xref: /freebsd/sys/dev/safe/safe.c (revision 2357939bc239bd5334a169b62313806178dd8f30)
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/sysctl.h>
46 #include <sys/endian.h>
47 
48 #include <vm/vm.h>
49 #include <vm/pmap.h>
50 
51 #include <machine/clock.h>
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56 
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 
63 #include <dev/pci/pcivar.h>
64 #include <dev/pci/pcireg.h>
65 
66 #ifdef SAFE_RNDTEST
67 #include <dev/rndtest/rndtest.h>
68 #endif
69 #include <dev/safe/safereg.h>
70 #include <dev/safe/safevar.h>
71 
72 #ifndef bswap32
73 #define	bswap32	NTOHL
74 #endif
75 
76 /*
77  * Prototypes and count for the pci_device structure
78  */
79 static	int safe_probe(device_t);
80 static	int safe_attach(device_t);
81 static	int safe_detach(device_t);
82 static	int safe_suspend(device_t);
83 static	int safe_resume(device_t);
84 static	void safe_shutdown(device_t);
85 
86 static device_method_t safe_methods[] = {
87 	/* Device interface */
88 	DEVMETHOD(device_probe,		safe_probe),
89 	DEVMETHOD(device_attach,	safe_attach),
90 	DEVMETHOD(device_detach,	safe_detach),
91 	DEVMETHOD(device_suspend,	safe_suspend),
92 	DEVMETHOD(device_resume,	safe_resume),
93 	DEVMETHOD(device_shutdown,	safe_shutdown),
94 
95 	/* bus interface */
96 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
97 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
98 
99 	{ 0, 0 }
100 };
101 static driver_t safe_driver = {
102 	"safe",
103 	safe_methods,
104 	sizeof (struct safe_softc)
105 };
106 static devclass_t safe_devclass;
107 
108 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
109 MODULE_DEPEND(safe, crypto, 1, 1, 1);
110 #ifdef SAFE_RNDTEST
111 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
112 #endif
113 
114 static	void safe_intr(void *);
115 static	int safe_newsession(void *, u_int32_t *, struct cryptoini *);
116 static	int safe_freesession(void *, u_int64_t);
117 static	int safe_process(void *, struct cryptop *, int);
118 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
119 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
120 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
121 #ifndef SAFE_NO_RNG
122 static	void safe_rng_init(struct safe_softc *);
123 static	void safe_rng(void *);
124 #endif /* SAFE_NO_RNG */
125 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
126 	        struct safe_dma_alloc *, int);
127 #define	safe_dma_sync(_dma, _flags) \
128 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
129 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
130 static	int safe_dmamap_aligned(const struct safe_operand *);
131 static	int safe_dmamap_uniform(const struct safe_operand *);
132 
133 static	void safe_reset_board(struct safe_softc *);
134 static	void safe_init_board(struct safe_softc *);
135 static	void safe_init_pciregs(device_t dev);
136 static	void safe_cleanchip(struct safe_softc *);
137 static	void safe_totalreset(struct safe_softc *);
138 
139 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
140 
141 SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
142 
143 #ifdef SAFE_DEBUG
144 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
145 static	void safe_dump_ringstate(struct safe_softc *, const char *);
146 static	void safe_dump_intrstate(struct safe_softc *, const char *);
147 static	void safe_dump_request(struct safe_softc *, const char *,
148 		struct safe_ringentry *);
149 
150 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
151 
152 static	int safe_debug = 0;
153 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
154 	    0, "control debugging msgs");
155 #define	DPRINTF(_x)	if (safe_debug) printf _x
156 #else
157 #define	DPRINTF(_x)
158 #endif
159 
160 #define	READ_REG(sc,r) \
161 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
162 
163 #define WRITE_REG(sc,reg,val) \
164 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
165 
166 struct safe_stats safestats;
167 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
168 	    safe_stats, "driver statistics");
169 #ifndef SAFE_NO_RNG
170 static	int safe_rnginterval = 1;		/* poll once a second */
171 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
172 	    0, "RNG polling interval (secs)");
173 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
174 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
175 	    0, "RNG polling buffer size (32-bit words)");
176 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
177 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
178 	    0, "RNG max alarms before reset");
179 #endif /* SAFE_NO_RNG */
180 
181 static int
182 safe_probe(device_t dev)
183 {
184 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
185 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
186 		return (0);
187 	return (ENXIO);
188 }
189 
190 static const char*
191 safe_partname(struct safe_softc *sc)
192 {
193 	/* XXX sprintf numbers when not decoded */
194 	switch (pci_get_vendor(sc->sc_dev)) {
195 	case PCI_VENDOR_SAFENET:
196 		switch (pci_get_device(sc->sc_dev)) {
197 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
198 		}
199 		return "SafeNet unknown-part";
200 	}
201 	return "Unknown-vendor unknown-part";
202 }
203 
204 #ifndef SAFE_NO_RNG
205 static void
206 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
207 {
208 	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
209 }
210 #endif /* SAFE_NO_RNG */
211 
212 static int
213 safe_attach(device_t dev)
214 {
215 	struct safe_softc *sc = device_get_softc(dev);
216 	u_int32_t raddr;
217 	u_int32_t cmd, i, devinfo;
218 	int rid;
219 
220 	bzero(sc, sizeof (*sc));
221 	sc->sc_dev = dev;
222 
223 	/* XXX handle power management */
224 
225 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
226 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
227 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
228 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
229 
230 	if (!(cmd & PCIM_CMD_MEMEN)) {
231 		device_printf(dev, "failed to enable memory mapping\n");
232 		goto bad;
233 	}
234 
235 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
236 		device_printf(dev, "failed to enable bus mastering\n");
237 		goto bad;
238 	}
239 
240 	/*
241 	 * Setup memory-mapping of PCI registers.
242 	 */
243 	rid = BS_BAR;
244 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
245 					   RF_ACTIVE);
246 	if (sc->sc_sr == NULL) {
247 		device_printf(dev, "cannot map register space\n");
248 		goto bad;
249 	}
250 	sc->sc_st = rman_get_bustag(sc->sc_sr);
251 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
252 
253 	/*
254 	 * Arrange interrupt line.
255 	 */
256 	rid = 0;
257 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
258 					    RF_SHAREABLE|RF_ACTIVE);
259 	if (sc->sc_irq == NULL) {
260 		device_printf(dev, "could not map interrupt\n");
261 		goto bad1;
262 	}
263 	/*
264 	 * NB: Network code assumes we are blocked with splimp()
265 	 *     so make sure the IRQ is mapped appropriately.
266 	 */
267 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
268 			   safe_intr, sc, &sc->sc_ih)) {
269 		device_printf(dev, "could not establish interrupt\n");
270 		goto bad2;
271 	}
272 
273 	sc->sc_cid = crypto_get_driverid(0);
274 	if (sc->sc_cid < 0) {
275 		device_printf(dev, "could not get crypto driver id\n");
276 		goto bad3;
277 	}
278 
279 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
280 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
281 
282 	/*
283 	 * Setup DMA descriptor area.
284 	 */
285 	if (bus_dma_tag_create(NULL,			/* parent */
286 			       1,			/* alignment */
287 			       SAFE_DMA_BOUNDARY,	/* boundary */
288 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
289 			       BUS_SPACE_MAXADDR,	/* highaddr */
290 			       NULL, NULL,		/* filter, filterarg */
291 			       SAFE_MAX_DMA,		/* maxsize */
292 			       SAFE_MAX_PART,		/* nsegments */
293 			       SAFE_MAX_SSIZE,		/* maxsegsize */
294 			       BUS_DMA_ALLOCNOW,	/* flags */
295 			       NULL, NULL,		/* locking */
296 			       &sc->sc_srcdmat)) {
297 		device_printf(dev, "cannot allocate DMA tag\n");
298 		goto bad4;
299 	}
300 	if (bus_dma_tag_create(NULL,			/* parent */
301 			       sizeof(u_int32_t),	/* alignment */
302 			       SAFE_MAX_DSIZE,		/* boundary */
303 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
304 			       BUS_SPACE_MAXADDR,	/* highaddr */
305 			       NULL, NULL,		/* filter, filterarg */
306 			       SAFE_MAX_DMA,		/* maxsize */
307 			       SAFE_MAX_PART,		/* nsegments */
308 			       SAFE_MAX_DSIZE,		/* maxsegsize */
309 			       BUS_DMA_ALLOCNOW,	/* flags */
310 			       NULL, NULL,		/* locking */
311 			       &sc->sc_dstdmat)) {
312 		device_printf(dev, "cannot allocate DMA tag\n");
313 		goto bad4;
314 	}
315 
316 	/*
317 	 * Allocate packet engine descriptors.
318 	 */
319 	if (safe_dma_malloc(sc,
320 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
321 	    &sc->sc_ringalloc, 0)) {
322 		device_printf(dev, "cannot allocate PE descriptor ring\n");
323 		bus_dma_tag_destroy(sc->sc_srcdmat);
324 		goto bad4;
325 	}
326 	/*
327 	 * Hookup the static portion of all our data structures.
