1 /*- 2 * Copyright (c) 2003 Sam Leffler, Errno Consulting 3 * Copyright (c) 2003 Global Technology Associates, Inc. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * SafeNet SafeXcel-1141 hardware crypto accelerator 33 */ 34 #include "opt_safe.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/proc.h> 39 #include <sys/errno.h> 40 #include <sys/malloc.h> 41 #include <sys/kernel.h> 42 #include <sys/mbuf.h> 43 #include <sys/module.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/sysctl.h> 47 #include <sys/endian.h> 48 49 #include <vm/vm.h> 50 #include <vm/pmap.h> 51 52 #include <machine/bus.h> 53 #include <machine/resource.h> 54 #include <sys/bus.h> 55 #include <sys/rman.h> 56 57 #include <crypto/sha1.h> 58 #include <opencrypto/cryptodev.h> 59 #include <opencrypto/cryptosoft.h> 60 #include <sys/md5.h> 61 #include <sys/random.h> 62 #include <sys/kobj.h> 63 64 #include "cryptodev_if.h" 65 66 #include <dev/pci/pcivar.h> 67 #include <dev/pci/pcireg.h> 68 69 #ifdef SAFE_RNDTEST 70 #include <dev/rndtest/rndtest.h> 71 #endif 72 #include <dev/safe/safereg.h> 73 #include <dev/safe/safevar.h> 74 75 #ifndef bswap32 76 #define bswap32 NTOHL 77 #endif 78 79 /* 80 * Prototypes and count for the pci_device structure 81 */ 82 static int safe_probe(device_t); 83 static int safe_attach(device_t); 84 static int safe_detach(device_t); 85 static int safe_suspend(device_t); 86 static int safe_resume(device_t); 87 static int safe_shutdown(device_t); 88 89 static int safe_newsession(device_t, u_int32_t *, struct cryptoini *); 90 static int safe_freesession(device_t, u_int64_t); 91 static int safe_process(device_t, struct cryptop *, int); 92 93 static device_method_t safe_methods[] = { 94 /* Device interface */ 95 DEVMETHOD(device_probe, safe_probe), 96 DEVMETHOD(device_attach, safe_attach), 97 DEVMETHOD(device_detach, safe_detach), 98 DEVMETHOD(device_suspend, safe_suspend), 99 DEVMETHOD(device_resume, safe_resume), 100 DEVMETHOD(device_shutdown, safe_shutdown), 101 102 /* crypto device methods */ 103 DEVMETHOD(cryptodev_newsession, safe_newsession), 104 DEVMETHOD(cryptodev_freesession,safe_freesession), 105 DEVMETHOD(cryptodev_process, safe_process), 106 107 DEVMETHOD_END 108 }; 109 static driver_t safe_driver = { 110 "safe", 111 safe_methods, 112 sizeof (struct safe_softc) 113 }; 114 static devclass_t safe_devclass; 115 116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0); 117 MODULE_DEPEND(safe, crypto, 1, 1, 1); 118 #ifdef SAFE_RNDTEST 119 MODULE_DEPEND(safe, rndtest, 1, 1, 1); 120 #endif 121 122 static void safe_intr(void *); 123 static void safe_callback(struct safe_softc *, struct safe_ringentry *); 124 static void safe_feed(struct safe_softc *, struct safe_ringentry *); 125 static void safe_mcopy(struct mbuf *, struct mbuf *, u_int); 126 #ifndef SAFE_NO_RNG 127 static void safe_rng_init(struct safe_softc *); 128 static void safe_rng(void *); 129 #endif /* SAFE_NO_RNG */ 130 static int safe_dma_malloc(struct safe_softc *, bus_size_t, 131 struct safe_dma_alloc *, int); 132 #define safe_dma_sync(_dma, _flags) \ 133 bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags)) 134 static void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *); 135 static int safe_dmamap_aligned(const struct safe_operand *); 136 static int safe_dmamap_uniform(const struct safe_operand *); 137 138 static void safe_reset_board(struct safe_softc *); 139 static void safe_init_board(struct safe_softc *); 140 static void safe_init_pciregs(device_t dev); 141 static void safe_cleanchip(struct safe_softc *); 142 static void safe_totalreset(struct safe_softc *); 143 144 static int safe_free_entry(struct safe_softc *, struct safe_ringentry *); 145 146 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, 147 "SafeNet driver parameters"); 148 149 #ifdef SAFE_DEBUG 150 static void safe_dump_dmastatus(struct safe_softc *, const char *); 151 static void safe_dump_ringstate(struct safe_softc *, const char *); 152 static void safe_dump_intrstate(struct safe_softc *, const char *); 153 static void safe_dump_request(struct safe_softc *, const char *, 154 struct safe_ringentry *); 155 156 static struct safe_softc *safec; /* for use by hw.safe.dump */ 157 158 static int safe_debug = 0; 159 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug, 160 0, "control debugging msgs"); 161 #define DPRINTF(_x) if (safe_debug) printf _x 162 #else 163 #define DPRINTF(_x) 164 #endif 165 166 #define READ_REG(sc,r) \ 167 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r)) 168 169 #define WRITE_REG(sc,reg,val) \ 170 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val) 171 172 struct safe_stats safestats; 173 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats, 174 safe_stats, "driver statistics"); 175 #ifndef SAFE_NO_RNG 176 static int safe_rnginterval = 1; /* poll once a second */ 177 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval, 178 0, "RNG polling interval (secs)"); 179 static int safe_rngbufsize = 16; /* 64 bytes each poll */ 180 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize, 181 0, "RNG polling buffer size (32-bit words)"); 182 static int safe_rngmaxalarm = 8; /* max alarms before reset */ 183 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm, 184 0, "RNG max alarms before reset"); 185 #endif /* SAFE_NO_RNG */ 186 187 static int 188 safe_probe(device_t dev) 189 { 190 if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET && 191 pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL) 192 return (BUS_PROBE_DEFAULT); 193 return (ENXIO); 194 } 195 196 static const char* 197 safe_partname(struct safe_softc *sc) 198 { 199 /* XXX sprintf numbers when not decoded */ 200 switch (pci_get_vendor(sc->sc_dev)) { 201 case PCI_VENDOR_SAFENET: 202 switch (pci_get_device(sc->sc_dev)) { 203 case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141"; 204 } 205 return "SafeNet unknown-part"; 206 } 207 return "Unknown-vendor unknown-part"; 208 } 209 210 #ifndef SAFE_NO_RNG 211 static void 212 default_harvest(struct rndtest_state *rsp, void *buf, u_int count) 213 { 214 random_harvest(buf, count, count*NBBY/2, RANDOM_PURE_SAFE); 215 } 216 #endif /* SAFE_NO_RNG */ 217 218 static int 219 safe_attach(device_t dev) 220 { 221 struct safe_softc *sc = device_get_softc(dev); 222 u_int32_t raddr; 223 u_int32_t i, devinfo; 224 int rid; 225 226 bzero(sc, sizeof (*sc)); 227 sc->sc_dev = dev; 228 229 /* XXX handle power management */ 230 231 pci_enable_busmaster(dev); 232 233 /* 234 * Setup memory-mapping of PCI registers. 235 */ 236 rid = BS_BAR; 237 sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 238 RF_ACTIVE); 239 if (sc->sc_sr == NULL) { 240 device_printf(dev, "cannot map register space\n"); 241 goto bad; 242 } 243 sc->sc_st = rman_get_bustag(sc->sc_sr); 244 sc->sc_sh = rman_get_bushandle(sc->sc_sr); 245 246 /* 247 * Arrange interrupt line. 248 */ 249 rid = 0; 250 sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 251 RF_SHAREABLE|RF_ACTIVE); 252 if (sc->sc_irq == NULL) { 253 device_printf(dev, "could not map interrupt\n"); 254 goto bad1; 255 } 256 /* 257 * NB: Network code assumes we are blocked with splimp() 258 * so make sure the IRQ is mapped appropriately. 259 */ 260 if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE, 261 NULL, safe_intr, sc, &sc->sc_ih)) { 262 device_printf(dev, "could not establish interrupt\n"); 263 goto bad2; 264 } 265 266 sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE); 267 if (sc->sc_cid < 0) { 268 device_printf(dev, "could not get crypto driver id\n"); 269 goto bad3; 270 } 271 272 sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) & 273 (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN); 274 275 /* 276 * Setup DMA descriptor area. 277 */ 278 if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 279 1, /* alignment */ 280 SAFE_DMA_BOUNDARY, /* boundary */ 281 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 282 BUS_SPACE_MAXADDR, /* highaddr */ 283 NULL, NULL, /* filter, filterarg */ 284 SAFE_MAX_DMA, /* maxsize */ 285 SAFE_MAX_PART, /* nsegments */ 286 SAFE_MAX_SSIZE, /* maxsegsize */ 287 BUS_DMA_ALLOCNOW, /* flags */ 288 NULL, NULL, /* locking */ 289 &sc->sc_srcdmat)) { 290 device_printf(dev, "cannot allocate DMA tag\n"); 291 goto bad4; 292 } 293 if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 294 1, /* alignment */ 295 SAFE_MAX_DSIZE, /* boundary */ 296 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 297 BUS_SPACE_MAXADDR, /* highaddr */ 298 NULL, NULL, /* filter, filterarg */ 299 SAFE_MAX_DMA, /* maxsize */ 300 SAFE_MAX_PART, /* nsegments */ 301 SAFE_MAX_DSIZE, /* maxsegsize */ 302 BUS_DMA_ALLOCNOW, /* flags */ 303 NULL, NULL, /* locking */ 304 &sc->sc_dstdmat)) { 305 device_printf(dev, "cannot allocate DMA tag\n"); 306 goto bad4; 307 } 308 309 /* 310 * Allocate packet engine descriptors. 