xref: /freebsd/sys/dev/safe/safe.c (revision 4ac4a7f80b2be339371421b9972535ae5fc473d4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003 Sam Leffler, Errno Consulting
5  * Copyright (c) 2003 Global Technology Associates, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * SafeNet SafeXcel-1141 hardware crypto accelerator
35  */
36 #include "opt_safe.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/errno.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/mbuf.h>
45 #include <sys/module.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/endian.h>
50 #include <sys/uio.h>
51 
52 #include <vm/vm.h>
53 #include <vm/pmap.h>
54 
55 #include <machine/bus.h>
56 #include <machine/resource.h>
57 #include <sys/bus.h>
58 #include <sys/rman.h>
59 
60 #include <opencrypto/cryptodev.h>
61 #include <opencrypto/xform_auth.h>
62 #include <sys/random.h>
63 #include <sys/kobj.h>
64 
65 #include "cryptodev_if.h"
66 
67 #include <dev/pci/pcivar.h>
68 #include <dev/pci/pcireg.h>
69 
70 #ifdef SAFE_RNDTEST
71 #include <dev/rndtest/rndtest.h>
72 #endif
73 #include <dev/safe/safereg.h>
74 #include <dev/safe/safevar.h>
75 
76 #ifndef bswap32
77 #define	bswap32	NTOHL
78 #endif
79 
80 /*
81  * Prototypes and count for the pci_device structure
82  */
83 static	int safe_probe(device_t);
84 static	int safe_attach(device_t);
85 static	int safe_detach(device_t);
86 static	int safe_suspend(device_t);
87 static	int safe_resume(device_t);
88 static	int safe_shutdown(device_t);
89 
90 static	int safe_probesession(device_t, const struct crypto_session_params *);
91 static	int safe_newsession(device_t, crypto_session_t,
92 	    const struct crypto_session_params *);
93 static	int safe_process(device_t, struct cryptop *, int);
94 
95 static device_method_t safe_methods[] = {
96 	/* Device interface */
97 	DEVMETHOD(device_probe,		safe_probe),
98 	DEVMETHOD(device_attach,	safe_attach),
99 	DEVMETHOD(device_detach,	safe_detach),
100 	DEVMETHOD(device_suspend,	safe_suspend),
101 	DEVMETHOD(device_resume,	safe_resume),
102 	DEVMETHOD(device_shutdown,	safe_shutdown),
103 
104 	/* crypto device methods */
105 	DEVMETHOD(cryptodev_probesession, safe_probesession),
106 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
107 	DEVMETHOD(cryptodev_process,	safe_process),
108 
109 	DEVMETHOD_END
110 };
111 static driver_t safe_driver = {
112 	"safe",
113 	safe_methods,
114 	sizeof (struct safe_softc)
115 };
116 static devclass_t safe_devclass;
117 
118 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
119 MODULE_DEPEND(safe, crypto, 1, 1, 1);
120 #ifdef SAFE_RNDTEST
121 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
122 #endif
123 
124 static	void safe_intr(void *);
125 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
126 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
127 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
128 #ifndef SAFE_NO_RNG
129 static	void safe_rng_init(struct safe_softc *);
130 static	void safe_rng(void *);
131 #endif /* SAFE_NO_RNG */
132 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
133 	        struct safe_dma_alloc *, int);
134 #define	safe_dma_sync(_dma, _flags) \
135 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
136 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
137 static	int safe_dmamap_aligned(const struct safe_operand *);
138 static	int safe_dmamap_uniform(const struct safe_operand *);
139 
140 static	void safe_reset_board(struct safe_softc *);
141 static	void safe_init_board(struct safe_softc *);
142 static	void safe_init_pciregs(device_t dev);
143 static	void safe_cleanchip(struct safe_softc *);
144 static	void safe_totalreset(struct safe_softc *);
145 
146 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
147 
148 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
149     "SafeNet driver parameters");
150 
151 #ifdef SAFE_DEBUG
152 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
153 static	void safe_dump_ringstate(struct safe_softc *, const char *);
154 static	void safe_dump_intrstate(struct safe_softc *, const char *);
155 static	void safe_dump_request(struct safe_softc *, const char *,
156 		struct safe_ringentry *);
157 
158 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
159 
160 static	int safe_debug = 0;
161 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
162 	    0, "control debugging msgs");
163 #define	DPRINTF(_x)	if (safe_debug) printf _x
164 #else
165 #define	DPRINTF(_x)
166 #endif
167 
168 #define	READ_REG(sc,r) \
169 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
170 
171 #define WRITE_REG(sc,reg,val) \
172 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
173 
174 struct safe_stats safestats;
175 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
176 	    safe_stats, "driver statistics");
177 #ifndef SAFE_NO_RNG
178 static	int safe_rnginterval = 1;		/* poll once a second */
179 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
180 	    0, "RNG polling interval (secs)");
181 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
182 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
183 	    0, "RNG polling buffer size (32-bit words)");
184 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
185 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
186 	    0, "RNG max alarms before reset");
187 #endif /* SAFE_NO_RNG */
188 
189 static int
190 safe_probe(device_t dev)
191 {
192 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
193 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
194 		return (BUS_PROBE_DEFAULT);
195 	return (ENXIO);
196 }
197 
198 static const char*
199 safe_partname(struct safe_softc *sc)
200 {
201 	/* XXX sprintf numbers when not decoded */
202 	switch (pci_get_vendor(sc->sc_dev)) {
203 	case PCI_VENDOR_SAFENET:
204 		switch (pci_get_device(sc->sc_dev)) {
205 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
206 		}
207 		return "SafeNet unknown-part";
208 	}
209 	return "Unknown-vendor unknown-part";
210 }
211 
212 #ifndef SAFE_NO_RNG
213 static void
214 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
215 {
216 	/* MarkM: FIX!! Check that this does not swamp the harvester! */
217 	random_harvest_queue(buf, count, RANDOM_PURE_SAFE);
218 }
219 #endif /* SAFE_NO_RNG */
220 
221 static int
222 safe_attach(device_t dev)
223 {
224 	struct safe_softc *sc = device_get_softc(dev);
225 	u_int32_t raddr;
226 	u_int32_t i;
227 	int rid;
228 
229 	bzero(sc, sizeof (*sc));
230 	sc->sc_dev = dev;
231 
232 	/* XXX handle power management */
233 
234 	pci_enable_busmaster(dev);
235 
236 	/*
237 	 * Setup memory-mapping of PCI registers.
238 	 */
239 	rid = BS_BAR;
240 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
241 					   RF_ACTIVE);
242 	if (sc->sc_sr == NULL) {
243 		device_printf(dev, "cannot map register space\n");
244 		goto bad;
245 	}
246 	sc->sc_st = rman_get_bustag(sc->sc_sr);
247 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
248 
249 	/*
250 	 * Arrange interrupt line.
251 	 */
252 	rid = 0;
253 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
254 					    RF_SHAREABLE|RF_ACTIVE);
255 	if (sc->sc_irq == NULL) {
256 		device_printf(dev, "could not map interrupt\n");
257 		goto bad1;
258 	}
259 	/*
260 	 * NB: Network code assumes we are blocked with splimp()
261 	 *     so make sure the IRQ is mapped appropriately.
262 	 */
263 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
264 			   NULL, safe_intr, sc, &sc->sc_ih)) {
265 		device_printf(dev, "could not establish interrupt\n");
266 		goto bad2;
267 	}
268 
269 	sc->sc_cid = crypto_get_driverid(dev, sizeof(struct safe_session),
270 	    CRYPTOCAP_F_HARDWARE);
271 	if (sc->sc_cid < 0) {
272 		device_printf(dev, "could not get crypto driver id\n");
273 		goto bad3;
274 	}
275 
276 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
277 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
278 
279 	/*
280 	 * Setup DMA descriptor area.
