565 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1566 			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1567 			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1568 			break;
1569 		}
1570 	}
1571 
1572 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1573 		/* copy out ICV result */
1574 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1575 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1576 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1577 			    crd->crd_alg == CRYPTO_NULL_HMAC))
1578 				continue;
1579 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1580 				/*
1581 				 * SHA-1 ICV's are byte-swapped; fix 'em up
1582 				 * before copy them to their destination.
1583 				 */
1584 				re->re_sastate.sa_saved_indigest[0] =
1585 				    bswap32(re->re_sastate.sa_saved_indigest[0]);
1586 				re->re_sastate.sa_saved_indigest[1] =
1587 				    bswap32(re->re_sastate.sa_saved_indigest[1]);
1588 				re->re_sastate.sa_saved_indigest[2] =
1589 				    bswap32(re->re_sastate.sa_saved_indigest[2]);
1590 			}
1591 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1592 			    crd->crd_inject,
1593 			    sc->sc_sessions[re->re_sesn].ses_mlen,
1594 			    (caddr_t)re->re_sastate.sa_saved_indigest);
1595 			break;
1596 		}
1597 	}
1598 	crypto_done(crp);
1599 }
1600 
1601 /*
1602  * Copy all data past offset from srcm to dstm.
1603  */
1604 static void
1605 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1606 {
1607 	u_int j, dlen, slen;
1608 	caddr_t dptr, sptr;
1609 
1610 	/*
1611 	 * Advance src and dst to offset.
1612 	 */
1613 	j = offset;
1614 	while (j >= 0) {
1615 		if (srcm->m_len > j)
1616 			break;
1617 		j -= srcm->m_len;
1618 		srcm = srcm->m_next;
1619 		if (srcm == NULL)
1620 			return;
1621 	}
1622 	sptr = mtod(srcm, caddr_t) + j;
1623 	slen = srcm->m_len - j;
1624 
1625 	j = offset;
1626 	while (j >= 0) {
1627 		if (dstm->m_len > j)
1628 			break;
1629 		j -= dstm->m_len;
1630 		dstm = dstm->m_next;
1631 		if (dstm == NULL)
1632 			return;
1633 	}
1634 	dptr = mtod(dstm, caddr_t) + j;
1635 	dlen = dstm->m_len - j;
1636 
1637 	/*
1638 	 * Copy everything that remains.
1639 	 */
1640 	for (;;) {
1641 		j = min(slen, dlen);
1642 		bcopy(sptr, dptr, j);
1643 		if (slen == j) {
1644 			srcm = srcm->m_next;
1645 			if (srcm == NULL)
1646 				return;
1647 			sptr = srcm->m_data;
1648 			slen = srcm->m_len;
1649 		} else
1650 			sptr += j, slen -= j;
1651 		if (dlen == j) {
1652 			dstm = dstm->m_next;
1653 			if (dstm == NULL)
1654 				return;
1655 			dptr = dstm->m_data;
1656 			dlen = dstm->m_len;
1657 		} else
1658 			dptr += j, dlen -= j;
1659 	}
1660 }
1661 
1662 #ifndef SAFE_NO_RNG
1663 #define	SAFE_RNG_MAXWAIT	1000
1664 
1665 static void
1666 safe_rng_init(struct safe_softc *sc)
1667 {
1668 	u_int32_t w, v;
1669 	int i;
1670 
1671 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1672 	/* use default value according to the manual */
1673 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1674 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1675 
1676 	/*
1677 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1678 	 * is brought out of reset the ready status flag does not
1679 	 * work until the RNG has finished its internal initialization.
1680 	 *
1681 	 * So in order to determine the device is through its
1682 	 * initialization we must read the data register, using the
1683 	 * status reg in the read in case it is initialized.  Then read
1684 	 * the data register until it changes from the first read.
1685 	 * Once it changes read the data register until it changes
1686 	 * again.  At this time the RNG is considered initialized.
1687 	 * This could take between 750ms - 1000ms in time.