311 */ 312 if (safe_dma_malloc(sc, 313 SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry), 314 &sc->sc_ringalloc, 0)) { 315 device_printf(dev, "cannot allocate PE descriptor ring\n"); 316 bus_dma_tag_destroy(sc->sc_srcdmat); 317 goto bad4; 318 } 319 /* 320 * Hookup the static portion of all our data structures. 321 */ 322 sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr; 323 sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE; 324 sc->sc_front = sc->sc_ring; 325 sc->sc_back = sc->sc_ring; 326 raddr = sc->sc_ringalloc.dma_paddr; 327 bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry)); 328 for (i = 0; i < SAFE_MAX_NQUEUE; i++) { 329 struct safe_ringentry *re = &sc->sc_ring[i]; 330 331 re->re_desc.d_sa = raddr + 332 offsetof(struct safe_ringentry, re_sa); 333 re->re_sa.sa_staterec = raddr + 334 offsetof(struct safe_ringentry, re_sastate); 335 336 raddr += sizeof (struct safe_ringentry); 337 } 338 mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev), 339 "packet engine ring", MTX_DEF); 340 341 /* 342 * Allocate scatter and gather particle descriptors. 343 */ 344 if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc), 345 &sc->sc_spalloc, 0)) { 346 device_printf(dev, "cannot allocate source particle " 347 "descriptor ring\n"); 348 mtx_destroy(&sc->sc_ringmtx); 349 safe_dma_free(sc, &sc->sc_ringalloc); 350 bus_dma_tag_destroy(sc->sc_srcdmat); 351 goto bad4; 352 } 353 sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr; 354 sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART; 355 sc->sc_spfree = sc->sc_spring; 356 bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc)); 357 358 if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), 359 &sc->sc_dpalloc, 0)) { 360 device_printf(dev, "cannot allocate destination particle " 361 "descriptor ring\n"); 362 mtx_destroy(&sc->sc_ringmtx); 363 safe_dma_free(sc, &sc->sc_spalloc); 364 safe_dma_free(sc, &sc->sc_ringalloc); 365 bus_dma_tag_destroy(sc->sc_dstdmat); 366 goto bad4; 367 } 368 sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr; 369 sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART; 370 sc->sc_dpfree = sc->sc_dpring; 371 bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc)); 372 373 device_printf(sc->sc_dev, "%s", safe_partname(sc)); 374 375 devinfo = READ_REG(sc, SAFE_DEVINFO); 376 if (devinfo & SAFE_DEVINFO_RNG) { 377 sc->sc_flags |= SAFE_FLAGS_RNG; 378 printf(" rng"); 379 } 380 if (devinfo & SAFE_DEVINFO_PKEY) { 381 #if 0 382 printf(" key"); 383 sc->sc_flags |= SAFE_FLAGS_KEY; 384 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0); 385 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0); 386 #endif 387 } 388 if (devinfo & SAFE_DEVINFO_DES) { 389 printf(" des/3des"); 390 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0); 391 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0); 392 } 393 if (devinfo & SAFE_DEVINFO_AES) { 394 printf(" aes"); 395 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0); 396 } 397 if (devinfo & SAFE_DEVINFO_MD5) { 398 printf(" md5"); 399 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0); 400 } 401 if (devinfo & SAFE_DEVINFO_SHA1) { 402 printf(" sha1"); 403 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0); 404 } 405 printf(" null"); 406 crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0); 407 crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0); 408 /* XXX other supported algorithms */ 409 printf("\n"); 410 411 safe_reset_board(sc); /* reset h/w */ 412 safe_init_pciregs(dev); /* init pci settings */ 413 safe_init_board(sc); /* init h/w */ 414 415 #ifndef SAFE_NO_RNG 416 if (sc->sc_flags & SAFE_FLAGS_RNG) { 417 #ifdef SAFE_RNDTEST 418 sc->sc_rndtest = rndtest_attach(dev); 419 if (sc->sc_rndtest) 420 sc->sc_harvest = rndtest_harvest; 421 else 422 sc->sc_harvest = default_harvest; 423 #else 424 sc->sc_harvest = default_harvest; 425 #endif 426 safe_rng_init(sc); 427 428 callout_init(&sc->sc_rngto, CALLOUT_MPSAFE); 429 callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc); 430 } 431 #endif /* SAFE_NO_RNG */ 432 #ifdef SAFE_DEBUG 433 safec = sc; /* for use by hw.safe.dump */ 434 #endif 435 return (0); 436 bad4: 437 crypto_unregister_all(sc->sc_cid); 438 bad3: 439 bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); 440 bad2: 441 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq); 442 bad1: 443 bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr); 444 bad: 445 return (ENXIO); 446 } 447 448 /* 449 * Detach a device that successfully probed. 450 */ 451 static int 452 safe_detach(device_t dev) 453 { 454 struct safe_softc *sc = device_get_softc(dev); 455 456 /* XXX wait/abort active ops */ 457 458 WRITE_REG(sc, SAFE_HI_MASK, 0); /* disable interrupts */ 459 460 callout_stop(&sc->sc_rngto); 461 462 crypto_unregister_all(sc->sc_cid); 463 464 #ifdef SAFE_RNDTEST 465 if (sc->sc_rndtest) 466 rndtest_detach(sc->sc_rndtest); 467 #endif 468 469 safe_cleanchip(sc); 470 safe_dma_free(sc, &sc->sc_dpalloc); 471 safe_dma_free(sc, &sc->sc_spalloc); 472 mtx_destroy(&sc->sc_ringmtx); 473 safe_dma_free(sc, &sc->sc_ringalloc); 474 475 bus_generic_detach(dev); 476 bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); 477 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq); 478 479 bus_dma_tag_destroy(sc->sc_srcdmat); 480 bus_dma_tag_destroy(sc->sc_dstdmat); 481 bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr); 482 483 return (0); 484 } 485 486 /* 487 * Stop all chip i/o so that the kernel's probe routines don't 488 * get confused by errant DMAs when rebooting. 489 */ 490 static int 491 safe_shutdown(device_t dev) 492 { 493 #ifdef notyet 494 safe_stop(device_get_softc(dev)); 495 #endif 496 return (0); 497 } 498 499 /* 500 * Device suspend routine. 501 */ 502 static int 503 safe_suspend(device_t dev) 504 { 505 struct safe_softc *sc = device_get_softc(dev); 506 507 #ifdef notyet 508 /* XXX stop the device and save PCI settings */ 509 #endif 510 sc->sc_suspended = 1; 511 512 return (0); 513 } 514 515 static int 516 safe_resume(device_t dev) 517 { 518 struct safe_softc *sc = device_get_softc(dev); 519 520 #ifdef notyet 521 /* XXX retore PCI settings and start the device */ 522 #endif 523 sc->sc_suspended = 0; 524 return (0); 525 } 526 527 /* 528 * SafeXcel Interrupt routine 529 */ 530 static void 531 safe_intr(void *arg) 532 { 533 struct safe_softc *sc = arg; 534 volatile u_int32_t stat; 535 536 stat = READ_REG(sc, SAFE_HM_STAT); 537 if (stat == 0) /* shared irq, not for us */ 538 return; 539 540 WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */ 541 542 if ((stat & SAFE_INT_PE_DDONE)) { 543 /* 544 * Descriptor(s) done; scan the ring and 545 * process completed operations. 546 */ 547 mtx_lock(&sc->sc_ringmtx); 548 while (sc->sc_back != sc->sc_front) { 549 struct safe_ringentry *re = sc->sc_back; 550 #ifdef SAFE_DEBUG 551 if (safe_debug) { 552 safe_dump_ringstate(sc, __func__); 553 safe_dump_request(sc, __func__, re); 554 } 555 #endif 556 /* 557 * safe_process marks ring entries that were allocated 558 * but not used with a csr of zero. This insures the 559 * ring front pointer never needs to be set backwards 560 * in the event that an entry is allocated but not used 561 * because of a setup error. 