281 	 */
282 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
283 			       1,			/* alignment */
284 			       SAFE_DMA_BOUNDARY,	/* boundary */
285 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
286 			       BUS_SPACE_MAXADDR,	/* highaddr */
287 			       NULL, NULL,		/* filter, filterarg */
288 			       SAFE_MAX_DMA,		/* maxsize */
289 			       SAFE_MAX_PART,		/* nsegments */
290 			       SAFE_MAX_SSIZE,		/* maxsegsize */
291 			       BUS_DMA_ALLOCNOW,	/* flags */
292 			       NULL, NULL,		/* locking */
293 			       &sc->sc_srcdmat)) {
294 		device_printf(dev, "cannot allocate DMA tag\n");
295 		goto bad4;
296 	}
297 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
298 			       1,			/* alignment */
299 			       SAFE_MAX_DSIZE,		/* boundary */
300 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
301 			       BUS_SPACE_MAXADDR,	/* highaddr */
302 			       NULL, NULL,		/* filter, filterarg */
303 			       SAFE_MAX_DMA,		/* maxsize */
304 			       SAFE_MAX_PART,		/* nsegments */
305 			       SAFE_MAX_DSIZE,		/* maxsegsize */
306 			       BUS_DMA_ALLOCNOW,	/* flags */
307 			       NULL, NULL,		/* locking */
308 			       &sc->sc_dstdmat)) {
309 		device_printf(dev, "cannot allocate DMA tag\n");
310 		goto bad4;
311 	}
312 
313 	/*
314 	 * Allocate packet engine descriptors.
315 	 */
316 	if (safe_dma_malloc(sc,
317 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
318 	    &sc->sc_ringalloc, 0)) {
319 		device_printf(dev, "cannot allocate PE descriptor ring\n");
320 		bus_dma_tag_destroy(sc->sc_srcdmat);
321 		goto bad4;
322 	}
323 	/*
324 	 * Hookup the static portion of all our data structures.
325 	 */
326 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
327 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
328 	sc->sc_front = sc->sc_ring;
329 	sc->sc_back = sc->sc_ring;
330 	raddr = sc->sc_ringalloc.dma_paddr;
331 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
332 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
333 		struct safe_ringentry *re = &sc->sc_ring[i];
334 
335 		re->re_desc.d_sa = raddr +
336 			offsetof(struct safe_ringentry, re_sa);
337 		re->re_sa.sa_staterec = raddr +
338 			offsetof(struct safe_ringentry, re_sastate);
339 
340 		raddr += sizeof (struct safe_ringentry);
341 	}
342 	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
343 		"packet engine ring", MTX_DEF);
344 
345 	/*
346 	 * Allocate scatter and gather particle descriptors.
347 	 */
348 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
349 	    &sc->sc_spalloc, 0)) {
350 		device_printf(dev, "cannot allocate source particle "
351 			"descriptor ring\n");
352 		mtx_destroy(&sc->sc_ringmtx);
353 		safe_dma_free(sc, &sc->sc_ringalloc);
354 		bus_dma_tag_destroy(sc->sc_srcdmat);
355 		goto bad4;
356 	}
357 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
358 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
359 	sc->sc_spfree = sc->sc_spring;
360 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
361 
362 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
363 	    &sc->sc_dpalloc, 0)) {
364 		device_printf(dev, "cannot allocate destination particle "
365 			"descriptor ring\n");
366 		mtx_destroy(&sc->sc_ringmtx);
367 		safe_dma_free(sc, &sc->sc_spalloc);
368 		safe_dma_free(sc, &sc->sc_ringalloc);
369 		bus_dma_tag_destroy(sc->sc_dstdmat);
370 		goto bad4;
371 	}
372 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
373 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
374 	sc->sc_dpfree = sc->sc_dpring;
375 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
376 
377 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
378 
379 	sc->sc_devinfo = READ_REG(sc, SAFE_DEVINFO);
380 	if (sc->sc_devinfo & SAFE_DEVINFO_RNG) {
381 		sc->sc_flags |= SAFE_FLAGS_RNG;
382 		printf(" rng");
383 	}
384 	if (sc->sc_devinfo & SAFE_DEVINFO_PKEY) {
385 #if 0
386 		printf(" key");
387 		sc->sc_flags |= SAFE_FLAGS_KEY;
388 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
389 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
390 #endif
391 	}
392 	if (sc->sc_devinfo & SAFE_DEVINFO_DES) {
393 		printf(" des/3des");
394 	}
395 	if (sc->sc_devinfo & SAFE_DEVINFO_AES) {
396 		printf(" aes");
397 	}
398 	if (sc->sc_devinfo & SAFE_DEVINFO_MD5) {
399 		printf(" md5");
400 	}
401 	if (sc->sc_devinfo & SAFE_DEVINFO_SHA1) {
402 		printf(" sha1");
403 	}
404 	/* XXX other supported algorithms */
405 	printf("\n");
406 
407 	safe_reset_board(sc);		/* reset h/w */
408 	safe_init_pciregs(dev);		/* init pci settings */
409 	safe_init_board(sc);		/* init h/w */
410 
411 #ifndef SAFE_NO_RNG
412 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
413 #ifdef SAFE_RNDTEST
414 		sc->sc_rndtest = rndtest_attach(dev);
415 		if (sc->sc_rndtest)
416 			sc->sc_harvest = rndtest_harvest;
417 		else
418 			sc->sc_harvest = default_harvest;
419 #else
420 		sc->sc_harvest = default_harvest;
421 #endif
422 		safe_rng_init(sc);
423 
424 		callout_init(&sc->sc_rngto, 1);
425 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
426 	}
427 #endif /* SAFE_NO_RNG */
428 #ifdef SAFE_DEBUG
429 	safec = sc;			/* for use by hw.safe.dump */
430 #endif
431 	return (0);
432 bad4:
433 	crypto_unregister_all(sc->sc_cid);
434 bad3:
435 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
436 bad2:
437 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
438 bad1:
439 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
440 bad:
441 	return (ENXIO);
442 }
443 
444 /*
445  * Detach a device that successfully probed.
446  */
447 static int
448 safe_detach(device_t dev)
449 {
450 	struct safe_softc *sc = device_get_softc(dev);
451 
452 	/* XXX wait/abort active ops */
453 
454 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
455 
456 	callout_stop(&sc->sc_rngto);
457 
458 	crypto_unregister_all(sc->sc_cid);
459 
460 #ifdef SAFE_RNDTEST
461 	if (sc->sc_rndtest)
462 		rndtest_detach(sc->sc_rndtest);
463 #endif
464 
465 	safe_cleanchip(sc);
466 	safe_dma_free(sc, &sc->sc_dpalloc);
467 	safe_dma_free(sc, &sc->sc_spalloc);
468 	mtx_destroy(&sc->sc_ringmtx);
469 	safe_dma_free(sc, &sc->sc_ringalloc);
470 
471 	bus_generic_detach(dev);
472 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
473 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
474 
475 	bus_dma_tag_destroy(sc->sc_srcdmat);
476 	bus_dma_tag_destroy(sc->sc_dstdmat);
477 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
478 
479 	return (0);
480 }
481 
482 /*
483  * Stop all chip i/o so that the kernel's probe routines don't
484  * get confused by errant DMAs when rebooting.
485  */
486 static int
487 safe_shutdown(device_t dev)
488 {
489 #ifdef notyet
490 	safe_stop(device_get_softc(dev));
491 #endif
492 	return (0);
493 }
494 
495 /*
496  * Device suspend routine.
497  */
498 static int
499 safe_suspend(device_t dev)
500 {
501 	struct safe_softc *sc = device_get_softc(dev);
502 
503 #ifdef notyet
504 	/* XXX stop the device and save PCI settings */
505 #endif
506 	sc->sc_suspended = 1;
507 
508 	return (0);
509 }
510 
511 static int
512 safe_resume(device_t dev)
513 {
514 	struct safe_softc *sc = device_get_softc(dev);
515 
516 #ifdef notyet
517 	/* XXX retore PCI settings and start the device */
518 #endif
519 	sc->sc_suspended = 0;
520 	return (0);
521 }
522 
523 /*
524  * SafeXcel Interrupt routine
525  */
526 static void
527 safe_intr(void *arg)
528 {
529 	struct safe_softc *sc = arg;
530 	volatile u_int32_t stat;
531 
532 	stat = READ_REG(sc, SAFE_HM_STAT);
533 	if (stat == 0)			/* shared irq, not for us */
534 		return;
535 
536 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
537 
538 	if ((stat & SAFE_INT_PE_DDONE)) {
539 		/*
540 		 * Descriptor(s) done; scan the ring and
541 		 * process completed operations.
542 		 */
543 		mtx_lock(&sc->sc_ringmtx);
544 		while (sc->sc_back != sc->sc_front) {
545 			struct safe_ringentry *re = sc->sc_back;
546 #ifdef SAFE_DEBUG
547 			if (safe_debug) {
548 				safe_dump_ringstate(sc, __func__);
549 				safe_dump_request(sc, __func__, re);
550 			}
551 #endif
552 			/*
553 			 * safe_process marks ring entries that were allocated
554 			 * but not used with a csr of zero.  This insures the
555 			 * ring front pointer never needs to be set backwards
556 			 * in the event that an entry is allocated but not used
557 			 * because of a setup error.