1688 	 */
1689 	i = 0;
1690 	w = READ_REG(sc, SAFE_RNG_OUT);
1691 	do {
1692 		v = READ_REG(sc, SAFE_RNG_OUT);
1693 		if (v != w) {
1694 			w = v;
1695 			break;
1696 		}
1697 		DELAY(10);
1698 	} while (++i < SAFE_RNG_MAXWAIT);
1699 
1700 	/* Wait Until data changes again */
1701 	i = 0;
1702 	do {
1703 		v = READ_REG(sc, SAFE_RNG_OUT);
1704 		if (v != w)
1705 			break;
1706 		DELAY(10);
1707 	} while (++i < SAFE_RNG_MAXWAIT);
1708 }
1709 
1710 static __inline void
1711 safe_rng_disable_short_cycle(struct safe_softc *sc)
1712 {
1713 	WRITE_REG(sc, SAFE_RNG_CTRL,
1714 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1715 }
1716 
1717 static __inline void
1718 safe_rng_enable_short_cycle(struct safe_softc *sc)
1719 {
1720 	WRITE_REG(sc, SAFE_RNG_CTRL,
1721 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1722 }
1723 
1724 static __inline u_int32_t
1725 safe_rng_read(struct safe_softc *sc)
1726 {
1727 	int i;
1728 
1729 	i = 0;
1730 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1731 		;
1732 	return READ_REG(sc, SAFE_RNG_OUT);
1733 }
1734 
1735 static void
1736 safe_rng(void *arg)
1737 {
1738 	struct safe_softc *sc = arg;
1739 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1740 	u_int maxwords;
1741 	int i;
1742 
1743 	safestats.st_rng++;
1744 	/*
1745 	 * Fetch the next block of data.
1746 	 */
1747 	maxwords = safe_rngbufsize;
1748 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1749 		maxwords = SAFE_RNG_MAXBUFSIZ;
1750 retry:
1751 	for (i = 0; i < maxwords; i++)
1752 		buf[i] = safe_rng_read(sc);
1753 	/*
1754 	 * Check the comparator alarm count and reset the h/w if
1755 	 * it exceeds our threshold.  This guards against the
1756 	 * hardware oscillators resonating with external signals.
1757 	 */
1758 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1759 		u_int32_t freq_inc, w;
1760 
1761 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1762 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1763 		safestats.st_rngalarm++;
1764 		safe_rng_enable_short_cycle(sc);
1765 		freq_inc = 18;
1766 		for (i = 0; i < 64; i++) {
1767 			w = READ_REG(sc, SAFE_RNG_CNFG);
1768 			freq_inc = ((w + freq_inc) & 0x3fL);
1769 			w = ((w & ~0x3fL) | freq_inc);
1770 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1771 
1772 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1773 
1774 			(void) safe_rng_read(sc);
1775 			DELAY(25);
1776 
1777 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1778 				safe_rng_disable_short_cycle(sc);
1779 				goto retry;
1780 			}
1781 			freq_inc = 1;
1782 		}
1783 		safe_rng_disable_short_cycle(sc);
1784 	} else
1785 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1786 
1787 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1788 	callout_reset(&sc->sc_rngto,
1789 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1790 }
1791 #endif /* SAFE_NO_RNG */
1792 
1793 static void
1794 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1795 {
1796 	bus_addr_t *paddr = (bus_addr_t*) arg;
1797 	*paddr = segs->ds_addr;
1798 }
1799 
1800 static int
1801 safe_dma_malloc(
1802 	struct safe_softc *sc,
1803 	bus_size_t size,
1804 	struct safe_dma_alloc *dma,
1805 	int mapflags
1806 )
1807 {
1808 	int r;
1809 
1810 	r = bus_dma_tag_create(NULL,			/* parent */
1811 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1812 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1813 			       BUS_SPACE_MAXADDR,	/* highaddr */
1814 			       NULL, NULL,		/* filter, filterarg */
1815 			       size,			/* maxsize */
1816 			       1,			/* nsegments */
1817 			       size,			/* maxsegsize */
1818 			       BUS_DMA_ALLOCNOW,	/* flags */
1819 			       NULL, NULL,		/* locking */
1820 			       &dma->dma_tag);
1821 	if (r != 0) {
1822 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1823 			"bus_dma_tag_create failed; error %u\n", r);
1824 		goto fail_0;
1825 	}
1826 
1827 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1828 	if (r != 0) {
1829 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1830 			"bus_dmamap_create failed; error %u\n", r);
1831 		goto fail_1;
1832 	}
1833 
1834 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1835 			     BUS_DMA_NOWAIT, &dma->dma_map);
1836 	if (r != 0) {
1837 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1838 			"bus_dmammem_alloc failed; size %zu, error %u\n",
1839 			size, r);
1840 		goto fail_2;
1841 	}
1842 
1843 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1844 		            size,
1845 			    safe_dmamap_cb,
1846 			    &dma->dma_paddr,
1847 			    mapflags | BUS_DMA_NOWAIT);
1848 	if (r != 0) {
1849 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1850 			"bus_dmamap_load failed; error %u\n", r);
1851 		goto fail_3;
1852 	}
1853 
1854 	dma->dma_size = size;
1855 	return (0);
1856 
1857 fail_3:
1858 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1859 fail_2:
1860 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1861 fail_1:
1862 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1863 	bus_dma_tag_destroy(dma->dma_tag);
1864 fail_0:
1865 	dma->dma_map = NULL;
1866 	dma->dma_tag = NULL;
1867 	return (r);
1868 }
1869 
1870 static void
1871 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1872 {
1873 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1874 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1875 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1876 	bus_dma_tag_destroy(dma->dma_tag);
1877 }
1878 
1879 /*
1880  * Resets the board.  Values in the regesters are left as is
1881  * from the reset (i.e. initial values are assigned elsewhere).