562 */ 563 if (re->re_desc.d_csr != 0) { 564 if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr)) 565 break; 566 if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len)) 567 break; 568 sc->sc_nqchip--; 569 safe_callback(sc, re); 570 } 571 if (++(sc->sc_back) == sc->sc_ringtop) 572 sc->sc_back = sc->sc_ring; 573 } 574 mtx_unlock(&sc->sc_ringmtx); 575 } 576 577 /* 578 * Check to see if we got any DMA Error 579 */ 580 if (stat & SAFE_INT_PE_ERROR) { 581 DPRINTF(("dmaerr dmastat %08x\n", 582 READ_REG(sc, SAFE_PE_DMASTAT))); 583 safestats.st_dmaerr++; 584 safe_totalreset(sc); 585 #if 0 586 safe_feed(sc); 587 #endif 588 } 589 590 if (sc->sc_needwakeup) { /* XXX check high watermark */ 591 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ); 592 DPRINTF(("%s: wakeup crypto %x\n", __func__, 593 sc->sc_needwakeup)); 594 sc->sc_needwakeup &= ~wakeup; 595 crypto_unblock(sc->sc_cid, wakeup); 596 } 597 } 598 599 /* 600 * safe_feed() - post a request to chip 601 */ 602 static void 603 safe_feed(struct safe_softc *sc, struct safe_ringentry *re) 604 { 605 bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE); 606 if (re->re_dst_map != NULL) 607 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map, 608 BUS_DMASYNC_PREREAD); 609 /* XXX have no smaller granularity */ 610 safe_dma_sync(&sc->sc_ringalloc, 611 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 612 safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE); 613 safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE); 614 615 #ifdef SAFE_DEBUG 616 if (safe_debug) { 617 safe_dump_ringstate(sc, __func__); 618 safe_dump_request(sc, __func__, re); 619 } 620 #endif 621 sc->sc_nqchip++; 622 if (sc->sc_nqchip > safestats.st_maxqchip) 623 safestats.st_maxqchip = sc->sc_nqchip; 624 /* poke h/w to check descriptor ring, any value can be written */ 625 WRITE_REG(sc, SAFE_HI_RD_DESCR, 0); 626 } 627 628 #define N(a) (sizeof(a) / sizeof (a[0])) 629 static void 630 safe_setup_enckey(struct safe_session *ses, caddr_t key) 631 { 632 int i; 633 634 bcopy(key, ses->ses_key, ses->ses_klen / 8); 635 636 /* PE is little-endian, insure proper byte order */ 637 for (i = 0; i < N(ses->ses_key); i++) 638 ses->ses_key[i] = htole32(ses->ses_key[i]); 639 } 640 641 static void 642 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen) 643 { 644 MD5_CTX md5ctx; 645 SHA1_CTX sha1ctx; 646 int i; 647 648 649 for (i = 0; i < klen; i++) 650 key[i] ^= HMAC_IPAD_VAL; 651 652 if (algo == CRYPTO_MD5_HMAC) { 653 MD5Init(&md5ctx); 654 MD5Update(&md5ctx, key, klen); 655 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen); 656 bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state)); 657 } else { 658 SHA1Init(&sha1ctx); 659 SHA1Update(&sha1ctx, key, klen); 660 SHA1Update(&sha1ctx, hmac_ipad_buffer, 661 SHA1_HMAC_BLOCK_LEN - klen); 662 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32)); 663 } 664 665 for (i = 0; i < klen; i++) 666 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); 667 668 if (algo == CRYPTO_MD5_HMAC) { 669 MD5Init(&md5ctx); 670 MD5Update(&md5ctx, key, klen); 671 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen); 672 bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state)); 673 } else { 674 SHA1Init(&sha1ctx); 675 SHA1Update(&sha1ctx, key, klen); 676 SHA1Update(&sha1ctx, hmac_opad_buffer, 677 SHA1_HMAC_BLOCK_LEN - klen); 678 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32)); 679 } 680 681 for (i = 0; i < klen; i++) 682 key[i] ^= HMAC_OPAD_VAL; 683 684 /* PE is little-endian, insure proper byte order */ 685 for (i = 0; i < N(ses->ses_hminner); i++) { 686 ses->ses_hminner[i] = htole32(ses->ses_hminner[i]); 687 ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]); 688 } 689 } 690 #undef N 691 692 /* 693 * Allocate a new 'session' and return an encoded session id. 'sidp' 694 * contains our registration id, and should contain an encoded session 695 * id on successful allocation. 696 */ 697 static int 698 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri) 699 { 700 struct safe_softc *sc = device_get_softc(dev); 701 struct cryptoini *c, *encini = NULL, *macini = NULL; 702 struct safe_session *ses = NULL; 703 int sesn; 704 705 if (sidp == NULL || cri == NULL || sc == NULL) 706 return (EINVAL); 707 708 for (c = cri; c != NULL; c = c->cri_next) { 709 if (c->cri_alg == CRYPTO_MD5_HMAC || 710 c->cri_alg == CRYPTO_SHA1_HMAC || 711 c->cri_alg == CRYPTO_NULL_HMAC) { 712 if (macini) 713 return (EINVAL); 714 macini = c; 715 } else if (c->cri_alg == CRYPTO_DES_CBC || 716 c->cri_alg == CRYPTO_3DES_CBC || 717 c->cri_alg == CRYPTO_AES_CBC || 718 c->cri_alg == CRYPTO_NULL_CBC) { 719 if (encini) 720 return (EINVAL); 721 encini = c; 722 } else 723 return (EINVAL); 724 } 725 if (encini == NULL && macini == NULL) 726 return (EINVAL); 727 if (encini) { /* validate key length */ 728 switch (encini->cri_alg) { 729 case CRYPTO_DES_CBC: 730 if (encini->cri_klen != 64) 731 return (EINVAL); 732 break; 733 case CRYPTO_3DES_CBC: 734 if (encini->cri_klen != 192) 735 return (EINVAL); 736 break; 737 case CRYPTO_AES_CBC: 738 if (encini->cri_klen != 128 && 739 encini->cri_klen != 192 && 740 encini->cri_klen != 256) 741 return (EINVAL); 742 break; 743 } 744 } 745 746 if (sc->sc_sessions == NULL) { 747 ses = sc->sc_sessions = (struct safe_session *)malloc( 748 sizeof(struct safe_session), M_DEVBUF, M_NOWAIT); 749 if (ses == NULL) 750 return (ENOMEM); 751 sesn = 0; 752 sc->sc_nsessions = 1; 753 } else { 754 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { 755 if (sc->sc_sessions[sesn].ses_used == 0) { 756 ses = &sc->sc_sessions[sesn]; 757 break; 758 } 759 } 760 761 if (ses == NULL) { 762 sesn = sc->sc_nsessions; 763 ses = (struct safe_session *)malloc((sesn + 1) * 764 sizeof(struct safe_session), M_DEVBUF, M_NOWAIT); 765 if (ses == NULL) 766 return (ENOMEM); 767 bcopy(sc->sc_sessions, ses, sesn * 768 sizeof(struct safe_session)); 769 bzero(sc->sc_sessions, sesn * 770 sizeof(struct safe_session)); 771 free(sc->sc_sessions, M_DEVBUF); 772 sc->sc_sessions = ses; 773 ses = &sc->sc_sessions[sesn]; 774 sc->sc_nsessions++; 775 } 776 } 777 778 bzero(ses, sizeof(struct safe_session)); 779 ses->ses_used = 1; 780 781 if (encini) { 782 /* get an IV */ 783 /* XXX may read fewer than requested */ 784 read_random(ses->ses_iv, sizeof(ses->ses_iv)); 785 786 ses->ses_klen = encini->cri_klen; 787 if (encini->cri_key != NULL) 788 safe_setup_enckey(ses, encini->cri_key); 789 } 790 791 if (macini) { 792 ses->ses_mlen = macini->cri_mlen; 793 if (ses->ses_mlen == 0) { 794 if (macini->cri_alg == CRYPTO_MD5_HMAC) 795 ses->ses_mlen = MD5_HASH_LEN; 796 else 797 ses->ses_mlen = SHA1_HASH_LEN; 798 } 799 800 if (macini->cri_key != NULL) { 801 safe_setup_mackey(ses, macini->cri_alg, macini->cri_key, 802 macini->cri_klen / 8); 803 } 804 } 805 806 *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn); 807 return (0); 808 } 809 810 /* 811 * Deallocate a session. 812 */ 813 static int 814 safe_freesession(device_t dev, u_int64_t tid) 815 { 816 struct safe_softc *sc = device_get_softc(dev); 817 int session, ret; 818 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; 819 820 if (sc == NULL) 821 return (EINVAL); 822 823 session = SAFE_SESSION(sid); 824 if (session < sc->sc_nsessions) { 825 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session])); 826 ret = 0; 827 } else 828 ret = EINVAL; 829 return (ret); 830 } 831 832 static void 833 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error) 834 { 835 struct safe_operand *op = arg; 836 837 DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__, 838 (u_int) mapsize, nsegs, error)); 839 if (error != 0) 840 return; 841 op->mapsize = mapsize; 842 op->nsegs = nsegs; 843 bcopy(seg, op->segs, nsegs * sizeof (seg[0])); 844 } 845 846 static int 847 safe_process(device_t dev, struct cryptop *crp, int hint) 848 { 849 struct safe_softc *sc = device_get_softc(dev); 850 int err = 0, i, nicealign, uniform; 851 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; 852 int bypass, oplen, ivsize; 853 caddr_t iv; 854 int16_t coffset; 855 struct safe_session *ses; 856 struct safe_ringentry *re; 857 struct safe_sarec *sa; 858 struct safe_pdesc *pd; 859 u_int32_t cmd0, cmd1, staterec; 860 861 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) { 862 safestats.st_invalid++; 863 return (EINVAL); 864 } 865 if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) { 866 safestats.st_badsession++; 867 return (EINVAL); 868 } 869 870 mtx_lock(&sc->sc_ringmtx); 871 