328 	 */
329 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
330 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
331 	sc->sc_front = sc->sc_ring;
332 	sc->sc_back = sc->sc_ring;
333 	raddr = sc->sc_ringalloc.dma_paddr;
334 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
335 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
336 		struct safe_ringentry *re = &sc->sc_ring[i];
337 
338 		re->re_desc.d_sa = raddr +
339 			offsetof(struct safe_ringentry, re_sa);
340 		re->re_sa.sa_staterec = raddr +
341 			offsetof(struct safe_ringentry, re_sastate);
342 
343 		raddr += sizeof (struct safe_ringentry);
344 	}
345 	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
346 		"packet engine ring", MTX_DEF);
347 
348 	/*
349 	 * Allocate scatter and gather particle descriptors.
350 	 */
351 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
352 	    &sc->sc_spalloc, 0)) {
353 		device_printf(dev, "cannot allocate source particle "
354 			"descriptor ring\n");
355 		mtx_destroy(&sc->sc_ringmtx);
356 		safe_dma_free(sc, &sc->sc_ringalloc);
357 		bus_dma_tag_destroy(sc->sc_srcdmat);
358 		goto bad4;
359 	}
360 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
361 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
362 	sc->sc_spfree = sc->sc_spring;
363 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
364 
365 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
366 	    &sc->sc_dpalloc, 0)) {
367 		device_printf(dev, "cannot allocate destination particle "
368 			"descriptor ring\n");
369 		mtx_destroy(&sc->sc_ringmtx);
370 		safe_dma_free(sc, &sc->sc_spalloc);
371 		safe_dma_free(sc, &sc->sc_ringalloc);
372 		bus_dma_tag_destroy(sc->sc_dstdmat);
373 		goto bad4;
374 	}
375 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
376 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
377 	sc->sc_dpfree = sc->sc_dpring;
378 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
379 
380 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
381 
382 	devinfo = READ_REG(sc, SAFE_DEVINFO);
383 	if (devinfo & SAFE_DEVINFO_RNG) {
384 		sc->sc_flags |= SAFE_FLAGS_RNG;
385 		printf(" rng");
386 	}
387 	if (devinfo & SAFE_DEVINFO_PKEY) {
388 #if 0
389 		printf(" key");
390 		sc->sc_flags |= SAFE_FLAGS_KEY;
391 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
392 			safe_kprocess, sc);
393 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
394 			safe_kprocess, sc);
395 #endif
396 	}
397 	if (devinfo & SAFE_DEVINFO_DES) {
398 		printf(" des/3des");
399 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
400 			safe_newsession, safe_freesession, safe_process, sc);
401 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
402 			safe_newsession, safe_freesession, safe_process, sc);
403 	}
404 	if (devinfo & SAFE_DEVINFO_AES) {
405 		printf(" aes");
406 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
407 			safe_newsession, safe_freesession, safe_process, sc);
408 	}
409 	if (devinfo & SAFE_DEVINFO_MD5) {
410 		printf(" md5");
411 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
412 			safe_newsession, safe_freesession, safe_process, sc);
413 	}
414 	if (devinfo & SAFE_DEVINFO_SHA1) {
415 		printf(" sha1");
416 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
417 			safe_newsession, safe_freesession, safe_process, sc);
418 	}
419 	printf(" null");
420 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0,
421 		safe_newsession, safe_freesession, safe_process, sc);
422 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0,
423 		safe_newsession, safe_freesession, safe_process, sc);
424 	/* XXX other supported algorithms */
425 	printf("\n");
426 
427 	safe_reset_board(sc);		/* reset h/w */
428 	safe_init_pciregs(dev);		/* init pci settings */
429 	safe_init_board(sc);		/* init h/w */
430 
431 #ifndef SAFE_NO_RNG
432 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
433 #ifdef SAFE_RNDTEST
434 		sc->sc_rndtest = rndtest_attach(dev);
435 		if (sc->sc_rndtest)
436 			sc->sc_harvest = rndtest_harvest;
437 		else
438 			sc->sc_harvest = default_harvest;
439 #else
440 		sc->sc_harvest = default_harvest;
441 #endif
442 		safe_rng_init(sc);
443 
444 		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
445 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
446 	}
447 #endif /* SAFE_NO_RNG */
448 #ifdef SAFE_DEBUG
449 	safec = sc;			/* for use by hw.safe.dump */
450 #endif
451 	return (0);
452 bad4:
453 	crypto_unregister_all(sc->sc_cid);
454 bad3:
455 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
456 bad2:
457 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
458 bad1:
459 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
460 bad:
461 	return (ENXIO);
462 }
463 
464 /*
465  * Detach a device that successfully probed.
466  */
467 static int
468 safe_detach(device_t dev)
469 {
470 	struct safe_softc *sc = device_get_softc(dev);
471 
472 	/* XXX wait/abort active ops */
473 
474 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
475 
476 	callout_stop(&sc->sc_rngto);
477 
478 	crypto_unregister_all(sc->sc_cid);
479 
480 #ifdef SAFE_RNDTEST
481 	if (sc->sc_rndtest)
482 		rndtest_detach(sc->sc_rndtest);
483 #endif
484 
485 	safe_cleanchip(sc);
486 	safe_dma_free(sc, &sc->sc_dpalloc);
487 	safe_dma_free(sc, &sc->sc_spalloc);
488 	mtx_destroy(&sc->sc_ringmtx);
489 	safe_dma_free(sc, &sc->sc_ringalloc);
490 
491 	bus_generic_detach(dev);
492 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
493 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
494 
495 	bus_dma_tag_destroy(sc->sc_srcdmat);
496 	bus_dma_tag_destroy(sc->sc_dstdmat);
497 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
498 
499 	return (0);
500 }
501 
502 /*
503  * Stop all chip i/o so that the kernel's probe routines don't
504  * get confused by errant DMAs when rebooting.
505  */
506 static void
507 safe_shutdown(device_t dev)
508 {
509 #ifdef notyet
510 	safe_stop(device_get_softc(dev));
511 #endif
512 }
513 
514 /*
515  * Device suspend routine.
516  */
517 static int
518 safe_suspend(device_t dev)
519 {
520 	struct safe_softc *sc = device_get_softc(dev);
521 
522 #ifdef notyet
523 	/* XXX stop the device and save PCI settings */
524 #endif
525 	sc->sc_suspended = 1;
526 
527 	return (0);
528 }
529 
530 static int
531 safe_resume(device_t dev)
532 {
533 	struct safe_softc *sc = device_get_softc(dev);
534 
535 #ifdef notyet
536 	/* XXX retore PCI settings and start the device */
537 #endif
538 	sc->sc_suspended = 0;
539 	return (0);
540 }
541 
542 /*
543  * SafeXcel Interrupt routine
544  */
545 static void
546 safe_intr(void *arg)
547 {
548 	struct safe_softc *sc = arg;
549 	volatile u_int32_t stat;
550 
551 	stat = READ_REG(sc, SAFE_HM_STAT);
552 	if (stat == 0)			/* shared irq, not for us */
553 		return;
554 
555 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
556 
557 	if ((stat & SAFE_INT_PE_DDONE)) {
558 		/*
559 		 * Descriptor(s) done; scan the ring and
560 		 * process completed operations.
561 		 */
562 		mtx_lock(&sc->sc_ringmtx);
563 		while (sc->sc_back != sc->sc_front) {
564 			struct safe_ringentry *re = sc->sc_back;
565 #ifdef SAFE_DEBUG
566 			if (safe_debug) {
567 				safe_dump_ringstate(sc, __func__);
568 				safe_dump_request(sc, __func__, re);
569 			}
570 #endif
571 			/*
572 			 * safe_process marks ring entries that were allocated
573 			 * but not used with a csr of zero.  This insures the
574 			 * ring front pointer never needs to be set backwards
575 			 * in the event that an entry is allocated but not used
576 			 * because of a setup error.
