xref: /freebsd/sys/dev/safe/safe.c (revision 0e97acdf58fe27b09c4824a474b0344daf997c5f)
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <sys/bus.h>
55 #include <sys/rman.h>
56 
57 #include <crypto/sha1.h>
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/cryptosoft.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/kobj.h>
63 
64 #include "cryptodev_if.h"
65 
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcireg.h>
68 
69 #ifdef SAFE_RNDTEST
70 #include <dev/rndtest/rndtest.h>
71 #endif
72 #include <dev/safe/safereg.h>
73 #include <dev/safe/safevar.h>
74 
75 #ifndef bswap32
76 #define	bswap32	NTOHL
77 #endif
78 
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static	int safe_probe(device_t);
83 static	int safe_attach(device_t);
84 static	int safe_detach(device_t);
85 static	int safe_suspend(device_t);
86 static	int safe_resume(device_t);
87 static	int safe_shutdown(device_t);
88 
89 static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90 static	int safe_freesession(device_t, u_int64_t);
91 static	int safe_process(device_t, struct cryptop *, int);
92 
93 static device_method_t safe_methods[] = {
94 	/* Device interface */
95 	DEVMETHOD(device_probe,		safe_probe),
96 	DEVMETHOD(device_attach,	safe_attach),
97 	DEVMETHOD(device_detach,	safe_detach),
98 	DEVMETHOD(device_suspend,	safe_suspend),
99 	DEVMETHOD(device_resume,	safe_resume),
100 	DEVMETHOD(device_shutdown,	safe_shutdown),
101 
102 	/* crypto device methods */
103 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
104 	DEVMETHOD(cryptodev_freesession,safe_freesession),
105 	DEVMETHOD(cryptodev_process,	safe_process),
106 
107 	DEVMETHOD_END
108 };
109 static driver_t safe_driver = {
110 	"safe",
111 	safe_methods,
112 	sizeof (struct safe_softc)
113 };
114 static devclass_t safe_devclass;
115 
116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121 
122 static	void safe_intr(void *);
123 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static	void safe_rng_init(struct safe_softc *);
128 static	void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
131 	        struct safe_dma_alloc *, int);
132 #define	safe_dma_sync(_dma, _flags) \
133 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static	int safe_dmamap_aligned(const struct safe_operand *);
136 static	int safe_dmamap_uniform(const struct safe_operand *);
137 
138 static	void safe_reset_board(struct safe_softc *);
139 static	void safe_init_board(struct safe_softc *);
140 static	void safe_init_pciregs(device_t dev);
141 static	void safe_cleanchip(struct safe_softc *);
142 static	void safe_totalreset(struct safe_softc *);
143 
144 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145 
146 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
147     "SafeNet driver parameters");
148 
149 #ifdef SAFE_DEBUG
150 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
151 static	void safe_dump_ringstate(struct safe_softc *, const char *);
152 static	void safe_dump_intrstate(struct safe_softc *, const char *);
153 static	void safe_dump_request(struct safe_softc *, const char *,
154 		struct safe_ringentry *);
155 
156 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
157 
158 static	int safe_debug = 0;
159 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
160 	    0, "control debugging msgs");
161 #define	DPRINTF(_x)	if (safe_debug) printf _x
162 #else
163 #define	DPRINTF(_x)
164 #endif
165 
166 #define	READ_REG(sc,r) \
167 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
168 
169 #define WRITE_REG(sc,reg,val) \
170 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
171 
172 struct safe_stats safestats;
173 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
174 	    safe_stats, "driver statistics");
175 #ifndef SAFE_NO_RNG
176 static	int safe_rnginterval = 1;		/* poll once a second */
177 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
178 	    0, "RNG polling interval (secs)");
179 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
180 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
181 	    0, "RNG polling buffer size (32-bit words)");
182 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
183 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
184 	    0, "RNG max alarms before reset");
185 #endif /* SAFE_NO_RNG */
186 
187 static int
188 safe_probe(device_t dev)
189 {
190 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
191 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
192 		return (BUS_PROBE_DEFAULT);
193 	return (ENXIO);
194 }
195 
196 static const char*
197 safe_partname(struct safe_softc *sc)
198 {
199 	/* XXX sprintf numbers when not decoded */
200 	switch (pci_get_vendor(sc->sc_dev)) {
201 	case PCI_VENDOR_SAFENET:
202 		switch (pci_get_device(sc->sc_dev)) {
203 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
204 		}
205 		return "SafeNet unknown-part";
206 	}
207 	return "Unknown-vendor unknown-part";
208 }
209 
210 #ifndef SAFE_NO_RNG
211 static void
212 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
213 {
214 	random_harvest(buf, count, count*NBBY/2, RANDOM_PURE_SAFE);
215 }
216 #endif /* SAFE_NO_RNG */
217 
218 static int
219 safe_attach(device_t dev)
220 {
221 	struct safe_softc *sc = device_get_softc(dev);
222 	u_int32_t raddr;
223 	u_int32_t i, devinfo;
224 	int rid;
225 
226 	bzero(sc, sizeof (*sc));
227 	sc->sc_dev = dev;
228 
229 	/* XXX handle power management */
230 
231 	pci_enable_busmaster(dev);
232 
233 	/*
234 	 * Setup memory-mapping of PCI registers.
235 	 */
236 	rid = BS_BAR;
237 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
238 					   RF_ACTIVE);
239 	if (sc->sc_sr == NULL) {
240 		device_printf(dev, "cannot map register space\n");
241 		goto bad;
242 	}
243 	sc->sc_st = rman_get_bustag(sc->sc_sr);
244 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
245 
246 	/*
247 	 * Arrange interrupt line.
248 	 */
249 	rid = 0;
250 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
251 					    RF_SHAREABLE|RF_ACTIVE);
252 	if (sc->sc_irq == NULL) {
253 		device_printf(dev, "could not map interrupt\n");
254 		goto bad1;
255 	}
256 	/*
257 	 * NB: Network code assumes we are blocked with splimp()
258 	 *     so make sure the IRQ is mapped appropriately.
259 	 */
260 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
261 			   NULL, safe_intr, sc, &sc->sc_ih)) {
262 		device_printf(dev, "could not establish interrupt\n");
263 		goto bad2;
264 	}
265 
266 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
267 	if (sc->sc_cid < 0) {
268 		device_printf(dev, "could not get crypto driver id\n");
269 		goto bad3;
270 	}
271 
272 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
273 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
274 
275 	/*
276 	 * Setup DMA descriptor area.
277 	 */
278 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
279 			       1,			/* alignment */
280 			       SAFE_DMA_BOUNDARY,	/* boundary */
281 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
282 			       BUS_SPACE_MAXADDR,	/* highaddr */
283 			       NULL, NULL,		/* filter, filterarg */
284 			       SAFE_MAX_DMA,		/* maxsize */
285 			       SAFE_MAX_PART,		/* nsegments */
286 			       SAFE_MAX_SSIZE,		/* maxsegsize */
287 			       BUS_DMA_ALLOCNOW,	/* flags */
288 			       NULL, NULL,		/* locking */
289 			       &sc->sc_srcdmat)) {
290 		device_printf(dev, "cannot allocate DMA tag\n");
291 		goto bad4;
292 	}
293 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
294 			       1,			/* alignment */
295 			       SAFE_MAX_DSIZE,		/* boundary */
296 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
297 			       BUS_SPACE_MAXADDR,	/* highaddr */
298 			       NULL, NULL,		/* filter, filterarg */
299 			       SAFE_MAX_DMA,		/* maxsize */
300 			       SAFE_MAX_PART,		/* nsegments */
301 			       SAFE_MAX_DSIZE,		/* maxsegsize */
302 			       BUS_DMA_ALLOCNOW,	/* flags */
303 			       NULL, NULL,		/* locking */
304 			       &sc->sc_dstdmat)) {
305 		device_printf(dev, "cannot allocate DMA tag\n");
306 		goto bad4;
307 	}
308 
309 	/*
310 	 * Allocate packet engine descriptors.
311 	 */
312 	if (safe_dma_malloc(sc,
313 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
314 	    &sc->sc_ringalloc, 0)) {
315 		device_printf(dev, "cannot allocate PE descriptor ring\n");
316 		bus_dma_tag_destroy(sc->sc_srcdmat);
317 		goto bad4;
318 	}
319 	/*
320 	 * Hookup the static portion of all our data structures.