if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) { 872 safestats.st_ringfull++; 873 sc->sc_needwakeup |= CRYPTO_SYMQ; 874 mtx_unlock(&sc->sc_ringmtx); 875 return (ERESTART); 876 } 877 re = sc->sc_front; 878 879 staterec = re->re_sa.sa_staterec; /* save */ 880 /* NB: zero everything but the PE descriptor */ 881 bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc)); 882 re->re_sa.sa_staterec = staterec; /* restore */ 883 884 re->re_crp = crp; 885 re->re_sesn = SAFE_SESSION(crp->crp_sid); 886 887 if (crp->crp_flags & CRYPTO_F_IMBUF) { 888 re->re_src_m = (struct mbuf *)crp->crp_buf; 889 re->re_dst_m = (struct mbuf *)crp->crp_buf; 890 } else if (crp->crp_flags & CRYPTO_F_IOV) { 891 re->re_src_io = (struct uio *)crp->crp_buf; 892 re->re_dst_io = (struct uio *)crp->crp_buf; 893 } else { 894 safestats.st_badflags++; 895 err = EINVAL; 896 goto errout; /* XXX we don't handle contiguous blocks! */ 897 } 898 899 sa = &re->re_sa; 900 ses = &sc->sc_sessions[re->re_sesn]; 901 902 crd1 = crp->crp_desc; 903 if (crd1 == NULL) { 904 safestats.st_nodesc++; 905 err = EINVAL; 906 goto errout; 907 } 908 crd2 = crd1->crd_next; 909 910 cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */ 911 cmd1 = 0; 912 if (crd2 == NULL) { 913 if (crd1->crd_alg == CRYPTO_MD5_HMAC || 914 crd1->crd_alg == CRYPTO_SHA1_HMAC || 915 crd1->crd_alg == CRYPTO_NULL_HMAC) { 916 maccrd = crd1; 917 enccrd = NULL; 918 cmd0 |= SAFE_SA_CMD0_OP_HASH; 919 } else if (crd1->crd_alg == CRYPTO_DES_CBC || 920 crd1->crd_alg == CRYPTO_3DES_CBC || 921 crd1->crd_alg == CRYPTO_AES_CBC || 922 crd1->crd_alg == CRYPTO_NULL_CBC) { 923 maccrd = NULL; 924 enccrd = crd1; 925 cmd0 |= SAFE_SA_CMD0_OP_CRYPT; 926 } else { 927 safestats.st_badalg++; 928 err = EINVAL; 929 goto errout; 930 } 931 } else { 932 if ((crd1->crd_alg == CRYPTO_MD5_HMAC || 933 crd1->crd_alg == CRYPTO_SHA1_HMAC || 934 crd1->crd_alg == CRYPTO_NULL_HMAC) && 935 (crd2->crd_alg == CRYPTO_DES_CBC || 936 crd2->crd_alg == CRYPTO_3DES_CBC || 937 crd2->crd_alg == CRYPTO_AES_CBC || 938 crd2->crd_alg == CRYPTO_NULL_CBC) && 939 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { 940 maccrd = crd1; 941 enccrd = crd2; 942 } else if ((crd1->crd_alg == CRYPTO_DES_CBC || 943 crd1->crd_alg == CRYPTO_3DES_CBC || 944 crd1->crd_alg == CRYPTO_AES_CBC || 945 crd1->crd_alg == CRYPTO_NULL_CBC) && 946 (crd2->crd_alg == CRYPTO_MD5_HMAC || 947 crd2->crd_alg == CRYPTO_SHA1_HMAC || 948 crd2->crd_alg == CRYPTO_NULL_HMAC) && 949 (crd1->crd_flags & CRD_F_ENCRYPT)) { 950 enccrd = crd1; 951 maccrd = crd2; 952 } else { 953 safestats.st_badalg++; 954 err = EINVAL; 955 goto errout; 956 } 957 cmd0 |= SAFE_SA_CMD0_OP_BOTH; 958 } 959 960 if (enccrd) { 961 if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) 962 safe_setup_enckey(ses, enccrd->crd_key); 963 964 if (enccrd->crd_alg == CRYPTO_DES_CBC) { 965 cmd0 |= SAFE_SA_CMD0_DES; 966 cmd1 |= SAFE_SA_CMD1_CBC; 967 ivsize = 2*sizeof(u_int32_t); 968 } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) { 969 cmd0 |= SAFE_SA_CMD0_3DES; 970 cmd1 |= SAFE_SA_CMD1_CBC; 971 ivsize = 2*sizeof(u_int32_t); 972 } else if (enccrd->crd_alg == CRYPTO_AES_CBC) { 973 cmd0 |= SAFE_SA_CMD0_AES; 974 cmd1 |= SAFE_SA_CMD1_CBC; 975 if (ses->ses_klen == 128) 976 cmd1 |= SAFE_SA_CMD1_AES128; 977 else if (ses->ses_klen == 192) 978 cmd1 |= SAFE_SA_CMD1_AES192; 979 else 980 cmd1 |= SAFE_SA_CMD1_AES256; 981 ivsize = 4*sizeof(u_int32_t); 982 } else { 983 cmd0 |= SAFE_SA_CMD0_CRYPT_NULL; 984 ivsize = 0; 985 } 986 987 /* 988 * Setup encrypt/decrypt state. When using basic ops 989 * we can't use an inline IV because hash/crypt offset 990 * must be from the end of the IV to the start of the 991 * crypt data and this leaves out the preceding header 992 * from the hash calculation. Instead we place the IV 993 * in the state record and set the hash/crypt offset to 994 * copy both the header+IV. 995 */ 996 if (enccrd->crd_flags & CRD_F_ENCRYPT) { 997 cmd0 |= SAFE_SA_CMD0_OUTBOUND; 998 999 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) 1000 iv = enccrd->crd_iv; 1001 else 1002 iv = (caddr_t) ses->ses_iv; 1003 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { 1004 crypto_copyback(crp->crp_flags, crp->crp_buf, 1005 enccrd->crd_inject, ivsize, iv); 1006 } 1007 bcopy(iv, re->re_sastate.sa_saved_iv, ivsize); 1008 cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV; 1009 re->re_flags |= SAFE_QFLAGS_COPYOUTIV; 1010 } else { 1011 cmd0 |= SAFE_SA_CMD0_INBOUND; 1012 1013 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) { 1014 bcopy(enccrd->crd_iv, 1015 re->re_sastate.sa_saved_iv, ivsize); 1016 } else { 1017 crypto_copydata(crp->crp_flags, crp->crp_buf, 1018 enccrd->crd_inject, ivsize, 1019 (caddr_t)re->re_sastate.sa_saved_iv); 1020 } 1021 cmd0 |= SAFE_SA_CMD0_IVLD_STATE; 1022 } 1023 /* 1024 * For basic encryption use the zero pad algorithm. 1025 * This pads results to an 8-byte boundary and 1026 * suppresses padding verification for inbound (i.e. 1027 * decrypt) operations. 1028 * 1029 * NB: Not sure if the 8-byte pad boundary is a problem. 1030 */ 1031 cmd0 |= SAFE_SA_CMD0_PAD_ZERO; 1032 1033 /* XXX assert key bufs have the same size */ 1034 bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key)); 1035 } 1036 1037 if (maccrd) { 1038 if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) { 1039 safe_setup_mackey(ses, maccrd->crd_alg, 1040 maccrd->crd_key, maccrd->crd_klen / 8); 1041 } 1042 1043 if (maccrd->crd_alg == CRYPTO_MD5_HMAC) { 1044 cmd0 |= SAFE_SA_CMD0_MD5; 1045 cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */ 1046 } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) { 1047 cmd0 |= SAFE_SA_CMD0_SHA1; 1048 cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */ 1049 } else { 1050 cmd0 |= SAFE_SA_CMD0_HASH_NULL; 1051 } 1052 /* 1053 * Digest data is loaded from the SA and the hash 1054 * result is saved to the state block where we 1055 * retrieve it for return to the caller. 1056 */ 1057 /* XXX assert digest bufs have the same size */ 1058 bcopy(ses->ses_hminner, sa->sa_indigest, 1059 sizeof(sa->sa_indigest)); 1060 bcopy(ses->ses_hmouter, sa->sa_outdigest, 1061 sizeof(sa->sa_outdigest)); 1062 1063 cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH; 1064 re->re_flags |= SAFE_QFLAGS_COPYOUTICV; 1065 } 1066 1067 if (enccrd && maccrd) { 1068 /* 1069 * The offset from hash data to the start of 1070 * crypt data is the difference in the skips. 1071 */ 1072 bypass = maccrd->crd_skip; 1073 coffset = enccrd->crd_skip - maccrd->crd_skip; 1074 if (coffset < 0) { 1075 DPRINTF(("%s: hash does not precede crypt; " 1076 "mac skip %u enc skip %u\n", 1077 __func__, maccrd->crd_skip, enccrd->crd_skip)); 1078 safestats.st_skipmismatch++; 1079 err = EINVAL; 1080 goto errout; 1081 } 1082 oplen = enccrd->crd_skip + enccrd->crd_len; 1083 if (maccrd->crd_skip + maccrd->crd_len != oplen) { 1084 DPRINTF(("%s: hash amount %u != crypt amount %u\n", 1085 __func__, maccrd->crd_skip + maccrd->crd_len, 1086 oplen)); 1087 safestats.st_lenmismatch++; 1088 err = EINVAL; 1089 goto errout; 1090 } 1091 #ifdef SAFE_DEBUG 1092 if (safe_debug) { 1093 printf("mac: skip %d, len %d, inject %d\n", 1094 maccrd->crd_skip, maccrd->crd_len, 1095 maccrd->crd_inject); 1096 printf("enc: skip %d, len %d, inject %d\n", 1097 enccrd->crd_skip, enccrd->crd_len, 1098 enccrd->crd_inject); 1099 printf("bypass %d coffset %d oplen %d\n", 1100 bypass, coffset, oplen); 1101 } 1102 #endif 1103 if (coffset & 3) { /* offset must be 32-bit aligned */ 1104 DPRINTF(("%s: coffset %u misaligned\n", 1105 __func__, coffset)); 1106 safestats.st_coffmisaligned++; 1107 err = EINVAL; 1108 goto errout; 1109 } 1110 coffset >>= 2; 1111 if (coffset > 255) { /* offset must be <256 dwords */ 1112 DPRINTF(("%s: coffset %u too big\n", 1113 __func__, coffset)); 1114 safestats.st_cofftoobig++; 1115 err = EINVAL; 1116 goto errout; 1117 } 1118 /* 1119 * Tell the hardware to copy the header to the output. 1120 * The header is defined as the data from the end of 1121 * the bypass to the start of data to be encrypted. 