577 			 */
578 			if (re->re_desc.d_csr != 0) {
579 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
580 					break;
581 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
582 					break;
583 				sc->sc_nqchip--;
584 				safe_callback(sc, re);
585 			}
586 			if (++(sc->sc_back) == sc->sc_ringtop)
587 				sc->sc_back = sc->sc_ring;
588 		}
589 		mtx_unlock(&sc->sc_ringmtx);
590 	}
591 
592 	/*
593 	 * Check to see if we got any DMA Error
594 	 */
595 	if (stat & SAFE_INT_PE_ERROR) {
596 		DPRINTF(("dmaerr dmastat %08x\n",
597 			READ_REG(sc, SAFE_PE_DMASTAT)));
598 		safestats.st_dmaerr++;
599 		safe_totalreset(sc);
600 #if 0
601 		safe_feed(sc);
602 #endif
603 	}
604 
605 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
606 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
607 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
608 			sc->sc_needwakeup));
609 		sc->sc_needwakeup &= ~wakeup;
610 		crypto_unblock(sc->sc_cid, wakeup);
611 	}
612 }
613 
614 /*
615  * safe_feed() - post a request to chip
616  */
617 static void
618 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
619 {
620 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
621 	if (re->re_dst_map != NULL)
622 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
623 			BUS_DMASYNC_PREREAD);
624 	/* XXX have no smaller granularity */
625 	safe_dma_sync(&sc->sc_ringalloc,
626 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
627 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
628 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
629 
630 #ifdef SAFE_DEBUG
631 	if (safe_debug) {
632 		safe_dump_ringstate(sc, __func__);
633 		safe_dump_request(sc, __func__, re);
634 	}
635 #endif
636 	sc->sc_nqchip++;
637 	if (sc->sc_nqchip > safestats.st_maxqchip)
638 		safestats.st_maxqchip = sc->sc_nqchip;
639 	/* poke h/w to check descriptor ring, any value can be written */
640 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
641 }
642 
643 /*
644  * Allocate a new 'session' and return an encoded session id.  'sidp'
645  * contains our registration id, and should contain an encoded session
646  * id on successful allocation.
647  */
648 static int
649 safe_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
650 {
651 #define	N(a)	(sizeof(a) / sizeof (a[0]))
652 	struct cryptoini *c, *encini = NULL, *macini = NULL;
653 	struct safe_softc *sc = arg;
654 	struct safe_session *ses = NULL;
655 	MD5_CTX md5ctx;
656 	SHA1_CTX sha1ctx;
657 	int i, sesn;
658 
659 	if (sidp == NULL || cri == NULL || sc == NULL)
660 		return (EINVAL);
661 
662 	for (c = cri; c != NULL; c = c->cri_next) {
663 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
664 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
665 		    c->cri_alg == CRYPTO_NULL_HMAC) {
666 			if (macini)
667 				return (EINVAL);
668 			macini = c;
669 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
670 		    c->cri_alg == CRYPTO_3DES_CBC ||
671 		    c->cri_alg == CRYPTO_AES_CBC ||
672 		    c->cri_alg == CRYPTO_NULL_CBC) {
673 			if (encini)
674 				return (EINVAL);
675 			encini = c;
676 		} else
677 			return (EINVAL);
678 	}
679 	if (encini == NULL && macini == NULL)
680 		return (EINVAL);
681 	if (encini) {			/* validate key length */
682 		switch (encini->cri_alg) {
683 		case CRYPTO_DES_CBC:
684 			if (encini->cri_klen != 64)
685 				return (EINVAL);
686 			break;
687 		case CRYPTO_3DES_CBC:
688 			if (encini->cri_klen != 192)
689 				return (EINVAL);
690 			break;
691 		case CRYPTO_AES_CBC:
692 			if (encini->cri_klen != 128 &&
693 			    encini->cri_klen != 192 &&
694 			    encini->cri_klen != 256)
695 				return (EINVAL);
696 			break;
697 		}
698 	}
699 
700 	if (sc->sc_sessions == NULL) {
701 		ses = sc->sc_sessions = (struct safe_session *)malloc(
702 		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
703 		if (ses == NULL)
704 			return (ENOMEM);
705 		sesn = 0;
706 		sc->sc_nsessions = 1;
707 	} else {
708 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
709 			if (sc->sc_sessions[sesn].ses_used == 0) {
710 				ses = &sc->sc_sessions[sesn];
711 				break;
712 			}
713 		}
714 
715 		if (ses == NULL) {
716 			sesn = sc->sc_nsessions;
717 			ses = (struct safe_session *)malloc((sesn + 1) *
718 			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
719 			if (ses == NULL)
720 				return (ENOMEM);
721 			bcopy(sc->sc_sessions, ses, sesn *
722 			    sizeof(struct safe_session));
723 			bzero(sc->sc_sessions, sesn *
724 			    sizeof(struct safe_session));
725 			free(sc->sc_sessions, M_DEVBUF);
726 			sc->sc_sessions = ses;
727 			ses = &sc->sc_sessions[sesn];
728 			sc->sc_nsessions++;
729 		}
730 	}
731 
732 	bzero(ses, sizeof(struct safe_session));
733 	ses->ses_used = 1;
734 
735 	if (encini) {
736 		/* get an IV */
737 		/* XXX may read fewer than requested */
738 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
739 
740 		ses->ses_klen = encini->cri_klen;
741 		bcopy(encini->cri_key, ses->ses_key, ses->ses_klen / 8);
742 
743 		/* PE is little-endian, insure proper byte order */
744 		for (i = 0; i < N(ses->ses_key); i++)
745 			ses->ses_key[i] = htole32(ses->ses_key[i]);
746 	}
747 
748 	if (macini) {
749 		for (i = 0; i < macini->cri_klen / 8; i++)
750 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
751 
752 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
753 			MD5Init(&md5ctx);
754 			MD5Update(&md5ctx, macini->cri_key,
755 			    macini->cri_klen / 8);
756 			MD5Update(&md5ctx, hmac_ipad_buffer,
757 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
758 			bcopy(md5ctx.state, ses->ses_hminner,
759 			    sizeof(md5ctx.state));
760 		} else {
761 			SHA1Init(&sha1ctx);
762 			SHA1Update(&sha1ctx, macini->cri_key,
763 			    macini->cri_klen / 8);
764 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
765 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
766 			bcopy(sha1ctx.h.b32, ses->ses_hminner,
767 			    sizeof(sha1ctx.h.b32));
768 		}
769 
770 		for (i = 0; i < macini->cri_klen / 8; i++)
771 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
772 
773 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
774 			MD5Init(&md5ctx);
775 			MD5Update(&md5ctx, macini->cri_key,
776 			    macini->cri_klen / 8);
777 			MD5Update(&md5ctx, hmac_opad_buffer,
778 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
779 			bcopy(md5ctx.state, ses->ses_hmouter,
780 			    sizeof(md5ctx.state));
781 		} else {
782 			SHA1Init(&sha1ctx);
783 			SHA1Update(&sha1ctx, macini->cri_key,
784 			    macini->cri_klen / 8);
785 			SHA1Update(&sha1ctx, hmac_opad_buffer,
786 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
787 			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
788 			    sizeof(sha1ctx.h.b32));
789 		}
790 
791 		for (i = 0; i < macini->cri_klen / 8; i++)
792 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
793 
794 		/* PE is little-endian, insure proper byte order */
795 		for (i = 0; i < N(ses->ses_hminner); i++) {
796 			ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
797 			ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
798 		}
799 	}
800 
801 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
802 	return (0);
803 #undef N
804 }
805 
806 /*
807  * Deallocate a session.