321 	 */
322 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
323 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
324 	sc->sc_front = sc->sc_ring;
325 	sc->sc_back = sc->sc_ring;
326 	raddr = sc->sc_ringalloc.dma_paddr;
327 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
328 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
329 		struct safe_ringentry *re = &sc->sc_ring[i];
330 
331 		re->re_desc.d_sa = raddr +
332 			offsetof(struct safe_ringentry, re_sa);
333 		re->re_sa.sa_staterec = raddr +
334 			offsetof(struct safe_ringentry, re_sastate);
335 
336 		raddr += sizeof (struct safe_ringentry);
337 	}
338 	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
339 		"packet engine ring", MTX_DEF);
340 
341 	/*
342 	 * Allocate scatter and gather particle descriptors.
343 	 */
344 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
345 	    &sc->sc_spalloc, 0)) {
346 		device_printf(dev, "cannot allocate source particle "
347 			"descriptor ring\n");
348 		mtx_destroy(&sc->sc_ringmtx);
349 		safe_dma_free(sc, &sc->sc_ringalloc);
350 		bus_dma_tag_destroy(sc->sc_srcdmat);
351 		goto bad4;
352 	}
353 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
354 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
355 	sc->sc_spfree = sc->sc_spring;
356 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
357 
358 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
359 	    &sc->sc_dpalloc, 0)) {
360 		device_printf(dev, "cannot allocate destination particle "
361 			"descriptor ring\n");
362 		mtx_destroy(&sc->sc_ringmtx);
363 		safe_dma_free(sc, &sc->sc_spalloc);
364 		safe_dma_free(sc, &sc->sc_ringalloc);
365 		bus_dma_tag_destroy(sc->sc_dstdmat);
366 		goto bad4;
367 	}
368 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
369 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
370 	sc->sc_dpfree = sc->sc_dpring;
371 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
372 
373 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
374 
375 	devinfo = READ_REG(sc, SAFE_DEVINFO);
376 	if (devinfo & SAFE_DEVINFO_RNG) {
377 		sc->sc_flags |= SAFE_FLAGS_RNG;
378 		printf(" rng");
379 	}
380 	if (devinfo & SAFE_DEVINFO_PKEY) {
381 #if 0
382 		printf(" key");
383 		sc->sc_flags |= SAFE_FLAGS_KEY;
384 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
385 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
386 #endif
387 	}
388 	if (devinfo & SAFE_DEVINFO_DES) {
389 		printf(" des/3des");
390 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
391 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
392 	}
393 	if (devinfo & SAFE_DEVINFO_AES) {
394 		printf(" aes");
395 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
396 	}
397 	if (devinfo & SAFE_DEVINFO_MD5) {
398 		printf(" md5");
399 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
400 	}
401 	if (devinfo & SAFE_DEVINFO_SHA1) {
402 		printf(" sha1");
403 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
404 	}
405 	printf(" null");
406 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
407 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
408 	/* XXX other supported algorithms */
409 	printf("\n");
410 
411 	safe_reset_board(sc);		/* reset h/w */
412 	safe_init_pciregs(dev);		/* init pci settings */
413 	safe_init_board(sc);		/* init h/w */
414 
415 #ifndef SAFE_NO_RNG
416 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
417 #ifdef SAFE_RNDTEST
418 		sc->sc_rndtest = rndtest_attach(dev);
419 		if (sc->sc_rndtest)
420 			sc->sc_harvest = rndtest_harvest;
421 		else
422 			sc->sc_harvest = default_harvest;
423 #else
424 		sc->sc_harvest = default_harvest;
425 #endif
426 		safe_rng_init(sc);
427 
428 		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
429 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
430 	}
431 #endif /* SAFE_NO_RNG */
432 #ifdef SAFE_DEBUG
433 	safec = sc;			/* for use by hw.safe.dump */
434 #endif
435 	return (0);
436 bad4:
437 	crypto_unregister_all(sc->sc_cid);
438 bad3:
439 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
440 bad2:
441 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
442 bad1:
443 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
444 bad:
445 	return (ENXIO);
446 }
447 
448 /*
449  * Detach a device that successfully probed.
450  */
451 static int
452 safe_detach(device_t dev)
453 {
454 	struct safe_softc *sc = device_get_softc(dev);
455 
456 	/* XXX wait/abort active ops */
457 
458 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
459 
460 	callout_stop(&sc->sc_rngto);
461 
462 	crypto_unregister_all(sc->sc_cid);
463 
464 #ifdef SAFE_RNDTEST
465 	if (sc->sc_rndtest)
466 		rndtest_detach(sc->sc_rndtest);
467 #endif
468 
469 	safe_cleanchip(sc);
470 	safe_dma_free(sc, &sc->sc_dpalloc);
471 	safe_dma_free(sc, &sc->sc_spalloc);
472 	mtx_destroy(&sc->sc_ringmtx);
473 	safe_dma_free(sc, &sc->sc_ringalloc);
474 
475 	bus_generic_detach(dev);
476 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
477 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
478 
479 	bus_dma_tag_destroy(sc->sc_srcdmat);
480 	bus_dma_tag_destroy(sc->sc_dstdmat);
481 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
482 
483 	return (0);
484 }
485 
486 /*
487  * Stop all chip i/o so that the kernel's probe routines don't
488  * get confused by errant DMAs when rebooting.
489  */
490 static int
491 safe_shutdown(device_t dev)
492 {
493 #ifdef notyet
494 	safe_stop(device_get_softc(dev));
495 #endif
496 	return (0);
497 }
498 
499 /*
500  * Device suspend routine.
501  */
502 static int
503 safe_suspend(device_t dev)
504 {
505 	struct safe_softc *sc = device_get_softc(dev);
506 
507 #ifdef notyet
508 	/* XXX stop the device and save PCI settings */
509 #endif
510 	sc->sc_suspended = 1;
511 
512 	return (0);
513 }
514 
515 static int
516 safe_resume(device_t dev)
517 {
518 	struct safe_softc *sc = device_get_softc(dev);
519 
520 #ifdef notyet
521 	/* XXX retore PCI settings and start the device */
522 #endif
523 	sc->sc_suspended = 0;
524 	return (0);
525 }
526 
527 /*
528  * SafeXcel Interrupt routine
529  */
530 static void
531 safe_intr(void *arg)
532 {
533 	struct safe_softc *sc = arg;
534 	volatile u_int32_t stat;
535 
536 	stat = READ_REG(sc, SAFE_HM_STAT);
537 	if (stat == 0)			/* shared irq, not for us */
538 		return;
539 
540 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
541 
542 	if ((stat & SAFE_INT_PE_DDONE)) {
543 		/*
544 		 * Descriptor(s) done; scan the ring and
545 		 * process completed operations.
546 		 */
547 		mtx_lock(&sc->sc_ringmtx);
548 		while (sc->sc_back != sc->sc_front) {
549 			struct safe_ringentry *re = sc->sc_back;
550 #ifdef SAFE_DEBUG
551 			if (safe_debug) {
552 				safe_dump_ringstate(sc, __func__);
553 				safe_dump_request(sc, __func__, re);
554 			}
555 #endif
556 			/*
557 			 * safe_process marks ring entries that were allocated
558 			 * but not used with a csr of zero.  This insures the
559 			 * ring front pointer never needs to be set backwards
560 			 * in the event that an entry is allocated but not used
561 			 * because of a setup error.