1122 * Typically this is the inline IV. Note that you need 1123 * to do this even if src+dst are the same; it appears 1124 * that w/o this bit the crypted data is written 1125 * immediately after the bypass data. 1126 */ 1127 cmd1 |= SAFE_SA_CMD1_HDRCOPY; 1128 /* 1129 * Disable IP header mutable bit handling. This is 1130 * needed to get correct HMAC calculations. 1131 */ 1132 cmd1 |= SAFE_SA_CMD1_MUTABLE; 1133 } else { 1134 if (enccrd) { 1135 bypass = enccrd->crd_skip; 1136 oplen = bypass + enccrd->crd_len; 1137 } else { 1138 bypass = maccrd->crd_skip; 1139 oplen = bypass + maccrd->crd_len; 1140 } 1141 coffset = 0; 1142 } 1143 /* XXX verify multiple of 4 when using s/g */ 1144 if (bypass > 96) { /* bypass offset must be <= 96 bytes */ 1145 DPRINTF(("%s: bypass %u too big\n", __func__, bypass)); 1146 safestats.st_bypasstoobig++; 1147 err = EINVAL; 1148 goto errout; 1149 } 1150 1151 if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) { 1152 safestats.st_nomap++; 1153 err = ENOMEM; 1154 goto errout; 1155 } 1156 if (crp->crp_flags & CRYPTO_F_IMBUF) { 1157 if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map, 1158 re->re_src_m, safe_op_cb, 1159 &re->re_src, BUS_DMA_NOWAIT) != 0) { 1160 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map); 1161 re->re_src_map = NULL; 1162 safestats.st_noload++; 1163 err = ENOMEM; 1164 goto errout; 1165 } 1166 } else if (crp->crp_flags & CRYPTO_F_IOV) { 1167 if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map, 1168 re->re_src_io, safe_op_cb, 1169 &re->re_src, BUS_DMA_NOWAIT) != 0) { 1170 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map); 1171 re->re_src_map = NULL; 1172 safestats.st_noload++; 1173 err = ENOMEM; 1174 goto errout; 1175 } 1176 } 1177 nicealign = safe_dmamap_aligned(&re->re_src); 1178 uniform = safe_dmamap_uniform(&re->re_src); 1179 1180 DPRINTF(("src nicealign %u uniform %u nsegs %u\n", 1181 nicealign, uniform, re->re_src.nsegs)); 1182 if (re->re_src.nsegs > 1) { 1183 re->re_desc.d_src = sc->sc_spalloc.dma_paddr + 1184 ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring); 1185 for (i = 0; i < re->re_src_nsegs; i++) { 1186 /* NB: no need to check if there's space */ 1187 pd = sc->sc_spfree; 1188 if (++(sc->sc_spfree) == sc->sc_springtop) 1189 sc->sc_spfree = sc->sc_spring; 1190 1191 KASSERT((pd->pd_flags&3) == 0 || 1192 (pd->pd_flags&3) == SAFE_PD_DONE, 1193 ("bogus source particle descriptor; flags %x", 1194 pd->pd_flags)); 1195 pd->pd_addr = re->re_src_segs[i].ds_addr; 1196 pd->pd_size = re->re_src_segs[i].ds_len; 1197 pd->pd_flags = SAFE_PD_READY; 1198 } 1199 cmd0 |= SAFE_SA_CMD0_IGATHER; 1200 } else { 1201 /* 1202 * No need for gather, reference the operand directly. 1203 */ 1204 re->re_desc.d_src = re->re_src_segs[0].ds_addr; 1205 } 1206 1207 if (enccrd == NULL && maccrd != NULL) { 1208 /* 1209 * Hash op; no destination needed. 1210 */ 1211 } else { 1212 if (crp->crp_flags & CRYPTO_F_IOV) { 1213 if (!nicealign) { 1214 safestats.st_iovmisaligned++; 1215 err = EINVAL; 1216 goto errout; 1217 } 1218 if (uniform != 1) { 1219 /* 1220 * Source is not suitable for direct use as 1221 * the destination. Create a new scatter/gather 1222 * list based on the destination requirements 1223 * and check if that's ok. 1224 */ 1225 if (bus_dmamap_create(sc->sc_dstdmat, 1226 BUS_DMA_NOWAIT, &re->re_dst_map)) { 1227 safestats.st_nomap++; 1228 err = ENOMEM; 1229 goto errout; 1230 } 1231 if (bus_dmamap_load_uio(sc->sc_dstdmat, 1232 re->re_dst_map, re->re_dst_io, 1233 safe_op_cb, &re->re_dst, 1234 BUS_DMA_NOWAIT) != 0) { 1235 bus_dmamap_destroy(sc->sc_dstdmat, 1236 re->re_dst_map); 1237 re->re_dst_map = NULL; 1238 safestats.st_noload++; 1239 err = ENOMEM; 1240 goto errout; 1241 } 1242 uniform = safe_dmamap_uniform(&re->re_dst); 1243 if (!uniform) { 1244 /* 1245 * There's no way to handle the DMA 1246 * requirements with this uio. We 1247 * could create a separate DMA area for 1248 * the result and then copy it back, 1249 * but for now we just bail and return 1250 * an error. Note that uio requests 1251 * > SAFE_MAX_DSIZE are handled because 1252 * the DMA map and segment list for the 1253 * destination wil result in a 1254 * destination particle list that does 1255 * the necessary scatter DMA. 1256 */ 1257 safestats.st_iovnotuniform++; 1258 err = EINVAL; 1259 goto errout; 1260 } 1261 } else 1262 re->re_dst = re->re_src; 1263 } else if (crp->crp_flags & CRYPTO_F_IMBUF) { 1264 if (nicealign && uniform == 1) { 1265 /* 1266 * Source layout is suitable for direct 1267 * sharing of the DMA map and segment list. 1268 */ 1269 re->re_dst = re->re_src; 1270 } else if (nicealign && uniform == 2) { 1271 /* 1272 * The source is properly aligned but requires a 1273 * different particle list to handle DMA of the 1274 * result. Create a new map and do the load to 1275 * create the segment list. The particle 1276 * descriptor setup code below will handle the 1277 * rest. 1278 */ 1279 if (bus_dmamap_create(sc->sc_dstdmat, 1280 BUS_DMA_NOWAIT, &re->re_dst_map)) { 1281 safestats.st_nomap++; 1282 err = ENOMEM; 1283 goto errout; 1284 } 1285 if (bus_dmamap_load_mbuf(sc->sc_dstdmat, 1286 re->re_dst_map, re->re_dst_m, 1287 safe_op_cb, &re->re_dst, 1288 BUS_DMA_NOWAIT) != 0) { 1289 bus_dmamap_destroy(sc->sc_dstdmat, 1290 re->re_dst_map); 1291 re->re_dst_map = NULL; 1292 safestats.st_noload++; 1293 err = ENOMEM; 1294 goto errout; 1295 } 1296 } else { /* !(aligned and/or uniform) */ 1297 int totlen, len; 1298 struct mbuf *m, *top, **mp; 1299 1300 /* 1301 * DMA constraints require that we allocate a 1302 * new mbuf chain for the destination. We 1303 * allocate an entire new set of mbufs of 1304 * optimal/required size and then tell the 1305 * hardware to copy any bits that are not 1306 * created as a byproduct of the operation. 1307 */ 1308 if (!nicealign) 1309 safestats.st_unaligned++; 1310 if (!uniform) 1311 safestats.st_notuniform++; 1312 totlen = re->re_src_mapsize; 1313 if (re->re_src_m->m_flags & M_PKTHDR) { 1314 len = MHLEN; 1315 MGETHDR(m, M_NOWAIT, MT_DATA); 1316 if (m && !m_dup_pkthdr(m, re->re_src_m, 1317 M_NOWAIT)) { 1318 m_free(m); 1319 m = NULL; 1320 } 1321 } else { 1322 len = MLEN; 1323 MGET(m, M_NOWAIT, MT_DATA); 1324 } 1325 if (m == NULL) { 1326 safestats.st_nombuf++; 1327 err = sc->sc_nqchip ? ERESTART : ENOMEM; 1328 goto errout; 1329 } 1330 if (totlen >= MINCLSIZE) { 1331 MCLGET(m, M_NOWAIT); 1332 if ((m->m_flags & M_EXT) == 0) { 1333 m_free(m); 1334 safestats.st_nomcl++; 1335 err = sc->sc_nqchip ? 1336 ERESTART : ENOMEM; 1337 goto errout; 1338 } 1339 len = MCLBYTES; 1340 } 1341 m->m_len = len; 1342 top = NULL; 1343 mp = ⊤ 1344 1345 while (totlen > 0) { 1346 if (top) { 1347 MGET(m, M_NOWAIT, MT_DATA); 1348 if (m == NULL) { 1349 m_freem(top); 1350 safestats.st_nombuf++; 1351 err = sc->sc_nqchip ? 1352 ERESTART : ENOMEM; 1353 goto errout; 1354 } 1355 len = MLEN; 1356 } 1357 if (top && totlen >= MINCLSIZE) { 1358 MCLGET(m, M_NOWAIT); 1359 if ((m->m_flags & M_EXT) == 0) { 1360 *mp = m; 1361 m_freem(top); 1362 safestats.st_nomcl++; 1363 err = sc->sc_nqchip ? 1364 ERESTART : ENOMEM; 1365 goto errout; 1366 } 1367 len = MCLBYTES; 1368 } 1369 m->m_len = len = min(totlen, len); 1370 totlen -= len; 1371 *mp = m; 1372 mp = &m->m_next; 1373 } 1374 re->re_dst_m = top; 1375 if (bus_dmamap_create(sc->sc_dstdmat, 1376 BUS_DMA_NOWAIT, &re->re_dst_map) != 0) { 1377 safestats.st_nomap++; 1378 err = ENOMEM; 1379 goto errout; 1380 } 1381 if (bus_dmamap_load_mbuf(sc->sc_dstdmat, 1382 re->re_dst_map, re->re_dst_m, 1383 safe_op_cb, &re->re_dst, 1384 BUS_DMA_NOWAIT) != 0) { 1385 bus_dmamap_destroy(sc->sc_dstdmat, 1386 re->re_dst_map); 1387 re->re_dst_map = NULL; 1388 safestats.st_noload++; 1389 err = ENOMEM; 1390 goto errout; 1391 } 1392 if (re->re_src.mapsize > oplen) { 1393 /* 1394 * There's data following what the 1395 * hardware will copy for us. If this 1396 * isn't just the ICV (that's going to 1397 * be written on completion), copy it 1398 * to the new mbufs 1399 */ 1400 if (!