1882  */
1883 static void
1884 safe_reset_board(struct safe_softc *sc)
1885 {
1886 	u_int32_t v;
1887 	/*
1888 	 * Reset the device.  The manual says no delay
1889 	 * is needed between marking and clearing reset.
1890 	 */
1891 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1892 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1893 		 SAFE_PE_DMACFG_SGRESET);
1894 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1895 				    | SAFE_PE_DMACFG_PERESET
1896 				    | SAFE_PE_DMACFG_PDRRESET
1897 				    | SAFE_PE_DMACFG_SGRESET);
1898 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1899 }
1900 
1901 /*
1902  * Initialize registers we need to touch only once.
1903  */
1904 static void
1905 safe_init_board(struct safe_softc *sc)
1906 {
1907 	u_int32_t v, dwords;
1908 
1909 	v = READ_REG(sc, SAFE_PE_DMACFG);
1910 	v &=~ SAFE_PE_DMACFG_PEMODE;
1911 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1912 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1913 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1914 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1915 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1916 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1917 	  ;
1918 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1919 #if 0
1920 	/* XXX select byte swap based on host byte order */
1921 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1922 #endif
1923 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1924 		/*
1925 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1926 		 * "target mode transfers" done while the chip is DMA'ing
1927 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1928 		 * we reduce the max PCI transfer size and use small source
1929 		 * particle descriptors (<= 256 bytes).
1930 		 */
1931 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1932 		device_printf(sc->sc_dev,
1933 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1934 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1935 			SAFE_REV_MAJ(sc->sc_chiprev),
1936 			SAFE_REV_MIN(sc->sc_chiprev));
1937 	}
1938 
1939 	/* NB: operands+results are overlaid */
1940 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1941 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1942 	/*
1943 	 * Configure ring entry size and number of items in the ring.
1944 	 */
1945 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1946 		("PE ring entry not 32-bit aligned!"));
1947 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1948 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1949 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1950 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1951 
1952 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1953 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1954 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1955 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1956 	/*
1957 	 * NB: destination particles are fixed size.  We use
1958 	 *     an mbuf cluster and require all results go to
1959 	 *     clusters or smaller.
1960 	 */
1961 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1962 
1963 	/* it's now safe to enable PE mode, do it */
1964 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1965 
1966 	/*
1967 	 * Configure hardware to use level-triggered interrupts and
1968 	 * to interrupt after each descriptor is processed.
1969 	 */
1970 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1971 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1972 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1973 }
1974 
1975 /*
1976  * Init PCI registers
1977  */
1978 static void
1979 safe_init_pciregs(device_t dev)
1980 {
1981 }
1982 
1983 /*
1984  * Clean up after a chip crash.
1985  * It is assumed that the caller in splimp()
1986  */
1987 static void
1988 safe_cleanchip(struct safe_softc *sc)
1989 {
1990 
1991 	if (sc->sc_nqchip != 0) {
1992 		struct safe_ringentry *re = sc->sc_back;
1993 
1994 		while (re != sc->sc_front) {
1995 			if (re->re_desc.d_csr != 0)
1996 				safe_free_entry(sc, re);
1997 			if (++re == sc->sc_ringtop)
1998 				re = sc->sc_ring;
1999 		}
2000 		sc->sc_back = re;
2001 		sc->sc_nqchip = 0;
2002 	}
2003 }
2004 
2005 /*
2006  * free a safe_q
2007  * It is assumed that the caller is within splimp().