562 			 */
563 			if (re->re_desc.d_csr != 0) {
564 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
565 					break;
566 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
567 					break;
568 				sc->sc_nqchip--;
569 				safe_callback(sc, re);
570 			}
571 			if (++(sc->sc_back) == sc->sc_ringtop)
572 				sc->sc_back = sc->sc_ring;
573 		}
574 		mtx_unlock(&sc->sc_ringmtx);
575 	}
576 
577 	/*
578 	 * Check to see if we got any DMA Error
579 	 */
580 	if (stat & SAFE_INT_PE_ERROR) {
581 		DPRINTF(("dmaerr dmastat %08x\n",
582 			READ_REG(sc, SAFE_PE_DMASTAT)));
583 		safestats.st_dmaerr++;
584 		safe_totalreset(sc);
585 #if 0
586 		safe_feed(sc);
587 #endif
588 	}
589 
590 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
591 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
592 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
593 			sc->sc_needwakeup));
594 		sc->sc_needwakeup &= ~wakeup;
595 		crypto_unblock(sc->sc_cid, wakeup);
596 	}
597 }
598 
599 /*
600  * safe_feed() - post a request to chip
601  */
602 static void
603 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
604 {
605 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
606 	if (re->re_dst_map != NULL)
607 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
608 			BUS_DMASYNC_PREREAD);
609 	/* XXX have no smaller granularity */
610 	safe_dma_sync(&sc->sc_ringalloc,
611 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
612 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
613 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
614 
615 #ifdef SAFE_DEBUG
616 	if (safe_debug) {
617 		safe_dump_ringstate(sc, __func__);
618 		safe_dump_request(sc, __func__, re);
619 	}
620 #endif
621 	sc->sc_nqchip++;
622 	if (sc->sc_nqchip > safestats.st_maxqchip)
623 		safestats.st_maxqchip = sc->sc_nqchip;
624 	/* poke h/w to check descriptor ring, any value can be written */
625 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
626 }
627 
628 #define	N(a)	(sizeof(a) / sizeof (a[0]))
629 static void
630 safe_setup_enckey(struct safe_session *ses, caddr_t key)
631 {
632 	int i;
633 
634 	bcopy(key, ses->ses_key, ses->ses_klen / 8);
635 
636 	/* PE is little-endian, insure proper byte order */
637 	for (i = 0; i < N(ses->ses_key); i++)
638 		ses->ses_key[i] = htole32(ses->ses_key[i]);
639 }
640 
641 static void
642 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
643 {
644 	MD5_CTX md5ctx;
645 	SHA1_CTX sha1ctx;
646 	int i;
647 
648 
649 	for (i = 0; i < klen; i++)
650 		key[i] ^= HMAC_IPAD_VAL;
651 
652 	if (algo == CRYPTO_MD5_HMAC) {
653 		MD5Init(&md5ctx);
654 		MD5Update(&md5ctx, key, klen);
655 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
656 		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
657 	} else {
658 		SHA1Init(&sha1ctx);
659 		SHA1Update(&sha1ctx, key, klen);
660 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
661 		    SHA1_HMAC_BLOCK_LEN - klen);
662 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
663 	}
664 
665 	for (i = 0; i < klen; i++)
666 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
667 
668 	if (algo == CRYPTO_MD5_HMAC) {
669 		MD5Init(&md5ctx);
670 		MD5Update(&md5ctx, key, klen);
671 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
672 		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
673 	} else {
674 		SHA1Init(&sha1ctx);
675 		SHA1Update(&sha1ctx, key, klen);
676 		SHA1Update(&sha1ctx, hmac_opad_buffer,
677 		    SHA1_HMAC_BLOCK_LEN - klen);
678 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
679 	}
680 
681 	for (i = 0; i < klen; i++)
682 		key[i] ^= HMAC_OPAD_VAL;
683 
684 	/* PE is little-endian, insure proper byte order */
685 	for (i = 0; i < N(ses->ses_hminner); i++) {
686 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
687 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
688 	}
689 }
690 #undef N
691 
692 /*
693  * Allocate a new 'session' and return an encoded session id.  'sidp'
694  * contains our registration id, and should contain an encoded session
695  * id on successful allocation.
696  */
697 static int
698 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
699 {
700 	struct safe_softc *sc = device_get_softc(dev);
701 	struct cryptoini *c, *encini = NULL, *macini = NULL;
702 	struct safe_session *ses = NULL;
703 	int sesn;
704 
705 	if (sidp == NULL || cri == NULL || sc == NULL)
706 		return (EINVAL);
707 
708 	for (c = cri; c != NULL; c = c->cri_next) {
709 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
710 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
711 		    c->cri_alg == CRYPTO_NULL_HMAC) {
712 			if (macini)
713 				return (EINVAL);
714 			macini = c;
715 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
716 		    c->cri_alg == CRYPTO_3DES_CBC ||
717 		    c->cri_alg == CRYPTO_AES_CBC ||
718 		    c->cri_alg == CRYPTO_NULL_CBC) {
719 			if (encini)
720 				return (EINVAL);
721 			encini = c;
722 		} else
723 			return (EINVAL);
724 	}
725 	if (encini == NULL && macini == NULL)
726 		return (EINVAL);
727 	if (encini) {			/* validate key length */
728 		switch (encini->cri_alg) {
729 		case CRYPTO_DES_CBC:
730 			if (encini->cri_klen != 64)
731 				return (EINVAL);
732 			break;
733 		case CRYPTO_3DES_CBC:
734 			if (encini->cri_klen != 192)
735 				return (EINVAL);
736 			break;
737 		case CRYPTO_AES_CBC:
738 			if (encini->cri_klen != 128 &&
739 			    encini->cri_klen != 192 &&
740 			    encini->cri_klen != 256)
741 				return (EINVAL);
742 			break;
743 		}
744 	}
745 
746 	if (sc->sc_sessions == NULL) {
747 		ses = sc->sc_sessions = (struct safe_session *)malloc(
748 		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
749 		if (ses == NULL)
750 			return (ENOMEM);
751 		sesn = 0;
752 		sc->sc_nsessions = 1;
753 	} else {
754 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
755 			if (sc->sc_sessions[sesn].ses_used == 0) {
756 				ses = &sc->sc_sessions[sesn];
757 				break;
758 			}
759 		}
760 
761 		if (ses == NULL) {
762 			sesn = sc->sc_nsessions;
763 			ses = (struct safe_session *)malloc((sesn + 1) *
764 			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
765 			if (ses == NULL)
766 				return (ENOMEM);
767 			bcopy(sc->sc_sessions, ses, sesn *
768 			    sizeof(struct safe_session));
769 			bzero(sc->sc_sessions, sesn *
770 			    sizeof(struct safe_session));
771 			free(sc->sc_sessions, M_DEVBUF);
772 			sc->sc_sessions = ses;
773 			ses = &sc->sc_sessions[sesn];
774 			sc->sc_nsessions++;
775 		}
776 	}
777 
778 	bzero(ses, sizeof(struct safe_session));
779 	ses->ses_used = 1;
780 
781 	if (encini) {
782 		/* get an IV */
783 		/* XXX may read fewer than requested */
784 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
785 
786 		ses->ses_klen = encini->cri_klen;
787 		if (encini->cri_key != NULL)
788 			safe_setup_enckey(ses, encini->cri_key);
789 	}
790 
791 	if (macini) {
792 		ses->ses_mlen = macini->cri_mlen;
793 		if (ses->ses_mlen == 0) {
794 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
795 				ses->ses_mlen = MD5_HASH_LEN;
796 			else
797 				ses->ses_mlen = SHA1_HASH_LEN;
798 		}
799 
800 		if (macini->cri_key != NULL) {
801 			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
802 			    macini->cri_klen / 8);
803 		}
804 	}
805 
806 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
807 	return (0);
808 }
809 
810 /*
811  * Deallocate a session.