(maccrd && 1401 (re->re_src.mapsize-oplen) == 12 && 1402 maccrd->crd_inject == oplen)) 1403 safe_mcopy(re->re_src_m, 1404 re->re_dst_m, 1405 oplen); 1406 else 1407 safestats.st_noicvcopy++; 1408 } 1409 } 1410 } else { 1411 safestats.st_badflags++; 1412 err = EINVAL; 1413 goto errout; 1414 } 1415 1416 if (re->re_dst.nsegs > 1) { 1417 re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr + 1418 ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring); 1419 for (i = 0; i < re->re_dst_nsegs; i++) { 1420 pd = sc->sc_dpfree; 1421 KASSERT((pd->pd_flags&3) == 0 || 1422 (pd->pd_flags&3) == SAFE_PD_DONE, 1423 ("bogus dest particle descriptor; flags %x", 1424 pd->pd_flags)); 1425 if (++(sc->sc_dpfree) == sc->sc_dpringtop) 1426 sc->sc_dpfree = sc->sc_dpring; 1427 pd->pd_addr = re->re_dst_segs[i].ds_addr; 1428 pd->pd_flags = SAFE_PD_READY; 1429 } 1430 cmd0 |= SAFE_SA_CMD0_OSCATTER; 1431 } else { 1432 /* 1433 * No need for scatter, reference the operand directly. 1434 */ 1435 re->re_desc.d_dst = re->re_dst_segs[0].ds_addr; 1436 } 1437 } 1438 1439 /* 1440 * All done with setup; fillin the SA command words 1441 * and the packet engine descriptor. The operation 1442 * is now ready for submission to the hardware. 1443 */ 1444 sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI; 1445 sa->sa_cmd1 = cmd1 1446 | (coffset << SAFE_SA_CMD1_OFFSET_S) 1447 | SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */ 1448 | SAFE_SA_CMD1_SRPCI 1449 ; 1450 /* 1451 * NB: the order of writes is important here. In case the 1452 * chip is scanning the ring because of an outstanding request 1453 * it might nab this one too. In that case we need to make 1454 * sure the setup is complete before we write the length 1455 * field of the descriptor as it signals the descriptor is 1456 * ready for processing. 1457 */ 1458 re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI; 1459 if (maccrd) 1460 re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL; 1461 re->re_desc.d_len = oplen 1462 | SAFE_PE_LEN_READY 1463 | (bypass << SAFE_PE_LEN_BYPASS_S) 1464 ; 1465 1466 safestats.st_ipackets++; 1467 safestats.st_ibytes += oplen; 1468 1469 if (++(sc->sc_front) == sc->sc_ringtop) 1470 sc->sc_front = sc->sc_ring; 1471 1472 /* XXX honor batching */ 1473 safe_feed(sc, re); 1474 mtx_unlock(&sc->sc_ringmtx); 1475 return (0); 1476 1477 errout: 1478 if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m)) 1479 m_freem(re->re_dst_m); 1480 1481 if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) { 1482 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map); 1483 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map); 1484 } 1485 if (re->re_src_map != NULL) { 1486 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map); 1487 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map); 1488 } 1489 mtx_unlock(&sc->sc_ringmtx); 1490 if (err != ERESTART) { 1491 crp->crp_etype = err; 1492 crypto_done(crp); 1493 } else { 1494 sc->sc_needwakeup |= CRYPTO_SYMQ; 1495 } 1496 return (err); 1497 } 1498 1499 static void 1500 safe_callback(struct safe_softc *sc, struct safe_ringentry *re) 1501 { 1502 struct cryptop *crp = (struct cryptop *)re->re_crp; 1503 struct cryptodesc *crd; 1504 1505 safestats.st_opackets++; 1506 safestats.st_obytes += re->re_dst.mapsize; 1507 1508 safe_dma_sync(&sc->sc_ringalloc, 1509 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1510 if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) { 1511 device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n", 1512 re->re_desc.d_csr, 1513 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1); 1514 safestats.st_peoperr++; 1515 crp->crp_etype = EIO; /* something more meaningful? */ 1516 } 1517 if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) { 1518 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map, 1519 BUS_DMASYNC_POSTREAD); 1520 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map); 1521 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map); 1522 } 1523 bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE); 1524 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map); 1525 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map); 1526 1527 /* 1528 * If result was written to a differet mbuf chain, swap 1529 * it in as the return value and reclaim the original. 1530 */ 1531 if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) { 1532 m_freem(re->re_src_m); 1533 crp->crp_buf = (caddr_t)re->re_dst_m; 1534 } 1535 1536 if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) { 1537 /* copy out IV for future use */ 1538 for (crd = crp->crp_desc; crd; crd = crd->crd_next) { 1539 int ivsize; 1540 1541 if (crd->crd_alg == CRYPTO_DES_CBC || 1542 crd->crd_alg == CRYPTO_3DES_CBC) { 1543 ivsize = 2*sizeof(u_int32_t); 1544 } else if (crd->crd_alg == CRYPTO_AES_CBC) { 1545 ivsize = 4*sizeof(u_int32_t); 1546 } else 1547 continue; 1548 crypto_copydata(crp->crp_flags, crp->crp_buf, 1549 crd->crd_skip + crd->crd_len - ivsize, ivsize, 1550 (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv); 1551 break; 1552 } 1553 } 1554 1555 if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) { 1556 /* copy out ICV result */ 1557 for (crd = crp->crp_desc; crd; crd = crd->crd_next) { 1558 if (!(crd->crd_alg == CRYPTO_MD5_HMAC || 1559 crd->crd_alg == CRYPTO_SHA1_HMAC || 1560 crd->crd_alg == CRYPTO_NULL_HMAC)) 1561 continue; 1562 if (crd->crd_alg == CRYPTO_SHA1_HMAC) { 1563 /* 1564 * SHA-1 ICV's are byte-swapped; fix 'em up 1565 * before copy them to their destination. 1566 */ 1567 re->re_sastate.sa_saved_indigest[0] = 1568 bswap32(re->re_sastate.sa_saved_indigest[0]); 1569 re->re_sastate.sa_saved_indigest[1] = 1570 bswap32(re->re_sastate.sa_saved_indigest[1]); 1571 re->re_sastate.sa_saved_indigest[2] = 1572 bswap32(re->re_sastate.sa_saved_indigest[2]); 1573 } 1574 crypto_copyback(crp->crp_flags, crp->crp_buf, 1575 crd->crd_inject, 1576 sc->sc_sessions[re->re_sesn].ses_mlen, 1577 (caddr_t)re->re_sastate.sa_saved_indigest); 1578 break; 1579 } 1580 } 1581 crypto_done(crp); 1582 } 1583 1584 /* 1585 * Copy all data past offset from srcm to dstm. 1586 */ 1587 static void 1588 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset) 1589 { 1590 u_int j, dlen, slen; 1591 caddr_t dptr, sptr; 1592 1593 /* 1594 * Advance src and dst to offset. 1595 */ 1596 j = offset; 1597 while (j >= 0) { 1598 if (srcm->m_len > j) 1599 break; 1600 j -= srcm->m_len; 1601 srcm = srcm->m_next; 1602 if (srcm == NULL) 1603 return; 1604 } 1605 sptr = mtod(srcm, caddr_t) + j; 1606 slen = srcm->m_len - j; 1607 1608 j = offset; 1609 while (j >= 0) { 1610 if (dstm->m_len > j) 1611 break; 1612 j -= dstm->m_len; 1613 dstm = dstm->m_next; 1614 if (dstm == NULL) 1615 return; 1616 } 1617 dptr = mtod(dstm, caddr_t) + j; 1618 dlen = dstm->m_len - j; 1619 1620 /* 1621 * Copy everything that remains. 1622 */ 1623 for (;;) { 1624 j = min(slen, dlen); 1625 bcopy(sptr, dptr, j); 1626 if (slen == j) { 1627 srcm = srcm->m_next; 1628 if (srcm == NULL) 1629 return; 1630 sptr = srcm->m_data; 1631 slen = srcm->m_len; 1632 } else 1633 sptr += j, slen -= j; 1634 if (dlen == j) { 1635 dstm = dstm->m_next; 1636 if (dstm == NULL) 1637 return; 1638 dptr = dstm->m_data; 1639 dlen = dstm->m_len; 1640 } else 1641 dptr += j, dlen -= j; 1642 } 1643 } 1644 1645 #ifndef SAFE_NO_RNG 1646 #define SAFE_RNG_MAXWAIT 1000 1647 1648 static void 1649 safe_rng_init(struct safe_softc *sc) 1650 { 1651 u_int32_t w, v; 1652 int i; 1653 1654 WRITE_REG(sc, SAFE_RNG_CTRL, 0); 1655 /* use default value according to the manual */ 1656 WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */ 1657 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); 1658 1659 /* 1660 * There is a bug in rev 1.0 of the 1140 that when the RNG 1661 * is brought out of reset the ready status flag does not 1662 * work until the RNG has finished its internal initialization. 1663 * 1664 * So in order to determine the device is through its 1665 * initialization we must read the data register, using the 1666 * status reg in the read in case it is initialized. Then read 1667 * the data register until it changes from the first read. 1668 * Once it changes read the data register until it changes 1669 * again. At this time the RNG is considered initialized. 