808  */
809 static int
810 safe_freesession(void *arg, u_int64_t tid)
811 {
812 	struct safe_softc *sc = arg;
813 	int session, ret;
814 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
815 
816 	if (sc == NULL)
817 		return (EINVAL);
818 
819 	session = SAFE_SESSION(sid);
820 	if (session < sc->sc_nsessions) {
821 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
822 		ret = 0;
823 	} else
824 		ret = EINVAL;
825 	return (ret);
826 }
827 
828 static void
829 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
830 {
831 	struct safe_operand *op = arg;
832 
833 	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
834 		(u_int) mapsize, nsegs, error));
835 	if (error != 0)
836 		return;
837 	op->mapsize = mapsize;
838 	op->nsegs = nsegs;
839 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
840 }
841 
842 static int
843 safe_process(void *arg, struct cryptop *crp, int hint)
844 {
845 	int err = 0, i, nicealign, uniform;
846 	struct safe_softc *sc = arg;
847 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
848 	int bypass, oplen, ivsize;
849 	caddr_t iv;
850 	int16_t coffset;
851 	struct safe_session *ses;
852 	struct safe_ringentry *re;
853 	struct safe_sarec *sa;
854 	struct safe_pdesc *pd;
855 	u_int32_t cmd0, cmd1, staterec;
856 
857 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
858 		safestats.st_invalid++;
859 		return (EINVAL);
860 	}
861 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
862 		safestats.st_badsession++;
863 		return (EINVAL);
864 	}
865 
866 	mtx_lock(&sc->sc_ringmtx);
867 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
868 		safestats.st_ringfull++;
869 		sc->sc_needwakeup |= CRYPTO_SYMQ;
870 		mtx_unlock(&sc->sc_ringmtx);
871 		return (ERESTART);
872 	}
873 	re = sc->sc_front;
874 
875 	staterec = re->re_sa.sa_staterec;	/* save */
876 	/* NB: zero everything but the PE descriptor */
877 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
878 	re->re_sa.sa_staterec = staterec;	/* restore */
879 
880 	re->re_crp = crp;
881 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
882 
883 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
884 		re->re_src_m = (struct mbuf *)crp->crp_buf;
885 		re->re_dst_m = (struct mbuf *)crp->crp_buf;
886 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
887 		re->re_src_io = (struct uio *)crp->crp_buf;
888 		re->re_dst_io = (struct uio *)crp->crp_buf;
889 	} else {
890 		safestats.st_badflags++;
891 		err = EINVAL;
892 		goto errout;	/* XXX we don't handle contiguous blocks! */
893 	}
894 
895 	sa = &re->re_sa;
896 	ses = &sc->sc_sessions[re->re_sesn];
897 
898 	crd1 = crp->crp_desc;
899 	if (crd1 == NULL) {
900 		safestats.st_nodesc++;
901 		err = EINVAL;
902 		goto errout;
903 	}
904 	crd2 = crd1->crd_next;
905 
906 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
907 	cmd1 = 0;
908 	if (crd2 == NULL) {
909 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
910 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
911 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
912 			maccrd = crd1;
913 			enccrd = NULL;
914 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
915 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
916 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
917 		    crd1->crd_alg == CRYPTO_AES_CBC ||
918 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
919 			maccrd = NULL;
920 			enccrd = crd1;
921 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
922 		} else {
923 			safestats.st_badalg++;
924 			err = EINVAL;
925 			goto errout;
926 		}
927 	} else {
928 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
929 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
930 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
931 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
932 			crd2->crd_alg == CRYPTO_3DES_CBC ||
933 		        crd2->crd_alg == CRYPTO_AES_CBC ||
934 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
935 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
936 			maccrd = crd1;
937 			enccrd = crd2;
938 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
939 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
940 		    crd1->crd_alg == CRYPTO_AES_CBC ||
941 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
942 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
943 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
944 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
945 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
946 			enccrd = crd1;
947 			maccrd = crd2;
948 		} else {
949 			safestats.st_badalg++;
950 			err = EINVAL;
951 			goto errout;
952 		}
953 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
954 	}
955 
956 	if (enccrd) {
957 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
958 			cmd0 |= SAFE_SA_CMD0_DES;
959 			cmd1 |= SAFE_SA_CMD1_CBC;
960 			ivsize = 2*sizeof(u_int32_t);
961 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
962 			cmd0 |= SAFE_SA_CMD0_3DES;
963 			cmd1 |= SAFE_SA_CMD1_CBC;
964 			ivsize = 2*sizeof(u_int32_t);
965 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
966 			cmd0 |= SAFE_SA_CMD0_AES;
967 			cmd1 |= SAFE_SA_CMD1_CBC;
968 			if (ses->ses_klen == 128)
969 			     cmd1 |=  SAFE_SA_CMD1_AES128;
970 			else if (ses->ses_klen == 192)
971 			     cmd1 |=  SAFE_SA_CMD1_AES192;
972 			else
973 			     cmd1 |=  SAFE_SA_CMD1_AES256;
974 			ivsize = 4*sizeof(u_int32_t);
975 		} else {
976 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
977 			ivsize = 0;
978 		}
979 
980 		/*
981 		 * Setup encrypt/decrypt state.  When using basic ops
982 		 * we can't use an inline IV because hash/crypt offset
983 		 * must be from the end of the IV to the start of the
984 		 * crypt data and this leaves out the preceding header
985 		 * from the hash calculation.  Instead we place the IV
986 		 * in the state record and set the hash/crypt offset to
987 		 * copy both the header+IV.
988 		 */
989 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
990 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
991 
992 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
993 				iv = enccrd->crd_iv;
994 			else
995 				iv = (caddr_t) ses->ses_iv;
996 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
997 				if (crp->crp_flags & CRYPTO_F_IMBUF)
998 					m_copyback(re->re_src_m,
999 						enccrd->crd_inject, ivsize, iv);
1000 				else if (crp->crp_flags & CRYPTO_F_IOV)
1001 					cuio_copyback(re->re_src_io,
1002 						enccrd->crd_inject, ivsize, iv);
1003 			}
1004 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1005 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1006 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1007 		} else {
1008 			cmd0 |= SAFE_SA_CMD0_INBOUND;
1009 
1010 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1011 				bcopy(enccrd->crd_iv,
1012 					re->re_sastate.sa_saved_iv, ivsize);
1013 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1014 				m_copydata(re->re_src_m, enccrd->crd_inject,
1015 					ivsize,
1016 					(caddr_t)re->re_sastate.sa_saved_iv);
1017 			else if (crp->crp_flags & CRYPTO_F_IOV)
1018 				cuio_copydata(re->re_src_io, enccrd->crd_inject,
1019 					ivsize,
1020 					(caddr_t)re->re_sastate.sa_saved_iv);
1021 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1022 		}
1023 		/*
1024 		 * For basic encryption use the zero pad algorithm.
1025 		 * This pads results to an 8-byte boundary and
1026 		 * suppresses padding verification for inbound (i.e.
1027 		 * decrypt) operations.
1028 		 *
1029 		 * NB: Not sure if the 8-byte pad boundary is a problem.
1030 		 */
1031 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1032 
1033 		/* XXX assert key bufs have the same size */
1034 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1035 	}
1036 
1037 	if (maccrd) {
1038 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1039 			cmd0 |= SAFE_SA_CMD0_MD5;
1040 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1041 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1042 			cmd0 |= SAFE_SA_CMD0_SHA1;
1043 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1044 		} else {
1045 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1046 		}
1047 		/*
1048 		 * Digest data is loaded from the SA and the hash
1049 		 * result is saved to the state block where we
1050 		 * retrieve it for return to the caller.
1051 		 */
1052 		/* XXX assert digest bufs have the same size */
1053 		bcopy(ses->ses_hminner, sa->sa_indigest,
1054 			sizeof(sa->sa_indigest));
1055 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1056 			sizeof(sa->sa_outdigest));
1057 
1058 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1059 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1060 	}
1061 
1062 	if (enccrd && maccrd) {
1063 		/*
1064 		 * The offset from hash data to the start of
1065 		 * crypt data is the difference in the skips.
1066 		 */
1067 		bypass = maccrd->crd_skip;
1068 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1069 		if (coffset < 0) {
1070 			DPRINTF(("%s: hash does not precede crypt; "
1071 				"mac skip %u enc skip %u\n",
1072 				__func__, maccrd->crd_skip, enccrd->crd_skip));
1073 			safestats.st_skipmismatch++;
1074 			err = EINVAL;
1075 			goto errout;
1076 		}
1077 		oplen = enccrd->crd_skip + enccrd->crd_len;
1078 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1079 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1080 				__func__, maccrd->crd_skip + maccrd->crd_len,
1081 				oplen));
1082 			safestats.st_lenmismatch++;
1083 			err = EINVAL;
1084 			goto errout;
1085 		}
1086 #ifdef SAFE_DEBUG
1087 		if (safe_debug) {
1088 			printf("mac: skip %d, len %d, inject %d\n",
1089 			    maccrd->crd_skip, maccrd->crd_len,
1090 			    maccrd->crd_inject);
1091 			printf("enc: skip %d, len %d, inject %d\n",
1092 			    enccrd->crd_skip, enccrd->crd_len,
1093 			    enccrd->crd_inject);
1094 			printf("bypass %d coffset %d oplen %d\n",
1095 				bypass, coffset, oplen);
1096 		}
1097 #endif
1098 		if (coffset & 3) {	/* offset must be 32-bit aligned */
1099 			DPRINTF(("%s: coffset %u misaligned\n",
1100 				__func__, coffset));
1101 			safestats.st_coffmisaligned++;
1102 			err = EINVAL;
1103 			goto errout;
1104 		}
1105 		coffset >>= 2;
1106 		if (coffset > 255) {	/* offset must be <256 dwords */
1107 			DPRINTF(("%s: coffset %u too big\n",
1108 				__func__, coffset));
1109 			safestats.st_cofftoobig++;
1110 			err = EINVAL;
1111 			goto errout;
1112 		}
1113 		/*
1114 		 * Tell the hardware to copy the header to the output.
1115 		 * The header is defined as the data from the end of
1116 		 * the bypass to the start of data to be encrypted.
1117 		 * Typically this is the inline IV.  Note that you need
1118 		 * to do this even if src+dst are the same; it appears
1119 		 * that w/o this bit the crypted data is written
1120 		 * immediately after the bypass data.
1121 		 */
1122 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1123 		/*
1124 		 * Disable IP header mutable bit handling.  This is
1125 		 * needed to get correct HMAC calculations.