812  */
813 static int
814 safe_freesession(device_t dev, u_int64_t tid)
815 {
816 	struct safe_softc *sc = device_get_softc(dev);
817 	int session, ret;
818 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
819 
820 	if (sc == NULL)
821 		return (EINVAL);
822 
823 	session = SAFE_SESSION(sid);
824 	if (session < sc->sc_nsessions) {
825 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
826 		ret = 0;
827 	} else
828 		ret = EINVAL;
829 	return (ret);
830 }
831 
832 static void
833 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
834 {
835 	struct safe_operand *op = arg;
836 
837 	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
838 		(u_int) mapsize, nsegs, error));
839 	if (error != 0)
840 		return;
841 	op->mapsize = mapsize;
842 	op->nsegs = nsegs;
843 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
844 }
845 
846 static int
847 safe_process(device_t dev, struct cryptop *crp, int hint)
848 {
849 	struct safe_softc *sc = device_get_softc(dev);
850 	int err = 0, i, nicealign, uniform;
851 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
852 	int bypass, oplen, ivsize;
853 	caddr_t iv;
854 	int16_t coffset;
855 	struct safe_session *ses;
856 	struct safe_ringentry *re;
857 	struct safe_sarec *sa;
858 	struct safe_pdesc *pd;
859 	u_int32_t cmd0, cmd1, staterec;
860 
861 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
862 		safestats.st_invalid++;
863 		return (EINVAL);
864 	}
865 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
866 		safestats.st_badsession++;
867 		return (EINVAL);
868 	}
869 
870 	mtx_lock(&sc->sc_ringmtx);
871 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
872 		safestats.st_ringfull++;
873 		sc->sc_needwakeup |= CRYPTO_SYMQ;
874 		mtx_unlock(&sc->sc_ringmtx);
875 		return (ERESTART);
876 	}
877 	re = sc->sc_front;
878 
879 	staterec = re->re_sa.sa_staterec;	/* save */
880 	/* NB: zero everything but the PE descriptor */
881 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
882 	re->re_sa.sa_staterec = staterec;	/* restore */
883 
884 	re->re_crp = crp;
885 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
886 
887 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
888 		re->re_src_m = (struct mbuf *)crp->crp_buf;
889 		re->re_dst_m = (struct mbuf *)crp->crp_buf;
890 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
891 		re->re_src_io = (struct uio *)crp->crp_buf;
892 		re->re_dst_io = (struct uio *)crp->crp_buf;
893 	} else {
894 		safestats.st_badflags++;
895 		err = EINVAL;
896 		goto errout;	/* XXX we don't handle contiguous blocks! */
897 	}
898 
899 	sa = &re->re_sa;
900 	ses = &sc->sc_sessions[re->re_sesn];
901 
902 	crd1 = crp->crp_desc;
903 	if (crd1 == NULL) {
904 		safestats.st_nodesc++;
905 		err = EINVAL;
906 		goto errout;
907 	}
908 	crd2 = crd1->crd_next;
909 
910 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
911 	cmd1 = 0;
912 	if (crd2 == NULL) {
913 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
914 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
915 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
916 			maccrd = crd1;
917 			enccrd = NULL;
918 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
919 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
920 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
921 		    crd1->crd_alg == CRYPTO_AES_CBC ||
922 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
923 			maccrd = NULL;
924 			enccrd = crd1;
925 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
926 		} else {
927 			safestats.st_badalg++;
928 			err = EINVAL;
929 			goto errout;
930 		}
931 	} else {
932 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
933 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
934 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
935 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
936 			crd2->crd_alg == CRYPTO_3DES_CBC ||
937 		        crd2->crd_alg == CRYPTO_AES_CBC ||
938 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
939 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
940 			maccrd = crd1;
941 			enccrd = crd2;
942 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
943 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
944 		    crd1->crd_alg == CRYPTO_AES_CBC ||
945 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
946 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
947 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
948 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
949 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
950 			enccrd = crd1;
951 			maccrd = crd2;
952 		} else {
953 			safestats.st_badalg++;
954 			err = EINVAL;
955 			goto errout;
956 		}
957 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
958 	}
959 
960 	if (enccrd) {
961 		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
962 			safe_setup_enckey(ses, enccrd->crd_key);
963 
964 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
965 			cmd0 |= SAFE_SA_CMD0_DES;
966 			cmd1 |= SAFE_SA_CMD1_CBC;
967 			ivsize = 2*sizeof(u_int32_t);
968 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
969 			cmd0 |= SAFE_SA_CMD0_3DES;
970 			cmd1 |= SAFE_SA_CMD1_CBC;
971 			ivsize = 2*sizeof(u_int32_t);
972 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
973 			cmd0 |= SAFE_SA_CMD0_AES;
974 			cmd1 |= SAFE_SA_CMD1_CBC;
975 			if (ses->ses_klen == 128)
976 			     cmd1 |=  SAFE_SA_CMD1_AES128;
977 			else if (ses->ses_klen == 192)
978 			     cmd1 |=  SAFE_SA_CMD1_AES192;
979 			else
980 			     cmd1 |=  SAFE_SA_CMD1_AES256;
981 			ivsize = 4*sizeof(u_int32_t);
982 		} else {
983 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
984 			ivsize = 0;
985 		}
986 
987 		/*
988 		 * Setup encrypt/decrypt state.  When using basic ops
989 		 * we can't use an inline IV because hash/crypt offset
990 		 * must be from the end of the IV to the start of the
991 		 * crypt data and this leaves out the preceding header
992 		 * from the hash calculation.  Instead we place the IV
993 		 * in the state record and set the hash/crypt offset to
994 		 * copy both the header+IV.
995 		 */
996 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
997 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
998 
999 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1000 				iv = enccrd->crd_iv;
1001 			else
1002 				iv = (caddr_t) ses->ses_iv;
1003 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1004 				crypto_copyback(crp->crp_flags, crp->crp_buf,
1005 				    enccrd->crd_inject, ivsize, iv);
1006 			}
1007 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1008 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1009 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1010 		} else {
1011 			cmd0 |= SAFE_SA_CMD0_INBOUND;
1012 
1013 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1014 				bcopy(enccrd->crd_iv,
1015 					re->re_sastate.sa_saved_iv, ivsize);
1016 			} else {
1017 				crypto_copydata(crp->crp_flags, crp->crp_buf,
1018 				    enccrd->crd_inject, ivsize,
1019 				    (caddr_t)re->re_sastate.sa_saved_iv);
1020 			}
1021 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1022 		}
1023 		/*
1024 		 * For basic encryption use the zero pad algorithm.
1025 		 * This pads results to an 8-byte boundary and
1026 		 * suppresses padding verification for inbound (i.e.
1027 		 * decrypt) operations.
1028 		 *
1029 		 * NB: Not sure if the 8-byte pad boundary is a problem.
1030 		 */
1031 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1032 
1033 		/* XXX assert key bufs have the same size */
1034 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1035 	}
1036 
1037 	if (maccrd) {
1038 		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1039 			safe_setup_mackey(ses, maccrd->crd_alg,
1040 			    maccrd->crd_key, maccrd->crd_klen / 8);
1041 		}
1042 
1043 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1044 			cmd0 |= SAFE_SA_CMD0_MD5;
1045 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1046 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1047 			cmd0 |= SAFE_SA_CMD0_SHA1;
1048 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1049 		} else {
1050 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1051 		}
1052 		/*
1053 		 * Digest data is loaded from the SA and the hash
1054 		 * result is saved to the state block where we
1055 		 * retrieve it for return to the caller.
1056 		 */
1057 		/* XXX assert digest bufs have the same size */
1058 		bcopy(ses->ses_hminner, sa->sa_indigest,
1059 			sizeof(sa->sa_indigest));
1060 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1061 			sizeof(sa->sa_outdigest));
1062 
1063 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1064 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1065 	}
1066 
1067 	if (enccrd && maccrd) {
1068 		/*
1069 		 * The offset from hash data to the start of
1070 		 * crypt data is the difference in the skips.
1071 		 */
1072 		bypass = maccrd->crd_skip;
1073 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1074 		if (coffset < 0) {
1075 			DPRINTF(("%s: hash does not precede crypt; "
1076 				"mac skip %u enc skip %u\n",
1077 				__func__, maccrd->crd_skip, enccrd->crd_skip));
1078 			safestats.st_skipmismatch++;
1079 			err = EINVAL;
1080 			goto errout;
1081 		}
1082 		oplen = enccrd->crd_skip + enccrd->crd_len;
1083 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1084 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1085 				__func__, maccrd->crd_skip + maccrd->crd_len,
1086 				oplen));
1087 			safestats.st_lenmismatch++;
1088 			err = EINVAL;
1089 			goto errout;
1090 		}
1091 #ifdef SAFE_DEBUG
1092 		if (safe_debug) {
1093 			printf("mac: skip %d, len %d, inject %d\n",
1094 			    maccrd->crd_skip, maccrd->crd_len,
1095 			    maccrd->crd_inject);
1096 			printf("enc: skip %d, len %d, inject %d\n",
1097 			    enccrd->crd_skip, enccrd->crd_len,
1098 			    enccrd->crd_inject);
1099 			printf("bypass %d coffset %d oplen %d\n",
1100 				bypass, coffset, oplen);
1101 		}
1102 #endif
1103 		if (coffset & 3) {	/* offset must be 32-bit aligned */
1104 			DPRINTF(("%s: coffset %u misaligned\n",
1105 				__func__, coffset));
1106 			safestats.st_coffmisaligned++;
1107 			err = EINVAL;
1108 			goto errout;
1109 		}
1110 		coffset >>= 2;
1111 		if (coffset > 255) {	/* offset must be <256 dwords */
1112 			DPRINTF(("%s: coffset %u too big\n",
1113 				__func__, coffset));
1114 			safestats.st_cofftoobig++;
1115 			err = EINVAL;
1116 			goto errout;
1117 		}
1118 		/*
1119 		 * Tell the hardware to copy the header to the output.
1120 		 * The header is defined as the data from the end of
1121 		 * the bypass to the start of data to be encrypted.
1122 		 * Typically this is the inline IV.  Note that you need
1123 		 * to do this even if src+dst are the same; it appears
1124 		 * that w/o this bit the crypted data is written
1125 		 * immediately after the bypass data.
1126 		 */
1127 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1128 		/*
1129 		 * Disable IP header mutable bit handling.  This is
1130 		 * needed to get correct HMAC calculations.