1670 * This could take between 750ms - 1000ms in time. 1671 */ 1672 i = 0; 1673 w = READ_REG(sc, SAFE_RNG_OUT); 1674 do { 1675 v = READ_REG(sc, SAFE_RNG_OUT); 1676 if (v != w) { 1677 w = v; 1678 break; 1679 } 1680 DELAY(10); 1681 } while (++i < SAFE_RNG_MAXWAIT); 1682 1683 /* Wait Until data changes again */ 1684 i = 0; 1685 do { 1686 v = READ_REG(sc, SAFE_RNG_OUT); 1687 if (v != w) 1688 break; 1689 DELAY(10); 1690 } while (++i < SAFE_RNG_MAXWAIT); 1691 } 1692 1693 static __inline void 1694 safe_rng_disable_short_cycle(struct safe_softc *sc) 1695 { 1696 WRITE_REG(sc, SAFE_RNG_CTRL, 1697 READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN); 1698 } 1699 1700 static __inline void 1701 safe_rng_enable_short_cycle(struct safe_softc *sc) 1702 { 1703 WRITE_REG(sc, SAFE_RNG_CTRL, 1704 READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN); 1705 } 1706 1707 static __inline u_int32_t 1708 safe_rng_read(struct safe_softc *sc) 1709 { 1710 int i; 1711 1712 i = 0; 1713 while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT) 1714 ; 1715 return READ_REG(sc, SAFE_RNG_OUT); 1716 } 1717 1718 static void 1719 safe_rng(void *arg) 1720 { 1721 struct safe_softc *sc = arg; 1722 u_int32_t buf[SAFE_RNG_MAXBUFSIZ]; /* NB: maybe move to softc */ 1723 u_int maxwords; 1724 int i; 1725 1726 safestats.st_rng++; 1727 /* 1728 * Fetch the next block of data. 1729 */ 1730 maxwords = safe_rngbufsize; 1731 if (maxwords > SAFE_RNG_MAXBUFSIZ) 1732 maxwords = SAFE_RNG_MAXBUFSIZ; 1733 retry: 1734 for (i = 0; i < maxwords; i++) 1735 buf[i] = safe_rng_read(sc); 1736 /* 1737 * Check the comparator alarm count and reset the h/w if 1738 * it exceeds our threshold. This guards against the 1739 * hardware oscillators resonating with external signals. 1740 */ 1741 if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) { 1742 u_int32_t freq_inc, w; 1743 1744 DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__, 1745 READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm)); 1746 safestats.st_rngalarm++; 1747 safe_rng_enable_short_cycle(sc); 1748 freq_inc = 18; 1749 for (i = 0; i < 64; i++) { 1750 w = READ_REG(sc, SAFE_RNG_CNFG); 1751 freq_inc = ((w + freq_inc) & 0x3fL); 1752 w = ((w & ~0x3fL) | freq_inc); 1753 WRITE_REG(sc, SAFE_RNG_CNFG, w); 1754 1755 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); 1756 1757 (void) safe_rng_read(sc); 1758 DELAY(25); 1759 1760 if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) { 1761 safe_rng_disable_short_cycle(sc); 1762 goto retry; 1763 } 1764 freq_inc = 1; 1765 } 1766 safe_rng_disable_short_cycle(sc); 1767 } else 1768 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); 1769 1770 (*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t)); 1771 callout_reset(&sc->sc_rngto, 1772 hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc); 1773 } 1774 #endif /* SAFE_NO_RNG */ 1775 1776 static void 1777 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1778 { 1779 bus_addr_t *paddr = (bus_addr_t*) arg; 1780 *paddr = segs->ds_addr; 1781 } 1782 1783 static int 1784 safe_dma_malloc( 1785 struct safe_softc *sc, 1786 bus_size_t size, 1787 struct safe_dma_alloc *dma, 1788 int mapflags 1789 ) 1790 { 1791 int r; 1792 1793 r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 1794 sizeof(u_int32_t), 0, /* alignment, bounds */ 1795 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1796 BUS_SPACE_MAXADDR, /* highaddr */ 1797 NULL, NULL, /* filter, filterarg */ 1798 size, /* maxsize */ 1799 1, /* nsegments */ 1800 size, /* maxsegsize */ 1801 BUS_DMA_ALLOCNOW, /* flags */ 1802 NULL, NULL, /* locking */ 1803 &dma->dma_tag); 1804 if (r != 0) { 1805 device_printf(sc->sc_dev, "safe_dma_malloc: " 1806 "bus_dma_tag_create failed; error %u\n", r); 1807 goto fail_0; 1808 } 1809 1810 r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map); 1811 if (r != 0) { 1812 device_printf(sc->sc_dev, "safe_dma_malloc: " 1813 "bus_dmamap_create failed; error %u\n", r); 1814 goto fail_1; 1815 } 1816 1817 r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr, 1818 BUS_DMA_NOWAIT, &dma->dma_map); 1819 if (r != 0) { 1820 device_printf(sc->sc_dev, "safe_dma_malloc: " 1821 "bus_dmammem_alloc failed; size %zu, error %u\n", 1822 size, r); 1823 goto fail_2; 1824 } 1825 1826 r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, 1827 size, 1828 safe_dmamap_cb, 1829 &dma->dma_paddr, 1830 mapflags | BUS_DMA_NOWAIT); 1831 if (r != 0) { 1832 device_printf(sc->sc_dev, "safe_dma_malloc: " 1833 "bus_dmamap_load failed; error %u\n", r); 1834 goto fail_3; 1835 } 1836 1837 dma->dma_size = size; 1838 return (0); 1839 1840 fail_3: 1841 bus_dmamap_unload(dma->dma_tag, dma->dma_map); 1842 fail_2: 1843 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); 1844 fail_1: 1845 bus_dmamap_destroy(dma->dma_tag, dma->dma_map); 1846 bus_dma_tag_destroy(dma->dma_tag); 1847 fail_0: 1848 dma->dma_map = NULL; 1849 dma->dma_tag = NULL; 1850 return (r); 1851 } 1852 1853 static void 1854 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma) 1855 { 1856 bus_dmamap_unload(dma->dma_tag, dma->dma_map); 1857 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); 1858 bus_dmamap_destroy(dma->dma_tag, dma->dma_map); 1859 bus_dma_tag_destroy(dma->dma_tag); 1860 } 1861 1862 /* 1863 * Resets the board. Values in the regesters are left as is 1864 * from the reset (i.e. initial values are assigned elsewhere). 1865 */ 1866 static void 1867 safe_reset_board(struct safe_softc *sc) 1868 { 1869 u_int32_t v; 1870 /* 1871 * Reset the device. The manual says no delay 1872 * is needed between marking and clearing reset. 1873 */ 1874 v = READ_REG(sc, SAFE_PE_DMACFG) &~ 1875 (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET | 1876 SAFE_PE_DMACFG_SGRESET); 1877 WRITE_REG(sc, SAFE_PE_DMACFG, v 1878 | SAFE_PE_DMACFG_PERESET 1879 | SAFE_PE_DMACFG_PDRRESET 1880 | SAFE_PE_DMACFG_SGRESET); 1881 WRITE_REG(sc, SAFE_PE_DMACFG, v); 1882 } 1883 1884 /* 1885 * Initialize registers we need to touch only once. 1886 */ 1887 static void 1888 safe_init_board(struct safe_softc *sc) 1889 { 1890 u_int32_t v, dwords; 1891 1892 v = READ_REG(sc, SAFE_PE_DMACFG); 1893 v &=~ SAFE_PE_DMACFG_PEMODE; 1894 v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */ 1895 | SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */ 1896 | SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */ 1897 | SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */ 1898 | SAFE_PE_DMACFG_ESSA /* endian-swap SA's */ 1899 | SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */ 1900 ; 1901 WRITE_REG(sc, SAFE_PE_DMACFG, v); 1902 #if 0 1903 /* XXX select byte swap based on host byte order */ 1904 WRITE_REG(sc, SAFE_ENDIAN, 0x1b); 1905 #endif 1906 if (sc->sc_chiprev == SAFE_REV(1,0)) { 1907 /* 1908 * Avoid large PCI DMA transfers. Rev 1.0 has a bug where 1909 * "target mode transfers" done while the chip is DMA'ing 1910 * >1020 bytes cause the hardware to lockup. To avoid this 1911 * we reduce the max PCI transfer size and use small source 1912 * particle descriptors (<= 256 bytes). 1913 */ 1914 WRITE_REG(sc, SAFE_DMA_CFG, 256); 1915 device_printf(sc->sc_dev, 1916 "Reduce max DMA size to %u words for rev %u.%u WAR\n", 1917 (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff, 1918 SAFE_REV_MAJ(sc->sc_chiprev), 1919 SAFE_REV_MIN(sc->sc_chiprev)); 1920 } 1921 1922 /* NB: operands+results are overlaid */ 1923 WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr); 1924 WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr); 1925 /* 1926 * Configure ring entry size and number of items in the ring. 1927 */ 1928 KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0, 1929 ("PE ring entry not 32-bit aligned!")); 1930 dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t); 1931 WRITE_REG(sc, SAFE_PE_RINGCFG, 1932 (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE); 1933 WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */ 1934 1935 WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr); 1936 WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr); 1937 WRITE_REG(sc, SAFE_PE_PARTSIZE, 1938 (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART); 1939 /* 1940 * NB: destination particles are fixed size. We use 1941 * an mbuf cluster and require all results go to 1942 * clusters or smaller. 1943 */ 1944 WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE); 1945 1946 /* it's now safe to enable PE mode, do it */ 1947 WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE); 1948 1949 /* 1950 * Configure hardware to use level-triggered interrupts and 1951 * to interrupt after each descriptor is processed. 