558 			 */
559 			if (re->re_desc.d_csr != 0) {
560 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
561 					break;
562 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
563 					break;
564 				sc->sc_nqchip--;
565 				safe_callback(sc, re);
566 			}
567 			if (++(sc->sc_back) == sc->sc_ringtop)
568 				sc->sc_back = sc->sc_ring;
569 		}
570 		mtx_unlock(&sc->sc_ringmtx);
571 	}
572 
573 	/*
574 	 * Check to see if we got any DMA Error
575 	 */
576 	if (stat & SAFE_INT_PE_ERROR) {
577 		DPRINTF(("dmaerr dmastat %08x\n",
578 			READ_REG(sc, SAFE_PE_DMASTAT)));
579 		safestats.st_dmaerr++;
580 		safe_totalreset(sc);
581 #if 0
582 		safe_feed(sc);
583 #endif
584 	}
585 
586 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
587 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
588 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
589 			sc->sc_needwakeup));
590 		sc->sc_needwakeup &= ~wakeup;
591 		crypto_unblock(sc->sc_cid, wakeup);
592 	}
593 }
594 
595 /*
596  * safe_feed() - post a request to chip
597  */
598 static void
599 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
600 {
601 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
602 	if (re->re_dst_map != NULL)
603 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
604 			BUS_DMASYNC_PREREAD);
605 	/* XXX have no smaller granularity */
606 	safe_dma_sync(&sc->sc_ringalloc,
607 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
608 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
609 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
610 
611 #ifdef SAFE_DEBUG
612 	if (safe_debug) {
613 		safe_dump_ringstate(sc, __func__);
614 		safe_dump_request(sc, __func__, re);
615 	}
616 #endif
617 	sc->sc_nqchip++;
618 	if (sc->sc_nqchip > safestats.st_maxqchip)
619 		safestats.st_maxqchip = sc->sc_nqchip;
620 	/* poke h/w to check descriptor ring, any value can be written */
621 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
622 }
623 
624 #define	N(a)	(sizeof(a) / sizeof (a[0]))
625 static void
626 safe_setup_enckey(struct safe_session *ses, const void *key)
627 {
628 	int i;
629 
630 	bcopy(key, ses->ses_key, ses->ses_klen);
631 
632 	/* PE is little-endian, insure proper byte order */
633 	for (i = 0; i < N(ses->ses_key); i++)
634 		ses->ses_key[i] = htole32(ses->ses_key[i]);
635 }
636 
637 static void
638 safe_setup_mackey(struct safe_session *ses, int algo, const uint8_t *key,
639     int klen)
640 {
641 	MD5_CTX md5ctx;
642 	SHA1_CTX sha1ctx;
643 	int i;
644 
645 	if (algo == CRYPTO_MD5_HMAC) {
646 		hmac_init_ipad(&auth_hash_hmac_md5, key, klen, &md5ctx);
647 		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
648 
649 		hmac_init_opad(&auth_hash_hmac_md5, key, klen, &md5ctx);
650 		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
651 
652 		explicit_bzero(&md5ctx, sizeof(md5ctx));
653 	} else {
654 		hmac_init_ipad(&auth_hash_hmac_sha1, key, klen, &sha1ctx);
655 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
656 
657 		hmac_init_opad(&auth_hash_hmac_sha1, key, klen, &sha1ctx);
658 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
659 
660 		explicit_bzero(&sha1ctx, sizeof(sha1ctx));
661 	}
662 
663 	/* PE is little-endian, insure proper byte order */
664 	for (i = 0; i < N(ses->ses_hminner); i++) {
665 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
666 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
667 	}
668 }
669 #undef N
670 
671 static bool
672 safe_auth_supported(struct safe_softc *sc,
673     const struct crypto_session_params *csp)
674 {
675 
676 	switch (csp->csp_auth_alg) {
677 	case CRYPTO_MD5_HMAC:
678 		if ((sc->sc_devinfo & SAFE_DEVINFO_MD5) == 0)
679 			return (false);
680 		break;
681 	case CRYPTO_SHA1_HMAC:
682 		if ((sc->sc_devinfo & SAFE_DEVINFO_SHA1) == 0)
683 			return (false);
684 		break;
685 	default:
686 		return (false);
687 	}
688 	return (true);
689 }
690 
691 static bool
692 safe_cipher_supported(struct safe_softc *sc,
693     const struct crypto_session_params *csp)
694 {
695 
696 	switch (csp->csp_cipher_alg) {
697 	case CRYPTO_DES_CBC:
698 	case CRYPTO_3DES_CBC:
699 		if ((sc->sc_devinfo & SAFE_DEVINFO_DES) == 0)
700 			return (false);
701 		if (csp->csp_ivlen != 8)
702 			return (false);
703 		if (csp->csp_cipher_alg == CRYPTO_DES_CBC) {
704 			if (csp->csp_cipher_klen != 8)
705 				return (false);
706 		} else {
707 			if (csp->csp_cipher_klen != 24)
708 				return (false);
709 		}
710 		break;
711 	case CRYPTO_AES_CBC:
712 		if ((sc->sc_devinfo & SAFE_DEVINFO_AES) == 0)
713 			return (false);
714 		if (csp->csp_ivlen != 16)
715 			return (false);
716 		if (csp->csp_cipher_klen != 16 &&
717 		    csp->csp_cipher_klen != 24 &&
718 		    csp->csp_cipher_klen != 32)
719 			return (false);
720 		break;
721 	}
722 	return (true);
723 }
724 
725 static int
726 safe_probesession(device_t dev, const struct crypto_session_params *csp)
727 {
728 	struct safe_softc *sc = device_get_softc(dev);
729 
730 	if (csp->csp_flags != 0)
731 		return (EINVAL);
732 	switch (csp->csp_mode) {
733 	case CSP_MODE_DIGEST:
734 		if (!safe_auth_supported(sc, csp))
735 			return (EINVAL);
736 		break;
737 	case CSP_MODE_CIPHER:
738 		if (!safe_cipher_supported(sc, csp))
739 			return (EINVAL);
740 		break;
741 	case CSP_MODE_ETA:
742 		if (!safe_auth_supported(sc, csp) ||
743 		    !safe_cipher_supported(sc, csp))
744 			return (EINVAL);
745 		break;
746 	default:
747 		return (EINVAL);
748 	}
749 
750 	return (CRYPTODEV_PROBE_HARDWARE);
751 }
752 
753 /*
754  * Allocate a new 'session'.