1131 		 */
1132 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1133 	} else {
1134 		if (enccrd) {
1135 			bypass = enccrd->crd_skip;
1136 			oplen = bypass + enccrd->crd_len;
1137 		} else {
1138 			bypass = maccrd->crd_skip;
1139 			oplen = bypass + maccrd->crd_len;
1140 		}
1141 		coffset = 0;
1142 	}
1143 	/* XXX verify multiple of 4 when using s/g */
1144 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1145 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1146 		safestats.st_bypasstoobig++;
1147 		err = EINVAL;
1148 		goto errout;
1149 	}
1150 
1151 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1152 		safestats.st_nomap++;
1153 		err = ENOMEM;
1154 		goto errout;
1155 	}
1156 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1157 		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1158 		    re->re_src_m, safe_op_cb,
1159 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1160 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1161 			re->re_src_map = NULL;
1162 			safestats.st_noload++;
1163 			err = ENOMEM;
1164 			goto errout;
1165 		}
1166 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1167 		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1168 		    re->re_src_io, safe_op_cb,
1169 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1170 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1171 			re->re_src_map = NULL;
1172 			safestats.st_noload++;
1173 			err = ENOMEM;
1174 			goto errout;
1175 		}
1176 	}
1177 	nicealign = safe_dmamap_aligned(&re->re_src);
1178 	uniform = safe_dmamap_uniform(&re->re_src);
1179 
1180 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1181 		nicealign, uniform, re->re_src.nsegs));
1182 	if (re->re_src.nsegs > 1) {
1183 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1184 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1185 		for (i = 0; i < re->re_src_nsegs; i++) {
1186 			/* NB: no need to check if there's space */
1187 			pd = sc->sc_spfree;
1188 			if (++(sc->sc_spfree) == sc->sc_springtop)
1189 				sc->sc_spfree = sc->sc_spring;
1190 
1191 			KASSERT((pd->pd_flags&3) == 0 ||
1192 				(pd->pd_flags&3) == SAFE_PD_DONE,
1193 				("bogus source particle descriptor; flags %x",
1194 				pd->pd_flags));
1195 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1196 			pd->pd_size = re->re_src_segs[i].ds_len;
1197 			pd->pd_flags = SAFE_PD_READY;
1198 		}
1199 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1200 	} else {
1201 		/*
1202 		 * No need for gather, reference the operand directly.
1203 		 */
1204 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1205 	}
1206 
1207 	if (enccrd == NULL && maccrd != NULL) {
1208 		/*
1209 		 * Hash op; no destination needed.
1210 		 */
1211 	} else {
1212 		if (crp->crp_flags & CRYPTO_F_IOV) {
1213 			if (!nicealign) {
1214 				safestats.st_iovmisaligned++;
1215 				err = EINVAL;
1216 				goto errout;
1217 			}
1218 			if (uniform != 1) {
1219 				/*
1220 				 * Source is not suitable for direct use as
1221 				 * the destination.  Create a new scatter/gather
1222 				 * list based on the destination requirements
1223 				 * and check if that's ok.
1224 				 */
1225 				if (bus_dmamap_create(sc->sc_dstdmat,
1226 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1227 					safestats.st_nomap++;
1228 					err = ENOMEM;
1229 					goto errout;
1230 				}
1231 				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1232 				    re->re_dst_map, re->re_dst_io,
1233 				    safe_op_cb, &re->re_dst,
1234 				    BUS_DMA_NOWAIT) != 0) {
1235 					bus_dmamap_destroy(sc->sc_dstdmat,
1236 						re->re_dst_map);
1237 					re->re_dst_map = NULL;
1238 					safestats.st_noload++;
1239 					err = ENOMEM;
1240 					goto errout;
1241 				}
1242 				uniform = safe_dmamap_uniform(&re->re_dst);
1243 				if (!uniform) {
1244 					/*
1245 					 * There's no way to handle the DMA
1246 					 * requirements with this uio.  We
1247 					 * could create a separate DMA area for
1248 					 * the result and then copy it back,
1249 					 * but for now we just bail and return
1250 					 * an error.  Note that uio requests
1251 					 * > SAFE_MAX_DSIZE are handled because
1252 					 * the DMA map and segment list for the
1253 					 * destination wil result in a
1254 					 * destination particle list that does
1255 					 * the necessary scatter DMA.
1256 					 */
1257 					safestats.st_iovnotuniform++;
1258 					err = EINVAL;
1259 					goto errout;
1260 				}
1261 			} else
1262 				re->re_dst = re->re_src;
1263 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1264 			if (nicealign && uniform == 1) {
1265 				/*
1266 				 * Source layout is suitable for direct
1267 				 * sharing of the DMA map and segment list.
1268 				 */
1269 				re->re_dst = re->re_src;
1270 			} else if (nicealign && uniform == 2) {
1271 				/*
1272 				 * The source is properly aligned but requires a
1273 				 * different particle list to handle DMA of the
1274 				 * result.  Create a new map and do the load to
1275 				 * create the segment list.  The particle
1276 				 * descriptor setup code below will handle the
1277 				 * rest.
1278 				 */
1279 				if (bus_dmamap_create(sc->sc_dstdmat,
1280 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1281 					safestats.st_nomap++;
1282 					err = ENOMEM;
1283 					goto errout;
1284 				}
1285 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1286 				    re->re_dst_map, re->re_dst_m,
1287 				    safe_op_cb, &re->re_dst,
1288 				    BUS_DMA_NOWAIT) != 0) {
1289 					bus_dmamap_destroy(sc->sc_dstdmat,
1290 						re->re_dst_map);
1291 					re->re_dst_map = NULL;
1292 					safestats.st_noload++;
1293 					err = ENOMEM;
1294 					goto errout;
1295 				}
1296 			} else {		/* !(aligned and/or uniform) */
1297 				int totlen, len;
1298 				struct mbuf *m, *top, **mp;
1299 
1300 				/*
1301 				 * DMA constraints require that we allocate a
1302 				 * new mbuf chain for the destination.  We
1303 				 * allocate an entire new set of mbufs of
1304 				 * optimal/required size and then tell the
1305 				 * hardware to copy any bits that are not
1306 				 * created as a byproduct of the operation.
1307 				 */
1308 				if (!nicealign)
1309 					safestats.st_unaligned++;
1310 				if (!uniform)
1311 					safestats.st_notuniform++;
1312 				totlen = re->re_src_mapsize;
1313 				if (re->re_src_m->m_flags & M_PKTHDR) {
1314 					len = MHLEN;
1315 					MGETHDR(m, M_NOWAIT, MT_DATA);
1316 					if (m && !m_dup_pkthdr(m, re->re_src_m,
1317 					    M_NOWAIT)) {
1318 						m_free(m);
1319 						m = NULL;
1320 					}
1321 				} else {
1322 					len = MLEN;
1323 					MGET(m, M_NOWAIT, MT_DATA);
1324 				}
1325 				if (m == NULL) {
1326 					safestats.st_nombuf++;
1327 					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1328 					goto errout;
1329 				}
1330 				if (totlen >= MINCLSIZE) {
1331 					MCLGET(m, M_NOWAIT);
1332 					if ((m->m_flags & M_EXT) == 0) {
1333 						m_free(m);
1334 						safestats.st_nomcl++;
1335 						err = sc->sc_nqchip ?
1336 							ERESTART : ENOMEM;
1337 						goto errout;
1338 					}
1339 					len = MCLBYTES;
1340 				}
1341 				m->m_len = len;
1342 				top = NULL;
1343 				mp = &top;
1344 
1345 				while (totlen > 0) {
1346 					if (top) {
1347 						MGET(m, M_NOWAIT, MT_DATA);
1348 						if (m == NULL) {
1349 							m_freem(top);
1350 							safestats.st_nombuf++;
1351 							err = sc->sc_nqchip ?
1352 							    ERESTART : ENOMEM;
1353 							goto errout;
1354 						}
1355 						len = MLEN;
1356 					}
1357 					if (top && totlen >= MINCLSIZE) {
1358 						MCLGET(m, M_NOWAIT);
1359 						if ((m->m_flags & M_EXT) == 0) {
1360 							*mp = m;
1361 							m_freem(top);
1362 							safestats.st_nomcl++;
1363 							err = sc->sc_nqchip ?