1952 */ 1953 WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL); 1954 WRITE_REG(sc, SAFE_HI_DESC_CNT, 1); 1955 WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR); 1956 } 1957 1958 /* 1959 * Init PCI registers 1960 */ 1961 static void 1962 safe_init_pciregs(device_t dev) 1963 { 1964 } 1965 1966 /* 1967 * Clean up after a chip crash. 1968 * It is assumed that the caller in splimp() 1969 */ 1970 static void 1971 safe_cleanchip(struct safe_softc *sc) 1972 { 1973 1974 if (sc->sc_nqchip != 0) { 1975 struct safe_ringentry *re = sc->sc_back; 1976 1977 while (re != sc->sc_front) { 1978 if (re->re_desc.d_csr != 0) 1979 safe_free_entry(sc, re); 1980 if (++re == sc->sc_ringtop) 1981 re = sc->sc_ring; 1982 } 1983 sc->sc_back = re; 1984 sc->sc_nqchip = 0; 1985 } 1986 } 1987 1988 /* 1989 * free a safe_q 1990 * It is assumed that the caller is within splimp(). 1991 */ 1992 static int 1993 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re) 1994 { 1995 struct cryptop *crp; 1996 1997 /* 1998 * Free header MCR 1999 */ 2000 if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m)) 2001 m_freem(re->re_dst_m); 2002 2003 crp = (struct cryptop *)re->re_crp; 2004 2005 re->re_desc.d_csr = 0; 2006 2007 crp->crp_etype = EFAULT; 2008 crypto_done(crp); 2009 return(0); 2010 } 2011 2012 /* 2013 * Routine to reset the chip and clean up. 2014 * It is assumed that the caller is in splimp() 2015 */ 2016 static void 2017 safe_totalreset(struct safe_softc *sc) 2018 { 2019 safe_reset_board(sc); 2020 safe_init_board(sc); 2021 safe_cleanchip(sc); 2022 } 2023 2024 /* 2025 * Is the operand suitable aligned for direct DMA. Each 2026 * segment must be aligned on a 32-bit boundary and all 2027 * but the last segment must be a multiple of 4 bytes. 2028 */ 2029 static int 2030 safe_dmamap_aligned(const struct safe_operand *op) 2031 { 2032 int i; 2033 2034 for (i = 0; i < op->nsegs; i++) { 2035 if (op->segs[i].ds_addr & 3) 2036 return (0); 2037 if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3)) 2038 return (0); 2039 } 2040 return (1); 2041 } 2042 2043 /* 2044 * Is the operand suitable for direct DMA as the destination 2045 * of an operation. The hardware requires that each ``particle'' 2046 * but the last in an operation result have the same size. We 2047 * fix that size at SAFE_MAX_DSIZE bytes. This routine returns 2048 * 0 if some segment is not a multiple of of this size, 1 if all 2049 * segments are exactly this size, or 2 if segments are at worst 2050 * a multple of this size. 2051 */ 2052 static int 2053 safe_dmamap_uniform(const struct safe_operand *op) 2054 { 2055 int result = 1; 2056 2057 if (op->nsegs > 0) { 2058 int i; 2059 2060 for (i = 0; i < op->nsegs-1; i++) { 2061 if (op->segs[i].ds_len % SAFE_MAX_DSIZE) 2062 return (0); 2063 if (op->segs[i].ds_len != SAFE_MAX_DSIZE) 2064 result = 2; 2065 } 2066 } 2067 return (result); 2068 } 2069 2070 #ifdef SAFE_DEBUG 2071 static void 2072 safe_dump_dmastatus(struct safe_softc *sc, const char *tag) 2073 { 2074 printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n" 2075 , tag 2076 , READ_REG(sc, SAFE_DMA_ENDIAN) 2077 , READ_REG(sc, SAFE_DMA_SRCADDR) 2078 , READ_REG(sc, SAFE_DMA_DSTADDR) 2079 , READ_REG(sc, SAFE_DMA_STAT) 2080 ); 2081 } 2082 2083 static void 2084 safe_dump_intrstate(struct safe_softc *sc, const char *tag) 2085 { 2086 printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n" 2087 , tag 2088 , READ_REG(sc, SAFE_HI_CFG) 2089 , READ_REG(sc, SAFE_HI_MASK) 2090 , READ_REG(sc, SAFE_HI_DESC_CNT) 2091 , READ_REG(sc, SAFE_HU_STAT) 2092 , READ_REG(sc, SAFE_HM_STAT) 2093 ); 2094 } 2095 2096 static void 2097 safe_dump_ringstate(struct safe_softc *sc, const char *tag) 2098 { 2099 u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT); 2100 2101 /* NB: assume caller has lock on ring */ 2102 printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n", 2103 tag, 2104 estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S), 2105 (unsigned long)(sc->sc_back - sc->sc_ring), 2106 (unsigned long)(sc->sc_front - sc->sc_ring)); 2107 } 2108 2109 static void 2110 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re) 2111 { 2112 int ix, nsegs; 2113 2114 ix = re - sc->sc_ring; 2115 printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n" 2116 , tag 2117 , re, ix 2118 , re->re_desc.d_csr 2119 , re->re_desc.d_src 2120 , re->re_desc.d_dst 2121 , re->re_desc.d_sa 2122 , re->re_desc.d_len 2123 ); 2124 if (re->re_src.nsegs > 1) { 2125 ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) / 2126 sizeof(struct safe_pdesc); 2127 for (nsegs = re->re_src.nsegs; nsegs; nsegs--) { 2128 printf(" spd[%u] %p: %p size %u flags %x" 2129 , ix, &sc->sc_spring[ix] 2130 , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr 2131 , sc->sc_spring[ix].pd_size 2132 , sc->sc_spring[ix].pd_flags 2133 ); 2134 if (sc->sc_spring[ix].pd_size == 0) 2135 printf(" (zero!)"); 2136 printf("\n"); 2137 if (++ix == SAFE_TOTAL_SPART) 2138 ix = 0; 2139 } 2140 } 2141 if (re->re_dst.nsegs > 1) { 2142 ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) / 2143 sizeof(struct safe_pdesc); 2144 for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) { 2145 printf(" dpd[%u] %p: %p flags %x\n" 2146 , ix, &sc->sc_dpring[ix] 2147 , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr 2148 , sc->sc_dpring[ix].pd_flags 2149 ); 2150 if (++ix == SAFE_TOTAL_DPART) 2151 ix = 0; 2152 } 2153 } 2154 printf("sa: cmd0 %08x cmd1 %08x staterec %x\n", 2155 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec); 2156 printf("sa: key %x %x %x %x %x %x %x %x\n" 2157 , re->re_sa.sa_key[0] 2158 , re->re_sa.sa_key[1] 2159 , re->re_sa.sa_key[2] 2160 , re->re_sa.sa_key[3] 2161 , re->re_sa.sa_key[4] 2162 , re->re_sa.sa_key[5] 2163 , re->re_sa.sa_key[6] 2164 , re->re_sa.sa_key[7] 2165 ); 2166 printf("sa: indigest %x %x %x %x %x\n" 2167 , re->re_sa.sa_indigest[0] 2168 , re->re_sa.sa_indigest[1] 2169 , re->re_sa.sa_indigest[2] 2170 , re->re_sa.sa_indigest[3] 2171 , re->re_sa.sa_indigest[4] 2172 ); 2173 printf("sa: outdigest %x %x %x %x %x\n" 2174 , re->re_sa.sa_outdigest[0] 2175 , re->re_sa.sa_outdigest[1] 2176 , re->re_sa.sa_outdigest[2] 2177 , re->re_sa.sa_outdigest[3] 2178 , re->re_sa.sa_outdigest[4] 2179 ); 2180 printf("sr: iv %x %x %x %x\n" 2181 , re->re_sastate.sa_saved_iv[0] 2182 , re->re_sastate.sa_saved_iv[1] 2183 , re->re_sastate.sa_saved_iv[2] 2184 , re->re_sastate.sa_saved_iv[3] 2185 ); 2186 printf("sr: hashbc %u indigest %x %x %x %x %x\n" 2187 , re->re_sastate.sa_saved_hashbc 2188 , re->re_sastate.sa_saved_indigest[0] 2189 , re->re_sastate.sa_saved_indigest[1] 2190 , re->re_sastate.sa_saved_indigest[2] 2191 , re->re_sastate.sa_saved_indigest[3] 2192 , re->re_sastate.sa_saved_indigest[4] 2193 ); 2194 } 2195 2196 static void 2197 safe_dump_ring(struct safe_softc *sc, const char *tag) 2198 { 2199 mtx_lock(&sc->sc_ringmtx); 2200 printf("\nSafeNet Ring State:\n"); 2201 safe_dump_intrstate(sc, tag); 2202 safe_dump_dmastatus(sc, tag); 2203 safe_dump_ringstate(sc, tag); 2204 if (sc->sc_nqchip) { 2205 struct safe_ringentry *re = sc->sc_back; 2206 do { 2207 safe_dump_request(sc, tag, re); 2208 if (++re == sc->sc_ringtop) 2209 re = sc->sc_ring; 2210 } while (re != sc->sc_front); 2211 } 2212 mtx_unlock(&sc->sc_ringmtx); 2213 } 2214 2215 static int 2216 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS) 2217 { 2218 char dmode[64]; 2219 int error; 2220 2221 strncpy(dmode, "", sizeof(dmode) - 1); 2222 dmode[sizeof(dmode) - 1] = '\0'; 2223 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req); 2224 2225 if (error == 0 && req->newptr != NULL) { 2226 struct safe_softc *sc = safec; 2227 2228 if (!sc) 2229 return EINVAL; 2230 if (strncmp(dmode, "dma", 3) == 0) 2231 safe_dump_dmastatus(sc, "safe0"); 2232 else if (strncmp(dmode, "int", 3) == 0) 2233 safe_dump_intrstate(sc, "safe0"); 2234 else if (strncmp(dmode, "ring", 4) == 0) 2235 safe_dump_ring(sc, "safe0"); 2236 else 2237 return EINVAL; 2238 } 2239 return error; 2240 } 2241 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW, 2242 0, 0, sysctl_hw_safe_dump, "A", "Dump driver state"); 2243 #endif /* SAFE_DEBUG */ 2244