755  */
756 static int
757 safe_newsession(device_t dev, crypto_session_t cses,
758     const struct crypto_session_params *csp)
759 {
760 	struct safe_session *ses;
761 
762 	ses = crypto_get_driver_session(cses);
763 	if (csp->csp_cipher_alg != 0) {
764 		ses->ses_klen = csp->csp_cipher_klen;
765 		if (csp->csp_cipher_key != NULL)
766 			safe_setup_enckey(ses, csp->csp_cipher_key);
767 	}
768 
769 	if (csp->csp_auth_alg != 0) {
770 		ses->ses_mlen = csp->csp_auth_mlen;
771 		if (ses->ses_mlen == 0) {
772 			if (csp->csp_auth_alg == CRYPTO_MD5_HMAC)
773 				ses->ses_mlen = MD5_HASH_LEN;
774 			else
775 				ses->ses_mlen = SHA1_HASH_LEN;
776 		}
777 
778 		if (csp->csp_auth_key != NULL) {
779 			safe_setup_mackey(ses, csp->csp_auth_alg,
780 			    csp->csp_auth_key, csp->csp_auth_klen);
781 		}
782 	}
783 
784 	return (0);
785 }
786 
787 static bus_size_t
788 safe_crp_length(struct cryptop *crp)
789 {
790 
791 	switch (crp->crp_buf_type) {
792 	case CRYPTO_BUF_MBUF:
793 		return (crp->crp_mbuf->m_pkthdr.len);
794 	case CRYPTO_BUF_UIO:
795 		return (crp->crp_uio->uio_resid);
796 	case CRYPTO_BUF_CONTIG:
797 		return (crp->crp_ilen);
798 	default:
799 		panic("bad crp buffer type");
800 	}
801 }
802 
803 static void
804 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, int error)
805 {
806 	struct safe_operand *op = arg;
807 
808 	DPRINTF(("%s: nsegs %d error %d\n", __func__,
809 		nsegs, error));
810 	if (error != 0)
811 		return;
812 	op->nsegs = nsegs;
813 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
814 }
815 
816 static int
817 safe_process(device_t dev, struct cryptop *crp, int hint)
818 {
819 	struct safe_softc *sc = device_get_softc(dev);
820 	const struct crypto_session_params *csp;
821 	int err = 0, i, nicealign, uniform;
822 	int bypass, oplen;
823 	int16_t coffset;
824 	struct safe_session *ses;
825 	struct safe_ringentry *re;
826 	struct safe_sarec *sa;
827 	struct safe_pdesc *pd;
828 	u_int32_t cmd0, cmd1, staterec;
829 
830 	mtx_lock(&sc->sc_ringmtx);
831 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
832 		safestats.st_ringfull++;
833 		sc->sc_needwakeup |= CRYPTO_SYMQ;
834 		mtx_unlock(&sc->sc_ringmtx);
835 		return (ERESTART);
836 	}
837 	re = sc->sc_front;
838 
839 	staterec = re->re_sa.sa_staterec;	/* save */
840 	/* NB: zero everything but the PE descriptor */
841 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
842 	re->re_sa.sa_staterec = staterec;	/* restore */
843 
844 	re->re_crp = crp;
845 
846 	sa = &re->re_sa;
847 	ses = crypto_get_driver_session(crp->crp_session);
848 	csp = crypto_get_params(crp->crp_session);
849 
850 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
851 	cmd1 = 0;
852 	switch (csp->csp_mode) {
853 	case CSP_MODE_DIGEST:
854 		cmd0 |= SAFE_SA_CMD0_OP_HASH;
855 		break;
856 	case CSP_MODE_CIPHER:
857 		cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
858 		break;
859 	case CSP_MODE_ETA:
860 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
861 		break;
862 	}
863 
864 	if (csp->csp_cipher_alg != 0) {
865 		if (crp->crp_cipher_key != NULL)
866 			safe_setup_enckey(ses, crp->crp_cipher_key);
867 
868 		switch (csp->csp_cipher_alg) {
869 		case CRYPTO_DES_CBC:
870 			cmd0 |= SAFE_SA_CMD0_DES;
871 			cmd1 |= SAFE_SA_CMD1_CBC;
872 			break;
873 		case CRYPTO_3DES_CBC:
874 			cmd0 |= SAFE_SA_CMD0_3DES;
875 			cmd1 |= SAFE_SA_CMD1_CBC;
876 			break;
877 		case CRYPTO_AES_CBC:
878 			cmd0 |= SAFE_SA_CMD0_AES;
879 			cmd1 |= SAFE_SA_CMD1_CBC;
880 			if (ses->ses_klen * 8 == 128)
881 			     cmd1 |=  SAFE_SA_CMD1_AES128;
882 			else if (ses->ses_klen * 8 == 192)
883 			     cmd1 |=  SAFE_SA_CMD1_AES192;
884 			else
885 			     cmd1 |=  SAFE_SA_CMD1_AES256;
886 		}
887 
888 		/*
889 		 * Setup encrypt/decrypt state.  When using basic ops
890 		 * we can't use an inline IV because hash/crypt offset
891 		 * must be from the end of the IV to the start of the
892 		 * crypt data and this leaves out the preceding header
893 		 * from the hash calculation.  Instead we place the IV
894 		 * in the state record and set the hash/crypt offset to
895 		 * copy both the header+IV.
896 		 */
897 		crypto_read_iv(crp, re->re_sastate.sa_saved_iv);
898 		cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
899 
900 		if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
901 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
902 
903 			/*
904 			 * XXX: I suspect we don't need this since we
905 			 * don't save the returned IV.
906 			 */
907 			cmd0 |= SAFE_SA_CMD0_SAVEIV;
908 		} else {
909 			cmd0 |= SAFE_SA_CMD0_INBOUND;
910 		}
911 		/*
912 		 * For basic encryption use the zero pad algorithm.
913 		 * This pads results to an 8-byte boundary and
914 		 * suppresses padding verification for inbound (i.e.
915 		 * decrypt) operations.
916 		 *
917 		 * NB: Not sure if the 8-byte pad boundary is a problem.
918 		 */
919 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
920 
921 		/* XXX assert key bufs have the same size */
922 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
923 	}
924 
925 	if (csp->csp_auth_alg != 0) {
926 		if (crp->crp_auth_key != NULL) {
927 			safe_setup_mackey(ses, csp->csp_auth_alg,
928 			    crp->crp_auth_key, csp->csp_auth_klen);
929 		}
930 
931 		switch (csp->csp_auth_alg) {
932 		case CRYPTO_MD5_HMAC:
933 			cmd0 |= SAFE_SA_CMD0_MD5;
934 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
935 			break;
936 		case CRYPTO_SHA1_HMAC:
937 			cmd0 |= SAFE_SA_CMD0_SHA1;
938 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
939 			break;
940 		}
941 
942 		/*
943 		 * Digest data is loaded from the SA and the hash
944 		 * result is saved to the state block where we
945 		 * retrieve it for return to the caller.
946 		 */
947 		/* XXX assert digest bufs have the same size */
948 		bcopy(ses->ses_hminner, sa->sa_indigest,
949 			sizeof(sa->sa_indigest));
950 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
951 			sizeof(sa->sa_outdigest));
952 
953 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
954 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
955 	}
956 
957 	if (csp->csp_mode == CSP_MODE_ETA) {
958 		/*
959 		 * The driver only supports ETA requests where there
960 		 * is no gap between the AAD and payload.
961 		 */
962 		if (crp->crp_aad_length != 0 &&
963 		    crp->crp_aad_start + crp->crp_aad_length !=
964 		    crp->crp_payload_start) {
965 			safestats.st_lenmismatch++;
966 			err = EINVAL;
967 			goto errout;
968 		}
969 		if (crp->crp_aad_length != 0)
970 			bypass = crp->crp_aad_start;
971 		else
972 			bypass = crp->crp_payload_start;
973 		coffset = crp->crp_aad_length;
974 		oplen = crp->crp_payload_start + crp->crp_payload_length;
975 #ifdef SAFE_DEBUG
976 		if (safe_debug) {
977 			printf("AAD: skip %d, len %d, digest %d\n",
978 			    crp->crp_aad_start, crp->crp_aad_length,
979 			    crp->crp_digest_start);
980 			printf("payload: skip %d, len %d, IV %d\n",
981 			    crp->crp_payload_start, crp->crp_payload_length,
982 			    crp->crp_iv_start);
983 			printf("bypass %d coffset %d oplen %d\n",
984 				bypass, coffset, oplen);
985 		}
986 #endif
987 		if (coffset & 3) {	/* offset must be 32-bit aligned */
988 			DPRINTF(("%s: coffset %u misaligned\n",
989 				__func__, coffset));
990 			safestats.st_coffmisaligned++;
991 			err = EINVAL;
992 			goto errout;
993 		}
994 		coffset >>= 2;
995 		if (coffset > 255) {	/* offset must be <256 dwords */
996 			DPRINTF(("%s: coffset %u too big\n",
997 				__func__, coffset));
998 			safestats.st_cofftoobig++;
999 			err = EINVAL;
1000 			goto errout;
1001 		}
1002 		/*
1003 		 * Tell the hardware to copy the header to the output.
1004 		 * The header is defined as the data from the end of
1005 		 * the bypass to the start of data to be encrypted.
1006 		 * Typically this is the inline IV.  Note that you need
1007 		 * to do this even if src+dst are the same; it appears
1008 		 * that w/o this bit the crypted data is written
1009 		 * immediately after the bypass data.
1010 		 */
1011 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1012 		/*
1013 		 * Disable IP header mutable bit handling.  This is
1014 		 * needed to get correct HMAC calculations.