1364 							    ERESTART : ENOMEM;
1365 							goto errout;
1366 						}
1367 						len = MCLBYTES;
1368 					}
1369 					m->m_len = len = min(totlen, len);
1370 					totlen -= len;
1371 					*mp = m;
1372 					mp = &m->m_next;
1373 				}
1374 				re->re_dst_m = top;
1375 				if (bus_dmamap_create(sc->sc_dstdmat,
1376 				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1377 					safestats.st_nomap++;
1378 					err = ENOMEM;
1379 					goto errout;
1380 				}
1381 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1382 				    re->re_dst_map, re->re_dst_m,
1383 				    safe_op_cb, &re->re_dst,
1384 				    BUS_DMA_NOWAIT) != 0) {
1385 					bus_dmamap_destroy(sc->sc_dstdmat,
1386 					re->re_dst_map);
1387 					re->re_dst_map = NULL;
1388 					safestats.st_noload++;
1389 					err = ENOMEM;
1390 					goto errout;
1391 				}
1392 				if (re->re_src.mapsize > oplen) {
1393 					/*
1394 					 * There's data following what the
1395 					 * hardware will copy for us.  If this
1396 					 * isn't just the ICV (that's going to
1397 					 * be written on completion), copy it
1398 					 * to the new mbufs
1399 					 */
1400 					if (!(maccrd &&
1401 					    (re->re_src.mapsize-oplen) == 12 &&
1402 					    maccrd->crd_inject == oplen))
1403 						safe_mcopy(re->re_src_m,
1404 							   re->re_dst_m,
1405 							   oplen);
1406 					else
1407 						safestats.st_noicvcopy++;
1408 				}
1409 			}
1410 		} else {
1411 			safestats.st_badflags++;
1412 			err = EINVAL;
1413 			goto errout;
1414 		}
1415 
1416 		if (re->re_dst.nsegs > 1) {
1417 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1418 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1419 			for (i = 0; i < re->re_dst_nsegs; i++) {
1420 				pd = sc->sc_dpfree;
1421 				KASSERT((pd->pd_flags&3) == 0 ||
1422 					(pd->pd_flags&3) == SAFE_PD_DONE,
1423 					("bogus dest particle descriptor; flags %x",
1424 						pd->pd_flags));
1425 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1426 					sc->sc_dpfree = sc->sc_dpring;
1427 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1428 				pd->pd_flags = SAFE_PD_READY;
1429 			}
1430 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1431 		} else {
1432 			/*
1433 			 * No need for scatter, reference the operand directly.
1434 			 */
1435 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * All done with setup; fillin the SA command words
1441 	 * and the packet engine descriptor.  The operation
1442 	 * is now ready for submission to the hardware.
1443 	 */
1444 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1445 	sa->sa_cmd1 = cmd1
1446 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1447 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1448 		    | SAFE_SA_CMD1_SRPCI
1449 		    ;
1450 	/*
1451 	 * NB: the order of writes is important here.  In case the
1452 	 * chip is scanning the ring because of an outstanding request
1453 	 * it might nab this one too.  In that case we need to make
1454 	 * sure the setup is complete before we write the length
1455 	 * field of the descriptor as it signals the descriptor is
1456 	 * ready for processing.
1457 	 */
1458 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1459 	if (maccrd)
1460 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1461 	re->re_desc.d_len = oplen
1462 			  | SAFE_PE_LEN_READY
1463 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1464 			  ;
1465 
1466 	safestats.st_ipackets++;
1467 	safestats.st_ibytes += oplen;
1468 
1469 	if (++(sc->sc_front) == sc->sc_ringtop)
1470 		sc->sc_front = sc->sc_ring;
1471 
1472 	/* XXX honor batching */
1473 	safe_feed(sc, re);
1474 	mtx_unlock(&sc->sc_ringmtx);
1475 	return (0);
1476 
1477 errout:
1478 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1479 		m_freem(re->re_dst_m);
1480 
1481 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1482 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1483 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1484 	}
1485 	if (re->re_src_map != NULL) {
1486 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1487 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1488 	}
1489 	mtx_unlock(&sc->sc_ringmtx);
1490 	if (err != ERESTART) {
1491 		crp->crp_etype = err;
1492 		crypto_done(crp);
1493 	} else {
1494 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1495 	}
1496 	return (err);
1497 }
1498 
1499 static void
1500 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1501 {
1502 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1503 	struct cryptodesc *crd;
1504 
1505 	safestats.st_opackets++;
1506 	safestats.st_obytes += re->re_dst.mapsize;
1507 
1508 	safe_dma_sync(&sc->sc_ringalloc,
1509 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1510 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1511 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1512 			re->re_desc.d_csr,
1513 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1514 		safestats.st_peoperr++;
1515 		crp->crp_etype = EIO;		/* something more meaningful? */
1516 	}
1517 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1518 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1519 		    BUS_DMASYNC_POSTREAD);
1520 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1521 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1522 	}
1523 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1524 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1525 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1526 
1527 	/*
1528 	 * If result was written to a differet mbuf chain, swap
1529 	 * it in as the return value and reclaim the original.
1530 	 */
1531 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1532 		m_freem(re->re_src_m);
1533 		crp->crp_buf = (caddr_t)re->re_dst_m;
1534 	}
1535 
1536 	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1537 		/* copy out IV for future use */
1538 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1539 			int ivsize;
1540 
1541 			if (crd->crd_alg == CRYPTO_DES_CBC ||
1542 			    crd->crd_alg == CRYPTO_3DES_CBC) {
1543 				ivsize = 2*sizeof(u_int32_t);
1544 			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1545 				ivsize = 4*sizeof(u_int32_t);
1546 			} else
1547 				continue;
1548 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1549 			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1550 			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1551 			break;
1552 		}
1553 	}
1554 
1555 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1556 		/* copy out ICV result */
1557 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1558 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1559 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1560 			    crd->crd_alg == CRYPTO_NULL_HMAC))
1561 				continue;
1562 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1563 				/*
1564 				 * SHA-1 ICV's are byte-swapped; fix 'em up
1565 				 * before copy them to their destination.
1566 				 */
1567 				re->re_sastate.sa_saved_indigest[0] =
1568 				    bswap32(re->re_sastate.sa_saved_indigest[0]);
1569 				re->re_sastate.sa_saved_indigest[1] =
1570 				    bswap32(re->re_sastate.sa_saved_indigest[1]);
1571 				re->re_sastate.sa_saved_indigest[2] =
1572 				    bswap32(re->re_sastate.sa_saved_indigest[2]);
1573 			}
1574 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1575 			    crd->crd_inject,
1576 			    sc->sc_sessions[re->re_sesn].ses_mlen,
1577 			    (caddr_t)re->re_sastate.sa_saved_indigest);
1578 			break;
1579 		}
1580 	}
1581 	crypto_done(crp);
1582 }
1583 
1584 /*
1585  * Copy all data past offset from srcm to dstm.
1586  */
1587 static void
1588 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1589 {
1590 	u_int j, dlen, slen;
1591 	caddr_t dptr, sptr;
1592 
1593 	/*
1594 	 * Advance src and dst to offset.
1595 	 */
1596 	j = offset;
1597 	while (j >= 0) {
1598 		if (srcm->m_len > j)
1599 			break;
1600 		j -= srcm->m_len;
1601 		srcm = srcm->m_next;
1602 		if (srcm == NULL)
1603 			return;
1604 	}
1605 	sptr = mtod(srcm, caddr_t) + j;
1606 	slen = srcm->m_len - j;
1607 
1608 	j = offset;
1609 	while (j >= 0) {
1610 		if (dstm->m_len > j)
1611 			break;
1612 		j -= dstm->m_len;
1613 		dstm = dstm->m_next;
1614 		if (dstm == NULL)
1615 			return;
1616 	}
1617 	dptr = mtod(dstm, caddr_t) + j;
1618 	dlen = dstm->m_len - j;
1619 
1620 	/*
1621 	 * Copy everything that remains.
1622 	 */
1623 	for (;;) {
1624 		j = min(slen, dlen);
1625 		bcopy(sptr, dptr, j);
1626 		if (slen == j) {
1627 			srcm = srcm->m_next;
1628 			if (srcm == NULL)
1629 				return;
1630 			sptr = srcm->m_data;
1631 			slen = srcm->m_len;
1632 		} else
1633 			sptr += j, slen -= j;
1634 		if (dlen == j) {
1635 			dstm = dstm->m_next;
1636 			if (dstm == NULL)
1637 				return;
1638 			dptr = dstm->m_data;
1639 			dlen = dstm->m_len;
1640 		} else
1641 			dptr += j, dlen -= j;
1642 	}
1643 }
1644 
1645 #ifndef SAFE_NO_RNG
1646 #define	SAFE_RNG_MAXWAIT	1000
1647 
1648 static void
1649 safe_rng_init(struct safe_softc *sc)
1650 {
1651 	u_int32_t w, v;
1652 	int i;
1653 
1654 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1655 	/* use default value according to the manual */
1656 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1657 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1658 
1659 	/*
1660 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1661 	 * is brought out of reset the ready status flag does not
1662 	 * work until the RNG has finished its internal initialization.
1663 	 *
1664 	 * So in order to determine the device is through its
1665 	 * initialization we must read the data register, using the
1666 	 * status reg in the read in case it is initialized.  Then read
1667 	 * the data register until it changes from the first read.
1668 	 * Once it changes read the data register until it changes
1669 	 * again.  At this time the RNG is considered initialized.
1670 	 * This could take between 750ms - 1000ms in time.