1126 		 */
1127 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1128 	} else {
1129 		if (enccrd) {
1130 			bypass = enccrd->crd_skip;
1131 			oplen = bypass + enccrd->crd_len;
1132 		} else {
1133 			bypass = maccrd->crd_skip;
1134 			oplen = bypass + maccrd->crd_len;
1135 		}
1136 		coffset = 0;
1137 	}
1138 	/* XXX verify multiple of 4 when using s/g */
1139 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1140 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1141 		safestats.st_bypasstoobig++;
1142 		err = EINVAL;
1143 		goto errout;
1144 	}
1145 
1146 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1147 		safestats.st_nomap++;
1148 		err = ENOMEM;
1149 		goto errout;
1150 	}
1151 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1152 		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1153 		    re->re_src_m, safe_op_cb,
1154 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1155 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1156 			re->re_src_map = NULL;
1157 			safestats.st_noload++;
1158 			err = ENOMEM;
1159 			goto errout;
1160 		}
1161 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1162 		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1163 		    re->re_src_io, safe_op_cb,
1164 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1165 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1166 			re->re_src_map = NULL;
1167 			safestats.st_noload++;
1168 			err = ENOMEM;
1169 			goto errout;
1170 		}
1171 	}
1172 	nicealign = safe_dmamap_aligned(&re->re_src);
1173 	uniform = safe_dmamap_uniform(&re->re_src);
1174 
1175 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1176 		nicealign, uniform, re->re_src.nsegs));
1177 	if (re->re_src.nsegs > 1) {
1178 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1179 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1180 		for (i = 0; i < re->re_src_nsegs; i++) {
1181 			/* NB: no need to check if there's space */
1182 			pd = sc->sc_spfree;
1183 			if (++(sc->sc_spfree) == sc->sc_springtop)
1184 				sc->sc_spfree = sc->sc_spring;
1185 
1186 			KASSERT((pd->pd_flags&3) == 0 ||
1187 				(pd->pd_flags&3) == SAFE_PD_DONE,
1188 				("bogus source particle descriptor; flags %x",
1189 				pd->pd_flags));
1190 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1191 			pd->pd_size = re->re_src_segs[i].ds_len;
1192 			pd->pd_flags = SAFE_PD_READY;
1193 		}
1194 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1195 	} else {
1196 		/*
1197 		 * No need for gather, reference the operand directly.
1198 		 */
1199 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1200 	}
1201 
1202 	if (enccrd == NULL && maccrd != NULL) {
1203 		/*
1204 		 * Hash op; no destination needed.
1205 		 */
1206 	} else {
1207 		if (crp->crp_flags & CRYPTO_F_IOV) {
1208 			if (!nicealign) {
1209 				safestats.st_iovmisaligned++;
1210 				err = EINVAL;
1211 				goto errout;
1212 			}
1213 			if (uniform != 1) {
1214 				/*
1215 				 * Source is not suitable for direct use as
1216 				 * the destination.  Create a new scatter/gather
1217 				 * list based on the destination requirements
1218 				 * and check if that's ok.
1219 				 */
1220 				if (bus_dmamap_create(sc->sc_dstdmat,
1221 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1222 					safestats.st_nomap++;
1223 					err = ENOMEM;
1224 					goto errout;
1225 				}
1226 				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1227 				    re->re_dst_map, re->re_dst_io,
1228 				    safe_op_cb, &re->re_dst,
1229 				    BUS_DMA_NOWAIT) != 0) {
1230 					bus_dmamap_destroy(sc->sc_dstdmat,
1231 						re->re_dst_map);
1232 					re->re_dst_map = NULL;
1233 					safestats.st_noload++;
1234 					err = ENOMEM;
1235 					goto errout;
1236 				}
1237 				uniform = safe_dmamap_uniform(&re->re_dst);
1238 				if (!uniform) {
1239 					/*
1240 					 * There's no way to handle the DMA
1241 					 * requirements with this uio.  We
1242 					 * could create a separate DMA area for
1243 					 * the result and then copy it back,
1244 					 * but for now we just bail and return
1245 					 * an error.  Note that uio requests
1246 					 * > SAFE_MAX_DSIZE are handled because
1247 					 * the DMA map and segment list for the
1248 					 * destination wil result in a
1249 					 * destination particle list that does
1250 					 * the necessary scatter DMA.
1251 					 */
1252 					safestats.st_iovnotuniform++;
1253 					err = EINVAL;
1254 					goto errout;
1255 				}
1256 			} else
1257 				re->re_dst = re->re_src;
1258 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1259 			if (nicealign && uniform == 1) {
1260 				/*
1261 				 * Source layout is suitable for direct
1262 				 * sharing of the DMA map and segment list.
1263 				 */
1264 				re->re_dst = re->re_src;
1265 			} else if (nicealign && uniform == 2) {
1266 				/*
1267 				 * The source is properly aligned but requires a
1268 				 * different particle list to handle DMA of the
1269 				 * result.  Create a new map and do the load to
1270 				 * create the segment list.  The particle
1271 				 * descriptor setup code below will handle the
1272 				 * rest.
1273 				 */
1274 				if (bus_dmamap_create(sc->sc_dstdmat,
1275 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1276 					safestats.st_nomap++;
1277 					err = ENOMEM;
1278 					goto errout;
1279 				}
1280 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1281 				    re->re_dst_map, re->re_dst_m,
1282 				    safe_op_cb, &re->re_dst,
1283 				    BUS_DMA_NOWAIT) != 0) {
1284 					bus_dmamap_destroy(sc->sc_dstdmat,
1285 						re->re_dst_map);
1286 					re->re_dst_map = NULL;
1287 					safestats.st_noload++;
1288 					err = ENOMEM;
1289 					goto errout;
1290 				}
1291 			} else {		/* !(aligned and/or uniform) */
1292 				int totlen, len;
1293 				struct mbuf *m, *top, **mp;
1294 
1295 				/*
1296 				 * DMA constraints require that we allocate a
1297 				 * new mbuf chain for the destination.  We
1298 				 * allocate an entire new set of mbufs of
1299 				 * optimal/required size and then tell the
1300 				 * hardware to copy any bits that are not
1301 				 * created as a byproduct of the operation.
1302 				 */
1303 				if (!nicealign)
1304 					safestats.st_unaligned++;
1305 				if (!uniform)
1306 					safestats.st_notuniform++;
1307 				totlen = re->re_src_mapsize;
1308 				if (re->re_src_m->m_flags & M_PKTHDR) {
1309 					len = MHLEN;
1310 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1311 					if (m && !m_dup_pkthdr(m, re->re_src_m,
1312 					    M_DONTWAIT)) {
1313 						m_free(m);
1314 						m = NULL;
1315 					}
1316 				} else {
1317 					len = MLEN;
1318 					MGET(m, M_DONTWAIT, MT_DATA);
1319 				}
1320 				if (m == NULL) {
1321 					safestats.st_nombuf++;
1322 					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1323 					goto errout;
1324 				}
1325 				if (totlen >= MINCLSIZE) {
1326 					MCLGET(m, M_DONTWAIT);
1327 					if ((m->m_flags & M_EXT) == 0) {
1328 						m_free(m);
1329 						safestats.st_nomcl++;
1330 						err = sc->sc_nqchip ?
1331 							ERESTART : ENOMEM;
1332 						goto errout;
1333 					}
1334 					len = MCLBYTES;
1335 				}
1336 				m->m_len = len;
1337 				top = NULL;
1338 				mp = &top;
1339 
1340 				while (totlen > 0) {
1341 					if (top) {
1342 						MGET(m, M_DONTWAIT, MT_DATA);
1343 						if (m == NULL) {
1344 							m_freem(top);
1345 							safestats.st_nombuf++;
1346 							err = sc->sc_nqchip ?
1347 							    ERESTART : ENOMEM;
1348 							goto errout;
1349 						}
1350 						len = MLEN;
1351 					}
1352 					if (top && totlen >= MINCLSIZE) {
1353 						MCLGET(m, M_DONTWAIT);
1354 						if ((m->m_flags & M_EXT) == 0) {
1355 							*mp = m;
1356 							m_freem(top);
1357 							safestats.st_nomcl++;
1358 							err = sc->sc_nqchip ?