2008  */
2009 static int
2010 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2011 {
2012 	struct cryptop *crp;
2013 
2014 	/*
2015 	 * Free header MCR
2016 	 */
2017 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2018 		m_freem(re->re_dst_m);
2019 
2020 	crp = (struct cryptop *)re->re_crp;
2021 
2022 	re->re_desc.d_csr = 0;
2023 
2024 	crp->crp_etype = EFAULT;
2025 	crypto_done(crp);
2026 	return(0);
2027 }
2028 
2029 /*
2030  * Routine to reset the chip and clean up.
2031  * It is assumed that the caller is in splimp()
2032  */
2033 static void
2034 safe_totalreset(struct safe_softc *sc)
2035 {
2036 	safe_reset_board(sc);
2037 	safe_init_board(sc);
2038 	safe_cleanchip(sc);
2039 }
2040 
2041 /*
2042  * Is the operand suitable aligned for direct DMA.  Each
2043  * segment must be aligned on a 32-bit boundary and all
2044  * but the last segment must be a multiple of 4 bytes.
2045  */
2046 static int
2047 safe_dmamap_aligned(const struct safe_operand *op)
2048 {
2049 	int i;
2050 
2051 	for (i = 0; i < op->nsegs; i++) {
2052 		if (op->segs[i].ds_addr & 3)
2053 			return (0);
2054 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2055 			return (0);
2056 	}
2057 	return (1);
2058 }
2059 
2060 /*
2061  * Is the operand suitable for direct DMA as the destination
2062  * of an operation.  The hardware requires that each ``particle''
2063  * but the last in an operation result have the same size.  We
2064  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2065  * 0 if some segment is not a multiple of of this size, 1 if all
2066  * segments are exactly this size, or 2 if segments are at worst
2067  * a multple of this size.
2068  */
2069 static int
2070 safe_dmamap_uniform(const struct safe_operand *op)
2071 {
2072 	int result = 1;
2073 
2074 	if (op->nsegs > 0) {
2075 		int i;
2076 
2077 		for (i = 0; i < op->nsegs-1; i++) {
2078 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2079 				return (0);
2080 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2081 				result = 2;
2082 		}
2083 	}
2084 	return (result);
2085 }
2086 
2087 #ifdef SAFE_DEBUG
2088 static void
2089 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2090 {
2091 	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2092 		, tag
2093 		, READ_REG(sc, SAFE_DMA_ENDIAN)
2094 		, READ_REG(sc, SAFE_DMA_SRCADDR)
2095 		, READ_REG(sc, SAFE_DMA_DSTADDR)
2096 		, READ_REG(sc, SAFE_DMA_STAT)
2097 	);
2098 }
2099 
2100 static void
2101 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2102 {
2103 	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2104 		, tag
2105 		, READ_REG(sc, SAFE_HI_CFG)
2106 		, READ_REG(sc, SAFE_HI_MASK)
2107 		, READ_REG(sc, SAFE_HI_DESC_CNT)
2108 		, READ_REG(sc, SAFE_HU_STAT)
2109 		, READ_REG(sc, SAFE_HM_STAT)
2110 	);
2111 }
2112 
2113 static void
2114 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2115 {
2116 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2117 
2118 	/* NB: assume caller has lock on ring */
2119 	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2120 		tag,
2121 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2122 		(unsigned long)(sc->sc_back - sc->sc_ring),
2123 		(unsigned long)(sc->sc_front - sc->sc_ring));
2124 }
2125 
2126 static void
2127 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2128 {
2129 	int ix, nsegs;
2130 
2131 	ix = re - sc->sc_ring;
2132 	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2133 		, tag
2134 		, re, ix
2135 		, re->re_desc.d_csr
2136 		, re->re_desc.d_src
2137 		, re->re_desc.d_dst
2138 		, re->re_desc.d_sa
2139 		, re->re_desc.d_len
2140 	);
2141 	if (re->re_src.nsegs > 1) {
2142 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2143 			sizeof(struct safe_pdesc);