1671 	 */
1672 	i = 0;
1673 	w = READ_REG(sc, SAFE_RNG_OUT);
1674 	do {
1675 		v = READ_REG(sc, SAFE_RNG_OUT);
1676 		if (v != w) {
1677 			w = v;
1678 			break;
1679 		}
1680 		DELAY(10);
1681 	} while (++i < SAFE_RNG_MAXWAIT);
1682 
1683 	/* Wait Until data changes again */
1684 	i = 0;
1685 	do {
1686 		v = READ_REG(sc, SAFE_RNG_OUT);
1687 		if (v != w)
1688 			break;
1689 		DELAY(10);
1690 	} while (++i < SAFE_RNG_MAXWAIT);
1691 }
1692 
1693 static __inline void
1694 safe_rng_disable_short_cycle(struct safe_softc *sc)
1695 {
1696 	WRITE_REG(sc, SAFE_RNG_CTRL,
1697 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1698 }
1699 
1700 static __inline void
1701 safe_rng_enable_short_cycle(struct safe_softc *sc)
1702 {
1703 	WRITE_REG(sc, SAFE_RNG_CTRL,
1704 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1705 }
1706 
1707 static __inline u_int32_t
1708 safe_rng_read(struct safe_softc *sc)
1709 {
1710 	int i;
1711 
1712 	i = 0;
1713 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1714 		;
1715 	return READ_REG(sc, SAFE_RNG_OUT);
1716 }
1717 
1718 static void
1719 safe_rng(void *arg)
1720 {
1721 	struct safe_softc *sc = arg;
1722 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1723 	u_int maxwords;
1724 	int i;
1725 
1726 	safestats.st_rng++;
1727 	/*
1728 	 * Fetch the next block of data.
1729 	 */
1730 	maxwords = safe_rngbufsize;
1731 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1732 		maxwords = SAFE_RNG_MAXBUFSIZ;
1733 retry:
1734 	for (i = 0; i < maxwords; i++)
1735 		buf[i] = safe_rng_read(sc);
1736 	/*
1737 	 * Check the comparator alarm count and reset the h/w if
1738 	 * it exceeds our threshold.  This guards against the
1739 	 * hardware oscillators resonating with external signals.
1740 	 */
1741 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1742 		u_int32_t freq_inc, w;
1743 
1744 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1745 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1746 		safestats.st_rngalarm++;
1747 		safe_rng_enable_short_cycle(sc);
1748 		freq_inc = 18;
1749 		for (i = 0; i < 64; i++) {
1750 			w = READ_REG(sc, SAFE_RNG_CNFG);
1751 			freq_inc = ((w + freq_inc) & 0x3fL);
1752 			w = ((w & ~0x3fL) | freq_inc);
1753 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1754 
1755 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1756 
1757 			(void) safe_rng_read(sc);
1758 			DELAY(25);
1759 
1760 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1761 				safe_rng_disable_short_cycle(sc);
1762 				goto retry;
1763 			}
1764 			freq_inc = 1;
1765 		}
1766 		safe_rng_disable_short_cycle(sc);
1767 	} else
1768 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1769 
1770 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1771 	callout_reset(&sc->sc_rngto,
1772 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1773 }
1774 #endif /* SAFE_NO_RNG */
1775 
1776 static void
1777 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1778 {
1779 	bus_addr_t *paddr = (bus_addr_t*) arg;
1780 	*paddr = segs->ds_addr;
1781 }
1782 
1783 static int
1784 safe_dma_malloc(
1785 	struct safe_softc *sc,
1786 	bus_size_t size,
1787 	struct safe_dma_alloc *dma,
1788 	int mapflags
1789 )
1790 {
1791 	int r;
1792 
1793 	r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1794 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1795 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1796 			       BUS_SPACE_MAXADDR,	/* highaddr */
1797 			       NULL, NULL,		/* filter, filterarg */
1798 			       size,			/* maxsize */
1799 			       1,			/* nsegments */
1800 			       size,			/* maxsegsize */
1801 			       BUS_DMA_ALLOCNOW,	/* flags */
1802 			       NULL, NULL,		/* locking */
1803 			       &dma->dma_tag);
1804 	if (r != 0) {
1805 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1806 			"bus_dma_tag_create failed; error %u\n", r);
1807 		goto fail_0;
1808 	}
1809 
1810 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1811 			     BUS_DMA_NOWAIT, &dma->dma_map);
1812 	if (r != 0) {
1813 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1814 			"bus_dmammem_alloc failed; size %ju, error %u\n",
1815 			(uintmax_t)size, r);
1816 		goto fail_1;
1817 	}
1818 
1819 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1820 		            size,
1821 			    safe_dmamap_cb,
1822 			    &dma->dma_paddr,
1823 			    mapflags | BUS_DMA_NOWAIT);
1824 	if (r != 0) {
1825 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1826 			"bus_dmamap_load failed; error %u\n", r);
1827 		goto fail_2;
1828 	}
1829 
1830 	dma->dma_size = size;
1831 	return (0);
1832 
1833 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1834 fail_2:
1835 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1836 fail_1:
1837 	bus_dma_tag_destroy(dma->dma_tag);
1838 fail_0:
1839 	dma->dma_tag = NULL;
1840 	return (r);
1841 }
1842 
1843 static void
1844 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1845 {
1846 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1847 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1848 	bus_dma_tag_destroy(dma->dma_tag);
1849 }
1850 
1851 /*
1852  * Resets the board.  Values in the regesters are left as is
1853  * from the reset (i.e. initial values are assigned elsewhere).
1854  */
1855 static void
1856 safe_reset_board(struct safe_softc *sc)
1857 {
1858 	u_int32_t v;
1859 	/*
1860 	 * Reset the device.  The manual says no delay
1861 	 * is needed between marking and clearing reset.
1862 	 */
1863 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1864 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1865 		 SAFE_PE_DMACFG_SGRESET);
1866 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1867 				    | SAFE_PE_DMACFG_PERESET
1868 				    | SAFE_PE_DMACFG_PDRRESET
1869 				    | SAFE_PE_DMACFG_SGRESET);
1870 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1871 }
1872 
1873 /*
1874  * Initialize registers we need to touch only once.
1875  */
1876 static void
1877 safe_init_board(struct safe_softc *sc)
1878 {
1879 	u_int32_t v, dwords;
1880 
1881 	v = READ_REG(sc, SAFE_PE_DMACFG);
1882 	v &=~ SAFE_PE_DMACFG_PEMODE;
1883 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1884 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1885 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1886 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1887 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1888 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1889 	  ;
1890 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1891 #if 0
1892 	/* XXX select byte swap based on host byte order */
1893 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1894 #endif
1895 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1896 		/*
1897 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1898 		 * "target mode transfers" done while the chip is DMA'ing
1899 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1900 		 * we reduce the max PCI transfer size and use small source
1901 		 * particle descriptors (<= 256 bytes).
1902 		 */
1903 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1904 		device_printf(sc->sc_dev,
1905 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1906 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1907 			SAFE_REV_MAJ(sc->sc_chiprev),
1908 			SAFE_REV_MIN(sc->sc_chiprev));
1909 	}
1910 
1911 	/* NB: operands+results are overlaid */
1912 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1913 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1914 	/*
1915 	 * Configure ring entry size and number of items in the ring.
1916 	 */
1917 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1918 		("PE ring entry not 32-bit aligned!"));
1919 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1920 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1921 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1922 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1923 
1924 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1925 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1926 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1927 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1928 	/*
1929 	 * NB: destination particles are fixed size.  We use
1930 	 *     an mbuf cluster and require all results go to
1931 	 *     clusters or smaller.
1932 	 */
1933 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1934 
1935 	/* it's now safe to enable PE mode, do it */
1936 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1937 
1938 	/*
1939 	 * Configure hardware to use level-triggered interrupts and
1940 	 * to interrupt after each descriptor is processed.
1941 	 */
1942 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1943 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1944 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1945 }
1946 
1947 /*
1948  * Init PCI registers
1949  */
1950 static void
1951 safe_init_pciregs(device_t dev)
1952 {
1953 }
1954 
1955 /*
1956  * Clean up after a chip crash.
1957  * It is assumed that the caller in splimp()
1958  */
1959 static void
1960 safe_cleanchip(struct safe_softc *sc)
1961 {
1962 
1963 	if (sc->sc_nqchip != 0) {
1964 		struct safe_ringentry *re = sc->sc_back;
1965 
1966 		while (re != sc->sc_front) {
1967 			if (re->re_desc.d_csr != 0)
1968 				safe_free_entry(sc, re);
1969 			if (++re == sc->sc_ringtop)
1970 				re = sc->sc_ring;
1971 		}
1972 		sc->sc_back = re;
1973 		sc->sc_nqchip = 0;
1974 	}
1975 }
1976 
1977 /*
1978  * free a safe_q
1979  * It is assumed that the caller is within splimp().