1359 							    ERESTART : ENOMEM;
1360 							goto errout;
1361 						}
1362 						len = MCLBYTES;
1363 					}
1364 					m->m_len = len = min(totlen, len);
1365 					totlen -= len;
1366 					*mp = m;
1367 					mp = &m->m_next;
1368 				}
1369 				re->re_dst_m = top;
1370 				if (bus_dmamap_create(sc->sc_dstdmat,
1371 				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1372 					safestats.st_nomap++;
1373 					err = ENOMEM;
1374 					goto errout;
1375 				}
1376 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1377 				    re->re_dst_map, re->re_dst_m,
1378 				    safe_op_cb, &re->re_dst,
1379 				    BUS_DMA_NOWAIT) != 0) {
1380 					bus_dmamap_destroy(sc->sc_dstdmat,
1381 					re->re_dst_map);
1382 					re->re_dst_map = NULL;
1383 					safestats.st_noload++;
1384 					err = ENOMEM;
1385 					goto errout;
1386 				}
1387 				if (re->re_src.mapsize > oplen) {
1388 					/*
1389 					 * There's data following what the
1390 					 * hardware will copy for us.  If this
1391 					 * isn't just the ICV (that's going to
1392 					 * be written on completion), copy it
1393 					 * to the new mbufs
1394 					 */
1395 					if (!(maccrd &&
1396 					    (re->re_src.mapsize-oplen) == 12 &&
1397 					    maccrd->crd_inject == oplen))
1398 						safe_mcopy(re->re_src_m,
1399 							   re->re_dst_m,
1400 							   oplen);
1401 					else
1402 						safestats.st_noicvcopy++;
1403 				}
1404 			}
1405 		} else {
1406 			safestats.st_badflags++;
1407 			err = EINVAL;
1408 			goto errout;
1409 		}
1410 
1411 		if (re->re_dst.nsegs > 1) {
1412 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1413 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1414 			for (i = 0; i < re->re_dst_nsegs; i++) {
1415 				pd = sc->sc_dpfree;
1416 				KASSERT((pd->pd_flags&3) == 0 ||
1417 					(pd->pd_flags&3) == SAFE_PD_DONE,
1418 					("bogus dest particle descriptor; flags %x",
1419 						pd->pd_flags));
1420 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1421 					sc->sc_dpfree = sc->sc_dpring;
1422 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1423 				pd->pd_flags = SAFE_PD_READY;
1424 			}
1425 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1426 		} else {
1427 			/*
1428 			 * No need for scatter, reference the operand directly.
1429 			 */
1430 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * All done with setup; fillin the SA command words
1436 	 * and the packet engine descriptor.  The operation
1437 	 * is now ready for submission to the hardware.
1438 	 */
1439 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1440 	sa->sa_cmd1 = cmd1
1441 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1442 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1443 		    | SAFE_SA_CMD1_SRPCI
1444 		    ;
1445 	/*
1446 	 * NB: the order of writes is important here.  In case the
1447 	 * chip is scanning the ring because of an outstanding request
1448 	 * it might nab this one too.  In that case we need to make
1449 	 * sure the setup is complete before we write the length
1450 	 * field of the descriptor as it signals the descriptor is
1451 	 * ready for processing.
1452 	 */
1453 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1454 	if (maccrd)
1455 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1456 	re->re_desc.d_len = oplen
1457 			  | SAFE_PE_LEN_READY
1458 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1459 			  ;
1460 
1461 	safestats.st_ipackets++;
1462 	safestats.st_ibytes += oplen;
1463 
1464 	if (++(sc->sc_front) == sc->sc_ringtop)
1465 		sc->sc_front = sc->sc_ring;
1466 
1467 	/* XXX honor batching */
1468 	safe_feed(sc, re);
1469 	mtx_unlock(&sc->sc_ringmtx);
1470 	return (0);
1471 
1472 errout:
1473 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1474 		m_freem(re->re_dst_m);
1475 
1476 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1477 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1478 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1479 	}
1480 	if (re->re_src_map != NULL) {
1481 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1482 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1483 	}
1484 	mtx_unlock(&sc->sc_ringmtx);
1485 	if (err != ERESTART) {
1486 		crp->crp_etype = err;
1487 		crypto_done(crp);
1488 	} else {
1489 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1490 	}
1491 	return (err);
1492 }
1493 
1494 static void
1495 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1496 {
1497 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1498 	struct cryptodesc *crd;
1499 
1500 	safestats.st_opackets++;
1501 	safestats.st_obytes += re->re_dst.mapsize;
1502 
1503 	safe_dma_sync(&sc->sc_ringalloc,
1504 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1505 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1506 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1507 			re->re_desc.d_csr,
1508 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1509 		safestats.st_peoperr++;
1510 		crp->crp_etype = EIO;		/* something more meaningful? */
1511 	}
1512 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1513 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1514 		    BUS_DMASYNC_POSTREAD);
1515 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1516 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1517 	}
1518 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1519 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1520 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1521 
1522 	/*
1523 	 * If result was written to a differet mbuf chain, swap
1524 	 * it in as the return value and reclaim the original.
1525 	 */
1526 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1527 		m_freem(re->re_src_m);
1528 		crp->crp_buf = (caddr_t)re->re_dst_m;
1529 	}
1530 
1531 	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1532 		/* copy out IV for future use */
1533 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1534 			int ivsize;
1535 
1536 			if (crd->crd_alg == CRYPTO_DES_CBC ||
1537 			    crd->crd_alg == CRYPTO_3DES_CBC) {
1538 				ivsize = 2*sizeof(u_int32_t);
1539 			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1540 				ivsize = 4*sizeof(u_int32_t);
1541 			} else
1542 				continue;
1543 			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1544 				m_copydata((struct mbuf *)crp->crp_buf,
1545 					crd->crd_skip + crd->crd_len - ivsize,
1546 					ivsize,
1547 					(caddr_t) sc->sc_sessions[re->re_sesn].ses_iv);
1548 			} else if (crp->crp_flags & CRYPTO_F_IOV) {
1549 				cuio_copydata((struct uio *)crp->crp_buf,
1550 					crd->crd_skip + crd->crd_len - ivsize,
1551 					ivsize,
1552 					(caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1553 			}
1554 			break;
1555 		}
1556 	}
1557 
1558 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1559 		/* copy out ICV result */
1560 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1561 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1562 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1563 			    crd->crd_alg == CRYPTO_NULL_HMAC))
1564 				continue;
1565 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1566 				/*
1567 				 * SHA-1 ICV's are byte-swapped; fix 'em up
1568 				 * before copy them to their destination.
1569 				 */
1570 				bswap32(re->re_sastate.sa_saved_indigest[0]);
1571 				bswap32(re->re_sastate.sa_saved_indigest[1]);
1572 				bswap32(re->re_sastate.sa_saved_indigest[2]);
1573 			}
1574 			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1575 				m_copyback((struct mbuf *)crp->crp_buf,
1576 					crd->crd_inject, 12,
1577 					(caddr_t)re->re_sastate.sa_saved_indigest);
1578 			} else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) {
1579 				bcopy((caddr_t)re->re_sastate.sa_saved_indigest,
1580 					crp->crp_mac, 12);
1581 			}
1582 			break;
1583 		}
1584 	}
1585 	crypto_done(crp);
1586 }
1587 
1588 /*
1589  * Copy all data past offset from srcm to dstm.
1590  */
1591 static void
1592 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1593 {
1594 	u_int j, dlen, slen;
1595 	caddr_t dptr, sptr;
1596 
1597 	/*
1598 	 * Advance src and dst to offset.
1599 	 */
1600 	j = offset;
1601 	while (j >= 0) {
1602 		if (srcm->m_len > j)
1603 			break;
1604 		j -= srcm->m_len;
1605 		srcm = srcm->m_next;
1606 		if (srcm == NULL)
1607 			return;
1608 	}
1609 	sptr = mtod(srcm, caddr_t) + j;
1610 	slen = srcm->m_len - j;
1611 
1612 	j = offset;
1613 	while (j >= 0) {
1614 		if (dstm->m_len > j)
1615 			break;
1616 		j -= dstm->m_len;
1617 		dstm = dstm->m_next;
1618 		if (dstm == NULL)
1619 			return;
1620 	}
1621 	dptr = mtod(dstm, caddr_t) + j;
1622 	dlen = dstm->m_len - j;
1623 
1624 	/*
1625 	 * Copy everything that remains.
1626 	 */
1627 	for (;;) {
1628 		j = min(slen, dlen);
1629 		bcopy(sptr, dptr, j);
1630 		if (slen == j) {
1631 			srcm = srcm->m_next;
1632 			if (srcm == NULL)
1633 				return;
1634 			sptr = srcm->m_data;
1635 			slen = srcm->m_len;
1636 		} else
1637 			sptr += j, slen -= j;
1638 		if (dlen == j) {
1639 			dstm = dstm->m_next;
1640 			if (dstm == NULL)
1641 				return;
1642 			dptr = dstm->m_data;
1643 			dlen = dstm->m_len;
1644 		} else
1645 			dptr += j, dlen -= j;
1646 	}
1647 }
1648 
1649 #ifndef SAFE_NO_RNG
1650 #define	SAFE_RNG_MAXWAIT	1000
1651 
1652 static void
1653 safe_rng_init(struct safe_softc *sc)
1654 {
1655 	u_int32_t w, v;
1656 	int i;
1657 
1658 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1659 	/* use default value according to the manual */
1660 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1661 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1662 
1663 	/*
1664 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1665 	 * is brought out of reset the ready status flag does not
1666 	 * work until the RNG has finished its internal initialization.
1667 	 *
1668 	 * So in order to determine the device is through its
1669 	 * initialization we must read the data register, using the
1670 	 * status reg in the read in case it is initialized.  Then read
1671 	 * the data register until it changes from the first read.
1672 	 * Once it changes read the data register until it changes
1673 	 * again.  At this time the RNG is considered initialized.
1674 	 * This could take between 750ms - 1000ms in time.