1015 		 */
1016 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1017 	} else {
1018 		bypass = crp->crp_payload_start;
1019 		oplen = bypass + crp->crp_payload_length;
1020 		coffset = 0;
1021 	}
1022 	/* XXX verify multiple of 4 when using s/g */
1023 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1024 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1025 		safestats.st_bypasstoobig++;
1026 		err = EINVAL;
1027 		goto errout;
1028 	}
1029 
1030 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1031 		safestats.st_nomap++;
1032 		err = ENOMEM;
1033 		goto errout;
1034 	}
1035 	if (bus_dmamap_load_crp(sc->sc_srcdmat, re->re_src_map, crp, safe_op_cb,
1036 	    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1037 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1038 		re->re_src_map = NULL;
1039 		safestats.st_noload++;
1040 		err = ENOMEM;
1041 		goto errout;
1042 	}
1043 	re->re_src_mapsize = safe_crp_length(crp);
1044 	nicealign = safe_dmamap_aligned(&re->re_src);
1045 	uniform = safe_dmamap_uniform(&re->re_src);
1046 
1047 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1048 		nicealign, uniform, re->re_src.nsegs));
1049 	if (re->re_src.nsegs > 1) {
1050 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1051 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1052 		for (i = 0; i < re->re_src_nsegs; i++) {
1053 			/* NB: no need to check if there's space */
1054 			pd = sc->sc_spfree;
1055 			if (++(sc->sc_spfree) == sc->sc_springtop)
1056 				sc->sc_spfree = sc->sc_spring;
1057 
1058 			KASSERT((pd->pd_flags&3) == 0 ||
1059 				(pd->pd_flags&3) == SAFE_PD_DONE,
1060 				("bogus source particle descriptor; flags %x",
1061 				pd->pd_flags));
1062 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1063 			pd->pd_size = re->re_src_segs[i].ds_len;
1064 			pd->pd_flags = SAFE_PD_READY;
1065 		}
1066 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1067 	} else {
1068 		/*
1069 		 * No need for gather, reference the operand directly.
1070 		 */
1071 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1072 	}
1073 
1074 	if (csp->csp_mode == CSP_MODE_DIGEST) {
1075 		/*
1076 		 * Hash op; no destination needed.
1077 		 */
1078 	} else {
1079 		if (nicealign && uniform == 1) {
1080 			/*
1081 			 * Source layout is suitable for direct
1082 			 * sharing of the DMA map and segment list.
1083 			 */
1084 			re->re_dst = re->re_src;
1085 		} else if (nicealign && uniform == 2) {
1086 			/*
1087 			 * The source is properly aligned but requires a
1088 			 * different particle list to handle DMA of the
1089 			 * result.  Create a new map and do the load to
1090 			 * create the segment list.  The particle
1091 			 * descriptor setup code below will handle the
1092 			 * rest.
1093 			 */
1094 			if (bus_dmamap_create(sc->sc_dstdmat, BUS_DMA_NOWAIT,
1095 			    &re->re_dst_map)) {
1096 				safestats.st_nomap++;
1097 				err = ENOMEM;
1098 				goto errout;
1099 			}
1100 			if (bus_dmamap_load_crp(sc->sc_dstdmat, re->re_dst_map,
1101 			    crp, safe_op_cb, &re->re_dst, BUS_DMA_NOWAIT) !=
1102 			    0) {
1103 				bus_dmamap_destroy(sc->sc_dstdmat,
1104 				    re->re_dst_map);
1105 				re->re_dst_map = NULL;
1106 				safestats.st_noload++;
1107 				err = ENOMEM;
1108 				goto errout;
1109 			}
1110 		} else if (crp->crp_buf_type == CRYPTO_BUF_MBUF) {
1111 			int totlen, len;
1112 			struct mbuf *m, *top, **mp;
1113 
1114 			/*
1115 			 * DMA constraints require that we allocate a
1116 			 * new mbuf chain for the destination.  We
1117 			 * allocate an entire new set of mbufs of
1118 			 * optimal/required size and then tell the
1119 			 * hardware to copy any bits that are not
1120 			 * created as a byproduct of the operation.
1121 			 */
1122 			if (!nicealign)
1123 				safestats.st_unaligned++;
1124 			if (!uniform)
1125 				safestats.st_notuniform++;
1126 			totlen = re->re_src_mapsize;
1127 			if (crp->crp_mbuf->m_flags & M_PKTHDR) {
1128 				len = MHLEN;
1129 				MGETHDR(m, M_NOWAIT, MT_DATA);
1130 				if (m && !m_dup_pkthdr(m, crp->crp_mbuf,
1131 				    M_NOWAIT)) {
1132 					m_free(m);
1133 					m = NULL;
1134 				}
1135 			} else {
1136 				len = MLEN;
1137 				MGET(m, M_NOWAIT, MT_DATA);
1138 			}
1139 			if (m == NULL) {
1140 				safestats.st_nombuf++;
1141 				err = sc->sc_nqchip ? ERESTART : ENOMEM;
1142 				goto errout;
1143 			}
1144 			if (totlen >= MINCLSIZE) {
1145 				if (!(MCLGET(m, M_NOWAIT))) {
1146 					m_free(m);
1147 					safestats.st_nomcl++;
1148 					err = sc->sc_nqchip ?
1149 					    ERESTART : ENOMEM;
1150 					goto errout;
1151 				}
1152 				len = MCLBYTES;
1153 			}
1154 			m->m_len = len;
1155 			top = NULL;
1156 			mp = &top;
1157 
1158 			while (totlen > 0) {
1159 				if (top) {
1160 					MGET(m, M_NOWAIT, MT_DATA);
1161 					if (m == NULL) {
1162 						m_freem(top);
1163 						safestats.st_nombuf++;
1164 						err = sc->sc_nqchip ?
1165 						    ERESTART : ENOMEM;
1166 						goto errout;
1167 					}
1168 					len = MLEN;
1169 				}
1170 				if (top && totlen >= MINCLSIZE) {
1171 					if (!(MCLGET(m, M_NOWAIT))) {
1172 						*mp = m;
1173 						m_freem(top);
1174 						safestats.st_nomcl++;
1175 						err = sc->sc_nqchip ?
1176 						    ERESTART : ENOMEM;
1177 						goto errout;
1178 					}
1179 					len = MCLBYTES;
1180 				}
1181 				m->m_len = len = min(totlen, len);
1182 				totlen -= len;
1183 				*mp = m;
1184 				mp = &m->m_next;
1185 			}
1186 			re->re_dst_m = top;
1187 			if (bus_dmamap_create(sc->sc_dstdmat,
1188 			    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1189 				safestats.st_nomap++;
1190 				err = ENOMEM;
1191 				goto errout;
1192 			}
1193 			if (bus_dmamap_load_mbuf_sg(sc->sc_dstdmat,
1194 			    re->re_dst_map, top, re->re_dst_segs,
1195 			    &re->re_dst_nsegs, 0) != 0) {
1196 				bus_dmamap_destroy(sc->sc_dstdmat,
1197 				    re->re_dst_map);
1198 				re->re_dst_map = NULL;
1199 				safestats.st_noload++;
1200 				err = ENOMEM;
1201 				goto errout;
1202 			}
1203 			re->re_dst_mapsize = re->re_src_mapsize;
1204 			if (re->re_src.mapsize > oplen) {
1205 				/*
1206 				 * There's data following what the
1207 				 * hardware will copy for us.  If this
1208 				 * isn't just the ICV (that's going to
1209 				 * be written on completion), copy it
1210 				 * to the new mbufs
1211 				 */
1212 				if (!(csp->csp_mode == CSP_MODE_ETA &&
1213 				    (re->re_src.mapsize-oplen) == ses->ses_mlen &&
1214 				    crp->crp_digest_start == oplen))
1215 					safe_mcopy(crp->crp_mbuf, re->re_dst_m,
1216 					    oplen);
1217 				else
1218 					safestats.st_noicvcopy++;
1219 			}
1220 		} else {
1221 			if (!nicealign) {
1222 				safestats.st_iovmisaligned++;
1223 				err = EINVAL;
1224 				goto errout;
1225 			} else {
1226 				/*
1227 				 * There's no way to handle the DMA
1228 				 * requirements with this uio.  We
1229 				 * could create a separate DMA area for
1230 				 * the result and then copy it back,
1231 				 * but for now we just bail and return
1232 				 * an error.  Note that uio requests
1233 				 * > SAFE_MAX_DSIZE are handled because
1234 				 * the DMA map and segment list for the
1235 				 * destination wil result in a
1236 				 * destination particle list that does
1237 				 * the necessary scatter DMA.