2144 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2145 			printf(" spd[%u] %p: %p size %u flags %x"
2146 				, ix, &sc->sc_spring[ix]
2147 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2148 				, sc->sc_spring[ix].pd_size
2149 				, sc->sc_spring[ix].pd_flags
2150 			);
2151 			if (sc->sc_spring[ix].pd_size == 0)
2152 				printf(" (zero!)");
2153 			printf("\n");
2154 			if (++ix == SAFE_TOTAL_SPART)
2155 				ix = 0;
2156 		}
2157 	}
2158 	if (re->re_dst.nsegs > 1) {
2159 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2160 			sizeof(struct safe_pdesc);
2161 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2162 			printf(" dpd[%u] %p: %p flags %x\n"
2163 				, ix, &sc->sc_dpring[ix]
2164 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2165 				, sc->sc_dpring[ix].pd_flags
2166 			);
2167 			if (++ix == SAFE_TOTAL_DPART)
2168 				ix = 0;
2169 		}
2170 	}
2171 	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2172 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2173 	printf("sa: key %x %x %x %x %x %x %x %x\n"
2174 		, re->re_sa.sa_key[0]
2175 		, re->re_sa.sa_key[1]
2176 		, re->re_sa.sa_key[2]
2177 		, re->re_sa.sa_key[3]
2178 		, re->re_sa.sa_key[4]
2179 		, re->re_sa.sa_key[5]
2180 		, re->re_sa.sa_key[6]
2181 		, re->re_sa.sa_key[7]
2182 	);
2183 	printf("sa: indigest %x %x %x %x %x\n"
2184 		, re->re_sa.sa_indigest[0]
2185 		, re->re_sa.sa_indigest[1]
2186 		, re->re_sa.sa_indigest[2]
2187 		, re->re_sa.sa_indigest[3]
2188 		, re->re_sa.sa_indigest[4]
2189 	);
2190 	printf("sa: outdigest %x %x %x %x %x\n"
2191 		, re->re_sa.sa_outdigest[0]
2192 		, re->re_sa.sa_outdigest[1]
2193 		, re->re_sa.sa_outdigest[2]
2194 		, re->re_sa.sa_outdigest[3]
2195 		, re->re_sa.sa_outdigest[4]
2196 	);
2197 	printf("sr: iv %x %x %x %x\n"
2198 		, re->re_sastate.sa_saved_iv[0]
2199 		, re->re_sastate.sa_saved_iv[1]
2200 		, re->re_sastate.sa_saved_iv[2]
2201 		, re->re_sastate.sa_saved_iv[3]
2202 	);
2203 	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2204 		, re->re_sastate.sa_saved_hashbc
2205 		, re->re_sastate.sa_saved_indigest[0]
2206 		, re->re_sastate.sa_saved_indigest[1]
2207 		, re->re_sastate.sa_saved_indigest[2]
2208 		, re->re_sastate.sa_saved_indigest[3]
2209 		, re->re_sastate.sa_saved_indigest[4]
2210 	);
2211 }
2212 
2213 static void
2214 safe_dump_ring(struct safe_softc *sc, const char *tag)
2215 {
2216 	mtx_lock(&sc->sc_ringmtx);
2217 	printf("\nSafeNet Ring State:\n");
2218 	safe_dump_intrstate(sc, tag);
2219 	safe_dump_dmastatus(sc, tag);
2220 	safe_dump_ringstate(sc, tag);
2221 	if (sc->sc_nqchip) {
2222 		struct safe_ringentry *re = sc->sc_back;
2223 		do {
2224 			safe_dump_request(sc, tag, re);
2225 			if (++re == sc->sc_ringtop)
2226 				re = sc->sc_ring;
2227 		} while (re != sc->sc_front);
2228 	}
2229 	mtx_unlock(&sc->sc_ringmtx);
2230 }
2231 
2232 static int
2233 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2234 {
2235 	char dmode[64];
2236 	int error;
2237 
2238 	strncpy(dmode, "", sizeof(dmode) - 1);
2239 	dmode[sizeof(dmode) - 1] = '\0';
2240 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2241 
2242 	if (error == 0 && req->newptr != NULL) {
2243 		struct safe_softc *sc = safec;
2244 
2245 		if (!sc)
2246 			return EINVAL;
2247 		if (strncmp(dmode, "dma", 3) == 0)
2248 			safe_dump_dmastatus(sc, "safe0");
2249 		else if (strncmp(dmode, "int", 3) == 0)
2250 			safe_dump_intrstate(sc, "safe0");
2251 		else if (strncmp(dmode, "ring", 4) == 0)
2252 			safe_dump_ring(sc, "safe0");
2253 		else
2254 			return EINVAL;
2255 	}
2256 	return error;
2257 }
2258 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2259 	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2260 #endif /* SAFE_DEBUG */
2261