1980  */
1981 static int
1982 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1983 {
1984 	struct cryptop *crp;
1985 
1986 	/*
1987 	 * Free header MCR
1988 	 */
1989 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1990 		m_freem(re->re_dst_m);
1991 
1992 	crp = (struct cryptop *)re->re_crp;
1993 
1994 	re->re_desc.d_csr = 0;
1995 
1996 	crp->crp_etype = EFAULT;
1997 	crypto_done(crp);
1998 	return(0);
1999 }
2000 
2001 /*
2002  * Routine to reset the chip and clean up.
2003  * It is assumed that the caller is in splimp()
2004  */
2005 static void
2006 safe_totalreset(struct safe_softc *sc)
2007 {
2008 	safe_reset_board(sc);
2009 	safe_init_board(sc);
2010 	safe_cleanchip(sc);
2011 }
2012 
2013 /*
2014  * Is the operand suitable aligned for direct DMA.  Each
2015  * segment must be aligned on a 32-bit boundary and all
2016  * but the last segment must be a multiple of 4 bytes.
2017  */
2018 static int
2019 safe_dmamap_aligned(const struct safe_operand *op)
2020 {
2021 	int i;
2022 
2023 	for (i = 0; i < op->nsegs; i++) {
2024 		if (op->segs[i].ds_addr & 3)
2025 			return (0);
2026 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2027 			return (0);
2028 	}
2029 	return (1);
2030 }
2031 
2032 /*
2033  * Is the operand suitable for direct DMA as the destination
2034  * of an operation.  The hardware requires that each ``particle''
2035  * but the last in an operation result have the same size.  We
2036  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2037  * 0 if some segment is not a multiple of of this size, 1 if all
2038  * segments are exactly this size, or 2 if segments are at worst
2039  * a multple of this size.
2040  */
2041 static int
2042 safe_dmamap_uniform(const struct safe_operand *op)
2043 {
2044 	int result = 1;
2045 
2046 	if (op->nsegs > 0) {
2047 		int i;
2048 
2049 		for (i = 0; i < op->nsegs-1; i++) {
2050 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2051 				return (0);
2052 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2053 				result = 2;
2054 		}
2055 	}
2056 	return (result);
2057 }
2058 
2059 #ifdef SAFE_DEBUG
2060 static void
2061 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2062 {
2063 	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2064 		, tag
2065 		, READ_REG(sc, SAFE_DMA_ENDIAN)
2066 		, READ_REG(sc, SAFE_DMA_SRCADDR)
2067 		, READ_REG(sc, SAFE_DMA_DSTADDR)
2068 		, READ_REG(sc, SAFE_DMA_STAT)
2069 	);
2070 }
2071 
2072 static void
2073 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2074 {
2075 	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2076 		, tag
2077 		, READ_REG(sc, SAFE_HI_CFG)
2078 		, READ_REG(sc, SAFE_HI_MASK)
2079 		, READ_REG(sc, SAFE_HI_DESC_CNT)
2080 		, READ_REG(sc, SAFE_HU_STAT)
2081 		, READ_REG(sc, SAFE_HM_STAT)
2082 	);
2083 }
2084 
2085 static void
2086 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2087 {
2088 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2089 
2090 	/* NB: assume caller has lock on ring */
2091 	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2092 		tag,
2093 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2094 		(unsigned long)(sc->sc_back - sc->sc_ring),
2095 		(unsigned long)(sc->sc_front - sc->sc_ring));
2096 }
2097 
2098 static void
2099 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2100 {
2101 	int ix, nsegs;
2102 
2103 	ix = re - sc->sc_ring;
2104 	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2105 		, tag
2106 		, re, ix
2107 		, re->re_desc.d_csr
2108 		, re->re_desc.d_src
2109 		, re->re_desc.d_dst
2110 		, re->re_desc.d_sa
2111 		, re->re_desc.d_len
2112 	);
2113 	if (re->re_src.nsegs > 1) {
2114 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2115 			sizeof(struct safe_pdesc);
2116 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2117 			printf(" spd[%u] %p: %p size %u flags %x"
2118 				, ix, &sc->sc_spring[ix]
2119 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2120 				, sc->sc_spring[ix].pd_size
2121 				, sc->sc_spring[ix].pd_flags
2122 			);
2123 			if (sc->sc_spring[ix].pd_size == 0)
2124 				printf(" (zero!)");
2125 			printf("\n");
2126 			if (++ix == SAFE_TOTAL_SPART)
2127 				ix = 0;
2128 		}
2129 	}
2130 	if (re->re_dst.nsegs > 1) {
2131 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2132 			sizeof(struct safe_pdesc);
2133 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2134 			printf(" dpd[%u] %p: %p flags %x\n"
2135 				, ix, &sc->sc_dpring[ix]
2136 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2137 				, sc->sc_dpring[ix].pd_flags
2138 			);
2139 			if (++ix == SAFE_TOTAL_DPART)
2140 				ix = 0;
2141 		}
2142 	}
2143 	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2144 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2145 	printf("sa: key %x %x %x %x %x %x %x %x\n"
2146 		, re->re_sa.sa_key[0]
2147 		, re->re_sa.sa_key[1]
2148 		, re->re_sa.sa_key[2]
2149 		, re->re_sa.sa_key[3]
2150 		, re->re_sa.sa_key[4]
2151 		, re->re_sa.sa_key[5]
2152 		, re->re_sa.sa_key[6]
2153 		, re->re_sa.sa_key[7]
2154 	);
2155 	printf("sa: indigest %x %x %x %x %x\n"
2156 		, re->re_sa.sa_indigest[0]
2157 		, re->re_sa.sa_indigest[1]
2158 		, re->re_sa.sa_indigest[2]
2159 		, re->re_sa.sa_indigest[3]
2160 		, re->re_sa.sa_indigest[4]
2161 	);
2162 	printf("sa: outdigest %x %x %x %x %x\n"
2163 		, re->re_sa.sa_outdigest[0]
2164 		, re->re_sa.sa_outdigest[1]
2165 		, re->re_sa.sa_outdigest[2]
2166 		, re->re_sa.sa_outdigest[3]
2167 		, re->re_sa.sa_outdigest[4]
2168 	);
2169 	printf("sr: iv %x %x %x %x\n"
2170 		, re->re_sastate.sa_saved_iv[0]
2171 		, re->re_sastate.sa_saved_iv[1]
2172 		, re->re_sastate.sa_saved_iv[2]
2173 		, re->re_sastate.sa_saved_iv[3]
2174 	);
2175 	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2176 		, re->re_sastate.sa_saved_hashbc
2177 		, re->re_sastate.sa_saved_indigest[0]
2178 		, re->re_sastate.sa_saved_indigest[1]
2179 		, re->re_sastate.sa_saved_indigest[2]
2180 		, re->re_sastate.sa_saved_indigest[3]
2181 		, re->re_sastate.sa_saved_indigest[4]
2182 	);
2183 }
2184 
2185 static void
2186 safe_dump_ring(struct safe_softc *sc, const char *tag)
2187 {
2188 	mtx_lock(&sc->sc_ringmtx);
2189 	printf("\nSafeNet Ring State:\n");
2190 	safe_dump_intrstate(sc, tag);
2191 	safe_dump_dmastatus(sc, tag);
2192 	safe_dump_ringstate(sc, tag);
2193 	if (sc->sc_nqchip) {
2194 		struct safe_ringentry *re = sc->sc_back;
2195 		do {
2196 			safe_dump_request(sc, tag, re);
2197 			if (++re == sc->sc_ringtop)
2198 				re = sc->sc_ring;
2199 		} while (re != sc->sc_front);
2200 	}
2201 	mtx_unlock(&sc->sc_ringmtx);
2202 }
2203 
2204 static int
2205 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2206 {
2207 	char dmode[64];
2208 	int error;
2209 
2210 	strncpy(dmode, "", sizeof(dmode) - 1);
2211 	dmode[sizeof(dmode) - 1] = '\0';
2212 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2213 
2214 	if (error == 0 && req->newptr != NULL) {
2215 		struct safe_softc *sc = safec;
2216 
2217 		if (!sc)
2218 			return EINVAL;
2219 		if (strncmp(dmode, "dma", 3) == 0)
2220 			safe_dump_dmastatus(sc, "safe0");
2221 		else if (strncmp(dmode, "int", 3) == 0)
2222 			safe_dump_intrstate(sc, "safe0");
2223 		else if (strncmp(dmode, "ring", 4) == 0)
2224 			safe_dump_ring(sc, "safe0");
2225 		else
2226 			return EINVAL;
2227 	}
2228 	return error;
2229 }
2230 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2231 	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2232 #endif /* SAFE_DEBUG */
2233