1238 				 */
1239 				safestats.st_iovnotuniform++;
1240 				err = EINVAL;
1241 				goto errout;
1242 			}
1243 		}
1244 
1245 		if (re->re_dst.nsegs > 1) {
1246 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1247 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1248 			for (i = 0; i < re->re_dst_nsegs; i++) {
1249 				pd = sc->sc_dpfree;
1250 				KASSERT((pd->pd_flags&3) == 0 ||
1251 					(pd->pd_flags&3) == SAFE_PD_DONE,
1252 					("bogus dest particle descriptor; flags %x",
1253 						pd->pd_flags));
1254 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1255 					sc->sc_dpfree = sc->sc_dpring;
1256 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1257 				pd->pd_flags = SAFE_PD_READY;
1258 			}
1259 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1260 		} else {
1261 			/*
1262 			 * No need for scatter, reference the operand directly.
1263 			 */
1264 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * All done with setup; fillin the SA command words
1270 	 * and the packet engine descriptor.  The operation
1271 	 * is now ready for submission to the hardware.
1272 	 */
1273 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1274 	sa->sa_cmd1 = cmd1
1275 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1276 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1277 		    | SAFE_SA_CMD1_SRPCI
1278 		    ;
1279 	/*
1280 	 * NB: the order of writes is important here.  In case the
1281 	 * chip is scanning the ring because of an outstanding request
1282 	 * it might nab this one too.  In that case we need to make
1283 	 * sure the setup is complete before we write the length
1284 	 * field of the descriptor as it signals the descriptor is
1285 	 * ready for processing.
1286 	 */
1287 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1288 	if (csp->csp_auth_alg != 0)
1289 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1290 	re->re_desc.d_len = oplen
1291 			  | SAFE_PE_LEN_READY
1292 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1293 			  ;
1294 
1295 	safestats.st_ipackets++;
1296 	safestats.st_ibytes += oplen;
1297 
1298 	if (++(sc->sc_front) == sc->sc_ringtop)
1299 		sc->sc_front = sc->sc_ring;
1300 
1301 	/* XXX honor batching */
1302 	safe_feed(sc, re);
1303 	mtx_unlock(&sc->sc_ringmtx);
1304 	return (0);
1305 
1306 errout:
1307 	if (re->re_dst_m != NULL)
1308 		m_freem(re->re_dst_m);
1309 
1310 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1311 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1312 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1313 	}
1314 	if (re->re_src_map != NULL) {
1315 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1316 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1317 	}
1318 	mtx_unlock(&sc->sc_ringmtx);
1319 	if (err != ERESTART) {
1320 		crp->crp_etype = err;
1321 		crypto_done(crp);
1322 	} else {
1323 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1324 	}
1325 	return (err);
1326 }
1327 
1328 static void
1329 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1330 {
1331 	const struct crypto_session_params *csp;
1332 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1333 	struct safe_session *ses;
1334 	uint8_t hash[HASH_MAX_LEN];
1335 
1336 	ses = crypto_get_driver_session(crp->crp_session);
1337 	csp = crypto_get_params(crp->crp_session);
1338 
1339 	safestats.st_opackets++;
1340 	safestats.st_obytes += re->re_dst.mapsize;
1341 
1342 	safe_dma_sync(&sc->sc_ringalloc,
1343 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1344 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1345 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1346 			re->re_desc.d_csr,
1347 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1348 		safestats.st_peoperr++;
1349 		crp->crp_etype = EIO;		/* something more meaningful? */
1350 	}
1351 
1352 	/* XXX: Should crp_mbuf be updated to re->re_dst_m if it is non-NULL? */
1353 
1354 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1355 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1356 		    BUS_DMASYNC_POSTREAD);
1357 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1358 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1359 	}
1360 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1361 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1362 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1363 
1364 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1365 		if (csp->csp_auth_alg == CRYPTO_SHA1_HMAC) {
1366 			/*
1367 			 * SHA-1 ICV's are byte-swapped; fix 'em up
1368 			 * before copying them to their destination.
1369 			 */
1370 			re->re_sastate.sa_saved_indigest[0] =
1371 			    bswap32(re->re_sastate.sa_saved_indigest[0]);
1372 			re->re_sastate.sa_saved_indigest[1] =
1373 			    bswap32(re->re_sastate.sa_saved_indigest[1]);
1374 			re->re_sastate.sa_saved_indigest[2] =
1375 			    bswap32(re->re_sastate.sa_saved_indigest[2]);
1376 		}
1377 
1378 		if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
1379 			crypto_copydata(crp, crp->crp_digest_start,
1380 			    ses->ses_mlen, hash);
1381 			if (timingsafe_bcmp(re->re_sastate.sa_saved_indigest,
1382 			    hash, ses->ses_mlen) != 0)
1383 				crp->crp_etype = EBADMSG;
1384 		} else
1385 			crypto_copyback(crp, crp->crp_digest_start,
1386 			    ses->ses_mlen, re->re_sastate.sa_saved_indigest);
1387 	}
1388 	crypto_done(crp);
1389 }
1390 
1391 /*
1392  * Copy all data past offset from srcm to dstm.
1393  */
1394 static void
1395 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1396 {
1397 	u_int j, dlen, slen;
1398 	caddr_t dptr, sptr;
1399 
1400 	/*
1401 	 * Advance src and dst to offset.
1402 	 */
1403 	j = offset;
1404 	while (j >= srcm->m_len) {
1405 		j -= srcm->m_len;
1406 		srcm = srcm->m_next;
1407 		if (srcm == NULL)
1408 			return;
1409 	}
1410 	sptr = mtod(srcm, caddr_t) + j;
1411 	slen = srcm->m_len - j;
1412 
1413 	j = offset;
1414 	while (j >= dstm->m_len) {
1415 		j -= dstm->m_len;
1416 		dstm = dstm->m_next;
1417 		if (dstm == NULL)
1418 			return;
1419 	}
1420 	dptr = mtod(dstm, caddr_t) + j;
1421 	dlen = dstm->m_len - j;
1422 
1423 	/*
1424 	 * Copy everything that remains.
1425 	 */
1426 	for (;;) {
1427 		j = min(slen, dlen);
1428 		bcopy(sptr, dptr, j);
1429 		if (slen == j) {
1430 			srcm = srcm->m_next;
1431 			if (srcm == NULL)
1432 				return;
1433 			sptr = srcm->m_data;
1434 			slen = srcm->m_len;
1435 		} else
1436 			sptr += j, slen -= j;
1437 		if (dlen == j) {
1438 			dstm = dstm->m_next;
1439 			if (dstm == NULL)
1440 				return;
1441 			dptr = dstm->m_data;
1442 			dlen = dstm->m_len;
1443 		} else
1444 			dptr += j, dlen -= j;
1445 	}
1446 }
1447 
1448 #ifndef SAFE_NO_RNG
1449 #define	SAFE_RNG_MAXWAIT	1000
1450 
1451 static void
1452 safe_rng_init(struct safe_softc *sc)
1453 {
1454 	u_int32_t w, v;
1455 	int i;
1456 
1457 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1458 	/* use default value according to the manual */
1459 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1460 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1461 
1462 	/*
1463 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1464 	 * is brought out of reset the ready status flag does not
1465 	 * work until the RNG has finished its internal initialization.
1466 	 *
1467 	 * So in order to determine the device is through its
1468 	 * initialization we must read the data register, using the
1469 	 * status reg in the read in case it is initialized.  Then read
1470 	 * the data register until it changes from the first read.
1471 	 * Once it changes read the data register until it changes
1472 	 * again.  At this time the RNG is considered initialized.
1473 	 * This could take between 750ms - 1000ms in time.
1474 	 */
1475 	i = 0;
1476 	w = READ_REG(sc, SAFE_RNG_OUT);
1477 	do {
1478 		v = READ_REG(sc, SAFE_RNG_OUT);
1479 		if (v != w) {
1480 			w = v;
1481 			break;
1482 		}
1483 		DELAY(10);
1484 	} while (++i < SAFE_RNG_MAXWAIT);
1485 
1486 	/* Wait Until data changes again */
1487 	i = 0;
1488 	do {
1489 		v = READ_REG(sc, SAFE_RNG_OUT);
1490 		if (v != w)
1491 			break;
1492 		DELAY(10);
1493 	} while (++i < SAFE_RNG_MAXWAIT);
1494 }
1495 
1496 static __inline void
1497 safe_rng_disable_short_cycle(struct safe_softc *sc)
1498 {
1499 	WRITE_REG(sc, SAFE_RNG_CTRL,
1500 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1501 }
1502 
1503 static __inline void
1504 safe_rng_enable_short_cycle(struct safe_softc *sc)
1505 {
1506 	WRITE_REG(sc, SAFE_RNG_CTRL,
1507 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1508 }
1509 
1510 static __inline u_int32_t
1511 safe_rng_read(struct safe_softc *sc)
1512 {
1513 	int i;
1514 
1515 	i = 0;
1516 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1517 		;
1518 	return READ_REG(sc, SAFE_RNG_OUT);
1519 }
1520 
1521 static void
1522 safe_rng(void *arg)
1523 {
1524 	struct safe_softc *sc = arg;
1525 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1526 	u_int maxwords;
1527 	int i;
1528 
1529 	safestats.st_rng++;
1530 	/*
1531 	 * Fetch the next block of data.