1675 	 */
1676 	i = 0;
1677 	w = READ_REG(sc, SAFE_RNG_OUT);
1678 	do {
1679 		v = READ_REG(sc, SAFE_RNG_OUT);
1680 		if (v != w) {
1681 			w = v;
1682 			break;
1683 		}
1684 		DELAY(10);
1685 	} while (++i < SAFE_RNG_MAXWAIT);
1686 
1687 	/* Wait Until data changes again */
1688 	i = 0;
1689 	do {
1690 		v = READ_REG(sc, SAFE_RNG_OUT);
1691 		if (v != w)
1692 			break;
1693 		DELAY(10);
1694 	} while (++i < SAFE_RNG_MAXWAIT);
1695 }
1696 
1697 static __inline void
1698 safe_rng_disable_short_cycle(struct safe_softc *sc)
1699 {
1700 	WRITE_REG(sc, SAFE_RNG_CTRL,
1701 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1702 }
1703 
1704 static __inline void
1705 safe_rng_enable_short_cycle(struct safe_softc *sc)
1706 {
1707 	WRITE_REG(sc, SAFE_RNG_CTRL,
1708 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1709 }
1710 
1711 static __inline u_int32_t
1712 safe_rng_read(struct safe_softc *sc)
1713 {
1714 	int i;
1715 
1716 	i = 0;
1717 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1718 		;
1719 	return READ_REG(sc, SAFE_RNG_OUT);
1720 }
1721 
1722 static void
1723 safe_rng(void *arg)
1724 {
1725 	struct safe_softc *sc = arg;
1726 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1727 	u_int maxwords;
1728 	int i;
1729 
1730 	safestats.st_rng++;
1731 	/*
1732 	 * Fetch the next block of data.
1733 	 */
1734 	maxwords = safe_rngbufsize;
1735 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1736 		maxwords = SAFE_RNG_MAXBUFSIZ;
1737 retry:
1738 	for (i = 0; i < maxwords; i++)
1739 		buf[i] = safe_rng_read(sc);
1740 	/*
1741 	 * Check the comparator alarm count and reset the h/w if
1742 	 * it exceeds our threshold.  This guards against the
1743 	 * hardware oscillators resonating with external signals.
1744 	 */
1745 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1746 		u_int32_t freq_inc, w;
1747 
1748 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1749 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1750 		safestats.st_rngalarm++;
1751 		safe_rng_enable_short_cycle(sc);
1752 		freq_inc = 18;
1753 		for (i = 0; i < 64; i++) {
1754 			w = READ_REG(sc, SAFE_RNG_CNFG);
1755 			freq_inc = ((w + freq_inc) & 0x3fL);
1756 			w = ((w & ~0x3fL) | freq_inc);
1757 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1758 
1759 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1760 
1761 			(void) safe_rng_read(sc);
1762 			DELAY(25);
1763 
1764 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1765 				safe_rng_disable_short_cycle(sc);
1766 				goto retry;
1767 			}
1768 			freq_inc = 1;
1769 		}
1770 		safe_rng_disable_short_cycle(sc);
1771 	} else
1772 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1773 
1774 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1775 	callout_reset(&sc->sc_rngto,
1776 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1777 }
1778 #endif /* SAFE_NO_RNG */
1779 
1780 static void
1781 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1782 {
1783 	bus_addr_t *paddr = (bus_addr_t*) arg;
1784 	*paddr = segs->ds_addr;
1785 }
1786 
1787 static int
1788 safe_dma_malloc(
1789 	struct safe_softc *sc,
1790 	bus_size_t size,
1791 	struct safe_dma_alloc *dma,
1792 	int mapflags
1793 )
1794 {
1795 	int r;
1796 
1797 	r = bus_dma_tag_create(NULL,			/* parent */
1798 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1799 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1800 			       BUS_SPACE_MAXADDR,	/* highaddr */
1801 			       NULL, NULL,		/* filter, filterarg */
1802 			       size,			/* maxsize */
1803 			       1,			/* nsegments */
1804 			       size,			/* maxsegsize */
1805 			       BUS_DMA_ALLOCNOW,	/* flags */
1806 			       NULL, NULL,		/* locking */
1807 			       &dma->dma_tag);
1808 	if (r != 0) {
1809 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1810 			"bus_dma_tag_create failed; error %u\n", r);
1811 		goto fail_0;
1812 	}
1813 
1814 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1815 	if (r != 0) {
1816 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1817 			"bus_dmamap_create failed; error %u\n", r);
1818 		goto fail_1;
1819 	}
1820 
1821 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1822 			     BUS_DMA_NOWAIT, &dma->dma_map);
1823 	if (r != 0) {
1824 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1825 			"bus_dmammem_alloc failed; size %zu, error %u\n",
1826 			size, r);
1827 		goto fail_2;
1828 	}
1829 
1830 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1831 		            size,
1832 			    safe_dmamap_cb,
1833 			    &dma->dma_paddr,
1834 			    mapflags | BUS_DMA_NOWAIT);
1835 	if (r != 0) {
1836 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1837 			"bus_dmamap_load failed; error %u\n", r);
1838 		goto fail_3;
1839 	}
1840 
1841 	dma->dma_size = size;
1842 	return (0);
1843 
1844 fail_3:
1845 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1846 fail_2:
1847 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1848 fail_1:
1849 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1850 	bus_dma_tag_destroy(dma->dma_tag);
1851 fail_0:
1852 	dma->dma_map = NULL;
1853 	dma->dma_tag = NULL;
1854 	return (r);
1855 }
1856 
1857 static void
1858 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1859 {
1860 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1861 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1862 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1863 	bus_dma_tag_destroy(dma->dma_tag);
1864 }
1865 
1866 /*
1867  * Resets the board.  Values in the regesters are left as is
1868  * from the reset (i.e. initial values are assigned elsewhere).
1869  */
1870 static void
1871 safe_reset_board(struct safe_softc *sc)
1872 {
1873 	u_int32_t v;
1874 	/*
1875 	 * Reset the device.  The manual says no delay
1876 	 * is needed between marking and clearing reset.
1877 	 */
1878 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1879 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1880 		 SAFE_PE_DMACFG_SGRESET);
1881 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1882 				    | SAFE_PE_DMACFG_PERESET
1883 				    | SAFE_PE_DMACFG_PDRRESET
1884 				    | SAFE_PE_DMACFG_SGRESET);
1885 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1886 }
1887 
1888 /*
1889  * Initialize registers we need to touch only once.
1890  */
1891 static void
1892 safe_init_board(struct safe_softc *sc)
1893 {
1894 	u_int32_t v, dwords;
1895 
1896 	v = READ_REG(sc, SAFE_PE_DMACFG);;
1897 	v &=~ SAFE_PE_DMACFG_PEMODE;
1898 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1899 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1900 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1901 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1902 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1903 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1904 	  ;
1905 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1906 #if 0
1907 	/* XXX select byte swap based on host byte order */
1908 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1909 #endif
1910 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1911 		/*
1912 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1913 		 * "target mode transfers" done while the chip is DMA'ing
1914 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1915 		 * we reduce the max PCI transfer size and use small source
1916 		 * particle descriptors (<= 256 bytes).
1917 		 */
1918 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1919 		device_printf(sc->sc_dev,
1920 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1921 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1922 			SAFE_REV_MAJ(sc->sc_chiprev),
1923 			SAFE_REV_MIN(sc->sc_chiprev));
1924 	}
1925 
1926 	/* NB: operands+results are overlaid */
1927 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1928 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1929 	/*
1930 	 * Configure ring entry size and number of items in the ring.
1931 	 */
1932 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1933 		("PE ring entry not 32-bit aligned!"));
1934 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1935 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1936 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1937 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1938 
1939 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1940 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1941 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1942 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1943 	/*
1944 	 * NB: destination particles are fixed size.  We use
1945 	 *     an mbuf cluster and require all results go to
1946 	 *     clusters or smaller.
1947 	 */
1948 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1949 
1950 	/* it's now safe to enable PE mode, do it */
1951 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1952 
1953 	/*
1954 	 * Configure hardware to use level-triggered interrupts and
1955 	 * to interrupt after each descriptor is processed.
1956 	 */
1957 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1958 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1959 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1960 }
1961 
1962 /*
1963  * Init PCI registers
1964  */
1965 static void
1966 safe_init_pciregs(device_t dev)
1967 {
1968 }
1969 
1970 /*
1971  * Clean up after a chip crash.
1972  * It is assumed that the caller in splimp()
1973  */
1974 static void
1975 safe_cleanchip(struct safe_softc *sc)
1976 {
1977 
1978 	if (sc->sc_nqchip != 0) {
1979 		struct safe_ringentry *re = sc->sc_back;
1980 
1981 		while (re != sc->sc_front) {
1982 			if (re->re_desc.d_csr != 0)
1983 				safe_free_entry(sc, re);
1984 			if (++re == sc->sc_ringtop)
1985 				re = sc->sc_ring;
1986 		}
1987 		sc->sc_back = re;
1988 		sc->sc_nqchip = 0;
1989 	}
1990 }
1991 
1992 /*
1993  * free a safe_q
1994  * It is assumed that the caller is within splimp().