1532 	 */
1533 	maxwords = safe_rngbufsize;
1534 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1535 		maxwords = SAFE_RNG_MAXBUFSIZ;
1536 retry:
1537 	for (i = 0; i < maxwords; i++)
1538 		buf[i] = safe_rng_read(sc);
1539 	/*
1540 	 * Check the comparator alarm count and reset the h/w if
1541 	 * it exceeds our threshold.  This guards against the
1542 	 * hardware oscillators resonating with external signals.
1543 	 */
1544 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1545 		u_int32_t freq_inc, w;
1546 
1547 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1548 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1549 		safestats.st_rngalarm++;
1550 		safe_rng_enable_short_cycle(sc);
1551 		freq_inc = 18;
1552 		for (i = 0; i < 64; i++) {
1553 			w = READ_REG(sc, SAFE_RNG_CNFG);
1554 			freq_inc = ((w + freq_inc) & 0x3fL);
1555 			w = ((w & ~0x3fL) | freq_inc);
1556 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1557 
1558 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1559 
1560 			(void) safe_rng_read(sc);
1561 			DELAY(25);
1562 
1563 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1564 				safe_rng_disable_short_cycle(sc);
1565 				goto retry;
1566 			}
1567 			freq_inc = 1;
1568 		}
1569 		safe_rng_disable_short_cycle(sc);
1570 	} else
1571 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1572 
1573 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1574 	callout_reset(&sc->sc_rngto,
1575 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1576 }
1577 #endif /* SAFE_NO_RNG */
1578 
1579 static void
1580 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1581 {
1582 	bus_addr_t *paddr = (bus_addr_t*) arg;
1583 	*paddr = segs->ds_addr;
1584 }
1585 
1586 static int
1587 safe_dma_malloc(
1588 	struct safe_softc *sc,
1589 	bus_size_t size,
1590 	struct safe_dma_alloc *dma,
1591 	int mapflags
1592 )
1593 {
1594 	int r;
1595 
1596 	r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1597 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1598 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1599 			       BUS_SPACE_MAXADDR,	/* highaddr */
1600 			       NULL, NULL,		/* filter, filterarg */
1601 			       size,			/* maxsize */
1602 			       1,			/* nsegments */
1603 			       size,			/* maxsegsize */
1604 			       BUS_DMA_ALLOCNOW,	/* flags */
1605 			       NULL, NULL,		/* locking */
1606 			       &dma->dma_tag);
1607 	if (r != 0) {
1608 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1609 			"bus_dma_tag_create failed; error %u\n", r);
1610 		goto fail_0;
1611 	}
1612 
1613 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1614 			     BUS_DMA_NOWAIT, &dma->dma_map);
1615 	if (r != 0) {
1616 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1617 			"bus_dmammem_alloc failed; size %ju, error %u\n",
1618 			(uintmax_t)size, r);
1619 		goto fail_1;
1620 	}
1621 
1622 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1623 		            size,
1624 			    safe_dmamap_cb,
1625 			    &dma->dma_paddr,
1626 			    mapflags | BUS_DMA_NOWAIT);
1627 	if (r != 0) {
1628 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1629 			"bus_dmamap_load failed; error %u\n", r);
1630 		goto fail_2;
1631 	}
1632 
1633 	dma->dma_size = size;
1634 	return (0);
1635 
1636 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1637 fail_2:
1638 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1639 fail_1:
1640 	bus_dma_tag_destroy(dma->dma_tag);
1641 fail_0:
1642 	dma->dma_tag = NULL;
1643 	return (r);
1644 }
1645 
1646 static void
1647 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1648 {
1649 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1650 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1651 	bus_dma_tag_destroy(dma->dma_tag);
1652 }
1653 
1654 /*
1655  * Resets the board.  Values in the regesters are left as is
1656  * from the reset (i.e. initial values are assigned elsewhere).
1657  */
1658 static void
1659 safe_reset_board(struct safe_softc *sc)
1660 {
1661 	u_int32_t v;
1662 	/*
1663 	 * Reset the device.  The manual says no delay
1664 	 * is needed between marking and clearing reset.
1665 	 */
1666 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1667 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1668 		 SAFE_PE_DMACFG_SGRESET);
1669 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1670 				    | SAFE_PE_DMACFG_PERESET
1671 				    | SAFE_PE_DMACFG_PDRRESET
1672 				    | SAFE_PE_DMACFG_SGRESET);
1673 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1674 }
1675 
1676 /*
1677  * Initialize registers we need to touch only once.
1678  */
1679 static void
1680 safe_init_board(struct safe_softc *sc)
1681 {
1682 	u_int32_t v, dwords;
1683 
1684 	v = READ_REG(sc, SAFE_PE_DMACFG);
1685 	v &=~ SAFE_PE_DMACFG_PEMODE;
1686 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1687 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1688 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1689 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1690 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1691 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1692 	  ;
1693 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1694 #if 0
1695 	/* XXX select byte swap based on host byte order */
1696 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1697 #endif
1698 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1699 		/*
1700 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1701 		 * "target mode transfers" done while the chip is DMA'ing
1702 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1703 		 * we reduce the max PCI transfer size and use small source
1704 		 * particle descriptors (<= 256 bytes).
1705 		 */
1706 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1707 		device_printf(sc->sc_dev,
1708 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1709 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1710 			SAFE_REV_MAJ(sc->sc_chiprev),
1711 			SAFE_REV_MIN(sc->sc_chiprev));
1712 	}
1713 
1714 	/* NB: operands+results are overlaid */
1715 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1716 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1717 	/*
1718 	 * Configure ring entry size and number of items in the ring.
1719 	 */
1720 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1721 		("PE ring entry not 32-bit aligned!"));
1722 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1723 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1724 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1725 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1726 
1727 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1728 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1729 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1730 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1731 	/*
1732 	 * NB: destination particles are fixed size.  We use
1733 	 *     an mbuf cluster and require all results go to
1734 	 *     clusters or smaller.
1735 	 */
1736 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1737 
1738 	/* it's now safe to enable PE mode, do it */
1739 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1740 
1741 	/*
1742 	 * Configure hardware to use level-triggered interrupts and
1743 	 * to interrupt after each descriptor is processed.
1744 	 */
1745 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1746 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1747 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1748 }
1749 
1750 /*
1751  * Init PCI registers
1752  */
1753 static void
1754 safe_init_pciregs(device_t dev)
1755 {
1756 }
1757 
1758 /*
1759  * Clean up after a chip crash.
1760  * It is assumed that the caller in splimp()
1761  */
1762 static void
1763 safe_cleanchip(struct safe_softc *sc)
1764 {
1765 
1766 	if (sc->sc_nqchip != 0) {
1767 		struct safe_ringentry *re = sc->sc_back;
1768 
1769 		while (re != sc->sc_front) {
1770 			if (re->re_desc.d_csr != 0)
1771 				safe_free_entry(sc, re);
1772 			if (++re == sc->sc_ringtop)
1773 				re = sc->sc_ring;
1774 		}
1775 		sc->sc_back = re;
1776 		sc->sc_nqchip = 0;
1777 	}
1778 }
1779 
1780 /*
1781  * free a safe_q
1782  * It is assumed that the caller is within splimp().
1783  */
1784 static int
1785 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1786 {
1787 	struct cryptop *crp;
1788 
1789 	/*
1790 	 * Free header MCR
1791 	 */
1792 	if (re->re_dst_m != NULL)
1793 		m_freem(re->re_dst_m);
1794 
1795 	crp = (struct cryptop *)re->re_crp;
1796 
1797 	re->re_desc.d_csr = 0;
1798 
1799 	crp->crp_etype = EFAULT;
1800 	crypto_done(crp);
1801 	return(0);
1802 }
1803 
1804 /*
1805  * Routine to reset the chip and clean up.