1995  */
1996 static int
1997 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1998 {
1999 	struct cryptop *crp;
2000 
2001 	/*
2002 	 * Free header MCR
2003 	 */
2004 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2005 		m_freem(re->re_dst_m);
2006 
2007 	crp = (struct cryptop *)re->re_crp;
2008 
2009 	re->re_desc.d_csr = 0;
2010 
2011 	crp->crp_etype = EFAULT;
2012 	crypto_done(crp);
2013 	return(0);
2014 }
2015 
2016 /*
2017  * Routine to reset the chip and clean up.
2018  * It is assumed that the caller is in splimp()
2019  */
2020 static void
2021 safe_totalreset(struct safe_softc *sc)
2022 {
2023 	safe_reset_board(sc);
2024 	safe_init_board(sc);
2025 	safe_cleanchip(sc);
2026 }
2027 
2028 /*
2029  * Is the operand suitable aligned for direct DMA.  Each
2030  * segment must be aligned on a 32-bit boundary and all
2031  * but the last segment must be a multiple of 4 bytes.
2032  */
2033 static int
2034 safe_dmamap_aligned(const struct safe_operand *op)
2035 {
2036 	int i;
2037 
2038 	for (i = 0; i < op->nsegs; i++) {
2039 		if (op->segs[i].ds_addr & 3)
2040 			return (0);
2041 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2042 			return (0);
2043 	}
2044 	return (1);
2045 }
2046 
2047 /*
2048  * Is the operand suitable for direct DMA as the destination
2049  * of an operation.  The hardware requires that each ``particle''
2050  * but the last in an operation result have the same size.  We
2051  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2052  * 0 if some segment is not a multiple of of this size, 1 if all
2053  * segments are exactly this size, or 2 if segments are at worst
2054  * a multple of this size.
2055  */
2056 static int
2057 safe_dmamap_uniform(const struct safe_operand *op)
2058 {
2059 	int result = 1;
2060 
2061 	if (op->nsegs > 0) {
2062 		int i;
2063 
2064 		for (i = 0; i < op->nsegs-1; i++) {
2065 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2066 				return (0);
2067 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2068 				result = 2;
2069 		}
2070 	}
2071 	return (result);
2072 }
2073 
2074 #ifdef SAFE_DEBUG
2075 static void
2076 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2077 {
2078 	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2079 		, tag
2080 		, READ_REG(sc, SAFE_DMA_ENDIAN)
2081 		, READ_REG(sc, SAFE_DMA_SRCADDR)
2082 		, READ_REG(sc, SAFE_DMA_DSTADDR)
2083 		, READ_REG(sc, SAFE_DMA_STAT)
2084 	);
2085 }
2086 
2087 static void
2088 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2089 {
2090 	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2091 		, tag
2092 		, READ_REG(sc, SAFE_HI_CFG)
2093 		, READ_REG(sc, SAFE_HI_MASK)
2094 		, READ_REG(sc, SAFE_HI_DESC_CNT)
2095 		, READ_REG(sc, SAFE_HU_STAT)
2096 		, READ_REG(sc, SAFE_HM_STAT)
2097 	);
2098 }
2099 
2100 static void
2101 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2102 {
2103 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2104 
2105 	/* NB: assume caller has lock on ring */
2106 	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2107 		tag,
2108 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2109 		(unsigned long)(sc->sc_back - sc->sc_ring),
2110 		(unsigned long)(sc->sc_front - sc->sc_ring));
2111 }
2112 
2113 static void
2114 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2115 {
2116 	int ix, nsegs;
2117 
2118 	ix = re - sc->sc_ring;
2119 	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2120 		, tag
2121 		, re, ix
2122 		, re->re_desc.d_csr
2123 		, re->re_desc.d_src
2124 		, re->re_desc.d_dst
2125 		, re->re_desc.d_sa
2126 		, re->re_desc.d_len
2127 	);
2128 	if (re->re_src.nsegs > 1) {
2129 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2130 			sizeof(struct safe_pdesc);
2131 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2132 			printf(" spd[%u] %p: %p size %u flags %x"
2133 				, ix, &sc->sc_spring[ix]
2134 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2135 				, sc->sc_spring[ix].pd_size
2136 				, sc->sc_spring[ix].pd_flags
2137 			);
2138 			if (sc->sc_spring[ix].pd_size == 0)
2139 				printf(" (zero!)");
2140 			printf("\n");
2141 			if (++ix == SAFE_TOTAL_SPART)
2142 				ix = 0;
2143 		}
2144 	}
2145 	if (re->re_dst.nsegs > 1) {
2146 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2147 			sizeof(struct safe_pdesc);
2148 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2149 			printf(" dpd[%u] %p: %p flags %x\n"
2150 				, ix, &sc->sc_dpring[ix]
2151 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2152 				, sc->sc_dpring[ix].pd_flags
2153 			);
2154 			if (++ix == SAFE_TOTAL_DPART)
2155 				ix = 0;
2156 		}
2157 	}
2158 	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2159 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2160 	printf("sa: key %x %x %x %x %x %x %x %x\n"
2161 		, re->re_sa.sa_key[0]
2162 		, re->re_sa.sa_key[1]
2163 		, re->re_sa.sa_key[2]
2164 		, re->re_sa.sa_key[3]
2165 		, re->re_sa.sa_key[4]
2166 		, re->re_sa.sa_key[5]
2167 		, re->re_sa.sa_key[6]
2168 		, re->re_sa.sa_key[7]
2169 	);
2170 	printf("sa: indigest %x %x %x %x %x\n"
2171 		, re->re_sa.sa_indigest[0]
2172 		, re->re_sa.sa_indigest[1]
2173 		, re->re_sa.sa_indigest[2]
2174 		, re->re_sa.sa_indigest[3]
2175 		, re->re_sa.sa_indigest[4]
2176 	);
2177 	printf("sa: outdigest %x %x %x %x %x\n"
2178 		, re->re_sa.sa_outdigest[0]
2179 		, re->re_sa.sa_outdigest[1]
2180 		, re->re_sa.sa_outdigest[2]
2181 		, re->re_sa.sa_outdigest[3]
2182 		, re->re_sa.sa_outdigest[4]
2183 	);
2184 	printf("sr: iv %x %x %x %x\n"
2185 		, re->re_sastate.sa_saved_iv[0]
2186 		, re->re_sastate.sa_saved_iv[1]
2187 		, re->re_sastate.sa_saved_iv[2]
2188 		, re->re_sastate.sa_saved_iv[3]
2189 	);
2190 	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2191 		, re->re_sastate.sa_saved_hashbc
2192 		, re->re_sastate.sa_saved_indigest[0]
2193 		, re->re_sastate.sa_saved_indigest[1]
2194 		, re->re_sastate.sa_saved_indigest[2]
2195 		, re->re_sastate.sa_saved_indigest[3]
2196 		, re->re_sastate.sa_saved_indigest[4]
2197 	);
2198 }
2199 
2200 static void
2201 safe_dump_ring(struct safe_softc *sc, const char *tag)
2202 {
2203 	mtx_lock(&sc->sc_ringmtx);
2204 	printf("\nSafeNet Ring State:\n");
2205 	safe_dump_intrstate(sc, tag);
2206 	safe_dump_dmastatus(sc, tag);
2207 	safe_dump_ringstate(sc, tag);
2208 	if (sc->sc_nqchip) {
2209 		struct safe_ringentry *re = sc->sc_back;
2210 		do {
2211 			safe_dump_request(sc, tag, re);
2212 			if (++re == sc->sc_ringtop)
2213 				re = sc->sc_ring;
2214 		} while (re != sc->sc_front);
2215 	}
2216 	mtx_unlock(&sc->sc_ringmtx);
2217 }
2218 
2219 static int
2220 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2221 {
2222 	char dmode[64];
2223 	int error;
2224 
2225 	strncpy(dmode, "", sizeof(dmode) - 1);
2226 	dmode[sizeof(dmode) - 1] = '\0';
2227 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2228 
2229 	if (error == 0 && req->newptr != NULL) {
2230 		struct safe_softc *sc = safec;
2231 
2232 		if (!sc)
2233 			return EINVAL;
2234 		if (strncmp(dmode, "dma", 3) == 0)
2235 			safe_dump_dmastatus(sc, "safe0");
2236 		else if (strncmp(dmode, "int", 3) == 0)
2237 			safe_dump_intrstate(sc, "safe0");
2238 		else if (strncmp(dmode, "ring", 4) == 0)
2239 			safe_dump_ring(sc, "safe0");
2240 		else
2241 			return EINVAL;
2242 	}
2243 	return error;
2244 }
2245 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2246 	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2247 #endif /* SAFE_DEBUG */
2248