1806  * It is assumed that the caller is in splimp()
1807  */
1808 static void
1809 safe_totalreset(struct safe_softc *sc)
1810 {
1811 	safe_reset_board(sc);
1812 	safe_init_board(sc);
1813 	safe_cleanchip(sc);
1814 }
1815 
1816 /*
1817  * Is the operand suitable aligned for direct DMA.  Each
1818  * segment must be aligned on a 32-bit boundary and all
1819  * but the last segment must be a multiple of 4 bytes.
1820  */
1821 static int
1822 safe_dmamap_aligned(const struct safe_operand *op)
1823 {
1824 	int i;
1825 
1826 	for (i = 0; i < op->nsegs; i++) {
1827 		if (op->segs[i].ds_addr & 3)
1828 			return (0);
1829 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
1830 			return (0);
1831 	}
1832 	return (1);
1833 }
1834 
1835 /*
1836  * Is the operand suitable for direct DMA as the destination
1837  * of an operation.  The hardware requires that each ``particle''
1838  * but the last in an operation result have the same size.  We
1839  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
1840  * 0 if some segment is not a multiple of of this size, 1 if all
1841  * segments are exactly this size, or 2 if segments are at worst
1842  * a multple of this size.
1843  */
1844 static int
1845 safe_dmamap_uniform(const struct safe_operand *op)
1846 {
1847 	int result = 1;
1848 
1849 	if (op->nsegs > 0) {
1850 		int i;
1851 
1852 		for (i = 0; i < op->nsegs-1; i++) {
1853 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
1854 				return (0);
1855 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
1856 				result = 2;
1857 		}
1858 	}
1859 	return (result);
1860 }
1861 
1862 #ifdef SAFE_DEBUG
1863 static void
1864 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
1865 {
1866 	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
1867 		, tag
1868 		, READ_REG(sc, SAFE_DMA_ENDIAN)
1869 		, READ_REG(sc, SAFE_DMA_SRCADDR)
1870 		, READ_REG(sc, SAFE_DMA_DSTADDR)
1871 		, READ_REG(sc, SAFE_DMA_STAT)
1872 	);
1873 }
1874 
1875 static void
1876 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
1877 {
1878 	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
1879 		, tag
1880 		, READ_REG(sc, SAFE_HI_CFG)
1881 		, READ_REG(sc, SAFE_HI_MASK)
1882 		, READ_REG(sc, SAFE_HI_DESC_CNT)
1883 		, READ_REG(sc, SAFE_HU_STAT)
1884 		, READ_REG(sc, SAFE_HM_STAT)
1885 	);
1886 }
1887 
1888 static void
1889 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
1890 {
1891 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
1892 
1893 	/* NB: assume caller has lock on ring */
1894 	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
1895 		tag,
1896 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
1897 		(unsigned long)(sc->sc_back - sc->sc_ring),
1898 		(unsigned long)(sc->sc_front - sc->sc_ring));
1899 }
1900 
1901 static void
1902 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
1903 {
1904 	int ix, nsegs;
1905 
1906 	ix = re - sc->sc_ring;
1907 	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
1908 		, tag
1909 		, re, ix
1910 		, re->re_desc.d_csr
1911 		, re->re_desc.d_src
1912 		, re->re_desc.d_dst
1913 		, re->re_desc.d_sa
1914 		, re->re_desc.d_len
1915 	);
1916 	if (re->re_src.nsegs > 1) {
1917 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
1918 			sizeof(struct safe_pdesc);
1919 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
1920 			printf(" spd[%u] %p: %p size %u flags %x"
1921 				, ix, &sc->sc_spring[ix]
1922 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
1923 				, sc->sc_spring[ix].pd_size
1924 				, sc->sc_spring[ix].pd_flags
1925 			);
1926 			if (sc->sc_spring[ix].pd_size == 0)
1927 				printf(" (zero!)");
1928 			printf("\n");
1929 			if (++ix == SAFE_TOTAL_SPART)
1930 				ix = 0;
1931 		}
1932 	}
1933 	if (re->re_dst.nsegs > 1) {
1934 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
1935 			sizeof(struct safe_pdesc);
1936 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
1937 			printf(" dpd[%u] %p: %p flags %x\n"
1938 				, ix, &sc->sc_dpring[ix]
1939 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
1940 				, sc->sc_dpring[ix].pd_flags
1941 			);
1942 			if (++ix == SAFE_TOTAL_DPART)
1943 				ix = 0;
1944 		}
1945 	}
1946 	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
1947 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
1948 	printf("sa: key %x %x %x %x %x %x %x %x\n"
1949 		, re->re_sa.sa_key[0]
1950 		, re->re_sa.sa_key[1]
1951 		, re->re_sa.sa_key[2]
1952 		, re->re_sa.sa_key[3]
1953 		, re->re_sa.sa_key[4]
1954 		, re->re_sa.sa_key[5]
1955 		, re->re_sa.sa_key[6]
1956 		, re->re_sa.sa_key[7]
1957 	);
1958 	printf("sa: indigest %x %x %x %x %x\n"
1959 		, re->re_sa.sa_indigest[0]
1960 		, re->re_sa.sa_indigest[1]
1961 		, re->re_sa.sa_indigest[2]
1962 		, re->re_sa.sa_indigest[3]
1963 		, re->re_sa.sa_indigest[4]
1964 	);
1965 	printf("sa: outdigest %x %x %x %x %x\n"
1966 		, re->re_sa.sa_outdigest[0]
1967 		, re->re_sa.sa_outdigest[1]
1968 		, re->re_sa.sa_outdigest[2]
1969 		, re->re_sa.sa_outdigest[3]
1970 		, re->re_sa.sa_outdigest[4]
1971 	);
1972 	printf("sr: iv %x %x %x %x\n"
1973 		, re->re_sastate.sa_saved_iv[0]
1974 		, re->re_sastate.sa_saved_iv[1]
1975 		, re->re_sastate.sa_saved_iv[2]
1976 		, re->re_sastate.sa_saved_iv[3]
1977 	);
1978 	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
1979 		, re->re_sastate.sa_saved_hashbc
1980 		, re->re_sastate.sa_saved_indigest[0]
1981 		, re->re_sastate.sa_saved_indigest[1]
1982 		, re->re_sastate.sa_saved_indigest[2]
1983 		, re->re_sastate.sa_saved_indigest[3]
1984 		, re->re_sastate.sa_saved_indigest[4]
1985 	);
1986 }
1987 
1988 static void
1989 safe_dump_ring(struct safe_softc *sc, const char *tag)
1990 {
1991 	mtx_lock(&sc->sc_ringmtx);
1992 	printf("\nSafeNet Ring State:\n");
1993 	safe_dump_intrstate(sc, tag);
1994 	safe_dump_dmastatus(sc, tag);
1995 	safe_dump_ringstate(sc, tag);
1996 	if (sc->sc_nqchip) {
1997 		struct safe_ringentry *re = sc->sc_back;
1998 		do {
1999 			safe_dump_request(sc, tag, re);
2000 			if (++re == sc->sc_ringtop)
2001 				re = sc->sc_ring;
2002 		} while (re != sc->sc_front);
2003 	}
2004 	mtx_unlock(&sc->sc_ringmtx);
2005 }
2006 
2007 static int
2008 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2009 {
2010 	char dmode[64];
2011 	int error;
2012 
2013 	strncpy(dmode, "", sizeof(dmode) - 1);
2014 	dmode[sizeof(dmode) - 1] = '\0';
2015 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2016 
2017 	if (error == 0 && req->newptr != NULL) {
2018 		struct safe_softc *sc = safec;
2019 
2020 		if (!sc)
2021 			return EINVAL;
2022 		if (strncmp(dmode, "dma", 3) == 0)
2023 			safe_dump_dmastatus(sc, "safe0");
2024 		else if (strncmp(dmode, "int", 3) == 0)
2025 			safe_dump_intrstate(sc, "safe0");
2026 		else if (strncmp(dmode, "ring", 4) == 0)
2027 			safe_dump_ring(sc, "safe0");
2028 		else
2029 			return EINVAL;
2030 	}
2031 	return error;
2032 }
2033 SYSCTL_PROC(_hw_safe, OID_AUTO, dump,
2034     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0,
2035     sysctl_hw_safe_dump, "A",
2036     "Dump driver state");
2037 #endif /* SAFE_DEBUG */
2038